cmd_i2c.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924
  1. /*
  2. * (C) Copyright 2001
  3. * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. /*
  24. * I2C Functions similar to the standard memory functions.
  25. *
  26. * There are several parameters in many of the commands that bear further
  27. * explanations:
  28. *
  29. * Two of the commands (imm and imw) take a byte/word/long modifier
  30. * (e.g. imm.w specifies the word-length modifier). This was done to
  31. * allow manipulating word-length registers. It was not done on any other
  32. * commands because it was not deemed useful.
  33. *
  34. * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
  35. * Each I2C chip on the bus has a unique address. On the I2C data bus,
  36. * the address is the upper seven bits and the LSB is the "read/write"
  37. * bit. Note that the {i2c_chip} address specified on the command
  38. * line is not shifted up: e.g. a typical EEPROM memory chip may have
  39. * an I2C address of 0x50, but the data put on the bus will be 0xA0
  40. * for write and 0xA1 for read. This "non shifted" address notation
  41. * matches at least half of the data sheets :-/.
  42. *
  43. * {addr} is the address (or offset) within the chip. Small memory
  44. * chips have 8 bit addresses. Large memory chips have 16 bit
  45. * addresses. Other memory chips have 9, 10, or 11 bit addresses.
  46. * Many non-memory chips have multiple registers and {addr} is used
  47. * as the register index. Some non-memory chips have only one register
  48. * and therefore don't need any {addr} parameter.
  49. *
  50. * The default {addr} parameter is one byte (.1) which works well for
  51. * memories and registers with 8 bits of address space.
  52. *
  53. * You can specify the length of the {addr} field with the optional .0,
  54. * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
  55. * manipulating a single register device which doesn't use an address
  56. * field, use "0.0" for the address and the ".0" length field will
  57. * suppress the address in the I2C data stream. This also works for
  58. * successive reads using the I2C auto-incrementing memory pointer.
  59. *
  60. * If you are manipulating a large memory with 2-byte addresses, use
  61. * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
  62. *
  63. * Then there are the unfortunate memory chips that spill the most
  64. * significant 1, 2, or 3 bits of address into the chip address byte.
  65. * This effectively makes one chip (logically) look like 2, 4, or
  66. * 8 chips. This is handled (awkwardly) by #defining
  67. * CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
  68. * {addr} field (since .1 is the default, it doesn't actually have to
  69. * be specified). Examples: given a memory chip at I2C chip address
  70. * 0x50, the following would happen...
  71. * imd 50 0 10 display 16 bytes starting at 0x000
  72. * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
  73. * imd 50 100 10 display 16 bytes starting at 0x100
  74. * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
  75. * imd 50 210 10 display 16 bytes starting at 0x210
  76. * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
  77. * This is awfully ugly. It would be nice if someone would think up
  78. * a better way of handling this.
  79. *
  80. * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
  81. */
  82. #include <common.h>
  83. #include <command.h>
  84. #include <i2c.h>
  85. #include <asm/byteorder.h>
  86. #if (CONFIG_COMMANDS & CFG_CMD_I2C)
  87. /* Display values from last command.
  88. * Memory modify remembered values are different from display memory.
  89. */
  90. static uchar i2c_dp_last_chip;
  91. static uint i2c_dp_last_addr;
  92. static uint i2c_dp_last_alen;
  93. static uint i2c_dp_last_length = 0x10;
  94. static uchar i2c_mm_last_chip;
  95. static uint i2c_mm_last_addr;
  96. static uint i2c_mm_last_alen;
  97. #if defined(CFG_I2C_NOPROBES)
  98. static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
  99. #endif
  100. static int
  101. mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
  102. extern int cmd_get_data_size(char* arg, int default_size);
  103. /*
  104. * Syntax:
  105. * imd {i2c_chip} {addr}{.0, .1, .2} {len}
  106. */
  107. #define DISP_LINE_LEN 16
  108. int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
  109. {
  110. u_char chip;
  111. uint addr, alen, length;
  112. int j, nbytes, linebytes;
  113. /* We use the last specified parameters, unless new ones are
  114. * entered.
  115. */
  116. chip = i2c_dp_last_chip;
  117. addr = i2c_dp_last_addr;
  118. alen = i2c_dp_last_alen;
  119. length = i2c_dp_last_length;
  120. if (argc < 3) {
  121. printf ("Usage:\n%s\n", cmdtp->usage);
  122. return 1;
  123. }
  124. if ((flag & CMD_FLAG_REPEAT) == 0) {
  125. /*
  126. * New command specified.
  127. */
  128. alen = 1;
  129. /*
  130. * I2C chip address
  131. */
  132. chip = simple_strtoul(argv[1], NULL, 16);
  133. /*
  134. * I2C data address within the chip. This can be 1 or
  135. * 2 bytes long. Some day it might be 3 bytes long :-).
  136. */
  137. addr = simple_strtoul(argv[2], NULL, 16);
  138. alen = 1;
  139. for(j = 0; j < 8; j++) {
  140. if (argv[2][j] == '.') {
  141. alen = argv[2][j+1] - '0';
  142. if (alen > 4) {
  143. printf ("Usage:\n%s\n", cmdtp->usage);
  144. return 1;
  145. }
  146. break;
  147. } else if (argv[2][j] == '\0') {
  148. break;
  149. }
  150. }
  151. /*
  152. * If another parameter, it is the length to display.
  153. * Length is the number of objects, not number of bytes.
  154. */
  155. if (argc > 3)
  156. length = simple_strtoul(argv[3], NULL, 16);
  157. }
  158. /*
  159. * Print the lines.
  160. *
  161. * We buffer all read data, so we can make sure data is read only
  162. * once.
  163. */
  164. nbytes = length;
  165. do {
  166. unsigned char linebuf[DISP_LINE_LEN];
  167. unsigned char *cp;
  168. linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
  169. if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) {
  170. printf("Error reading the chip.\n");
  171. } else {
  172. printf("%04x:", addr);
  173. cp = linebuf;
  174. for (j=0; j<linebytes; j++) {
  175. printf(" %02x", *cp++);
  176. addr++;
  177. }
  178. printf(" ");
  179. cp = linebuf;
  180. for (j=0; j<linebytes; j++) {
  181. if ((*cp < 0x20) || (*cp > 0x7e))
  182. printf(".");
  183. else
  184. printf("%c", *cp);
  185. cp++;
  186. }
  187. printf("\n");
  188. }
  189. nbytes -= linebytes;
  190. } while (nbytes > 0);
  191. i2c_dp_last_chip = chip;
  192. i2c_dp_last_addr = addr;
  193. i2c_dp_last_alen = alen;
  194. i2c_dp_last_length = length;
  195. return 0;
  196. }
  197. int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
  198. {
  199. return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
  200. }
  201. int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
  202. {
  203. return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
  204. }
  205. /* Write (fill) memory
  206. *
  207. * Syntax:
  208. * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
  209. */
  210. int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
  211. {
  212. uchar chip;
  213. ulong addr;
  214. uint alen;
  215. uchar byte;
  216. int count;
  217. int j;
  218. if ((argc < 4) || (argc > 5)) {
  219. printf ("Usage:\n%s\n", cmdtp->usage);
  220. return 1;
  221. }
  222. /*
  223. * Chip is always specified.
  224. */
  225. chip = simple_strtoul(argv[1], NULL, 16);
  226. /*
  227. * Address is always specified.
  228. */
  229. addr = simple_strtoul(argv[2], NULL, 16);
  230. alen = 1;
  231. for(j = 0; j < 8; j++) {
  232. if (argv[2][j] == '.') {
  233. alen = argv[2][j+1] - '0';
  234. if(alen > 4) {
  235. printf ("Usage:\n%s\n", cmdtp->usage);
  236. return 1;
  237. }
  238. break;
  239. } else if (argv[2][j] == '\0') {
  240. break;
  241. }
  242. }
  243. /*
  244. * Value to write is always specified.
  245. */
  246. byte = simple_strtoul(argv[3], NULL, 16);
  247. /*
  248. * Optional count
  249. */
  250. if(argc == 5) {
  251. count = simple_strtoul(argv[4], NULL, 16);
  252. } else {
  253. count = 1;
  254. }
  255. while (count-- > 0) {
  256. if(i2c_write(chip, addr++, alen, &byte, 1) != 0) {
  257. printf("Error writing the chip.\n");
  258. }
  259. /*
  260. * Wait for the write to complete. The write can take
  261. * up to 10mSec (we allow a little more time).
  262. *
  263. * On some chips, while the write is in progress, the
  264. * chip doesn't respond. This apparently isn't a
  265. * universal feature so we don't take advantage of it.
  266. */
  267. udelay(11000);
  268. #if 0
  269. for(timeout = 0; timeout < 10; timeout++) {
  270. udelay(2000);
  271. if(i2c_probe(chip) == 0)
  272. break;
  273. }
  274. #endif
  275. }
  276. return (0);
  277. }
  278. /* Calculate a CRC on memory
  279. *
  280. * Syntax:
  281. * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
  282. */
  283. int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
  284. {
  285. uchar chip;
  286. ulong addr;
  287. uint alen;
  288. int count;
  289. uchar byte;
  290. ulong crc;
  291. ulong err;
  292. int j;
  293. if (argc < 4) {
  294. printf ("Usage:\n%s\n", cmdtp->usage);
  295. return 1;
  296. }
  297. /*
  298. * Chip is always specified.
  299. */
  300. chip = simple_strtoul(argv[1], NULL, 16);
  301. /*
  302. * Address is always specified.
  303. */
  304. addr = simple_strtoul(argv[2], NULL, 16);
  305. alen = 1;
  306. for(j = 0; j < 8; j++) {
  307. if (argv[2][j] == '.') {
  308. alen = argv[2][j+1] - '0';
  309. if(alen > 4) {
  310. printf ("Usage:\n%s\n", cmdtp->usage);
  311. return 1;
  312. }
  313. break;
  314. } else if (argv[2][j] == '\0') {
  315. break;
  316. }
  317. }
  318. /*
  319. * Count is always specified
  320. */
  321. count = simple_strtoul(argv[3], NULL, 16);
  322. printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
  323. /*
  324. * CRC a byte at a time. This is going to be slooow, but hey, the
  325. * memories are small and slow too so hopefully nobody notices.
  326. */
  327. crc = 0;
  328. err = 0;
  329. while(count-- > 0) {
  330. if(i2c_read(chip, addr, alen, &byte, 1) != 0) {
  331. err++;
  332. }
  333. crc = crc32 (crc, &byte, 1);
  334. addr++;
  335. }
  336. if(err > 0)
  337. {
  338. printf("Error reading the chip,\n");
  339. } else {
  340. printf ("%08lx\n", crc);
  341. }
  342. return 0;
  343. }
  344. /* Modify memory.
  345. *
  346. * Syntax:
  347. * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
  348. * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
  349. */
  350. static int
  351. mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
  352. {
  353. uchar chip;
  354. ulong addr;
  355. uint alen;
  356. ulong data;
  357. int size = 1;
  358. int nbytes;
  359. int j;
  360. extern char console_buffer[];
  361. if (argc != 3) {
  362. printf ("Usage:\n%s\n", cmdtp->usage);
  363. return 1;
  364. }
  365. #ifdef CONFIG_BOOT_RETRY_TIME
  366. reset_cmd_timeout(); /* got a good command to get here */
  367. #endif
  368. /*
  369. * We use the last specified parameters, unless new ones are
  370. * entered.
  371. */
  372. chip = i2c_mm_last_chip;
  373. addr = i2c_mm_last_addr;
  374. alen = i2c_mm_last_alen;
  375. if ((flag & CMD_FLAG_REPEAT) == 0) {
  376. /*
  377. * New command specified. Check for a size specification.
  378. * Defaults to byte if no or incorrect specification.
  379. */
  380. size = cmd_get_data_size(argv[0], 1);
  381. /*
  382. * Chip is always specified.
  383. */
  384. chip = simple_strtoul(argv[1], NULL, 16);
  385. /*
  386. * Address is always specified.
  387. */
  388. addr = simple_strtoul(argv[2], NULL, 16);
  389. alen = 1;
  390. for(j = 0; j < 8; j++) {
  391. if (argv[2][j] == '.') {
  392. alen = argv[2][j+1] - '0';
  393. if(alen > 4) {
  394. printf ("Usage:\n%s\n", cmdtp->usage);
  395. return 1;
  396. }
  397. break;
  398. } else if (argv[2][j] == '\0') {
  399. break;
  400. }
  401. }
  402. }
  403. /*
  404. * Print the address, followed by value. Then accept input for
  405. * the next value. A non-converted value exits.
  406. */
  407. do {
  408. printf("%08lx:", addr);
  409. if(i2c_read(chip, addr, alen, (char *)&data, size) != 0) {
  410. printf("\nError reading the chip,\n");
  411. } else {
  412. data = cpu_to_be32(data);
  413. if(size == 1) {
  414. printf(" %02lx", (data >> 24) & 0x000000FF);
  415. } else if(size == 2) {
  416. printf(" %04lx", (data >> 16) & 0x0000FFFF);
  417. } else {
  418. printf(" %08lx", data);
  419. }
  420. }
  421. nbytes = readline (" ? ");
  422. if (nbytes == 0) {
  423. /*
  424. * <CR> pressed as only input, don't modify current
  425. * location and move to next.
  426. */
  427. if (incrflag)
  428. addr += size;
  429. nbytes = size;
  430. #ifdef CONFIG_BOOT_RETRY_TIME
  431. reset_cmd_timeout(); /* good enough to not time out */
  432. #endif
  433. }
  434. #ifdef CONFIG_BOOT_RETRY_TIME
  435. else if (nbytes == -2) {
  436. break; /* timed out, exit the command */
  437. }
  438. #endif
  439. else {
  440. char *endp;
  441. data = simple_strtoul(console_buffer, &endp, 16);
  442. if(size == 1) {
  443. data = data << 24;
  444. } else if(size == 2) {
  445. data = data << 16;
  446. }
  447. data = be32_to_cpu(data);
  448. nbytes = endp - console_buffer;
  449. if (nbytes) {
  450. #ifdef CONFIG_BOOT_RETRY_TIME
  451. /*
  452. * good enough to not time out
  453. */
  454. reset_cmd_timeout();
  455. #endif
  456. if(i2c_write(chip, addr, alen, (char *)&data, size) != 0) {
  457. printf("Error writing the chip.\n");
  458. }
  459. if (incrflag)
  460. addr += size;
  461. }
  462. }
  463. } while (nbytes);
  464. chip = i2c_mm_last_chip;
  465. addr = i2c_mm_last_addr;
  466. alen = i2c_mm_last_alen;
  467. return 0;
  468. }
  469. /*
  470. * Syntax:
  471. * iprobe {addr}{.0, .1, .2}
  472. */
  473. int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
  474. {
  475. int j;
  476. #if defined(CFG_I2C_NOPROBES)
  477. int k, skip;
  478. #endif
  479. printf("Valid chip addresses:");
  480. for(j = 0; j < 128; j++) {
  481. #if defined(CFG_I2C_NOPROBES)
  482. skip = 0;
  483. for (k = 0; k < sizeof(i2c_no_probes); k++){
  484. if (j == i2c_no_probes[k]){
  485. skip = 1;
  486. break;
  487. }
  488. }
  489. if (skip)
  490. continue;
  491. #endif
  492. if(i2c_probe(j) == 0) {
  493. printf(" %02X", j);
  494. }
  495. }
  496. printf("\n");
  497. #if defined(CFG_I2C_NOPROBES)
  498. puts ("Excluded chip addresses:");
  499. for( k = 0; k < sizeof(i2c_no_probes); k++ )
  500. printf(" %02X", i2c_no_probes[k] );
  501. puts ("\n");
  502. #endif
  503. return 0;
  504. }
  505. /*
  506. * Syntax:
  507. * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
  508. * {length} - Number of bytes to read
  509. * {delay} - A DECIMAL number and defaults to 1000 uSec
  510. */
  511. int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
  512. {
  513. u_char chip;
  514. ulong alen;
  515. uint addr;
  516. uint length;
  517. u_char bytes[16];
  518. int delay;
  519. int j;
  520. if (argc < 3) {
  521. printf ("Usage:\n%s\n", cmdtp->usage);
  522. return 1;
  523. }
  524. /*
  525. * Chip is always specified.
  526. */
  527. chip = simple_strtoul(argv[1], NULL, 16);
  528. /*
  529. * Address is always specified.
  530. */
  531. addr = simple_strtoul(argv[2], NULL, 16);
  532. alen = 1;
  533. for(j = 0; j < 8; j++) {
  534. if (argv[2][j] == '.') {
  535. alen = argv[2][j+1] - '0';
  536. if (alen > 4) {
  537. printf ("Usage:\n%s\n", cmdtp->usage);
  538. return 1;
  539. }
  540. break;
  541. } else if (argv[2][j] == '\0') {
  542. break;
  543. }
  544. }
  545. /*
  546. * Length is the number of objects, not number of bytes.
  547. */
  548. length = 1;
  549. length = simple_strtoul(argv[3], NULL, 16);
  550. if(length > sizeof(bytes)) {
  551. length = sizeof(bytes);
  552. }
  553. /*
  554. * The delay time (uSec) is optional.
  555. */
  556. delay = 1000;
  557. if (argc > 3) {
  558. delay = simple_strtoul(argv[4], NULL, 10);
  559. }
  560. /*
  561. * Run the loop...
  562. */
  563. while(1) {
  564. if(i2c_read(chip, addr, alen, bytes, length) != 0) {
  565. printf("Error reading the chip.\n");
  566. }
  567. udelay(delay);
  568. }
  569. /* NOTREACHED */
  570. return 0;
  571. }
  572. /*
  573. * The SDRAM command is separately configured because many
  574. * (most?) embedded boards don't use SDRAM DIMMs.
  575. */
  576. #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
  577. /*
  578. * Syntax:
  579. * sdram {i2c_chip}
  580. */
  581. int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
  582. {
  583. u_char chip;
  584. u_char data[128];
  585. u_char cksum;
  586. int j;
  587. if (argc < 2) {
  588. printf ("Usage:\n%s\n", cmdtp->usage);
  589. return 1;
  590. }
  591. /*
  592. * Chip is always specified.
  593. */
  594. chip = simple_strtoul(argv[1], NULL, 16);
  595. if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
  596. printf("No SDRAM Serial Presence Detect found.\n");
  597. return 1;
  598. }
  599. cksum = 0;
  600. for (j = 0; j < 63; j++) {
  601. cksum += data[j];
  602. }
  603. if(cksum != data[63]) {
  604. printf ("WARNING: Configuration data checksum failure:\n"
  605. " is 0x%02x, calculated 0x%02x\n",
  606. data[63], cksum);
  607. }
  608. printf("SPD data revision %d.%d\n",
  609. (data[62] >> 4) & 0x0F, data[62] & 0x0F);
  610. printf("Bytes used 0x%02X\n", data[0]);
  611. printf("Serial memory size 0x%02X\n", 1 << data[1]);
  612. printf("Memory type ");
  613. switch(data[2]) {
  614. case 2: printf("EDO\n"); break;
  615. case 4: printf("SDRAM\n"); break;
  616. default: printf("unknown\n"); break;
  617. }
  618. printf("Row address bits ");
  619. if((data[3] & 0x00F0) == 0) {
  620. printf("%d\n", data[3] & 0x0F);
  621. } else {
  622. printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
  623. }
  624. printf("Column address bits ");
  625. if((data[4] & 0x00F0) == 0) {
  626. printf("%d\n", data[4] & 0x0F);
  627. } else {
  628. printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
  629. }
  630. printf("Module rows %d\n", data[5]);
  631. printf("Module data width %d bits\n", (data[7] << 8) | data[6]);
  632. printf("Interface signal levels ");
  633. switch(data[8]) {
  634. case 0: printf("5.0v/TTL\n"); break;
  635. case 1: printf("LVTTL\n"); break;
  636. case 2: printf("HSTL 1.5\n"); break;
  637. case 3: printf("SSTL 3.3\n"); break;
  638. case 4: printf("SSTL 2.5\n"); break;
  639. default: printf("unknown\n"); break;
  640. }
  641. printf("SDRAM cycle time %d.%d nS\n",
  642. (data[9] >> 4) & 0x0F, data[9] & 0x0F);
  643. printf("SDRAM access time %d.%d nS\n",
  644. (data[10] >> 4) & 0x0F, data[10] & 0x0F);
  645. printf("EDC configuration ");
  646. switch(data[11]) {
  647. case 0: printf("None\n"); break;
  648. case 1: printf("Parity\n"); break;
  649. case 2: printf("ECC\n"); break;
  650. default: printf("unknown\n"); break;
  651. }
  652. if((data[12] & 0x80) == 0) {
  653. printf("No self refresh, rate ");
  654. } else {
  655. printf("Self refresh, rate ");
  656. }
  657. switch(data[12] & 0x7F) {
  658. case 0: printf("15.625uS\n"); break;
  659. case 1: printf("3.9uS\n"); break;
  660. case 2: printf("7.8uS\n"); break;
  661. case 3: printf("31.3uS\n"); break;
  662. case 4: printf("62.5uS\n"); break;
  663. case 5: printf("125uS\n"); break;
  664. default: printf("unknown\n"); break;
  665. }
  666. printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
  667. if((data[13] & 0x80) != 0) {
  668. printf(" (second bank) %d\n",
  669. 2 * (data[13] & 0x7F));
  670. }
  671. if(data[14] != 0) {
  672. printf("EDC width %d\n",
  673. data[14] & 0x7F);
  674. if((data[14] & 0x80) != 0) {
  675. printf(" (second bank) %d\n",
  676. 2 * (data[14] & 0x7F));
  677. }
  678. }
  679. printf("Min clock delay, back-to-back random column addresses %d\n",
  680. data[15]);
  681. printf("Burst length(s) ");
  682. if(data[16] & 0x80) printf(" Page");
  683. if(data[16] & 0x08) printf(" 8");
  684. if(data[16] & 0x04) printf(" 4");
  685. if(data[16] & 0x02) printf(" 2");
  686. if(data[16] & 0x01) printf(" 1");
  687. printf("\n");
  688. printf("Number of banks %d\n", data[17]);
  689. printf("CAS latency(s) ");
  690. if(data[18] & 0x80) printf(" TBD");
  691. if(data[18] & 0x40) printf(" 7");
  692. if(data[18] & 0x20) printf(" 6");
  693. if(data[18] & 0x10) printf(" 5");
  694. if(data[18] & 0x08) printf(" 4");
  695. if(data[18] & 0x04) printf(" 3");
  696. if(data[18] & 0x02) printf(" 2");
  697. if(data[18] & 0x01) printf(" 1");
  698. printf("\n");
  699. printf("CS latency(s) ");
  700. if(data[19] & 0x80) printf(" TBD");
  701. if(data[19] & 0x40) printf(" 6");
  702. if(data[19] & 0x20) printf(" 5");
  703. if(data[19] & 0x10) printf(" 4");
  704. if(data[19] & 0x08) printf(" 3");
  705. if(data[19] & 0x04) printf(" 2");
  706. if(data[19] & 0x02) printf(" 1");
  707. if(data[19] & 0x01) printf(" 0");
  708. printf("\n");
  709. printf("WE latency(s) ");
  710. if(data[20] & 0x80) printf(" TBD");
  711. if(data[20] & 0x40) printf(" 6");
  712. if(data[20] & 0x20) printf(" 5");
  713. if(data[20] & 0x10) printf(" 4");
  714. if(data[20] & 0x08) printf(" 3");
  715. if(data[20] & 0x04) printf(" 2");
  716. if(data[20] & 0x02) printf(" 1");
  717. if(data[20] & 0x01) printf(" 0");
  718. printf("\n");
  719. printf("Module attributes:\n");
  720. if(!data[21]) printf(" (none)\n");
  721. if(data[21] & 0x80) printf(" TBD (bit 7)\n");
  722. if(data[21] & 0x40) printf(" Redundant row address\n");
  723. if(data[21] & 0x20) printf(" Differential clock input\n");
  724. if(data[21] & 0x10) printf(" Registerd DQMB inputs\n");
  725. if(data[21] & 0x08) printf(" Buffered DQMB inputs\n");
  726. if(data[21] & 0x04) printf(" On-card PLL\n");
  727. if(data[21] & 0x02) printf(" Registered address/control lines\n");
  728. if(data[21] & 0x01) printf(" Buffered address/control lines\n");
  729. printf("Device attributes:\n");
  730. if(data[22] & 0x80) printf(" TBD (bit 7)\n");
  731. if(data[22] & 0x40) printf(" TBD (bit 6)\n");
  732. if(data[22] & 0x20) printf(" Upper Vcc tolerance 5%%\n");
  733. else printf(" Upper Vcc tolerance 10%%\n");
  734. if(data[22] & 0x10) printf(" Lower Vcc tolerance 5%%\n");
  735. else printf(" Lower Vcc tolerance 10%%\n");
  736. if(data[22] & 0x08) printf(" Supports write1/read burst\n");
  737. if(data[22] & 0x04) printf(" Supports precharge all\n");
  738. if(data[22] & 0x02) printf(" Supports auto precharge\n");
  739. if(data[22] & 0x01) printf(" Supports early RAS# precharge\n");
  740. printf("SDRAM cycle time (2nd highest CAS latency) %d.%d nS\n",
  741. (data[23] >> 4) & 0x0F, data[23] & 0x0F);
  742. printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n",
  743. (data[24] >> 4) & 0x0F, data[24] & 0x0F);
  744. printf("SDRAM cycle time (3rd highest CAS latency) %d.%d nS\n",
  745. (data[25] >> 4) & 0x0F, data[25] & 0x0F);
  746. printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n",
  747. (data[26] >> 4) & 0x0F, data[26] & 0x0F);
  748. printf("Minimum row precharge %d nS\n", data[27]);
  749. printf("Row active to row active min %d nS\n", data[28]);
  750. printf("RAS to CAS delay min %d nS\n", data[29]);
  751. printf("Minimum RAS pulse width %d nS\n", data[30]);
  752. printf("Density of each row ");
  753. if(data[31] & 0x80) printf(" 512MByte");
  754. if(data[31] & 0x40) printf(" 256MByte");
  755. if(data[31] & 0x20) printf(" 128MByte");
  756. if(data[31] & 0x10) printf(" 64MByte");
  757. if(data[31] & 0x08) printf(" 32MByte");
  758. if(data[31] & 0x04) printf(" 16MByte");
  759. if(data[31] & 0x02) printf(" 8MByte");
  760. if(data[31] & 0x01) printf(" 4MByte");
  761. printf("\n");
  762. printf("Command and Address setup %c%d.%d nS\n",
  763. (data[32] & 0x80) ? '-' : '+',
  764. (data[32] >> 4) & 0x07, data[32] & 0x0F);
  765. printf("Command and Address hold %c%d.%d nS\n",
  766. (data[33] & 0x80) ? '-' : '+',
  767. (data[33] >> 4) & 0x07, data[33] & 0x0F);
  768. printf("Data signal input setup %c%d.%d nS\n",
  769. (data[34] & 0x80) ? '-' : '+',
  770. (data[34] >> 4) & 0x07, data[34] & 0x0F);
  771. printf("Data signal input hold %c%d.%d nS\n",
  772. (data[35] & 0x80) ? '-' : '+',
  773. (data[35] >> 4) & 0x07, data[35] & 0x0F);
  774. printf("Manufacturer's JEDEC ID ");
  775. for(j = 64; j <= 71; j++)
  776. printf("%02X ", data[j]);
  777. printf("\n");
  778. printf("Manufacturing Location %02X\n", data[72]);
  779. printf("Manufacturer's Part Number ");
  780. for(j = 73; j <= 90; j++)
  781. printf("%02X ", data[j]);
  782. printf("\n");
  783. printf("Revision Code %02X %02X\n", data[91], data[92]);
  784. printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
  785. printf("Assembly Serial Number ");
  786. for(j = 95; j <= 98; j++)
  787. printf("%02X ", data[j]);
  788. printf("\n");
  789. printf("Speed rating PC%d\n",
  790. data[126] == 0x66 ? 66 : data[126]);
  791. return 0;
  792. }
  793. #endif /* CFG_CMD_SDRAM */
  794. /***************************************************/
  795. cmd_tbl_t U_BOOT_CMD(IMD) = MK_CMD_ENTRY(
  796. "imd", 4, 1, do_i2c_md, \
  797. "imd - i2c memory display\n", \
  798. "chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \
  799. );
  800. cmd_tbl_t U_BOOT_CMD(IMM) = MK_CMD_ENTRY(
  801. "imm", 3, 1, do_i2c_mm,
  802. "imm - i2c memory modify (auto-incrementing)\n",
  803. "chip address[.0, .1, .2]\n"
  804. " - memory modify, auto increment address\n"
  805. );
  806. cmd_tbl_t U_BOOT_CMD(INM) = MK_CMD_ENTRY(
  807. "inm", 3, 1, do_i2c_nm,
  808. "inm - memory modify (constant address)\n",
  809. "chip address[.0, .1, .2]\n - memory modify, read and keep address\n"
  810. );
  811. cmd_tbl_t U_BOOT_CMD(IMW) = MK_CMD_ENTRY(
  812. "imw", 5, 1, do_i2c_mw,
  813. "imw - memory write (fill)\n",
  814. "chip address[.0, .1, .2] value [count]\n - memory write (fill)\n"
  815. );
  816. cmd_tbl_t U_BOOT_CMD(ICRC) = MK_CMD_ENTRY(
  817. "icrc32", 5, 1, do_i2c_crc,
  818. "icrc32 - checksum calculation\n",
  819. "chip address[.0, .1, .2] count\n - compute CRC32 checksum\n"
  820. );
  821. cmd_tbl_t U_BOOT_CMD(IPROBE) = MK_CMD_ENTRY(
  822. "iprobe", 1, 1, do_i2c_probe,
  823. "iprobe - probe to discover valid I2C chip addresses\n",
  824. "\n -discover valid I2C chip addresses\n"
  825. );
  826. /*
  827. * Require full name for "iloop" because it is an infinite loop!
  828. */
  829. cmd_tbl_t U_BOOT_CMD(ILOOP) = MK_CMD_ENTRY(
  830. "iloop", 5, 1, do_i2c_loop,
  831. "iloop - infinite loop on address range\n",
  832. "chip address[.0, .1, .2] [# of objects]\n"
  833. " - loop, reading a set of addresses\n"
  834. );
  835. #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
  836. cmd_tbl_t U_BOOT_CMD(ISDRAM) = MK_CMD_ENTRY(
  837. "isdram", 2, 1, do_sdram,
  838. "isdram - print SDRAM configuration information\n",
  839. "chip\n - print SDRAM configuration information\n"
  840. " (valid chip values 50..57)\n"
  841. );
  842. #endif
  843. #endif /* CFG_CMD_I2C */