123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972 |
- /*
- * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
- * Rohit Choraria <rohitkc@ti.com>
- *
- * See file CREDITS for list of people who contributed to this
- * project.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2 of
- * the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
- * MA 02111-1307 USA
- */
- #include <common.h>
- #include <asm/io.h>
- #include <asm/errno.h>
- #include <asm/arch/mem.h>
- #include <asm/arch/cpu.h>
- #include <asm/omap_gpmc.h>
- #include <linux/mtd/nand_ecc.h>
- #include <linux/bch.h>
- #include <linux/compiler.h>
- #include <nand.h>
- #ifdef CONFIG_AM33XX
- #include <asm/arch/elm.h>
- #endif
- static uint8_t cs;
- static __maybe_unused struct nand_ecclayout hw_nand_oob =
- GPMC_NAND_HW_ECC_LAYOUT;
- static __maybe_unused struct nand_ecclayout hw_bch8_nand_oob =
- GPMC_NAND_HW_BCH8_ECC_LAYOUT;
- /*
- * omap_nand_hwcontrol - Set the address pointers corretly for the
- * following address/data/command operation
- */
- static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
- uint32_t ctrl)
- {
- register struct nand_chip *this = mtd->priv;
- /*
- * Point the IO_ADDR to DATA and ADDRESS registers instead
- * of chip address
- */
- switch (ctrl) {
- case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
- this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
- break;
- case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
- this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
- break;
- case NAND_CTRL_CHANGE | NAND_NCE:
- this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
- break;
- }
- if (cmd != NAND_CMD_NONE)
- writeb(cmd, this->IO_ADDR_W);
- }
- #ifdef CONFIG_SPL_BUILD
- /* Check wait pin as dev ready indicator */
- int omap_spl_dev_ready(struct mtd_info *mtd)
- {
- return gpmc_cfg->status & (1 << 8);
- }
- #endif
- /*
- * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
- * GPMC controller
- * @mtd: MTD device structure
- *
- */
- static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
- {
- /*
- * Init ECC Control Register
- * Clear all ECC | Enable Reg1
- */
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
- writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
- }
- /*
- * gen_true_ecc - This function will generate true ECC value, which
- * can be used when correcting data read from NAND flash memory core
- *
- * @ecc_buf: buffer to store ecc code
- *
- * @return: re-formatted ECC value
- */
- static uint32_t gen_true_ecc(uint8_t *ecc_buf)
- {
- return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
- ((ecc_buf[2] & 0x0F) << 8);
- }
- /*
- * omap_correct_data - Compares the ecc read from nand spare area with ECC
- * registers values and corrects one bit error if it has occured
- * Further details can be had from OMAP TRM and the following selected links:
- * http://en.wikipedia.org/wiki/Hamming_code
- * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
- *
- * @mtd: MTD device structure
- * @dat: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from ECC registers
- *
- * @return 0 if data is OK or corrected, else returns -1
- */
- static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
- uint8_t *read_ecc, uint8_t *calc_ecc)
- {
- uint32_t orig_ecc, new_ecc, res, hm;
- uint16_t parity_bits, byte;
- uint8_t bit;
- /* Regenerate the orginal ECC */
- orig_ecc = gen_true_ecc(read_ecc);
- new_ecc = gen_true_ecc(calc_ecc);
- /* Get the XOR of real ecc */
- res = orig_ecc ^ new_ecc;
- if (res) {
- /* Get the hamming width */
- hm = hweight32(res);
- /* Single bit errors can be corrected! */
- if (hm == 12) {
- /* Correctable data! */
- parity_bits = res >> 16;
- bit = (parity_bits & 0x7);
- byte = (parity_bits >> 3) & 0x1FF;
- /* Flip the bit to correct */
- dat[byte] ^= (0x1 << bit);
- } else if (hm == 1) {
- printf("Error: Ecc is wrong\n");
- /* ECC itself is corrupted */
- return 2;
- } else {
- /*
- * hm distance != parity pairs OR one, could mean 2 bit
- * error OR potentially be on a blank page..
- * orig_ecc: contains spare area data from nand flash.
- * new_ecc: generated ecc while reading data area.
- * Note: if the ecc = 0, all data bits from which it was
- * generated are 0xFF.
- * The 3 byte(24 bits) ecc is generated per 512byte
- * chunk of a page. If orig_ecc(from spare area)
- * is 0xFF && new_ecc(computed now from data area)=0x0,
- * this means that data area is 0xFF and spare area is
- * 0xFF. A sure sign of a erased page!
- */
- if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
- return 0;
- printf("Error: Bad compare! failed\n");
- /* detected 2 bit error */
- return -1;
- }
- }
- return 0;
- }
- /*
- * omap_calculate_ecc - Generate non-inverted ECC bytes.
- *
- * Using noninverted ECC can be considered ugly since writing a blank
- * page ie. padding will clear the ECC bytes. This is no problem as
- * long nobody is trying to write data on the seemingly unused page.
- * Reading an erased page will produce an ECC mismatch between
- * generated and read ECC bytes that has to be dealt with separately.
- * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
- * is used, the result of read will be 0x0 while the ECC offsets of the
- * spare area will be 0xFF which will result in an ECC mismatch.
- * @mtd: MTD structure
- * @dat: unused
- * @ecc_code: ecc_code buffer
- */
- static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
- const uint8_t *dat, uint8_t *ecc_code)
- {
- u_int32_t val;
- /* Start Reading from HW ECC1_Result = 0x200 */
- val = readl(&gpmc_cfg->ecc1_result);
- ecc_code[0] = val & 0xFF;
- ecc_code[1] = (val >> 16) & 0xFF;
- ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
- /*
- * Stop reading anymore ECC vals and clear old results
- * enable will be called if more reads are required
- */
- writel(0x000, &gpmc_cfg->ecc_config);
- return 0;
- }
- /*
- * omap_enable_ecc - This function enables the hardware ecc functionality
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- */
- static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
- {
- struct nand_chip *chip = mtd->priv;
- uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
- switch (mode) {
- case NAND_ECC_READ:
- case NAND_ECC_WRITE:
- /* Clear the ecc result registers, select ecc reg as 1 */
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
- /*
- * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
- * tell all regs to generate size0 sized regs
- * we just have a single ECC engine for all CS
- */
- writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
- &gpmc_cfg->ecc_size_config);
- val = (dev_width << 7) | (cs << 1) | (0x1);
- writel(val, &gpmc_cfg->ecc_config);
- break;
- default:
- printf("Error: Unrecognized Mode[%d]!\n", mode);
- break;
- }
- }
- /*
- * Generic BCH interface
- */
- struct nand_bch_priv {
- uint8_t mode;
- uint8_t type;
- uint8_t nibbles;
- struct bch_control *control;
- };
- /* bch types */
- #define ECC_BCH4 0
- #define ECC_BCH8 1
- #define ECC_BCH16 2
- /* GPMC ecc engine settings */
- #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
- #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
- /* BCH nibbles for diff bch levels */
- #define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
- #define ECC_BCH4_NIBBLES 13
- #define ECC_BCH8_NIBBLES 26
- #define ECC_BCH16_NIBBLES 52
- /*
- * This can be a single instance cause all current users have only one NAND
- * with nearly the same setup (BCH8, some with ELM and others with sw BCH
- * library).
- * When some users with other BCH strength will exists this have to change!
- */
- static __maybe_unused struct nand_bch_priv bch_priv = {
- .mode = NAND_ECC_HW_BCH,
- .type = ECC_BCH8,
- .nibbles = ECC_BCH8_NIBBLES,
- .control = NULL
- };
- /*
- * omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
- * GPMC controller
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- */
- __maybe_unused
- static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
- {
- uint32_t val;
- uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
- #ifdef CONFIG_AM33XX
- uint32_t unused_length = 0;
- #endif
- uint32_t wr_mode = BCH_WRAPMODE_6;
- struct nand_bch_priv *bch = chip->priv;
- /* Clear the ecc result registers, select ecc reg as 1 */
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
- #ifdef CONFIG_AM33XX
- wr_mode = BCH_WRAPMODE_1;
- switch (bch->nibbles) {
- case ECC_BCH4_NIBBLES:
- unused_length = 3;
- break;
- case ECC_BCH8_NIBBLES:
- unused_length = 2;
- break;
- case ECC_BCH16_NIBBLES:
- unused_length = 0;
- break;
- }
- /*
- * This is ecc_size_config for ELM mode.
- * Here we are using different settings for read and write access and
- * also depending on BCH strength.
- */
- switch (mode) {
- case NAND_ECC_WRITE:
- /* write access only setup eccsize1 config */
- val = ((unused_length + bch->nibbles) << 22);
- break;
- case NAND_ECC_READ:
- default:
- /*
- * by default eccsize0 selected for ecc1resultsize
- * eccsize0 config.
- */
- val = (bch->nibbles << 12);
- /* eccsize1 config */
- val |= (unused_length << 22);
- break;
- }
- #else
- /*
- * This ecc_size_config setting is for BCH sw library.
- *
- * Note: we only support BCH8 currently with BCH sw library!
- * Should be really easy to adobt to BCH4, however some omap3 have
- * flaws with BCH4.
- *
- * Here we are using wrapping mode 6 both for reading and writing, with:
- * size0 = 0 (no additional protected byte in spare area)
- * size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
- */
- val = (32 << 22) | (0 << 12);
- #endif
- /* ecc size configuration */
- writel(val, &gpmc_cfg->ecc_size_config);
- /*
- * Configure the ecc engine in gpmc
- * We assume 512 Byte sector pages for access to NAND.
- */
- val = (1 << 16); /* enable BCH mode */
- val |= (bch->type << 12); /* setup BCH type */
- val |= (wr_mode << 8); /* setup wrapping mode */
- val |= (dev_width << 7); /* setup device width (16 or 8 bit) */
- val |= (cs << 1); /* setup chip select to work on */
- debug("set ECC_CONFIG=0x%08x\n", val);
- writel(val, &gpmc_cfg->ecc_config);
- }
- /*
- * omap_enable_ecc_bch - This function enables the bch h/w ecc functionality
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- */
- __maybe_unused
- static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
- {
- struct nand_chip *chip = mtd->priv;
- omap_hwecc_init_bch(chip, mode);
- /* enable ecc */
- writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
- }
- /*
- * omap_ecc_disable - Disable H/W ECC calculation
- *
- * @mtd: MTD device structure
- */
- static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
- {
- writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config);
- }
- /*
- * BCH8 support (needs ELM and thus AM33xx-only)
- */
- #ifdef CONFIG_AM33XX
- /*
- * omap_read_bch8_result - Read BCH result for BCH8 level
- *
- * @mtd: MTD device structure
- * @big_endian: When set read register 3 first
- * @ecc_code: Read syndrome from BCH result registers
- */
- static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
- uint8_t *ecc_code)
- {
- uint32_t *ptr;
- int8_t i = 0, j;
- if (big_endian) {
- ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
- ecc_code[i++] = readl(ptr) & 0xFF;
- ptr--;
- for (j = 0; j < 3; j++) {
- ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
- ecc_code[i++] = readl(ptr) & 0xFF;
- ptr--;
- }
- } else {
- ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
- for (j = 0; j < 3; j++) {
- ecc_code[i++] = readl(ptr) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
- ptr++;
- }
- ecc_code[i++] = readl(ptr) & 0xFF;
- ecc_code[i++] = 0; /* 14th byte is always zero */
- }
- }
- /*
- * omap_rotate_ecc_bch - Rotate the syndrome bytes
- *
- * @mtd: MTD device structure
- * @calc_ecc: ECC read from ECC registers
- * @syndrome: Rotated syndrome will be retuned in this array
- *
- */
- static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
- uint8_t *syndrome)
- {
- struct nand_chip *chip = mtd->priv;
- struct nand_bch_priv *bch = chip->priv;
- uint8_t n_bytes = 0;
- int8_t i, j;
- switch (bch->type) {
- case ECC_BCH4:
- n_bytes = 8;
- break;
- case ECC_BCH16:
- n_bytes = 28;
- break;
- case ECC_BCH8:
- default:
- n_bytes = 13;
- break;
- }
- for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
- syndrome[i] = calc_ecc[j];
- }
- /*
- * omap_calculate_ecc_bch - Read BCH ECC result
- *
- * @mtd: MTD structure
- * @dat: unused
- * @ecc_code: ecc_code buffer
- */
- static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
- uint8_t *ecc_code)
- {
- struct nand_chip *chip = mtd->priv;
- struct nand_bch_priv *bch = chip->priv;
- uint8_t big_endian = 1;
- int8_t ret = 0;
- if (bch->type == ECC_BCH8)
- omap_read_bch8_result(mtd, big_endian, ecc_code);
- else /* BCH4 and BCH16 currently not supported */
- ret = -1;
- /*
- * Stop reading anymore ECC vals and clear old results
- * enable will be called if more reads are required
- */
- omap_ecc_disable(mtd);
- return ret;
- }
- /*
- * omap_fix_errors_bch - Correct bch error in the data
- *
- * @mtd: MTD device structure
- * @data: Data read from flash
- * @error_count:Number of errors in data
- * @error_loc: Locations of errors in the data
- *
- */
- static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
- uint32_t error_count, uint32_t *error_loc)
- {
- struct nand_chip *chip = mtd->priv;
- struct nand_bch_priv *bch = chip->priv;
- uint8_t count = 0;
- uint32_t error_byte_pos;
- uint32_t error_bit_mask;
- uint32_t last_bit = (bch->nibbles * 4) - 1;
- /* Flip all bits as specified by the error location array. */
- /* FOR( each found error location flip the bit ) */
- for (count = 0; count < error_count; count++) {
- if (error_loc[count] > last_bit) {
- /* Remove the ECC spare bits from correction. */
- error_loc[count] -= (last_bit + 1);
- /* Offset bit in data region */
- error_byte_pos = ((512 * 8) -
- (error_loc[count]) - 1) / 8;
- /* Error Bit mask */
- error_bit_mask = 0x1 << (error_loc[count] % 8);
- /* Toggle the error bit to make the correction. */
- data[error_byte_pos] ^= error_bit_mask;
- }
- }
- }
- /*
- * omap_correct_data_bch - Compares the ecc read from nand spare area
- * with ECC registers values and corrects one bit error if it has occured
- *
- * @mtd: MTD device structure
- * @dat: page data
- * @read_ecc: ecc read from nand flash (ignored)
- * @calc_ecc: ecc read from ECC registers
- *
- * @return 0 if data is OK or corrected, else returns -1
- */
- static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
- uint8_t *read_ecc, uint8_t *calc_ecc)
- {
- struct nand_chip *chip = mtd->priv;
- struct nand_bch_priv *bch = chip->priv;
- uint8_t syndrome[28];
- uint32_t error_count = 0;
- uint32_t error_loc[8];
- uint32_t i, ecc_flag;
- ecc_flag = 0;
- for (i = 0; i < chip->ecc.bytes; i++)
- if (read_ecc[i] != 0xff)
- ecc_flag = 1;
- if (!ecc_flag)
- return 0;
- elm_reset();
- elm_config((enum bch_level)(bch->type));
- /*
- * while reading ECC result we read it in big endian.
- * Hence while loading to ELM we have rotate to get the right endian.
- */
- omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
- /* use elm module to check for errors */
- if (elm_check_error(syndrome, bch->nibbles, &error_count,
- error_loc) != 0) {
- printf("ECC: uncorrectable.\n");
- return -1;
- }
- /* correct bch error */
- if (error_count > 0)
- omap_fix_errors_bch(mtd, dat, error_count, error_loc);
- return 0;
- }
- /**
- * omap_read_page_bch - hardware ecc based page read function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller expects OOB data read to chip->oob_poi
- * @page: page number to read
- *
- */
- static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
- {
- int i, eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- uint8_t *p = buf;
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- uint8_t *ecc_code = chip->buffers->ecccode;
- uint32_t *eccpos = chip->ecc.layout->eccpos;
- uint8_t *oob = chip->oob_poi;
- uint32_t data_pos;
- uint32_t oob_pos;
- data_pos = 0;
- /* oob area start */
- oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
- oob += chip->ecc.layout->eccpos[0];
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
- oob += eccbytes) {
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
- /* read data */
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
- chip->read_buf(mtd, p, eccsize);
- /* read respective ecc from oob area */
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
- chip->read_buf(mtd, oob, eccbytes);
- /* read syndrome */
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
- data_pos += eccsize;
- oob_pos += eccbytes;
- }
- for (i = 0; i < chip->ecc.total; i++)
- ecc_code[i] = chip->oob_poi[eccpos[i]];
- eccsteps = chip->ecc.steps;
- p = buf;
- for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- int stat;
- stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
- if (stat < 0)
- mtd->ecc_stats.failed++;
- else
- mtd->ecc_stats.corrected += stat;
- }
- return 0;
- }
- #endif /* CONFIG_AM33XX */
- /*
- * OMAP3 BCH8 support (with BCH library)
- */
- #ifdef CONFIG_NAND_OMAP_BCH8
- /*
- * omap_calculate_ecc_bch - Read BCH ECC result
- *
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed (unused here)
- * @ecc: The ECC output buffer
- */
- static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
- uint8_t *ecc)
- {
- int ret = 0;
- size_t i;
- unsigned long nsectors, val1, val2, val3, val4;
- nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
- for (i = 0; i < nsectors; i++) {
- /* Read hw-computed remainder */
- val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]);
- val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]);
- val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]);
- val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]);
- /*
- * Add constant polynomial to remainder, in order to get an ecc
- * sequence of 0xFFs for a buffer filled with 0xFFs.
- */
- *ecc++ = 0xef ^ (val4 & 0xFF);
- *ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
- *ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
- *ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
- *ecc++ = 0xed ^ (val3 & 0xFF);
- *ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
- *ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
- *ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
- *ecc++ = 0x97 ^ (val2 & 0xFF);
- *ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
- *ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
- *ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
- *ecc++ = 0xb5 ^ (val1 & 0xFF);
- }
- /*
- * Stop reading anymore ECC vals and clear old results
- * enable will be called if more reads are required
- */
- omap_ecc_disable(mtd);
- return ret;
- }
- /**
- * omap_correct_data_bch - Decode received data and correct errors
- * @mtd: MTD device structure
- * @data: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from HW ECC registers
- */
- static int omap_correct_data_bch(struct mtd_info *mtd, u_char *data,
- u_char *read_ecc, u_char *calc_ecc)
- {
- int i, count;
- /* cannot correct more than 8 errors */
- unsigned int errloc[8];
- struct nand_chip *chip = mtd->priv;
- struct nand_bch_priv *chip_priv = chip->priv;
- struct bch_control *bch = chip_priv->control;
- count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc);
- if (count > 0) {
- /* correct errors */
- for (i = 0; i < count; i++) {
- /* correct data only, not ecc bytes */
- if (errloc[i] < 8*512)
- data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
- printf("corrected bitflip %u\n", errloc[i]);
- #ifdef DEBUG
- puts("read_ecc: ");
- /*
- * BCH8 have 13 bytes of ECC; BCH4 needs adoption
- * here!
- */
- for (i = 0; i < 13; i++)
- printf("%02x ", read_ecc[i]);
- puts("\n");
- puts("calc_ecc: ");
- for (i = 0; i < 13; i++)
- printf("%02x ", calc_ecc[i]);
- puts("\n");
- #endif
- }
- } else if (count < 0) {
- puts("ecc unrecoverable error\n");
- }
- return count;
- }
- /**
- * omap_free_bch - Release BCH ecc resources
- * @mtd: MTD device structure
- */
- static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
- {
- struct nand_chip *chip = mtd->priv;
- struct nand_bch_priv *chip_priv = chip->priv;
- struct bch_control *bch = NULL;
- if (chip_priv)
- bch = chip_priv->control;
- if (bch) {
- free_bch(bch);
- chip_priv->control = NULL;
- }
- }
- #endif /* CONFIG_NAND_OMAP_BCH8 */
- #ifndef CONFIG_SPL_BUILD
- /*
- * omap_nand_switch_ecc - switch the ECC operation between different engines
- * (h/w and s/w) and different algorithms (hamming and BCHx)
- *
- * @hardware - true if one of the HW engines should be used
- * @eccstrength - the number of bits that could be corrected
- * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
- */
- void omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
- {
- struct nand_chip *nand;
- struct mtd_info *mtd;
- if (nand_curr_device < 0 ||
- nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
- !nand_info[nand_curr_device].name) {
- printf("Error: Can't switch ecc, no devices available\n");
- return;
- }
- mtd = &nand_info[nand_curr_device];
- nand = mtd->priv;
- nand->options |= NAND_OWN_BUFFERS;
- /* Reset ecc interface */
- nand->ecc.mode = NAND_ECC_NONE;
- nand->ecc.read_page = NULL;
- nand->ecc.write_page = NULL;
- nand->ecc.read_oob = NULL;
- nand->ecc.write_oob = NULL;
- nand->ecc.hwctl = NULL;
- nand->ecc.correct = NULL;
- nand->ecc.calculate = NULL;
- nand->ecc.strength = eccstrength;
- /* Setup the ecc configurations again */
- if (hardware) {
- if (eccstrength == 1) {
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.layout = &hw_nand_oob;
- nand->ecc.size = 512;
- nand->ecc.bytes = 3;
- nand->ecc.hwctl = omap_enable_hwecc;
- nand->ecc.correct = omap_correct_data;
- nand->ecc.calculate = omap_calculate_ecc;
- omap_hwecc_init(nand);
- printf("1-bit hamming HW ECC selected\n");
- }
- #if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
- else if (eccstrength == 8) {
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.layout = &hw_bch8_nand_oob;
- nand->ecc.size = 512;
- #ifdef CONFIG_AM33XX
- nand->ecc.bytes = 14;
- nand->ecc.read_page = omap_read_page_bch;
- #else
- nand->ecc.bytes = 13;
- #endif
- nand->ecc.hwctl = omap_enable_ecc_bch;
- nand->ecc.correct = omap_correct_data_bch;
- nand->ecc.calculate = omap_calculate_ecc_bch;
- omap_hwecc_init_bch(nand, NAND_ECC_READ);
- printf("8-bit BCH HW ECC selected\n");
- }
- #endif
- } else {
- nand->ecc.mode = NAND_ECC_SOFT;
- /* Use mtd default settings */
- nand->ecc.layout = NULL;
- nand->ecc.size = 0;
- printf("SW ECC selected\n");
- }
- /* Update NAND handling after ECC mode switch */
- nand_scan_tail(mtd);
- nand->options &= ~NAND_OWN_BUFFERS;
- }
- #endif /* CONFIG_SPL_BUILD */
- /*
- * Board-specific NAND initialization. The following members of the
- * argument are board-specific:
- * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
- * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
- * - cmd_ctrl: hardwarespecific function for accesing control-lines
- * - waitfunc: hardwarespecific function for accesing device ready/busy line
- * - ecc.hwctl: function to enable (reset) hardware ecc generator
- * - ecc.mode: mode of ecc, see defines
- * - chip_delay: chip dependent delay for transfering data from array to
- * read regs (tR)
- * - options: various chip options. They can partly be set to inform
- * nand_scan about special functionality. See the defines for further
- * explanation
- */
- int board_nand_init(struct nand_chip *nand)
- {
- int32_t gpmc_config = 0;
- cs = 0;
- /*
- * xloader/Uboot's gpmc configuration would have configured GPMC for
- * nand type of memory. The following logic scans and latches on to the
- * first CS with NAND type memory.
- * TBD: need to make this logic generic to handle multiple CS NAND
- * devices.
- */
- while (cs < GPMC_MAX_CS) {
- /* Check if NAND type is set */
- if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
- /* Found it!! */
- break;
- }
- cs++;
- }
- if (cs >= GPMC_MAX_CS) {
- printf("NAND: Unable to find NAND settings in "
- "GPMC Configuration - quitting\n");
- return -ENODEV;
- }
- gpmc_config = readl(&gpmc_cfg->config);
- /* Disable Write protect */
- gpmc_config |= 0x10;
- writel(gpmc_config, &gpmc_cfg->config);
- nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
- nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
- nand->cmd_ctrl = omap_nand_hwcontrol;
- nand->options = NAND_NO_PADDING | NAND_CACHEPRG;
- /* If we are 16 bit dev, our gpmc config tells us that */
- if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
- nand->options |= NAND_BUSWIDTH_16;
- nand->chip_delay = 100;
- #if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
- #ifdef CONFIG_AM33XX
- /* AM33xx uses the ELM */
- /* required in case of BCH */
- elm_init();
- #else
- /*
- * Whereas other OMAP based SoC do not have the ELM, they use the BCH
- * SW library.
- */
- bch_priv.control = init_bch(13, 8, 0x201b /* hw polynominal */);
- if (!bch_priv.control) {
- puts("Could not init_bch()\n");
- return -ENODEV;
- }
- #endif
- /* BCH info that will be correct for SPL or overridden otherwise. */
- nand->priv = &bch_priv;
- #endif
- /* Default ECC mode */
- #if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8)
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.layout = &hw_bch8_nand_oob;
- nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
- nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
- nand->ecc.strength = 8;
- nand->ecc.hwctl = omap_enable_ecc_bch;
- nand->ecc.correct = omap_correct_data_bch;
- nand->ecc.calculate = omap_calculate_ecc_bch;
- #ifdef CONFIG_AM33XX
- nand->ecc.read_page = omap_read_page_bch;
- #endif
- omap_hwecc_init_bch(nand, NAND_ECC_READ);
- #else
- #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC)
- nand->ecc.mode = NAND_ECC_SOFT;
- #else
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.layout = &hw_nand_oob;
- nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
- nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
- nand->ecc.hwctl = omap_enable_hwecc;
- nand->ecc.correct = omap_correct_data;
- nand->ecc.calculate = omap_calculate_ecc;
- nand->ecc.strength = 1;
- omap_hwecc_init(nand);
- #endif
- #endif
- #ifdef CONFIG_SPL_BUILD
- if (nand->options & NAND_BUSWIDTH_16)
- nand->read_buf = nand_read_buf16;
- else
- nand->read_buf = nand_read_buf;
- nand->dev_ready = omap_spl_dev_ready;
- #endif
- return 0;
- }
|