123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188 |
- /*
- * Freescale i.MX28 NAND flash driver
- *
- * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
- * on behalf of DENX Software Engineering GmbH
- *
- * Based on code from LTIB:
- * Freescale GPMI NFC NAND Flash Driver
- *
- * Copyright (C) 2010 Freescale Semiconductor, Inc.
- * Copyright (C) 2008 Embedded Alley Solutions, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- */
- #include <common.h>
- #include <linux/mtd/mtd.h>
- #include <linux/mtd/nand.h>
- #include <linux/types.h>
- #include <malloc.h>
- #include <asm/errno.h>
- #include <asm/io.h>
- #include <asm/arch/clock.h>
- #include <asm/arch/imx-regs.h>
- #include <asm/imx-common/regs-bch.h>
- #include <asm/imx-common/regs-gpmi.h>
- #include <asm/arch/sys_proto.h>
- #include <asm/imx-common/dma.h>
- #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
- #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
- #if defined(CONFIG_MX6)
- #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
- #else
- #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
- #endif
- #define MXS_NAND_METADATA_SIZE 10
- #define MXS_NAND_COMMAND_BUFFER_SIZE 32
- #define MXS_NAND_BCH_TIMEOUT 10000
- struct mxs_nand_info {
- int cur_chip;
- uint32_t cmd_queue_len;
- uint32_t data_buf_size;
- uint8_t *cmd_buf;
- uint8_t *data_buf;
- uint8_t *oob_buf;
- uint8_t marking_block_bad;
- uint8_t raw_oob_mode;
- /* Functions with altered behaviour */
- int (*hooked_read_oob)(struct mtd_info *mtd,
- loff_t from, struct mtd_oob_ops *ops);
- int (*hooked_write_oob)(struct mtd_info *mtd,
- loff_t to, struct mtd_oob_ops *ops);
- int (*hooked_block_markbad)(struct mtd_info *mtd,
- loff_t ofs);
- /* DMA descriptors */
- struct mxs_dma_desc **desc;
- uint32_t desc_index;
- };
- struct nand_ecclayout fake_ecc_layout;
- /*
- * Cache management functions
- */
- #ifndef CONFIG_SYS_DCACHE_OFF
- static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
- {
- uint32_t addr = (uint32_t)info->data_buf;
- flush_dcache_range(addr, addr + info->data_buf_size);
- }
- static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
- {
- uint32_t addr = (uint32_t)info->data_buf;
- invalidate_dcache_range(addr, addr + info->data_buf_size);
- }
- static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
- {
- uint32_t addr = (uint32_t)info->cmd_buf;
- flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
- }
- #else
- static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
- static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
- static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
- #endif
- static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
- {
- struct mxs_dma_desc *desc;
- if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
- printf("MXS NAND: Too many DMA descriptors requested\n");
- return NULL;
- }
- desc = info->desc[info->desc_index];
- info->desc_index++;
- return desc;
- }
- static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
- {
- int i;
- struct mxs_dma_desc *desc;
- for (i = 0; i < info->desc_index; i++) {
- desc = info->desc[i];
- memset(desc, 0, sizeof(struct mxs_dma_desc));
- desc->address = (dma_addr_t)desc;
- }
- info->desc_index = 0;
- }
- static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
- {
- return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
- }
- static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
- {
- return ecc_strength * 13;
- }
- static uint32_t mxs_nand_aux_status_offset(void)
- {
- return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
- }
- static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
- uint32_t page_oob_size)
- {
- if (page_data_size == 2048)
- return 8;
- if (page_data_size == 4096) {
- if (page_oob_size == 128)
- return 8;
- if (page_oob_size == 218)
- return 16;
- }
- return 0;
- }
- static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
- uint32_t ecc_strength)
- {
- uint32_t chunk_data_size_in_bits;
- uint32_t chunk_ecc_size_in_bits;
- uint32_t chunk_total_size_in_bits;
- uint32_t block_mark_chunk_number;
- uint32_t block_mark_chunk_bit_offset;
- uint32_t block_mark_bit_offset;
- chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
- chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
- chunk_total_size_in_bits =
- chunk_data_size_in_bits + chunk_ecc_size_in_bits;
- /* Compute the bit offset of the block mark within the physical page. */
- block_mark_bit_offset = page_data_size * 8;
- /* Subtract the metadata bits. */
- block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
- /*
- * Compute the chunk number (starting at zero) in which the block mark
- * appears.
- */
- block_mark_chunk_number =
- block_mark_bit_offset / chunk_total_size_in_bits;
- /*
- * Compute the bit offset of the block mark within its chunk, and
- * validate it.
- */
- block_mark_chunk_bit_offset = block_mark_bit_offset -
- (block_mark_chunk_number * chunk_total_size_in_bits);
- if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
- return 1;
- /*
- * Now that we know the chunk number in which the block mark appears,
- * we can subtract all the ECC bits that appear before it.
- */
- block_mark_bit_offset -=
- block_mark_chunk_number * chunk_ecc_size_in_bits;
- return block_mark_bit_offset;
- }
- static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
- {
- uint32_t ecc_strength;
- ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
- return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
- }
- static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
- {
- uint32_t ecc_strength;
- ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
- return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
- }
- /*
- * Wait for BCH complete IRQ and clear the IRQ
- */
- static int mxs_nand_wait_for_bch_complete(void)
- {
- struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
- int timeout = MXS_NAND_BCH_TIMEOUT;
- int ret;
- ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
- BCH_CTRL_COMPLETE_IRQ, timeout);
- writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
- return ret;
- }
- /*
- * This is the function that we install in the cmd_ctrl function pointer of the
- * owning struct nand_chip. The only functions in the reference implementation
- * that use these functions pointers are cmdfunc and select_chip.
- *
- * In this driver, we implement our own select_chip, so this function will only
- * be called by the reference implementation's cmdfunc. For this reason, we can
- * ignore the chip enable bit and concentrate only on sending bytes to the NAND
- * Flash.
- */
- static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
- {
- struct nand_chip *nand = mtd->priv;
- struct mxs_nand_info *nand_info = nand->priv;
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- int ret;
- /*
- * If this condition is true, something is _VERY_ wrong in MTD
- * subsystem!
- */
- if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
- printf("MXS NAND: Command queue too long\n");
- return;
- }
- /*
- * Every operation begins with a command byte and a series of zero or
- * more address bytes. These are distinguished by either the Address
- * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
- * asserted. When MTD is ready to execute the command, it will
- * deasert both latch enables.
- *
- * Rather than run a separate DMA operation for every single byte, we
- * queue them up and run a single DMA operation for the entire series
- * of command and data bytes.
- */
- if (ctrl & (NAND_ALE | NAND_CLE)) {
- if (data != NAND_CMD_NONE)
- nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
- return;
- }
- /*
- * If control arrives here, MTD has deasserted both the ALE and CLE,
- * which means it's ready to run an operation. Check if we have any
- * bytes to send.
- */
- if (nand_info->cmd_queue_len == 0)
- return;
- /* Compile the DMA descriptor -- a descriptor that sends command. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
- MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
- (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
- d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WRITE |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_CLE |
- GPMI_CTRL0_ADDRESS_INCREMENT |
- nand_info->cmd_queue_len;
- mxs_dma_desc_append(channel, d);
- /* Flush caches */
- mxs_nand_flush_cmd_buf(nand_info);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret)
- printf("MXS NAND: Error sending command\n");
- mxs_nand_return_dma_descs(nand_info);
- /* Reset the command queue. */
- nand_info->cmd_queue_len = 0;
- }
- /*
- * Test if the NAND flash is ready.
- */
- static int mxs_nand_device_ready(struct mtd_info *mtd)
- {
- struct nand_chip *chip = mtd->priv;
- struct mxs_nand_info *nand_info = chip->priv;
- struct mxs_gpmi_regs *gpmi_regs =
- (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
- uint32_t tmp;
- tmp = readl(&gpmi_regs->hw_gpmi_stat);
- tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
- return tmp & 1;
- }
- /*
- * Select the NAND chip.
- */
- static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
- {
- struct nand_chip *nand = mtd->priv;
- struct mxs_nand_info *nand_info = nand->priv;
- nand_info->cur_chip = chip;
- }
- /*
- * Handle block mark swapping.
- *
- * Note that, when this function is called, it doesn't know whether it's
- * swapping the block mark, or swapping it *back* -- but it doesn't matter
- * because the the operation is the same.
- */
- static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
- uint8_t *data_buf, uint8_t *oob_buf)
- {
- uint32_t bit_offset;
- uint32_t buf_offset;
- uint32_t src;
- uint32_t dst;
- bit_offset = mxs_nand_mark_bit_offset(mtd);
- buf_offset = mxs_nand_mark_byte_offset(mtd);
- /*
- * Get the byte from the data area that overlays the block mark. Since
- * the ECC engine applies its own view to the bits in the page, the
- * physical block mark won't (in general) appear on a byte boundary in
- * the data.
- */
- src = data_buf[buf_offset] >> bit_offset;
- src |= data_buf[buf_offset + 1] << (8 - bit_offset);
- dst = oob_buf[0];
- oob_buf[0] = src;
- data_buf[buf_offset] &= ~(0xff << bit_offset);
- data_buf[buf_offset + 1] &= 0xff << bit_offset;
- data_buf[buf_offset] |= dst << bit_offset;
- data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
- }
- /*
- * Read data from NAND.
- */
- static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
- {
- struct nand_chip *nand = mtd->priv;
- struct mxs_nand_info *nand_info = nand->priv;
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- int ret;
- if (length > NAND_MAX_PAGESIZE) {
- printf("MXS NAND: DMA buffer too big\n");
- return;
- }
- if (!buf) {
- printf("MXS NAND: DMA buffer is NULL\n");
- return;
- }
- /* Compile the DMA descriptor - a descriptor that reads data. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
- (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
- (length << MXS_DMA_DESC_BYTES_OFFSET);
- d->cmd.address = (dma_addr_t)nand_info->data_buf;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_READ |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA |
- length;
- mxs_dma_desc_append(channel, d);
- /*
- * A DMA descriptor that waits for the command to end and the chip to
- * become ready.
- *
- * I think we actually should *not* be waiting for the chip to become
- * ready because, after all, we don't care. I think the original code
- * did that and no one has re-thought it yet.
- */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
- MXS_DMA_DESC_WAIT4END | (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA;
- mxs_dma_desc_append(channel, d);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret) {
- printf("MXS NAND: DMA read error\n");
- goto rtn;
- }
- /* Invalidate caches */
- mxs_nand_inval_data_buf(nand_info);
- memcpy(buf, nand_info->data_buf, length);
- rtn:
- mxs_nand_return_dma_descs(nand_info);
- }
- /*
- * Write data to NAND.
- */
- static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
- int length)
- {
- struct nand_chip *nand = mtd->priv;
- struct mxs_nand_info *nand_info = nand->priv;
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- int ret;
- if (length > NAND_MAX_PAGESIZE) {
- printf("MXS NAND: DMA buffer too big\n");
- return;
- }
- if (!buf) {
- printf("MXS NAND: DMA buffer is NULL\n");
- return;
- }
- memcpy(nand_info->data_buf, buf, length);
- /* Compile the DMA descriptor - a descriptor that writes data. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
- (4 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
- (length << MXS_DMA_DESC_BYTES_OFFSET);
- d->cmd.address = (dma_addr_t)nand_info->data_buf;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WRITE |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA |
- length;
- mxs_dma_desc_append(channel, d);
- /* Flush caches */
- mxs_nand_flush_data_buf(nand_info);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret)
- printf("MXS NAND: DMA write error\n");
- mxs_nand_return_dma_descs(nand_info);
- }
- /*
- * Read a single byte from NAND.
- */
- static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
- {
- uint8_t buf;
- mxs_nand_read_buf(mtd, &buf, 1);
- return buf;
- }
- /*
- * Read a page from NAND.
- */
- static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
- uint8_t *buf, int oob_required,
- int page)
- {
- struct mxs_nand_info *nand_info = nand->priv;
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- uint32_t corrected = 0, failed = 0;
- uint8_t *status;
- int i, ret;
- /* Compile the DMA descriptor - wait for ready. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
- MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
- (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA;
- mxs_dma_desc_append(channel, d);
- /* Compile the DMA descriptor - enable the BCH block and read. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
- MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_READ |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA |
- (mtd->writesize + mtd->oobsize);
- d->cmd.pio_words[1] = 0;
- d->cmd.pio_words[2] =
- GPMI_ECCCTRL_ENABLE_ECC |
- GPMI_ECCCTRL_ECC_CMD_DECODE |
- GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
- d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
- d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
- d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
- mxs_dma_desc_append(channel, d);
- /* Compile the DMA descriptor - disable the BCH block. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
- MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
- (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA |
- (mtd->writesize + mtd->oobsize);
- d->cmd.pio_words[1] = 0;
- d->cmd.pio_words[2] = 0;
- mxs_dma_desc_append(channel, d);
- /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_DEC_SEM;
- d->cmd.address = 0;
- mxs_dma_desc_append(channel, d);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret) {
- printf("MXS NAND: DMA read error\n");
- goto rtn;
- }
- ret = mxs_nand_wait_for_bch_complete();
- if (ret) {
- printf("MXS NAND: BCH read timeout\n");
- goto rtn;
- }
- /* Invalidate caches */
- mxs_nand_inval_data_buf(nand_info);
- /* Read DMA completed, now do the mark swapping. */
- mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
- /* Loop over status bytes, accumulating ECC status. */
- status = nand_info->oob_buf + mxs_nand_aux_status_offset();
- for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
- if (status[i] == 0x00)
- continue;
- if (status[i] == 0xff)
- continue;
- if (status[i] == 0xfe) {
- failed++;
- continue;
- }
- corrected += status[i];
- }
- /* Propagate ECC status to the owning MTD. */
- mtd->ecc_stats.failed += failed;
- mtd->ecc_stats.corrected += corrected;
- /*
- * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
- * details about our policy for delivering the OOB.
- *
- * We fill the caller's buffer with set bits, and then copy the block
- * mark to the caller's buffer. Note that, if block mark swapping was
- * necessary, it has already been done, so we can rely on the first
- * byte of the auxiliary buffer to contain the block mark.
- */
- memset(nand->oob_poi, 0xff, mtd->oobsize);
- nand->oob_poi[0] = nand_info->oob_buf[0];
- memcpy(buf, nand_info->data_buf, mtd->writesize);
- rtn:
- mxs_nand_return_dma_descs(nand_info);
- return ret;
- }
- /*
- * Write a page to NAND.
- */
- static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
- struct nand_chip *nand, const uint8_t *buf,
- int oob_required)
- {
- struct mxs_nand_info *nand_info = nand->priv;
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- int ret;
- memcpy(nand_info->data_buf, buf, mtd->writesize);
- memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
- /* Handle block mark swapping. */
- mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
- /* Compile the DMA descriptor - write data. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
- (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WRITE |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA;
- d->cmd.pio_words[1] = 0;
- d->cmd.pio_words[2] =
- GPMI_ECCCTRL_ENABLE_ECC |
- GPMI_ECCCTRL_ECC_CMD_ENCODE |
- GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
- d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
- d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
- d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
- mxs_dma_desc_append(channel, d);
- /* Flush caches */
- mxs_nand_flush_data_buf(nand_info);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret) {
- printf("MXS NAND: DMA write error\n");
- goto rtn;
- }
- ret = mxs_nand_wait_for_bch_complete();
- if (ret) {
- printf("MXS NAND: BCH write timeout\n");
- goto rtn;
- }
- rtn:
- mxs_nand_return_dma_descs(nand_info);
- return 0;
- }
- /*
- * Read OOB from NAND.
- *
- * This function is a veneer that replaces the function originally installed by
- * the NAND Flash MTD code.
- */
- static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
- struct mtd_oob_ops *ops)
- {
- struct nand_chip *chip = mtd->priv;
- struct mxs_nand_info *nand_info = chip->priv;
- int ret;
- if (ops->mode == MTD_OPS_RAW)
- nand_info->raw_oob_mode = 1;
- else
- nand_info->raw_oob_mode = 0;
- ret = nand_info->hooked_read_oob(mtd, from, ops);
- nand_info->raw_oob_mode = 0;
- return ret;
- }
- /*
- * Write OOB to NAND.
- *
- * This function is a veneer that replaces the function originally installed by
- * the NAND Flash MTD code.
- */
- static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
- struct mtd_oob_ops *ops)
- {
- struct nand_chip *chip = mtd->priv;
- struct mxs_nand_info *nand_info = chip->priv;
- int ret;
- if (ops->mode == MTD_OPS_RAW)
- nand_info->raw_oob_mode = 1;
- else
- nand_info->raw_oob_mode = 0;
- ret = nand_info->hooked_write_oob(mtd, to, ops);
- nand_info->raw_oob_mode = 0;
- return ret;
- }
- /*
- * Mark a block bad in NAND.
- *
- * This function is a veneer that replaces the function originally installed by
- * the NAND Flash MTD code.
- */
- static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
- {
- struct nand_chip *chip = mtd->priv;
- struct mxs_nand_info *nand_info = chip->priv;
- int ret;
- nand_info->marking_block_bad = 1;
- ret = nand_info->hooked_block_markbad(mtd, ofs);
- nand_info->marking_block_bad = 0;
- return ret;
- }
- /*
- * There are several places in this driver where we have to handle the OOB and
- * block marks. This is the function where things are the most complicated, so
- * this is where we try to explain it all. All the other places refer back to
- * here.
- *
- * These are the rules, in order of decreasing importance:
- *
- * 1) Nothing the caller does can be allowed to imperil the block mark, so all
- * write operations take measures to protect it.
- *
- * 2) In read operations, the first byte of the OOB we return must reflect the
- * true state of the block mark, no matter where that block mark appears in
- * the physical page.
- *
- * 3) ECC-based read operations return an OOB full of set bits (since we never
- * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
- * return).
- *
- * 4) "Raw" read operations return a direct view of the physical bytes in the
- * page, using the conventional definition of which bytes are data and which
- * are OOB. This gives the caller a way to see the actual, physical bytes
- * in the page, without the distortions applied by our ECC engine.
- *
- * What we do for this specific read operation depends on whether we're doing
- * "raw" read, or an ECC-based read.
- *
- * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
- * easy. When reading a page, for example, the NAND Flash MTD code calls our
- * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
- * ECC-based or raw view of the page is implicit in which function it calls
- * (there is a similar pair of ECC-based/raw functions for writing).
- *
- * Since MTD assumes the OOB is not covered by ECC, there is no pair of
- * ECC-based/raw functions for reading or or writing the OOB. The fact that the
- * caller wants an ECC-based or raw view of the page is not propagated down to
- * this driver.
- *
- * Since our OOB *is* covered by ECC, we need this information. So, we hook the
- * ecc.read_oob and ecc.write_oob function pointers in the owning
- * struct mtd_info with our own functions. These hook functions set the
- * raw_oob_mode field so that, when control finally arrives here, we'll know
- * what to do.
- */
- static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
- int page)
- {
- struct mxs_nand_info *nand_info = nand->priv;
- /*
- * First, fill in the OOB buffer. If we're doing a raw read, we need to
- * get the bytes from the physical page. If we're not doing a raw read,
- * we need to fill the buffer with set bits.
- */
- if (nand_info->raw_oob_mode) {
- /*
- * If control arrives here, we're doing a "raw" read. Send the
- * command to read the conventional OOB and read it.
- */
- nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
- nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
- } else {
- /*
- * If control arrives here, we're not doing a "raw" read. Fill
- * the OOB buffer with set bits and correct the block mark.
- */
- memset(nand->oob_poi, 0xff, mtd->oobsize);
- nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
- mxs_nand_read_buf(mtd, nand->oob_poi, 1);
- }
- return 0;
- }
- /*
- * Write OOB data to NAND.
- */
- static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
- int page)
- {
- struct mxs_nand_info *nand_info = nand->priv;
- uint8_t block_mark = 0;
- /*
- * There are fundamental incompatibilities between the i.MX GPMI NFC and
- * the NAND Flash MTD model that make it essentially impossible to write
- * the out-of-band bytes.
- *
- * We permit *ONE* exception. If the *intent* of writing the OOB is to
- * mark a block bad, we can do that.
- */
- if (!nand_info->marking_block_bad) {
- printf("NXS NAND: Writing OOB isn't supported\n");
- return -EIO;
- }
- /* Write the block mark. */
- nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
- nand->write_buf(mtd, &block_mark, 1);
- nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- /* Check if it worked. */
- if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
- return -EIO;
- return 0;
- }
- /*
- * Claims all blocks are good.
- *
- * In principle, this function is *only* called when the NAND Flash MTD system
- * isn't allowed to keep an in-memory bad block table, so it is forced to ask
- * the driver for bad block information.
- *
- * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
- * this function is *only* called when we take it away.
- *
- * Thus, this function is only called when we want *all* blocks to look good,
- * so it *always* return success.
- */
- static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
- {
- return 0;
- }
- /*
- * Nominally, the purpose of this function is to look for or create the bad
- * block table. In fact, since the we call this function at the very end of
- * the initialization process started by nand_scan(), and we doesn't have a
- * more formal mechanism, we "hook" this function to continue init process.
- *
- * At this point, the physical NAND Flash chips have been identified and
- * counted, so we know the physical geometry. This enables us to make some
- * important configuration decisions.
- *
- * The return value of this function propogates directly back to this driver's
- * call to nand_scan(). Anything other than zero will cause this driver to
- * tear everything down and declare failure.
- */
- static int mxs_nand_scan_bbt(struct mtd_info *mtd)
- {
- struct nand_chip *nand = mtd->priv;
- struct mxs_nand_info *nand_info = nand->priv;
- struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
- uint32_t tmp;
- /* Configure BCH and set NFC geometry */
- mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
- /* Configure layout 0 */
- tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
- << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
- tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
- tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
- << BCH_FLASHLAYOUT0_ECC0_OFFSET;
- tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
- >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
- writel(tmp, &bch_regs->hw_bch_flash0layout0);
- tmp = (mtd->writesize + mtd->oobsize)
- << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
- tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
- << BCH_FLASHLAYOUT1_ECCN_OFFSET;
- tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
- >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
- writel(tmp, &bch_regs->hw_bch_flash0layout1);
- /* Set *all* chip selects to use layout 0 */
- writel(0, &bch_regs->hw_bch_layoutselect);
- /* Enable BCH complete interrupt */
- writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
- /* Hook some operations at the MTD level. */
- if (mtd->_read_oob != mxs_nand_hook_read_oob) {
- nand_info->hooked_read_oob = mtd->_read_oob;
- mtd->_read_oob = mxs_nand_hook_read_oob;
- }
- if (mtd->_write_oob != mxs_nand_hook_write_oob) {
- nand_info->hooked_write_oob = mtd->_write_oob;
- mtd->_write_oob = mxs_nand_hook_write_oob;
- }
- if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
- nand_info->hooked_block_markbad = mtd->_block_markbad;
- mtd->_block_markbad = mxs_nand_hook_block_markbad;
- }
- /* We use the reference implementation for bad block management. */
- return nand_default_bbt(mtd);
- }
- /*
- * Allocate DMA buffers
- */
- int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
- {
- uint8_t *buf;
- const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
- nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
- /* DMA buffers */
- buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
- if (!buf) {
- printf("MXS NAND: Error allocating DMA buffers\n");
- return -ENOMEM;
- }
- memset(buf, 0, nand_info->data_buf_size);
- nand_info->data_buf = buf;
- nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
- /* Command buffers */
- nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
- MXS_NAND_COMMAND_BUFFER_SIZE);
- if (!nand_info->cmd_buf) {
- free(buf);
- printf("MXS NAND: Error allocating command buffers\n");
- return -ENOMEM;
- }
- memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
- nand_info->cmd_queue_len = 0;
- return 0;
- }
- /*
- * Initializes the NFC hardware.
- */
- int mxs_nand_init(struct mxs_nand_info *info)
- {
- struct mxs_gpmi_regs *gpmi_regs =
- (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
- struct mxs_bch_regs *bch_regs =
- (struct mxs_bch_regs *)MXS_BCH_BASE;
- int i = 0, j;
- info->desc = malloc(sizeof(struct mxs_dma_desc *) *
- MXS_NAND_DMA_DESCRIPTOR_COUNT);
- if (!info->desc)
- goto err1;
- /* Allocate the DMA descriptors. */
- for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
- info->desc[i] = mxs_dma_desc_alloc();
- if (!info->desc[i])
- goto err2;
- }
- /* Init the DMA controller. */
- for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
- j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
- if (mxs_dma_init_channel(j))
- goto err3;
- }
- /* Reset the GPMI block. */
- mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
- mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
- /*
- * Choose NAND mode, set IRQ polarity, disable write protection and
- * select BCH ECC.
- */
- clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
- GPMI_CTRL1_GPMI_MODE,
- GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
- GPMI_CTRL1_BCH_MODE);
- return 0;
- err3:
- for (--j; j >= 0; j--)
- mxs_dma_release(j);
- err2:
- free(info->desc);
- err1:
- for (--i; i >= 0; i--)
- mxs_dma_desc_free(info->desc[i]);
- printf("MXS NAND: Unable to allocate DMA descriptors\n");
- return -ENOMEM;
- }
- /*!
- * This function is called during the driver binding process.
- *
- * @param pdev the device structure used to store device specific
- * information that is used by the suspend, resume and
- * remove functions
- *
- * @return The function always returns 0.
- */
- int board_nand_init(struct nand_chip *nand)
- {
- struct mxs_nand_info *nand_info;
- int err;
- nand_info = malloc(sizeof(struct mxs_nand_info));
- if (!nand_info) {
- printf("MXS NAND: Failed to allocate private data\n");
- return -ENOMEM;
- }
- memset(nand_info, 0, sizeof(struct mxs_nand_info));
- err = mxs_nand_alloc_buffers(nand_info);
- if (err)
- goto err1;
- err = mxs_nand_init(nand_info);
- if (err)
- goto err2;
- memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
- nand->priv = nand_info;
- nand->options |= NAND_NO_SUBPAGE_WRITE;
- nand->cmd_ctrl = mxs_nand_cmd_ctrl;
- nand->dev_ready = mxs_nand_device_ready;
- nand->select_chip = mxs_nand_select_chip;
- nand->block_bad = mxs_nand_block_bad;
- nand->scan_bbt = mxs_nand_scan_bbt;
- nand->read_byte = mxs_nand_read_byte;
- nand->read_buf = mxs_nand_read_buf;
- nand->write_buf = mxs_nand_write_buf;
- nand->ecc.read_page = mxs_nand_ecc_read_page;
- nand->ecc.write_page = mxs_nand_ecc_write_page;
- nand->ecc.read_oob = mxs_nand_ecc_read_oob;
- nand->ecc.write_oob = mxs_nand_ecc_write_oob;
- nand->ecc.layout = &fake_ecc_layout;
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.bytes = 9;
- nand->ecc.size = 512;
- nand->ecc.strength = 8;
- return 0;
- err2:
- free(nand_info->data_buf);
- free(nand_info->cmd_buf);
- err1:
- free(nand_info);
- return err;
- }
|