123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- Generic SPL framework
- =====================
- Overview
- --------
- To unify all existing implementations for a secondary program loader (SPL)
- and to allow simply adding of new implementations this generic SPL framework
- has been created. With this framework almost all source files for a board
- can be reused. No code duplication or symlinking is necessary anymore.
- How it works
- ------------
- There is a new directory TOPDIR/spl which contains only a Makefile.
- The object files are built separately for SPL and placed in this directory.
- The final binaries which are generated are u-boot-spl, u-boot-spl.bin and
- u-boot-spl.map.
- During the SPL build a variable named CONFIG_SPL_BUILD is exported
- in the make environment and also appended to CPPFLAGS with -DCONFIG_SPL_BUILD.
- Source files can therefore be compiled for SPL with different settings.
- ARM-based boards have previously used the option CONFIG_PRELOADER for it.
- For example:
- ifeq ($(CONFIG_SPL_BUILD),y)
- COBJS-y += board_spl.o
- else
- COBJS-y += board.o
- endif
- COBJS-$(CONFIG_SPL_BUILD) += foo.o
- #ifdef CONFIG_SPL_BUILD
- foo();
- #endif
- The building of SPL images can be with:
- #define CONFIG_SPL
- Because SPL images normally have a different text base, one has to be
- configured by defining CONFIG_SPL_TEXT_BASE. The linker script has to be
- defined with CONFIG_SPL_LDSCRIPT.
- To support generic U-Boot libraries and drivers in the SPL binary one can
- optionally define CONFIG_SPL_XXX_SUPPORT. Currently following options
- are supported:
- CONFIG_SPL_LIBCOMMON_SUPPORT (common/libcommon.o)
- CONFIG_SPL_LIBDISK_SUPPORT (disk/libdisk.o)
- CONFIG_SPL_I2C_SUPPORT (drivers/i2c/libi2c.o)
- CONFIG_SPL_GPIO_SUPPORT (drivers/gpio/libgpio.o)
- CONFIG_SPL_MMC_SUPPORT (drivers/mmc/libmmc.o)
- CONFIG_SPL_SERIAL_SUPPORT (drivers/serial/libserial.o)
- CONFIG_SPL_SPI_FLASH_SUPPORT (drivers/mtd/spi/libspi_flash.o)
- CONFIG_SPL_SPI_SUPPORT (drivers/spi/libspi.o)
- CONFIG_SPL_FAT_SUPPORT (fs/fat/libfat.o)
- CONFIG_SPL_LIBGENERIC_SUPPORT (lib/libgeneric.o)
- CONFIG_SPL_POWER_SUPPORT (drivers/power/libpower.o)
- CONFIG_SPL_NAND_SUPPORT (drivers/mtd/nand/libnand.o)
- CONFIG_SPL_DMA_SUPPORT (drivers/dma/libdma.o)
- CONFIG_SPL_POST_MEM_SUPPORT (post/drivers/memory.o)
- CONFIG_SPL_NAND_LOAD (drivers/mtd/nand/nand_spl_load.o)
- CONFIG_SPL_SPI_LOAD (drivers/mtd/spi/spi_spl_load.o)
- CONFIG_SPL_RAM_DEVICE (common/spl/spl.c)
- Normally CPU is assumed to be the same between the SPL and normal
- u-boot build. However it is possible to specify a different CPU for
- the SPL build for cases where the SPL is expected to run on a
- different CPU model from the main u-boot. This is done by specifying
- an SPL CPU in boards.cfg as follows:
- normal_cpu:spl_cpu
- This this case CPU will be set to "normal_cpu" during the main u-boot
- build and "spl_cpu" during the SPL build.
- Debugging
- ---------
- When building SPL with DEBUG set you may also need to set CONFIG_PANIC_HANG
- as in most cases do_reset is not defined within SPL.
- Estimating stack usage
- ----------------------
- With gcc 4.6 (and later) and the use of GNU cflow it is possible to estimate
- stack usage at various points in run sequence of SPL. The -fstack-usage option
- to gcc will produce '.su' files (such as arch/arm/cpu/armv7/syslib.su) that
- will give stack usage information and cflow can construct program flow.
- Must have gcc 4.6 or later, which supports -fstack-usage
- 1) Build normally
- 2) Perform the following shell command to generate a list of C files used in
- SPL:
- $ find spl -name '*.su' | sed -e 's:^spl/::' -e 's:[.]su$:.c:' > used-spl.list
- 3) Execute cflow:
- $ cflow --main=board_init_r `cat used-spl.list` 2>&1 | $PAGER
- cflow will spit out a number of warnings as it does not parse
- the config files and picks functions based on #ifdef. Parsing the '.i'
- files instead introduces another set of headaches. These warnings are
- not usually important to understanding the flow, however.
|