spl_power_init.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011
  1. /*
  2. * Freescale i.MX28 Boot PMIC init
  3. *
  4. * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
  5. * on behalf of DENX Software Engineering GmbH
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <config.h>
  27. #include <asm/io.h>
  28. #include <asm/arch/imx-regs.h>
  29. #include "mxs_init.h"
  30. void mxs_power_clock2xtal(void)
  31. {
  32. struct mxs_clkctrl_regs *clkctrl_regs =
  33. (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
  34. /* Set XTAL as CPU reference clock */
  35. writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
  36. &clkctrl_regs->hw_clkctrl_clkseq_set);
  37. }
  38. void mxs_power_clock2pll(void)
  39. {
  40. struct mxs_clkctrl_regs *clkctrl_regs =
  41. (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
  42. setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0,
  43. CLKCTRL_PLL0CTRL0_POWER);
  44. early_delay(100);
  45. setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq,
  46. CLKCTRL_CLKSEQ_BYPASS_CPU);
  47. }
  48. void mxs_power_clear_auto_restart(void)
  49. {
  50. struct mxs_rtc_regs *rtc_regs =
  51. (struct mxs_rtc_regs *)MXS_RTC_BASE;
  52. writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr);
  53. while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST)
  54. ;
  55. writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr);
  56. while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE)
  57. ;
  58. /*
  59. * Due to the hardware design bug of mx28 EVK-A
  60. * we need to set the AUTO_RESTART bit.
  61. */
  62. if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART)
  63. return;
  64. while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
  65. ;
  66. setbits_le32(&rtc_regs->hw_rtc_persistent0,
  67. RTC_PERSISTENT0_AUTO_RESTART);
  68. writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set);
  69. writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr);
  70. while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
  71. ;
  72. while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK)
  73. ;
  74. }
  75. void mxs_power_set_linreg(void)
  76. {
  77. struct mxs_power_regs *power_regs =
  78. (struct mxs_power_regs *)MXS_POWER_BASE;
  79. /* Set linear regulator 25mV below switching converter */
  80. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  81. POWER_VDDDCTRL_LINREG_OFFSET_MASK,
  82. POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
  83. clrsetbits_le32(&power_regs->hw_power_vddactrl,
  84. POWER_VDDACTRL_LINREG_OFFSET_MASK,
  85. POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW);
  86. clrsetbits_le32(&power_regs->hw_power_vddioctrl,
  87. POWER_VDDIOCTRL_LINREG_OFFSET_MASK,
  88. POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW);
  89. }
  90. int mxs_get_batt_volt(void)
  91. {
  92. struct mxs_power_regs *power_regs =
  93. (struct mxs_power_regs *)MXS_POWER_BASE;
  94. uint32_t volt = readl(&power_regs->hw_power_battmonitor);
  95. volt &= POWER_BATTMONITOR_BATT_VAL_MASK;
  96. volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET;
  97. volt *= 8;
  98. return volt;
  99. }
  100. int mxs_is_batt_ready(void)
  101. {
  102. return (mxs_get_batt_volt() >= 3600);
  103. }
  104. int mxs_is_batt_good(void)
  105. {
  106. struct mxs_power_regs *power_regs =
  107. (struct mxs_power_regs *)MXS_POWER_BASE;
  108. uint32_t volt = mxs_get_batt_volt();
  109. if ((volt >= 2400) && (volt <= 4300))
  110. return 1;
  111. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  112. POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
  113. 0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
  114. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  115. &power_regs->hw_power_5vctrl_clr);
  116. clrsetbits_le32(&power_regs->hw_power_charge,
  117. POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
  118. POWER_CHARGE_STOP_ILIMIT_10MA | 0x3);
  119. writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr);
  120. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  121. &power_regs->hw_power_5vctrl_clr);
  122. early_delay(500000);
  123. volt = mxs_get_batt_volt();
  124. if (volt >= 3500)
  125. return 0;
  126. if (volt >= 2400)
  127. return 1;
  128. writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
  129. &power_regs->hw_power_charge_clr);
  130. writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set);
  131. return 0;
  132. }
  133. void mxs_power_setup_5v_detect(void)
  134. {
  135. struct mxs_power_regs *power_regs =
  136. (struct mxs_power_regs *)MXS_POWER_BASE;
  137. /* Start 5V detection */
  138. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  139. POWER_5VCTRL_VBUSVALID_TRSH_MASK,
  140. POWER_5VCTRL_VBUSVALID_TRSH_4V4 |
  141. POWER_5VCTRL_PWRUP_VBUS_CMPS);
  142. }
  143. void mxs_src_power_init(void)
  144. {
  145. struct mxs_power_regs *power_regs =
  146. (struct mxs_power_regs *)MXS_POWER_BASE;
  147. /* Improve efficieny and reduce transient ripple */
  148. writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST |
  149. POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set);
  150. clrsetbits_le32(&power_regs->hw_power_dclimits,
  151. POWER_DCLIMITS_POSLIMIT_BUCK_MASK,
  152. 0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET);
  153. setbits_le32(&power_regs->hw_power_battmonitor,
  154. POWER_BATTMONITOR_EN_BATADJ);
  155. /* Increase the RCSCALE level for quick DCDC response to dynamic load */
  156. clrsetbits_le32(&power_regs->hw_power_loopctrl,
  157. POWER_LOOPCTRL_EN_RCSCALE_MASK,
  158. POWER_LOOPCTRL_RCSCALE_THRESH |
  159. POWER_LOOPCTRL_EN_RCSCALE_8X);
  160. clrsetbits_le32(&power_regs->hw_power_minpwr,
  161. POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
  162. /* 5V to battery handoff ... FIXME */
  163. setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
  164. early_delay(30);
  165. clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
  166. }
  167. void mxs_power_init_4p2_params(void)
  168. {
  169. struct mxs_power_regs *power_regs =
  170. (struct mxs_power_regs *)MXS_POWER_BASE;
  171. /* Setup 4P2 parameters */
  172. clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
  173. POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK,
  174. POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET));
  175. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  176. POWER_5VCTRL_HEADROOM_ADJ_MASK,
  177. 0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET);
  178. clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
  179. POWER_DCDC4P2_DROPOUT_CTRL_MASK,
  180. POWER_DCDC4P2_DROPOUT_CTRL_100MV |
  181. POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL);
  182. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  183. POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
  184. 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
  185. }
  186. void mxs_enable_4p2_dcdc_input(int xfer)
  187. {
  188. struct mxs_power_regs *power_regs =
  189. (struct mxs_power_regs *)MXS_POWER_BASE;
  190. uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo;
  191. uint32_t prev_5v_brnout, prev_5v_droop;
  192. prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) &
  193. POWER_5VCTRL_PWDN_5VBRNOUT;
  194. prev_5v_droop = readl(&power_regs->hw_power_ctrl) &
  195. POWER_CTRL_ENIRQ_VDD5V_DROOP;
  196. clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
  197. writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
  198. &power_regs->hw_power_reset);
  199. clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP);
  200. if (xfer && (readl(&power_regs->hw_power_5vctrl) &
  201. POWER_5VCTRL_ENABLE_DCDC)) {
  202. return;
  203. }
  204. /*
  205. * Recording orignal values that will be modified temporarlily
  206. * to handle a chip bug. See chip errata for CQ ENGR00115837
  207. */
  208. tmp = readl(&power_regs->hw_power_5vctrl);
  209. vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK;
  210. vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT;
  211. pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO;
  212. /*
  213. * Disable mechanisms that get erroneously tripped by when setting
  214. * the DCDC4P2 EN_DCDC
  215. */
  216. clrbits_le32(&power_regs->hw_power_5vctrl,
  217. POWER_5VCTRL_VBUSVALID_5VDETECT |
  218. POWER_5VCTRL_VBUSVALID_TRSH_MASK);
  219. writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set);
  220. if (xfer) {
  221. setbits_le32(&power_regs->hw_power_5vctrl,
  222. POWER_5VCTRL_DCDC_XFER);
  223. early_delay(20);
  224. clrbits_le32(&power_regs->hw_power_5vctrl,
  225. POWER_5VCTRL_DCDC_XFER);
  226. setbits_le32(&power_regs->hw_power_5vctrl,
  227. POWER_5VCTRL_ENABLE_DCDC);
  228. } else {
  229. setbits_le32(&power_regs->hw_power_dcdc4p2,
  230. POWER_DCDC4P2_ENABLE_DCDC);
  231. }
  232. early_delay(25);
  233. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  234. POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh);
  235. if (vbus_5vdetect)
  236. writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set);
  237. if (!pwd_bo)
  238. clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO);
  239. while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ)
  240. writel(POWER_CTRL_VBUS_VALID_IRQ,
  241. &power_regs->hw_power_ctrl_clr);
  242. if (prev_5v_brnout) {
  243. writel(POWER_5VCTRL_PWDN_5VBRNOUT,
  244. &power_regs->hw_power_5vctrl_set);
  245. writel(POWER_RESET_UNLOCK_KEY,
  246. &power_regs->hw_power_reset);
  247. } else {
  248. writel(POWER_5VCTRL_PWDN_5VBRNOUT,
  249. &power_regs->hw_power_5vctrl_clr);
  250. writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
  251. &power_regs->hw_power_reset);
  252. }
  253. while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ)
  254. writel(POWER_CTRL_VDD5V_DROOP_IRQ,
  255. &power_regs->hw_power_ctrl_clr);
  256. if (prev_5v_droop)
  257. clrbits_le32(&power_regs->hw_power_ctrl,
  258. POWER_CTRL_ENIRQ_VDD5V_DROOP);
  259. else
  260. setbits_le32(&power_regs->hw_power_ctrl,
  261. POWER_CTRL_ENIRQ_VDD5V_DROOP);
  262. }
  263. void mxs_power_init_4p2_regulator(void)
  264. {
  265. struct mxs_power_regs *power_regs =
  266. (struct mxs_power_regs *)MXS_POWER_BASE;
  267. uint32_t tmp, tmp2;
  268. setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2);
  269. writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set);
  270. writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
  271. &power_regs->hw_power_5vctrl_clr);
  272. clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK);
  273. /* Power up the 4p2 rail and logic/control */
  274. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  275. &power_regs->hw_power_5vctrl_clr);
  276. /*
  277. * Start charging up the 4p2 capacitor. We ramp of this charge
  278. * gradually to avoid large inrush current from the 5V cable which can
  279. * cause transients/problems
  280. */
  281. mxs_enable_4p2_dcdc_input(0);
  282. if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
  283. /*
  284. * If we arrived here, we were unable to recover from mx23 chip
  285. * errata 5837. 4P2 is disabled and sufficient battery power is
  286. * not present. Exiting to not enable DCDC power during 5V
  287. * connected state.
  288. */
  289. clrbits_le32(&power_regs->hw_power_dcdc4p2,
  290. POWER_DCDC4P2_ENABLE_DCDC);
  291. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  292. &power_regs->hw_power_5vctrl_set);
  293. hang();
  294. }
  295. /*
  296. * Here we set the 4p2 brownout level to something very close to 4.2V.
  297. * We then check the brownout status. If the brownout status is false,
  298. * the voltage is already close to the target voltage of 4.2V so we
  299. * can go ahead and set the 4P2 current limit to our max target limit.
  300. * If the brownout status is true, we need to ramp us the current limit
  301. * so that we don't cause large inrush current issues. We step up the
  302. * current limit until the brownout status is false or until we've
  303. * reached our maximum defined 4p2 current limit.
  304. */
  305. clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
  306. POWER_DCDC4P2_BO_MASK,
  307. 22 << POWER_DCDC4P2_BO_OFFSET); /* 4.15V */
  308. if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) {
  309. setbits_le32(&power_regs->hw_power_5vctrl,
  310. 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
  311. } else {
  312. tmp = (readl(&power_regs->hw_power_5vctrl) &
  313. POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >>
  314. POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
  315. while (tmp < 0x3f) {
  316. if (!(readl(&power_regs->hw_power_sts) &
  317. POWER_STS_DCDC_4P2_BO)) {
  318. tmp = readl(&power_regs->hw_power_5vctrl);
  319. tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
  320. early_delay(100);
  321. writel(tmp, &power_regs->hw_power_5vctrl);
  322. break;
  323. } else {
  324. tmp++;
  325. tmp2 = readl(&power_regs->hw_power_5vctrl);
  326. tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
  327. tmp2 |= tmp <<
  328. POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
  329. writel(tmp2, &power_regs->hw_power_5vctrl);
  330. early_delay(100);
  331. }
  332. }
  333. }
  334. clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK);
  335. writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
  336. }
  337. void mxs_power_init_dcdc_4p2_source(void)
  338. {
  339. struct mxs_power_regs *power_regs =
  340. (struct mxs_power_regs *)MXS_POWER_BASE;
  341. if (!(readl(&power_regs->hw_power_dcdc4p2) &
  342. POWER_DCDC4P2_ENABLE_DCDC)) {
  343. hang();
  344. }
  345. mxs_enable_4p2_dcdc_input(1);
  346. if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
  347. clrbits_le32(&power_regs->hw_power_dcdc4p2,
  348. POWER_DCDC4P2_ENABLE_DCDC);
  349. writel(POWER_5VCTRL_ENABLE_DCDC,
  350. &power_regs->hw_power_5vctrl_clr);
  351. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  352. &power_regs->hw_power_5vctrl_set);
  353. }
  354. }
  355. void mxs_power_enable_4p2(void)
  356. {
  357. struct mxs_power_regs *power_regs =
  358. (struct mxs_power_regs *)MXS_POWER_BASE;
  359. uint32_t vdddctrl, vddactrl, vddioctrl;
  360. uint32_t tmp;
  361. vdddctrl = readl(&power_regs->hw_power_vdddctrl);
  362. vddactrl = readl(&power_regs->hw_power_vddactrl);
  363. vddioctrl = readl(&power_regs->hw_power_vddioctrl);
  364. setbits_le32(&power_regs->hw_power_vdddctrl,
  365. POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
  366. POWER_VDDDCTRL_PWDN_BRNOUT);
  367. setbits_le32(&power_regs->hw_power_vddactrl,
  368. POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG |
  369. POWER_VDDACTRL_PWDN_BRNOUT);
  370. setbits_le32(&power_regs->hw_power_vddioctrl,
  371. POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT);
  372. mxs_power_init_4p2_params();
  373. mxs_power_init_4p2_regulator();
  374. /* Shutdown battery (none present) */
  375. if (!mxs_is_batt_ready()) {
  376. clrbits_le32(&power_regs->hw_power_dcdc4p2,
  377. POWER_DCDC4P2_BO_MASK);
  378. writel(POWER_CTRL_DCDC4P2_BO_IRQ,
  379. &power_regs->hw_power_ctrl_clr);
  380. writel(POWER_CTRL_ENIRQ_DCDC4P2_BO,
  381. &power_regs->hw_power_ctrl_clr);
  382. }
  383. mxs_power_init_dcdc_4p2_source();
  384. writel(vdddctrl, &power_regs->hw_power_vdddctrl);
  385. early_delay(20);
  386. writel(vddactrl, &power_regs->hw_power_vddactrl);
  387. early_delay(20);
  388. writel(vddioctrl, &power_regs->hw_power_vddioctrl);
  389. /*
  390. * Check if FET is enabled on either powerout and if so,
  391. * disable load.
  392. */
  393. tmp = 0;
  394. tmp |= !(readl(&power_regs->hw_power_vdddctrl) &
  395. POWER_VDDDCTRL_DISABLE_FET);
  396. tmp |= !(readl(&power_regs->hw_power_vddactrl) &
  397. POWER_VDDACTRL_DISABLE_FET);
  398. tmp |= !(readl(&power_regs->hw_power_vddioctrl) &
  399. POWER_VDDIOCTRL_DISABLE_FET);
  400. if (tmp)
  401. writel(POWER_CHARGE_ENABLE_LOAD,
  402. &power_regs->hw_power_charge_clr);
  403. }
  404. void mxs_boot_valid_5v(void)
  405. {
  406. struct mxs_power_regs *power_regs =
  407. (struct mxs_power_regs *)MXS_POWER_BASE;
  408. /*
  409. * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V
  410. * disconnect event. FIXME
  411. */
  412. writel(POWER_5VCTRL_VBUSVALID_5VDETECT,
  413. &power_regs->hw_power_5vctrl_set);
  414. /* Configure polarity to check for 5V disconnection. */
  415. writel(POWER_CTRL_POLARITY_VBUSVALID |
  416. POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
  417. &power_regs->hw_power_ctrl_clr);
  418. writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
  419. &power_regs->hw_power_ctrl_clr);
  420. mxs_power_enable_4p2();
  421. }
  422. void mxs_powerdown(void)
  423. {
  424. struct mxs_power_regs *power_regs =
  425. (struct mxs_power_regs *)MXS_POWER_BASE;
  426. writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset);
  427. writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
  428. &power_regs->hw_power_reset);
  429. }
  430. void mxs_batt_boot(void)
  431. {
  432. struct mxs_power_regs *power_regs =
  433. (struct mxs_power_regs *)MXS_POWER_BASE;
  434. clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
  435. clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC);
  436. clrbits_le32(&power_regs->hw_power_dcdc4p2,
  437. POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2);
  438. writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr);
  439. /* 5V to battery handoff. */
  440. setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
  441. early_delay(30);
  442. clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
  443. writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr);
  444. clrsetbits_le32(&power_regs->hw_power_minpwr,
  445. POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
  446. mxs_power_set_linreg();
  447. clrbits_le32(&power_regs->hw_power_vdddctrl,
  448. POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG);
  449. clrbits_le32(&power_regs->hw_power_vddactrl,
  450. POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG);
  451. clrbits_le32(&power_regs->hw_power_vddioctrl,
  452. POWER_VDDIOCTRL_DISABLE_FET);
  453. setbits_le32(&power_regs->hw_power_5vctrl,
  454. POWER_5VCTRL_PWD_CHARGE_4P2_MASK);
  455. setbits_le32(&power_regs->hw_power_5vctrl,
  456. POWER_5VCTRL_ENABLE_DCDC);
  457. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  458. POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
  459. 0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
  460. }
  461. void mxs_handle_5v_conflict(void)
  462. {
  463. struct mxs_power_regs *power_regs =
  464. (struct mxs_power_regs *)MXS_POWER_BASE;
  465. uint32_t tmp;
  466. setbits_le32(&power_regs->hw_power_vddioctrl,
  467. POWER_VDDIOCTRL_BO_OFFSET_MASK);
  468. for (;;) {
  469. tmp = readl(&power_regs->hw_power_sts);
  470. if (tmp & POWER_STS_VDDIO_BO) {
  471. /*
  472. * VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes
  473. * unreliable
  474. */
  475. mxs_powerdown();
  476. break;
  477. }
  478. if (tmp & POWER_STS_VDD5V_GT_VDDIO) {
  479. mxs_boot_valid_5v();
  480. break;
  481. } else {
  482. mxs_powerdown();
  483. break;
  484. }
  485. if (tmp & POWER_STS_PSWITCH_MASK) {
  486. mxs_batt_boot();
  487. break;
  488. }
  489. }
  490. }
  491. void mxs_5v_boot(void)
  492. {
  493. struct mxs_power_regs *power_regs =
  494. (struct mxs_power_regs *)MXS_POWER_BASE;
  495. /*
  496. * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID,
  497. * but their implementation always returns 1 so we omit it here.
  498. */
  499. if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
  500. mxs_boot_valid_5v();
  501. return;
  502. }
  503. early_delay(1000);
  504. if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
  505. mxs_boot_valid_5v();
  506. return;
  507. }
  508. mxs_handle_5v_conflict();
  509. }
  510. void mxs_init_batt_bo(void)
  511. {
  512. struct mxs_power_regs *power_regs =
  513. (struct mxs_power_regs *)MXS_POWER_BASE;
  514. /* Brownout at 3V */
  515. clrsetbits_le32(&power_regs->hw_power_battmonitor,
  516. POWER_BATTMONITOR_BRWNOUT_LVL_MASK,
  517. 15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET);
  518. writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr);
  519. writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr);
  520. }
  521. void mxs_switch_vddd_to_dcdc_source(void)
  522. {
  523. struct mxs_power_regs *power_regs =
  524. (struct mxs_power_regs *)MXS_POWER_BASE;
  525. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  526. POWER_VDDDCTRL_LINREG_OFFSET_MASK,
  527. POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
  528. clrbits_le32(&power_regs->hw_power_vdddctrl,
  529. POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
  530. POWER_VDDDCTRL_DISABLE_STEPPING);
  531. }
  532. void mxs_power_configure_power_source(void)
  533. {
  534. int batt_ready, batt_good;
  535. struct mxs_power_regs *power_regs =
  536. (struct mxs_power_regs *)MXS_POWER_BASE;
  537. struct mxs_lradc_regs *lradc_regs =
  538. (struct mxs_lradc_regs *)MXS_LRADC_BASE;
  539. mxs_src_power_init();
  540. batt_ready = mxs_is_batt_ready();
  541. if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
  542. batt_good = mxs_is_batt_good();
  543. if (batt_ready) {
  544. /* 5V source detected, good battery detected. */
  545. mxs_batt_boot();
  546. } else {
  547. if (batt_good) {
  548. /* 5V source detected, low battery detceted. */
  549. } else {
  550. /* 5V source detected, bad battery detected. */
  551. writel(LRADC_CONVERSION_AUTOMATIC,
  552. &lradc_regs->hw_lradc_conversion_clr);
  553. clrbits_le32(&power_regs->hw_power_battmonitor,
  554. POWER_BATTMONITOR_BATT_VAL_MASK);
  555. }
  556. mxs_5v_boot();
  557. }
  558. } else {
  559. /* 5V not detected, booting from battery. */
  560. mxs_batt_boot();
  561. }
  562. mxs_power_clock2pll();
  563. mxs_init_batt_bo();
  564. mxs_switch_vddd_to_dcdc_source();
  565. }
  566. void mxs_enable_output_rail_protection(void)
  567. {
  568. struct mxs_power_regs *power_regs =
  569. (struct mxs_power_regs *)MXS_POWER_BASE;
  570. writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
  571. POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr);
  572. setbits_le32(&power_regs->hw_power_vdddctrl,
  573. POWER_VDDDCTRL_PWDN_BRNOUT);
  574. setbits_le32(&power_regs->hw_power_vddactrl,
  575. POWER_VDDACTRL_PWDN_BRNOUT);
  576. setbits_le32(&power_regs->hw_power_vddioctrl,
  577. POWER_VDDIOCTRL_PWDN_BRNOUT);
  578. }
  579. int mxs_get_vddio_power_source_off(void)
  580. {
  581. struct mxs_power_regs *power_regs =
  582. (struct mxs_power_regs *)MXS_POWER_BASE;
  583. uint32_t tmp;
  584. if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
  585. tmp = readl(&power_regs->hw_power_vddioctrl);
  586. if (tmp & POWER_VDDIOCTRL_DISABLE_FET) {
  587. if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
  588. POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
  589. return 1;
  590. }
  591. }
  592. if (!(readl(&power_regs->hw_power_5vctrl) &
  593. POWER_5VCTRL_ENABLE_DCDC)) {
  594. if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
  595. POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
  596. return 1;
  597. }
  598. }
  599. }
  600. return 0;
  601. }
  602. int mxs_get_vddd_power_source_off(void)
  603. {
  604. struct mxs_power_regs *power_regs =
  605. (struct mxs_power_regs *)MXS_POWER_BASE;
  606. uint32_t tmp;
  607. tmp = readl(&power_regs->hw_power_vdddctrl);
  608. if (tmp & POWER_VDDDCTRL_DISABLE_FET) {
  609. if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
  610. POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
  611. return 1;
  612. }
  613. }
  614. if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
  615. if (!(readl(&power_regs->hw_power_5vctrl) &
  616. POWER_5VCTRL_ENABLE_DCDC)) {
  617. return 1;
  618. }
  619. }
  620. if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) {
  621. if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
  622. POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) {
  623. return 1;
  624. }
  625. }
  626. return 0;
  627. }
  628. void mxs_power_set_vddio(uint32_t new_target, uint32_t new_brownout)
  629. {
  630. struct mxs_power_regs *power_regs =
  631. (struct mxs_power_regs *)MXS_POWER_BASE;
  632. uint32_t cur_target, diff, bo_int = 0;
  633. uint32_t powered_by_linreg = 0;
  634. new_brownout = (new_target - new_brownout + 25) / 50;
  635. cur_target = readl(&power_regs->hw_power_vddioctrl);
  636. cur_target &= POWER_VDDIOCTRL_TRG_MASK;
  637. cur_target *= 50; /* 50 mV step*/
  638. cur_target += 2800; /* 2800 mV lowest */
  639. powered_by_linreg = mxs_get_vddio_power_source_off();
  640. if (new_target > cur_target) {
  641. if (powered_by_linreg) {
  642. bo_int = readl(&power_regs->hw_power_vddioctrl);
  643. clrbits_le32(&power_regs->hw_power_vddioctrl,
  644. POWER_CTRL_ENIRQ_VDDIO_BO);
  645. }
  646. setbits_le32(&power_regs->hw_power_vddioctrl,
  647. POWER_VDDIOCTRL_BO_OFFSET_MASK);
  648. do {
  649. if (new_target - cur_target > 100)
  650. diff = cur_target + 100;
  651. else
  652. diff = new_target;
  653. diff -= 2800;
  654. diff /= 50;
  655. clrsetbits_le32(&power_regs->hw_power_vddioctrl,
  656. POWER_VDDIOCTRL_TRG_MASK, diff);
  657. if (powered_by_linreg ||
  658. (readl(&power_regs->hw_power_sts) &
  659. POWER_STS_VDD5V_GT_VDDIO))
  660. early_delay(500);
  661. else {
  662. while (!(readl(&power_regs->hw_power_sts) &
  663. POWER_STS_DC_OK))
  664. ;
  665. }
  666. cur_target = readl(&power_regs->hw_power_vddioctrl);
  667. cur_target &= POWER_VDDIOCTRL_TRG_MASK;
  668. cur_target *= 50; /* 50 mV step*/
  669. cur_target += 2800; /* 2800 mV lowest */
  670. } while (new_target > cur_target);
  671. if (powered_by_linreg) {
  672. writel(POWER_CTRL_VDDIO_BO_IRQ,
  673. &power_regs->hw_power_ctrl_clr);
  674. if (bo_int & POWER_CTRL_ENIRQ_VDDIO_BO)
  675. setbits_le32(&power_regs->hw_power_vddioctrl,
  676. POWER_CTRL_ENIRQ_VDDIO_BO);
  677. }
  678. } else {
  679. do {
  680. if (cur_target - new_target > 100)
  681. diff = cur_target - 100;
  682. else
  683. diff = new_target;
  684. diff -= 2800;
  685. diff /= 50;
  686. clrsetbits_le32(&power_regs->hw_power_vddioctrl,
  687. POWER_VDDIOCTRL_TRG_MASK, diff);
  688. if (powered_by_linreg ||
  689. (readl(&power_regs->hw_power_sts) &
  690. POWER_STS_VDD5V_GT_VDDIO))
  691. early_delay(500);
  692. else {
  693. while (!(readl(&power_regs->hw_power_sts) &
  694. POWER_STS_DC_OK))
  695. ;
  696. }
  697. cur_target = readl(&power_regs->hw_power_vddioctrl);
  698. cur_target &= POWER_VDDIOCTRL_TRG_MASK;
  699. cur_target *= 50; /* 50 mV step*/
  700. cur_target += 2800; /* 2800 mV lowest */
  701. } while (new_target < cur_target);
  702. }
  703. clrsetbits_le32(&power_regs->hw_power_vddioctrl,
  704. POWER_VDDIOCTRL_BO_OFFSET_MASK,
  705. new_brownout << POWER_VDDIOCTRL_BO_OFFSET_OFFSET);
  706. }
  707. void mxs_power_set_vddd(uint32_t new_target, uint32_t new_brownout)
  708. {
  709. struct mxs_power_regs *power_regs =
  710. (struct mxs_power_regs *)MXS_POWER_BASE;
  711. uint32_t cur_target, diff, bo_int = 0;
  712. uint32_t powered_by_linreg = 0;
  713. new_brownout = (new_target - new_brownout + 12) / 25;
  714. cur_target = readl(&power_regs->hw_power_vdddctrl);
  715. cur_target &= POWER_VDDDCTRL_TRG_MASK;
  716. cur_target *= 25; /* 25 mV step*/
  717. cur_target += 800; /* 800 mV lowest */
  718. powered_by_linreg = mxs_get_vddd_power_source_off();
  719. if (new_target > cur_target) {
  720. if (powered_by_linreg) {
  721. bo_int = readl(&power_regs->hw_power_vdddctrl);
  722. clrbits_le32(&power_regs->hw_power_vdddctrl,
  723. POWER_CTRL_ENIRQ_VDDD_BO);
  724. }
  725. setbits_le32(&power_regs->hw_power_vdddctrl,
  726. POWER_VDDDCTRL_BO_OFFSET_MASK);
  727. do {
  728. if (new_target - cur_target > 100)
  729. diff = cur_target + 100;
  730. else
  731. diff = new_target;
  732. diff -= 800;
  733. diff /= 25;
  734. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  735. POWER_VDDDCTRL_TRG_MASK, diff);
  736. if (powered_by_linreg ||
  737. (readl(&power_regs->hw_power_sts) &
  738. POWER_STS_VDD5V_GT_VDDIO))
  739. early_delay(500);
  740. else {
  741. while (!(readl(&power_regs->hw_power_sts) &
  742. POWER_STS_DC_OK))
  743. ;
  744. }
  745. cur_target = readl(&power_regs->hw_power_vdddctrl);
  746. cur_target &= POWER_VDDDCTRL_TRG_MASK;
  747. cur_target *= 25; /* 25 mV step*/
  748. cur_target += 800; /* 800 mV lowest */
  749. } while (new_target > cur_target);
  750. if (powered_by_linreg) {
  751. writel(POWER_CTRL_VDDD_BO_IRQ,
  752. &power_regs->hw_power_ctrl_clr);
  753. if (bo_int & POWER_CTRL_ENIRQ_VDDD_BO)
  754. setbits_le32(&power_regs->hw_power_vdddctrl,
  755. POWER_CTRL_ENIRQ_VDDD_BO);
  756. }
  757. } else {
  758. do {
  759. if (cur_target - new_target > 100)
  760. diff = cur_target - 100;
  761. else
  762. diff = new_target;
  763. diff -= 800;
  764. diff /= 25;
  765. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  766. POWER_VDDDCTRL_TRG_MASK, diff);
  767. if (powered_by_linreg ||
  768. (readl(&power_regs->hw_power_sts) &
  769. POWER_STS_VDD5V_GT_VDDIO))
  770. early_delay(500);
  771. else {
  772. while (!(readl(&power_regs->hw_power_sts) &
  773. POWER_STS_DC_OK))
  774. ;
  775. }
  776. cur_target = readl(&power_regs->hw_power_vdddctrl);
  777. cur_target &= POWER_VDDDCTRL_TRG_MASK;
  778. cur_target *= 25; /* 25 mV step*/
  779. cur_target += 800; /* 800 mV lowest */
  780. } while (new_target < cur_target);
  781. }
  782. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  783. POWER_VDDDCTRL_BO_OFFSET_MASK,
  784. new_brownout << POWER_VDDDCTRL_BO_OFFSET_OFFSET);
  785. }
  786. void mxs_setup_batt_detect(void)
  787. {
  788. mxs_lradc_init();
  789. mxs_lradc_enable_batt_measurement();
  790. early_delay(10);
  791. }
  792. void mxs_power_init(void)
  793. {
  794. struct mxs_power_regs *power_regs =
  795. (struct mxs_power_regs *)MXS_POWER_BASE;
  796. mxs_power_clock2xtal();
  797. mxs_power_clear_auto_restart();
  798. mxs_power_set_linreg();
  799. mxs_power_setup_5v_detect();
  800. mxs_setup_batt_detect();
  801. mxs_power_configure_power_source();
  802. mxs_enable_output_rail_protection();
  803. mxs_power_set_vddio(3300, 3150);
  804. mxs_power_set_vddd(1350, 1200);
  805. writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
  806. POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ |
  807. POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ |
  808. POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
  809. writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set);
  810. early_delay(1000);
  811. }
  812. #ifdef CONFIG_SPL_MX28_PSWITCH_WAIT
  813. void mxs_power_wait_pswitch(void)
  814. {
  815. struct mxs_power_regs *power_regs =
  816. (struct mxs_power_regs *)MXS_POWER_BASE;
  817. while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK))
  818. ;
  819. }
  820. #endif