44x_spd_ddr2.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007-2008
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  43. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  44. /*-----------------------------------------------------------------------------+
  45. * Defines
  46. *-----------------------------------------------------------------------------*/
  47. #ifndef TRUE
  48. #define TRUE 1
  49. #endif
  50. #ifndef FALSE
  51. #define FALSE 0
  52. #endif
  53. #define SDRAM_DDR1 1
  54. #define SDRAM_DDR2 2
  55. #define SDRAM_NONE 0
  56. #define MAXDIMMS 2
  57. #define MAXRANKS 4
  58. #define MAXBXCF 4
  59. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  60. #define ONE_BILLION 1000000000
  61. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  62. #define CMD_NOP (7 << 19)
  63. #define CMD_PRECHARGE (2 << 19)
  64. #define CMD_REFRESH (1 << 19)
  65. #define CMD_EMR (0 << 19)
  66. #define CMD_READ (5 << 19)
  67. #define CMD_WRITE (4 << 19)
  68. #define SELECT_MR (0 << 16)
  69. #define SELECT_EMR (1 << 16)
  70. #define SELECT_EMR2 (2 << 16)
  71. #define SELECT_EMR3 (3 << 16)
  72. /* MR */
  73. #define DLL_RESET 0x00000100
  74. #define WRITE_RECOV_2 (1 << 9)
  75. #define WRITE_RECOV_3 (2 << 9)
  76. #define WRITE_RECOV_4 (3 << 9)
  77. #define WRITE_RECOV_5 (4 << 9)
  78. #define WRITE_RECOV_6 (5 << 9)
  79. #define BURST_LEN_4 0x00000002
  80. /* EMR */
  81. #define ODT_0_OHM 0x00000000
  82. #define ODT_50_OHM 0x00000044
  83. #define ODT_75_OHM 0x00000004
  84. #define ODT_150_OHM 0x00000040
  85. #define ODS_FULL 0x00000000
  86. #define ODS_REDUCED 0x00000002
  87. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  88. #define ODT_EB0R (0x80000000 >> 8)
  89. #define ODT_EB0W (0x80000000 >> 7)
  90. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  91. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  92. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  93. /* Defines for the Read Cycle Delay test */
  94. #define NUMMEMTESTS 8
  95. #define NUMMEMWORDS 8
  96. #define NUMLOOPS 64 /* memory test loops */
  97. /*
  98. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  99. * region. Right now the cache should still be disabled in U-Boot because of the
  100. * EMAC driver, that need it's buffer descriptor to be located in non cached
  101. * memory.
  102. *
  103. * If at some time this restriction doesn't apply anymore, just define
  104. * CONFIG_4xx_DCACHE in the board config file and this code should setup
  105. * everything correctly.
  106. */
  107. #ifdef CONFIG_4xx_DCACHE
  108. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  109. #else
  110. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  111. #endif
  112. /*
  113. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  114. */
  115. void __spd_ddr_init_hang (void)
  116. {
  117. hang ();
  118. }
  119. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  120. /*
  121. * To provide an interface for board specific config values in this common
  122. * DDR setup code, we implement he "weak" default functions here. They return
  123. * the default value back to the caller.
  124. *
  125. * Please see include/configs/yucca.h for an example fora board specific
  126. * implementation.
  127. */
  128. u32 __ddr_wrdtr(u32 default_val)
  129. {
  130. return default_val;
  131. }
  132. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  133. u32 __ddr_clktr(u32 default_val)
  134. {
  135. return default_val;
  136. }
  137. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  138. /* Private Structure Definitions */
  139. /* enum only to ease code for cas latency setting */
  140. typedef enum ddr_cas_id {
  141. DDR_CAS_2 = 20,
  142. DDR_CAS_2_5 = 25,
  143. DDR_CAS_3 = 30,
  144. DDR_CAS_4 = 40,
  145. DDR_CAS_5 = 50
  146. } ddr_cas_id_t;
  147. /*-----------------------------------------------------------------------------+
  148. * Prototypes
  149. *-----------------------------------------------------------------------------*/
  150. static unsigned long sdram_memsize(void);
  151. static void get_spd_info(unsigned long *dimm_populated,
  152. unsigned char *iic0_dimm_addr,
  153. unsigned long num_dimm_banks);
  154. static void check_mem_type(unsigned long *dimm_populated,
  155. unsigned char *iic0_dimm_addr,
  156. unsigned long num_dimm_banks);
  157. static void check_frequency(unsigned long *dimm_populated,
  158. unsigned char *iic0_dimm_addr,
  159. unsigned long num_dimm_banks);
  160. static void check_rank_number(unsigned long *dimm_populated,
  161. unsigned char *iic0_dimm_addr,
  162. unsigned long num_dimm_banks);
  163. static void check_voltage_type(unsigned long *dimm_populated,
  164. unsigned char *iic0_dimm_addr,
  165. unsigned long num_dimm_banks);
  166. static void program_memory_queue(unsigned long *dimm_populated,
  167. unsigned char *iic0_dimm_addr,
  168. unsigned long num_dimm_banks);
  169. static void program_codt(unsigned long *dimm_populated,
  170. unsigned char *iic0_dimm_addr,
  171. unsigned long num_dimm_banks);
  172. static void program_mode(unsigned long *dimm_populated,
  173. unsigned char *iic0_dimm_addr,
  174. unsigned long num_dimm_banks,
  175. ddr_cas_id_t *selected_cas,
  176. int *write_recovery);
  177. static void program_tr(unsigned long *dimm_populated,
  178. unsigned char *iic0_dimm_addr,
  179. unsigned long num_dimm_banks);
  180. static void program_rtr(unsigned long *dimm_populated,
  181. unsigned char *iic0_dimm_addr,
  182. unsigned long num_dimm_banks);
  183. static void program_bxcf(unsigned long *dimm_populated,
  184. unsigned char *iic0_dimm_addr,
  185. unsigned long num_dimm_banks);
  186. static void program_copt1(unsigned long *dimm_populated,
  187. unsigned char *iic0_dimm_addr,
  188. unsigned long num_dimm_banks);
  189. static void program_initplr(unsigned long *dimm_populated,
  190. unsigned char *iic0_dimm_addr,
  191. unsigned long num_dimm_banks,
  192. ddr_cas_id_t selected_cas,
  193. int write_recovery);
  194. static unsigned long is_ecc_enabled(void);
  195. #ifdef CONFIG_DDR_ECC
  196. static void program_ecc(unsigned long *dimm_populated,
  197. unsigned char *iic0_dimm_addr,
  198. unsigned long num_dimm_banks,
  199. unsigned long tlb_word2_i_value);
  200. static void program_ecc_addr(unsigned long start_address,
  201. unsigned long num_bytes,
  202. unsigned long tlb_word2_i_value);
  203. #endif
  204. static void program_DQS_calibration(unsigned long *dimm_populated,
  205. unsigned char *iic0_dimm_addr,
  206. unsigned long num_dimm_banks);
  207. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  208. static void test(void);
  209. #else
  210. static void DQS_calibration_process(void);
  211. #endif
  212. static void ppc440sp_sdram_register_dump(void);
  213. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  214. void dcbz_area(u32 start_address, u32 num_bytes);
  215. void dflush(void);
  216. static u32 mfdcr_any(u32 dcr)
  217. {
  218. u32 val;
  219. switch (dcr) {
  220. case SDRAM_R0BAS + 0:
  221. val = mfdcr(SDRAM_R0BAS + 0);
  222. break;
  223. case SDRAM_R0BAS + 1:
  224. val = mfdcr(SDRAM_R0BAS + 1);
  225. break;
  226. case SDRAM_R0BAS + 2:
  227. val = mfdcr(SDRAM_R0BAS + 2);
  228. break;
  229. case SDRAM_R0BAS + 3:
  230. val = mfdcr(SDRAM_R0BAS + 3);
  231. break;
  232. default:
  233. printf("DCR %d not defined in case statement!!!\n", dcr);
  234. val = 0; /* just to satisfy the compiler */
  235. }
  236. return val;
  237. }
  238. static void mtdcr_any(u32 dcr, u32 val)
  239. {
  240. switch (dcr) {
  241. case SDRAM_R0BAS + 0:
  242. mtdcr(SDRAM_R0BAS + 0, val);
  243. break;
  244. case SDRAM_R0BAS + 1:
  245. mtdcr(SDRAM_R0BAS + 1, val);
  246. break;
  247. case SDRAM_R0BAS + 2:
  248. mtdcr(SDRAM_R0BAS + 2, val);
  249. break;
  250. case SDRAM_R0BAS + 3:
  251. mtdcr(SDRAM_R0BAS + 3, val);
  252. break;
  253. default:
  254. printf("DCR %d not defined in case statement!!!\n", dcr);
  255. }
  256. }
  257. static unsigned char spd_read(uchar chip, uint addr)
  258. {
  259. unsigned char data[2];
  260. if (i2c_probe(chip) == 0)
  261. if (i2c_read(chip, addr, 1, data, 1) == 0)
  262. return data[0];
  263. return 0;
  264. }
  265. /*-----------------------------------------------------------------------------+
  266. * sdram_memsize
  267. *-----------------------------------------------------------------------------*/
  268. static unsigned long sdram_memsize(void)
  269. {
  270. unsigned long mem_size;
  271. unsigned long mcopt2;
  272. unsigned long mcstat;
  273. unsigned long mb0cf;
  274. unsigned long sdsz;
  275. unsigned long i;
  276. mem_size = 0;
  277. mfsdram(SDRAM_MCOPT2, mcopt2);
  278. mfsdram(SDRAM_MCSTAT, mcstat);
  279. /* DDR controller must be enabled and not in self-refresh. */
  280. /* Otherwise memsize is zero. */
  281. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  282. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  283. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  284. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  285. for (i = 0; i < MAXBXCF; i++) {
  286. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  287. /* Banks enabled */
  288. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  289. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  290. switch(sdsz) {
  291. case SDRAM_RXBAS_SDSZ_8:
  292. mem_size+=8;
  293. break;
  294. case SDRAM_RXBAS_SDSZ_16:
  295. mem_size+=16;
  296. break;
  297. case SDRAM_RXBAS_SDSZ_32:
  298. mem_size+=32;
  299. break;
  300. case SDRAM_RXBAS_SDSZ_64:
  301. mem_size+=64;
  302. break;
  303. case SDRAM_RXBAS_SDSZ_128:
  304. mem_size+=128;
  305. break;
  306. case SDRAM_RXBAS_SDSZ_256:
  307. mem_size+=256;
  308. break;
  309. case SDRAM_RXBAS_SDSZ_512:
  310. mem_size+=512;
  311. break;
  312. case SDRAM_RXBAS_SDSZ_1024:
  313. mem_size+=1024;
  314. break;
  315. case SDRAM_RXBAS_SDSZ_2048:
  316. mem_size+=2048;
  317. break;
  318. case SDRAM_RXBAS_SDSZ_4096:
  319. mem_size+=4096;
  320. break;
  321. default:
  322. mem_size=0;
  323. break;
  324. }
  325. }
  326. }
  327. }
  328. mem_size *= 1024 * 1024;
  329. return(mem_size);
  330. }
  331. /*-----------------------------------------------------------------------------+
  332. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  333. * Note: This routine runs from flash with a stack set up in the chip's
  334. * sram space. It is important that the routine does not require .sbss, .bss or
  335. * .data sections. It also cannot call routines that require these sections.
  336. *-----------------------------------------------------------------------------*/
  337. /*-----------------------------------------------------------------------------
  338. * Function: initdram
  339. * Description: Configures SDRAM memory banks for DDR operation.
  340. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  341. * via the IIC bus and then configures the DDR SDRAM memory
  342. * banks appropriately. If Auto Memory Configuration is
  343. * not used, it is assumed that no DIMM is plugged
  344. *-----------------------------------------------------------------------------*/
  345. long int initdram(int board_type)
  346. {
  347. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  348. unsigned char spd0[MAX_SPD_BYTES];
  349. unsigned char spd1[MAX_SPD_BYTES];
  350. unsigned char *dimm_spd[MAXDIMMS];
  351. unsigned long dimm_populated[MAXDIMMS];
  352. unsigned long num_dimm_banks; /* on board dimm banks */
  353. unsigned long val;
  354. ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */
  355. int write_recovery;
  356. unsigned long dram_size = 0;
  357. num_dimm_banks = sizeof(iic0_dimm_addr);
  358. /*------------------------------------------------------------------
  359. * Set up an array of SPD matrixes.
  360. *-----------------------------------------------------------------*/
  361. dimm_spd[0] = spd0;
  362. dimm_spd[1] = spd1;
  363. /*------------------------------------------------------------------
  364. * Reset the DDR-SDRAM controller.
  365. *-----------------------------------------------------------------*/
  366. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  367. mtsdr(SDR0_SRST, 0x00000000);
  368. /*
  369. * Make sure I2C controller is initialized
  370. * before continuing.
  371. */
  372. /* switch to correct I2C bus */
  373. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  374. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  375. /*------------------------------------------------------------------
  376. * Clear out the serial presence detect buffers.
  377. * Perform IIC reads from the dimm. Fill in the spds.
  378. * Check to see if the dimm slots are populated
  379. *-----------------------------------------------------------------*/
  380. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  381. /*------------------------------------------------------------------
  382. * Check the memory type for the dimms plugged.
  383. *-----------------------------------------------------------------*/
  384. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  385. /*------------------------------------------------------------------
  386. * Check the frequency supported for the dimms plugged.
  387. *-----------------------------------------------------------------*/
  388. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  389. /*------------------------------------------------------------------
  390. * Check the total rank number.
  391. *-----------------------------------------------------------------*/
  392. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  393. /*------------------------------------------------------------------
  394. * Check the voltage type for the dimms plugged.
  395. *-----------------------------------------------------------------*/
  396. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  397. /*------------------------------------------------------------------
  398. * Program SDRAM controller options 2 register
  399. * Except Enabling of the memory controller.
  400. *-----------------------------------------------------------------*/
  401. mfsdram(SDRAM_MCOPT2, val);
  402. mtsdram(SDRAM_MCOPT2,
  403. (val &
  404. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  405. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  406. SDRAM_MCOPT2_ISIE_MASK))
  407. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  408. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  409. SDRAM_MCOPT2_ISIE_ENABLE));
  410. /*------------------------------------------------------------------
  411. * Program SDRAM controller options 1 register
  412. * Note: Does not enable the memory controller.
  413. *-----------------------------------------------------------------*/
  414. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  415. /*------------------------------------------------------------------
  416. * Set the SDRAM Controller On Die Termination Register
  417. *-----------------------------------------------------------------*/
  418. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  419. /*------------------------------------------------------------------
  420. * Program SDRAM refresh register.
  421. *-----------------------------------------------------------------*/
  422. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  423. /*------------------------------------------------------------------
  424. * Program SDRAM mode register.
  425. *-----------------------------------------------------------------*/
  426. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  427. &selected_cas, &write_recovery);
  428. /*------------------------------------------------------------------
  429. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  430. *-----------------------------------------------------------------*/
  431. mfsdram(SDRAM_WRDTR, val);
  432. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  433. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  434. /*------------------------------------------------------------------
  435. * Set the SDRAM Clock Timing Register
  436. *-----------------------------------------------------------------*/
  437. mfsdram(SDRAM_CLKTR, val);
  438. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  439. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  440. /*------------------------------------------------------------------
  441. * Program the BxCF registers.
  442. *-----------------------------------------------------------------*/
  443. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  444. /*------------------------------------------------------------------
  445. * Program SDRAM timing registers.
  446. *-----------------------------------------------------------------*/
  447. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  448. /*------------------------------------------------------------------
  449. * Set the Extended Mode register
  450. *-----------------------------------------------------------------*/
  451. mfsdram(SDRAM_MEMODE, val);
  452. mtsdram(SDRAM_MEMODE,
  453. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  454. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  455. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  456. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  457. /*------------------------------------------------------------------
  458. * Program Initialization preload registers.
  459. *-----------------------------------------------------------------*/
  460. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  461. selected_cas, write_recovery);
  462. /*------------------------------------------------------------------
  463. * Delay to ensure 200usec have elapsed since reset.
  464. *-----------------------------------------------------------------*/
  465. udelay(400);
  466. /*------------------------------------------------------------------
  467. * Set the memory queue core base addr.
  468. *-----------------------------------------------------------------*/
  469. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  470. /*------------------------------------------------------------------
  471. * Program SDRAM controller options 2 register
  472. * Enable the memory controller.
  473. *-----------------------------------------------------------------*/
  474. mfsdram(SDRAM_MCOPT2, val);
  475. mtsdram(SDRAM_MCOPT2,
  476. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  477. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  478. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  479. /*------------------------------------------------------------------
  480. * Wait for SDRAM_CFG0_DC_EN to complete.
  481. *-----------------------------------------------------------------*/
  482. do {
  483. mfsdram(SDRAM_MCSTAT, val);
  484. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  485. /* get installed memory size */
  486. dram_size = sdram_memsize();
  487. /* and program tlb entries for this size (dynamic) */
  488. /*
  489. * Program TLB entries with caches enabled, for best performace
  490. * while auto-calibrating and ECC generation
  491. */
  492. program_tlb(0, 0, dram_size, 0);
  493. /*------------------------------------------------------------------
  494. * DQS calibration.
  495. *-----------------------------------------------------------------*/
  496. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  497. #ifdef CONFIG_DDR_ECC
  498. /*------------------------------------------------------------------
  499. * If ecc is enabled, initialize the parity bits.
  500. *-----------------------------------------------------------------*/
  501. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  502. #endif
  503. /*
  504. * Now after initialization (auto-calibration and ECC generation)
  505. * remove the TLB entries with caches enabled and program again with
  506. * desired cache functionality
  507. */
  508. remove_tlb(0, dram_size);
  509. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  510. ppc440sp_sdram_register_dump();
  511. /*
  512. * Clear potential errors resulting from auto-calibration.
  513. * If not done, then we could get an interrupt later on when
  514. * exceptions are enabled.
  515. */
  516. set_mcsr(get_mcsr());
  517. return dram_size;
  518. }
  519. static void get_spd_info(unsigned long *dimm_populated,
  520. unsigned char *iic0_dimm_addr,
  521. unsigned long num_dimm_banks)
  522. {
  523. unsigned long dimm_num;
  524. unsigned long dimm_found;
  525. unsigned char num_of_bytes;
  526. unsigned char total_size;
  527. dimm_found = FALSE;
  528. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  529. num_of_bytes = 0;
  530. total_size = 0;
  531. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  532. debug("\nspd_read(0x%x) returned %d\n",
  533. iic0_dimm_addr[dimm_num], num_of_bytes);
  534. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  535. debug("spd_read(0x%x) returned %d\n",
  536. iic0_dimm_addr[dimm_num], total_size);
  537. if ((num_of_bytes != 0) && (total_size != 0)) {
  538. dimm_populated[dimm_num] = TRUE;
  539. dimm_found = TRUE;
  540. debug("DIMM slot %lu: populated\n", dimm_num);
  541. } else {
  542. dimm_populated[dimm_num] = FALSE;
  543. debug("DIMM slot %lu: Not populated\n", dimm_num);
  544. }
  545. }
  546. if (dimm_found == FALSE) {
  547. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  548. spd_ddr_init_hang ();
  549. }
  550. }
  551. void board_add_ram_info(int use_default)
  552. {
  553. PPC4xx_SYS_INFO board_cfg;
  554. u32 val;
  555. if (is_ecc_enabled())
  556. puts(" (ECC");
  557. else
  558. puts(" (ECC not");
  559. get_sys_info(&board_cfg);
  560. mfsdr(SDR0_DDR0, val);
  561. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  562. printf(" enabled, %d MHz", (val * 2) / 1000000);
  563. mfsdram(SDRAM_MMODE, val);
  564. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  565. printf(", CL%d)", val);
  566. }
  567. /*------------------------------------------------------------------
  568. * For the memory DIMMs installed, this routine verifies that they
  569. * really are DDR specific DIMMs.
  570. *-----------------------------------------------------------------*/
  571. static void check_mem_type(unsigned long *dimm_populated,
  572. unsigned char *iic0_dimm_addr,
  573. unsigned long num_dimm_banks)
  574. {
  575. unsigned long dimm_num;
  576. unsigned long dimm_type;
  577. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  578. if (dimm_populated[dimm_num] == TRUE) {
  579. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  580. switch (dimm_type) {
  581. case 1:
  582. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  583. "slot %d.\n", (unsigned int)dimm_num);
  584. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  585. printf("Replace the DIMM module with a supported DIMM.\n\n");
  586. spd_ddr_init_hang ();
  587. break;
  588. case 2:
  589. printf("ERROR: EDO DIMM detected in slot %d.\n",
  590. (unsigned int)dimm_num);
  591. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  592. printf("Replace the DIMM module with a supported DIMM.\n\n");
  593. spd_ddr_init_hang ();
  594. break;
  595. case 3:
  596. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  597. (unsigned int)dimm_num);
  598. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  599. printf("Replace the DIMM module with a supported DIMM.\n\n");
  600. spd_ddr_init_hang ();
  601. break;
  602. case 4:
  603. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  604. (unsigned int)dimm_num);
  605. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  606. printf("Replace the DIMM module with a supported DIMM.\n\n");
  607. spd_ddr_init_hang ();
  608. break;
  609. case 5:
  610. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  611. (unsigned int)dimm_num);
  612. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  613. printf("Replace the DIMM module with a supported DIMM.\n\n");
  614. spd_ddr_init_hang ();
  615. break;
  616. case 6:
  617. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  618. (unsigned int)dimm_num);
  619. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  620. printf("Replace the DIMM module with a supported DIMM.\n\n");
  621. spd_ddr_init_hang ();
  622. break;
  623. case 7:
  624. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  625. dimm_populated[dimm_num] = SDRAM_DDR1;
  626. break;
  627. case 8:
  628. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  629. dimm_populated[dimm_num] = SDRAM_DDR2;
  630. break;
  631. default:
  632. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  633. (unsigned int)dimm_num);
  634. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  635. printf("Replace the DIMM module with a supported DIMM.\n\n");
  636. spd_ddr_init_hang ();
  637. break;
  638. }
  639. }
  640. }
  641. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  642. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  643. && (dimm_populated[dimm_num] != SDRAM_NONE)
  644. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  645. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  646. spd_ddr_init_hang ();
  647. }
  648. }
  649. }
  650. /*------------------------------------------------------------------
  651. * For the memory DIMMs installed, this routine verifies that
  652. * frequency previously calculated is supported.
  653. *-----------------------------------------------------------------*/
  654. static void check_frequency(unsigned long *dimm_populated,
  655. unsigned char *iic0_dimm_addr,
  656. unsigned long num_dimm_banks)
  657. {
  658. unsigned long dimm_num;
  659. unsigned long tcyc_reg;
  660. unsigned long cycle_time;
  661. unsigned long calc_cycle_time;
  662. unsigned long sdram_freq;
  663. unsigned long sdr_ddrpll;
  664. PPC4xx_SYS_INFO board_cfg;
  665. /*------------------------------------------------------------------
  666. * Get the board configuration info.
  667. *-----------------------------------------------------------------*/
  668. get_sys_info(&board_cfg);
  669. mfsdr(SDR0_DDR0, sdr_ddrpll);
  670. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  671. /*
  672. * calc_cycle_time is calculated from DDR frequency set by board/chip
  673. * and is expressed in multiple of 10 picoseconds
  674. * to match the way DIMM cycle time is calculated below.
  675. */
  676. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  677. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  678. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  679. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  680. /*
  681. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  682. * the higher order nibble (bits 4-7) designates the cycle time
  683. * to a granularity of 1ns;
  684. * the value presented by the lower order nibble (bits 0-3)
  685. * has a granularity of .1ns and is added to the value designated
  686. * by the higher nibble. In addition, four lines of the lower order
  687. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  688. */
  689. /* Convert from hex to decimal */
  690. if ((tcyc_reg & 0x0F) == 0x0D)
  691. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  692. else if ((tcyc_reg & 0x0F) == 0x0C)
  693. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  694. else if ((tcyc_reg & 0x0F) == 0x0B)
  695. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  696. else if ((tcyc_reg & 0x0F) == 0x0A)
  697. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  698. else
  699. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  700. ((tcyc_reg & 0x0F)*10);
  701. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  702. if (cycle_time > (calc_cycle_time + 10)) {
  703. /*
  704. * the provided sdram cycle_time is too small
  705. * for the available DIMM cycle_time.
  706. * The additionnal 100ps is here to accept a small incertainty.
  707. */
  708. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  709. "slot %d \n while calculated cycle time is %d ps.\n",
  710. (unsigned int)(cycle_time*10),
  711. (unsigned int)dimm_num,
  712. (unsigned int)(calc_cycle_time*10));
  713. printf("Replace the DIMM, or change DDR frequency via "
  714. "strapping bits.\n\n");
  715. spd_ddr_init_hang ();
  716. }
  717. }
  718. }
  719. }
  720. /*------------------------------------------------------------------
  721. * For the memory DIMMs installed, this routine verifies two
  722. * ranks/banks maximum are availables.
  723. *-----------------------------------------------------------------*/
  724. static void check_rank_number(unsigned long *dimm_populated,
  725. unsigned char *iic0_dimm_addr,
  726. unsigned long num_dimm_banks)
  727. {
  728. unsigned long dimm_num;
  729. unsigned long dimm_rank;
  730. unsigned long total_rank = 0;
  731. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  732. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  733. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  734. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  735. dimm_rank = (dimm_rank & 0x0F) +1;
  736. else
  737. dimm_rank = dimm_rank & 0x0F;
  738. if (dimm_rank > MAXRANKS) {
  739. printf("ERROR: DRAM DIMM detected with %d ranks in "
  740. "slot %d is not supported.\n", dimm_rank, dimm_num);
  741. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  742. printf("Replace the DIMM module with a supported DIMM.\n\n");
  743. spd_ddr_init_hang ();
  744. } else
  745. total_rank += dimm_rank;
  746. }
  747. if (total_rank > MAXRANKS) {
  748. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  749. "for all slots.\n", (unsigned int)total_rank);
  750. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  751. printf("Remove one of the DIMM modules.\n\n");
  752. spd_ddr_init_hang ();
  753. }
  754. }
  755. }
  756. /*------------------------------------------------------------------
  757. * only support 2.5V modules.
  758. * This routine verifies this.
  759. *-----------------------------------------------------------------*/
  760. static void check_voltage_type(unsigned long *dimm_populated,
  761. unsigned char *iic0_dimm_addr,
  762. unsigned long num_dimm_banks)
  763. {
  764. unsigned long dimm_num;
  765. unsigned long voltage_type;
  766. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  767. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  768. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  769. switch (voltage_type) {
  770. case 0x00:
  771. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  772. printf("This DIMM is 5.0 Volt/TTL.\n");
  773. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  774. (unsigned int)dimm_num);
  775. spd_ddr_init_hang ();
  776. break;
  777. case 0x01:
  778. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  779. printf("This DIMM is LVTTL.\n");
  780. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  781. (unsigned int)dimm_num);
  782. spd_ddr_init_hang ();
  783. break;
  784. case 0x02:
  785. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  786. printf("This DIMM is 1.5 Volt.\n");
  787. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  788. (unsigned int)dimm_num);
  789. spd_ddr_init_hang ();
  790. break;
  791. case 0x03:
  792. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  793. printf("This DIMM is 3.3 Volt/TTL.\n");
  794. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  795. (unsigned int)dimm_num);
  796. spd_ddr_init_hang ();
  797. break;
  798. case 0x04:
  799. /* 2.5 Voltage only for DDR1 */
  800. break;
  801. case 0x05:
  802. /* 1.8 Voltage only for DDR2 */
  803. break;
  804. default:
  805. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  806. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  807. (unsigned int)dimm_num);
  808. spd_ddr_init_hang ();
  809. break;
  810. }
  811. }
  812. }
  813. }
  814. /*-----------------------------------------------------------------------------+
  815. * program_copt1.
  816. *-----------------------------------------------------------------------------*/
  817. static void program_copt1(unsigned long *dimm_populated,
  818. unsigned char *iic0_dimm_addr,
  819. unsigned long num_dimm_banks)
  820. {
  821. unsigned long dimm_num;
  822. unsigned long mcopt1;
  823. unsigned long ecc_enabled;
  824. unsigned long ecc = 0;
  825. unsigned long data_width = 0;
  826. unsigned long dimm_32bit;
  827. unsigned long dimm_64bit;
  828. unsigned long registered = 0;
  829. unsigned long attribute = 0;
  830. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  831. unsigned long bankcount;
  832. unsigned long ddrtype;
  833. unsigned long val;
  834. #ifdef CONFIG_DDR_ECC
  835. ecc_enabled = TRUE;
  836. #else
  837. ecc_enabled = FALSE;
  838. #endif
  839. dimm_32bit = FALSE;
  840. dimm_64bit = FALSE;
  841. buf0 = FALSE;
  842. buf1 = FALSE;
  843. /*------------------------------------------------------------------
  844. * Set memory controller options reg 1, SDRAM_MCOPT1.
  845. *-----------------------------------------------------------------*/
  846. mfsdram(SDRAM_MCOPT1, val);
  847. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  848. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  849. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  850. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  851. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  852. SDRAM_MCOPT1_DREF_MASK);
  853. mcopt1 |= SDRAM_MCOPT1_QDEP;
  854. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  855. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  856. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  857. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  858. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  859. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  860. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  861. /* test ecc support */
  862. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  863. if (ecc != 0x02) /* ecc not supported */
  864. ecc_enabled = FALSE;
  865. /* test bank count */
  866. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  867. if (bankcount == 0x04) /* bank count = 4 */
  868. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  869. else /* bank count = 8 */
  870. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  871. /* test DDR type */
  872. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  873. /* test for buffered/unbuffered, registered, differential clocks */
  874. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  875. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  876. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  877. if (dimm_num == 0) {
  878. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  879. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  880. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  881. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  882. if (registered == 1) { /* DDR2 always buffered */
  883. /* TODO: what about above comments ? */
  884. mcopt1 |= SDRAM_MCOPT1_RDEN;
  885. buf0 = TRUE;
  886. } else {
  887. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  888. if ((attribute & 0x02) == 0x00) {
  889. /* buffered not supported */
  890. buf0 = FALSE;
  891. } else {
  892. mcopt1 |= SDRAM_MCOPT1_RDEN;
  893. buf0 = TRUE;
  894. }
  895. }
  896. }
  897. else if (dimm_num == 1) {
  898. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  899. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  900. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  901. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  902. if (registered == 1) {
  903. /* DDR2 always buffered */
  904. mcopt1 |= SDRAM_MCOPT1_RDEN;
  905. buf1 = TRUE;
  906. } else {
  907. if ((attribute & 0x02) == 0x00) {
  908. /* buffered not supported */
  909. buf1 = FALSE;
  910. } else {
  911. mcopt1 |= SDRAM_MCOPT1_RDEN;
  912. buf1 = TRUE;
  913. }
  914. }
  915. }
  916. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  917. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  918. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  919. switch (data_width) {
  920. case 72:
  921. case 64:
  922. dimm_64bit = TRUE;
  923. break;
  924. case 40:
  925. case 32:
  926. dimm_32bit = TRUE;
  927. break;
  928. default:
  929. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  930. data_width);
  931. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  932. break;
  933. }
  934. }
  935. }
  936. /* verify matching properties */
  937. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  938. if (buf0 != buf1) {
  939. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  940. spd_ddr_init_hang ();
  941. }
  942. }
  943. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  944. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  945. spd_ddr_init_hang ();
  946. }
  947. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  948. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  949. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  950. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  951. } else {
  952. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  953. spd_ddr_init_hang ();
  954. }
  955. if (ecc_enabled == TRUE)
  956. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  957. else
  958. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  959. mtsdram(SDRAM_MCOPT1, mcopt1);
  960. }
  961. /*-----------------------------------------------------------------------------+
  962. * program_codt.
  963. *-----------------------------------------------------------------------------*/
  964. static void program_codt(unsigned long *dimm_populated,
  965. unsigned char *iic0_dimm_addr,
  966. unsigned long num_dimm_banks)
  967. {
  968. unsigned long codt;
  969. unsigned long modt0 = 0;
  970. unsigned long modt1 = 0;
  971. unsigned long modt2 = 0;
  972. unsigned long modt3 = 0;
  973. unsigned char dimm_num;
  974. unsigned char dimm_rank;
  975. unsigned char total_rank = 0;
  976. unsigned char total_dimm = 0;
  977. unsigned char dimm_type = 0;
  978. unsigned char firstSlot = 0;
  979. /*------------------------------------------------------------------
  980. * Set the SDRAM Controller On Die Termination Register
  981. *-----------------------------------------------------------------*/
  982. mfsdram(SDRAM_CODT, codt);
  983. codt |= (SDRAM_CODT_IO_NMODE
  984. & (~SDRAM_CODT_DQS_SINGLE_END
  985. & ~SDRAM_CODT_CKSE_SINGLE_END
  986. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  987. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  988. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  989. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  990. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  991. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  992. dimm_rank = (dimm_rank & 0x0F) + 1;
  993. dimm_type = SDRAM_DDR2;
  994. } else {
  995. dimm_rank = dimm_rank & 0x0F;
  996. dimm_type = SDRAM_DDR1;
  997. }
  998. total_rank += dimm_rank;
  999. total_dimm++;
  1000. if ((dimm_num == 0) && (total_dimm == 1))
  1001. firstSlot = TRUE;
  1002. else
  1003. firstSlot = FALSE;
  1004. }
  1005. }
  1006. if (dimm_type == SDRAM_DDR2) {
  1007. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1008. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1009. if (total_rank == 1) {
  1010. codt |= CALC_ODT_R(0);
  1011. modt0 = CALC_ODT_W(0);
  1012. modt1 = 0x00000000;
  1013. modt2 = 0x00000000;
  1014. modt3 = 0x00000000;
  1015. }
  1016. if (total_rank == 2) {
  1017. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1018. modt0 = CALC_ODT_W(0);
  1019. modt1 = CALC_ODT_W(0);
  1020. modt2 = 0x00000000;
  1021. modt3 = 0x00000000;
  1022. }
  1023. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1024. if (total_rank == 1) {
  1025. codt |= CALC_ODT_R(2);
  1026. modt0 = 0x00000000;
  1027. modt1 = 0x00000000;
  1028. modt2 = CALC_ODT_W(2);
  1029. modt3 = 0x00000000;
  1030. }
  1031. if (total_rank == 2) {
  1032. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1033. modt0 = 0x00000000;
  1034. modt1 = 0x00000000;
  1035. modt2 = CALC_ODT_W(2);
  1036. modt3 = CALC_ODT_W(2);
  1037. }
  1038. }
  1039. if (total_dimm == 2) {
  1040. if (total_rank == 2) {
  1041. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1042. modt0 = CALC_ODT_RW(2);
  1043. modt1 = 0x00000000;
  1044. modt2 = CALC_ODT_RW(0);
  1045. modt3 = 0x00000000;
  1046. }
  1047. if (total_rank == 4) {
  1048. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1049. CALC_ODT_R(2) | CALC_ODT_R(3);
  1050. modt0 = CALC_ODT_RW(2);
  1051. modt1 = 0x00000000;
  1052. modt2 = CALC_ODT_RW(0);
  1053. modt3 = 0x00000000;
  1054. }
  1055. }
  1056. } else {
  1057. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1058. modt0 = 0x00000000;
  1059. modt1 = 0x00000000;
  1060. modt2 = 0x00000000;
  1061. modt3 = 0x00000000;
  1062. if (total_dimm == 1) {
  1063. if (total_rank == 1)
  1064. codt |= 0x00800000;
  1065. if (total_rank == 2)
  1066. codt |= 0x02800000;
  1067. }
  1068. if (total_dimm == 2) {
  1069. if (total_rank == 2)
  1070. codt |= 0x08800000;
  1071. if (total_rank == 4)
  1072. codt |= 0x2a800000;
  1073. }
  1074. }
  1075. debug("nb of dimm %d\n", total_dimm);
  1076. debug("nb of rank %d\n", total_rank);
  1077. if (total_dimm == 1)
  1078. debug("dimm in slot %d\n", firstSlot);
  1079. mtsdram(SDRAM_CODT, codt);
  1080. mtsdram(SDRAM_MODT0, modt0);
  1081. mtsdram(SDRAM_MODT1, modt1);
  1082. mtsdram(SDRAM_MODT2, modt2);
  1083. mtsdram(SDRAM_MODT3, modt3);
  1084. }
  1085. /*-----------------------------------------------------------------------------+
  1086. * program_initplr.
  1087. *-----------------------------------------------------------------------------*/
  1088. static void program_initplr(unsigned long *dimm_populated,
  1089. unsigned char *iic0_dimm_addr,
  1090. unsigned long num_dimm_banks,
  1091. ddr_cas_id_t selected_cas,
  1092. int write_recovery)
  1093. {
  1094. u32 cas = 0;
  1095. u32 odt = 0;
  1096. u32 ods = 0;
  1097. u32 mr;
  1098. u32 wr;
  1099. u32 emr;
  1100. u32 emr2;
  1101. u32 emr3;
  1102. int dimm_num;
  1103. int total_dimm = 0;
  1104. /******************************************************
  1105. ** Assumption: if more than one DIMM, all DIMMs are the same
  1106. ** as already checked in check_memory_type
  1107. ******************************************************/
  1108. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1109. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1110. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1111. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1112. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1113. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1114. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1115. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1116. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1117. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1118. switch (selected_cas) {
  1119. case DDR_CAS_3:
  1120. cas = 3 << 4;
  1121. break;
  1122. case DDR_CAS_4:
  1123. cas = 4 << 4;
  1124. break;
  1125. case DDR_CAS_5:
  1126. cas = 5 << 4;
  1127. break;
  1128. default:
  1129. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1130. spd_ddr_init_hang ();
  1131. break;
  1132. }
  1133. #if 0
  1134. /*
  1135. * ToDo - Still a problem with the write recovery:
  1136. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1137. * in the INITPLR reg to the value calculated in program_mode()
  1138. * results in not correctly working DDR2 memory (crash after
  1139. * relocation).
  1140. *
  1141. * So for now, set the write recovery to 3. This seems to work
  1142. * on the Corair module too.
  1143. *
  1144. * 2007-03-01, sr
  1145. */
  1146. switch (write_recovery) {
  1147. case 3:
  1148. wr = WRITE_RECOV_3;
  1149. break;
  1150. case 4:
  1151. wr = WRITE_RECOV_4;
  1152. break;
  1153. case 5:
  1154. wr = WRITE_RECOV_5;
  1155. break;
  1156. case 6:
  1157. wr = WRITE_RECOV_6;
  1158. break;
  1159. default:
  1160. printf("ERROR: write recovery not support (%d)", write_recovery);
  1161. spd_ddr_init_hang ();
  1162. break;
  1163. }
  1164. #else
  1165. wr = WRITE_RECOV_3; /* test-only, see description above */
  1166. #endif
  1167. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1168. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1169. total_dimm++;
  1170. if (total_dimm == 1) {
  1171. odt = ODT_150_OHM;
  1172. ods = ODS_FULL;
  1173. } else if (total_dimm == 2) {
  1174. odt = ODT_75_OHM;
  1175. ods = ODS_REDUCED;
  1176. } else {
  1177. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1178. spd_ddr_init_hang ();
  1179. }
  1180. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1181. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1182. emr2 = CMD_EMR | SELECT_EMR2;
  1183. emr3 = CMD_EMR | SELECT_EMR3;
  1184. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1185. udelay(1000);
  1186. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1187. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1188. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1189. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1190. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1191. udelay(1000);
  1192. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1193. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1194. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1195. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1196. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1197. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1198. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1199. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1200. } else {
  1201. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1202. spd_ddr_init_hang ();
  1203. }
  1204. }
  1205. /*------------------------------------------------------------------
  1206. * This routine programs the SDRAM_MMODE register.
  1207. * the selected_cas is an output parameter, that will be passed
  1208. * by caller to call the above program_initplr( )
  1209. *-----------------------------------------------------------------*/
  1210. static void program_mode(unsigned long *dimm_populated,
  1211. unsigned char *iic0_dimm_addr,
  1212. unsigned long num_dimm_banks,
  1213. ddr_cas_id_t *selected_cas,
  1214. int *write_recovery)
  1215. {
  1216. unsigned long dimm_num;
  1217. unsigned long sdram_ddr1;
  1218. unsigned long t_wr_ns;
  1219. unsigned long t_wr_clk;
  1220. unsigned long cas_bit;
  1221. unsigned long cas_index;
  1222. unsigned long sdram_freq;
  1223. unsigned long ddr_check;
  1224. unsigned long mmode;
  1225. unsigned long tcyc_reg;
  1226. unsigned long cycle_2_0_clk;
  1227. unsigned long cycle_2_5_clk;
  1228. unsigned long cycle_3_0_clk;
  1229. unsigned long cycle_4_0_clk;
  1230. unsigned long cycle_5_0_clk;
  1231. unsigned long max_2_0_tcyc_ns_x_100;
  1232. unsigned long max_2_5_tcyc_ns_x_100;
  1233. unsigned long max_3_0_tcyc_ns_x_100;
  1234. unsigned long max_4_0_tcyc_ns_x_100;
  1235. unsigned long max_5_0_tcyc_ns_x_100;
  1236. unsigned long cycle_time_ns_x_100[3];
  1237. PPC4xx_SYS_INFO board_cfg;
  1238. unsigned char cas_2_0_available;
  1239. unsigned char cas_2_5_available;
  1240. unsigned char cas_3_0_available;
  1241. unsigned char cas_4_0_available;
  1242. unsigned char cas_5_0_available;
  1243. unsigned long sdr_ddrpll;
  1244. /*------------------------------------------------------------------
  1245. * Get the board configuration info.
  1246. *-----------------------------------------------------------------*/
  1247. get_sys_info(&board_cfg);
  1248. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1249. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1250. debug("sdram_freq=%d\n", sdram_freq);
  1251. /*------------------------------------------------------------------
  1252. * Handle the timing. We need to find the worst case timing of all
  1253. * the dimm modules installed.
  1254. *-----------------------------------------------------------------*/
  1255. t_wr_ns = 0;
  1256. cas_2_0_available = TRUE;
  1257. cas_2_5_available = TRUE;
  1258. cas_3_0_available = TRUE;
  1259. cas_4_0_available = TRUE;
  1260. cas_5_0_available = TRUE;
  1261. max_2_0_tcyc_ns_x_100 = 10;
  1262. max_2_5_tcyc_ns_x_100 = 10;
  1263. max_3_0_tcyc_ns_x_100 = 10;
  1264. max_4_0_tcyc_ns_x_100 = 10;
  1265. max_5_0_tcyc_ns_x_100 = 10;
  1266. sdram_ddr1 = TRUE;
  1267. /* loop through all the DIMM slots on the board */
  1268. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1269. /* If a dimm is installed in a particular slot ... */
  1270. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1271. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1272. sdram_ddr1 = TRUE;
  1273. else
  1274. sdram_ddr1 = FALSE;
  1275. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1276. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1277. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1278. /* For a particular DIMM, grab the three CAS values it supports */
  1279. for (cas_index = 0; cas_index < 3; cas_index++) {
  1280. switch (cas_index) {
  1281. case 0:
  1282. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1283. break;
  1284. case 1:
  1285. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1286. break;
  1287. default:
  1288. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1289. break;
  1290. }
  1291. if ((tcyc_reg & 0x0F) >= 10) {
  1292. if ((tcyc_reg & 0x0F) == 0x0D) {
  1293. /* Convert from hex to decimal */
  1294. cycle_time_ns_x_100[cas_index] =
  1295. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1296. } else {
  1297. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1298. "in slot %d\n", (unsigned int)dimm_num);
  1299. spd_ddr_init_hang ();
  1300. }
  1301. } else {
  1302. /* Convert from hex to decimal */
  1303. cycle_time_ns_x_100[cas_index] =
  1304. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1305. ((tcyc_reg & 0x0F)*10);
  1306. }
  1307. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1308. cycle_time_ns_x_100[cas_index]);
  1309. }
  1310. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1311. /* supported for a particular DIMM. */
  1312. cas_index = 0;
  1313. if (sdram_ddr1) {
  1314. /*
  1315. * DDR devices use the following bitmask for CAS latency:
  1316. * Bit 7 6 5 4 3 2 1 0
  1317. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1318. */
  1319. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1320. (cycle_time_ns_x_100[cas_index] != 0)) {
  1321. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1322. cycle_time_ns_x_100[cas_index]);
  1323. cas_index++;
  1324. } else {
  1325. if (cas_index != 0)
  1326. cas_index++;
  1327. cas_4_0_available = FALSE;
  1328. }
  1329. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1330. (cycle_time_ns_x_100[cas_index] != 0)) {
  1331. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1332. cycle_time_ns_x_100[cas_index]);
  1333. cas_index++;
  1334. } else {
  1335. if (cas_index != 0)
  1336. cas_index++;
  1337. cas_3_0_available = FALSE;
  1338. }
  1339. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1340. (cycle_time_ns_x_100[cas_index] != 0)) {
  1341. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1342. cycle_time_ns_x_100[cas_index]);
  1343. cas_index++;
  1344. } else {
  1345. if (cas_index != 0)
  1346. cas_index++;
  1347. cas_2_5_available = FALSE;
  1348. }
  1349. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1350. (cycle_time_ns_x_100[cas_index] != 0)) {
  1351. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1352. cycle_time_ns_x_100[cas_index]);
  1353. cas_index++;
  1354. } else {
  1355. if (cas_index != 0)
  1356. cas_index++;
  1357. cas_2_0_available = FALSE;
  1358. }
  1359. } else {
  1360. /*
  1361. * DDR2 devices use the following bitmask for CAS latency:
  1362. * Bit 7 6 5 4 3 2 1 0
  1363. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1364. */
  1365. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1366. (cycle_time_ns_x_100[cas_index] != 0)) {
  1367. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1368. cycle_time_ns_x_100[cas_index]);
  1369. cas_index++;
  1370. } else {
  1371. if (cas_index != 0)
  1372. cas_index++;
  1373. cas_5_0_available = FALSE;
  1374. }
  1375. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1376. (cycle_time_ns_x_100[cas_index] != 0)) {
  1377. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1378. cycle_time_ns_x_100[cas_index]);
  1379. cas_index++;
  1380. } else {
  1381. if (cas_index != 0)
  1382. cas_index++;
  1383. cas_4_0_available = FALSE;
  1384. }
  1385. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1386. (cycle_time_ns_x_100[cas_index] != 0)) {
  1387. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1388. cycle_time_ns_x_100[cas_index]);
  1389. cas_index++;
  1390. } else {
  1391. if (cas_index != 0)
  1392. cas_index++;
  1393. cas_3_0_available = FALSE;
  1394. }
  1395. }
  1396. }
  1397. }
  1398. /*------------------------------------------------------------------
  1399. * Set the SDRAM mode, SDRAM_MMODE
  1400. *-----------------------------------------------------------------*/
  1401. mfsdram(SDRAM_MMODE, mmode);
  1402. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1403. /* add 10 here because of rounding problems */
  1404. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1405. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1406. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1407. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1408. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1409. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1410. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1411. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1412. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1413. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1414. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1415. *selected_cas = DDR_CAS_2;
  1416. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1417. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1418. *selected_cas = DDR_CAS_2_5;
  1419. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1420. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1421. *selected_cas = DDR_CAS_3;
  1422. } else {
  1423. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1424. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1425. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1426. spd_ddr_init_hang ();
  1427. }
  1428. } else { /* DDR2 */
  1429. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1430. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1431. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1432. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1433. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1434. *selected_cas = DDR_CAS_3;
  1435. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1436. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1437. *selected_cas = DDR_CAS_4;
  1438. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1439. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1440. *selected_cas = DDR_CAS_5;
  1441. } else {
  1442. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1443. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1444. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1445. printf("cas3=%d cas4=%d cas5=%d\n",
  1446. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1447. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1448. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1449. spd_ddr_init_hang ();
  1450. }
  1451. }
  1452. if (sdram_ddr1 == TRUE)
  1453. mmode |= SDRAM_MMODE_WR_DDR1;
  1454. else {
  1455. /* loop through all the DIMM slots on the board */
  1456. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1457. /* If a dimm is installed in a particular slot ... */
  1458. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1459. t_wr_ns = max(t_wr_ns,
  1460. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1461. }
  1462. /*
  1463. * convert from nanoseconds to ddr clocks
  1464. * round up if necessary
  1465. */
  1466. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1467. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1468. if (sdram_freq != ddr_check)
  1469. t_wr_clk++;
  1470. switch (t_wr_clk) {
  1471. case 0:
  1472. case 1:
  1473. case 2:
  1474. case 3:
  1475. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1476. break;
  1477. case 4:
  1478. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1479. break;
  1480. case 5:
  1481. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1482. break;
  1483. default:
  1484. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1485. break;
  1486. }
  1487. *write_recovery = t_wr_clk;
  1488. }
  1489. debug("CAS latency = %d\n", *selected_cas);
  1490. debug("Write recovery = %d\n", *write_recovery);
  1491. mtsdram(SDRAM_MMODE, mmode);
  1492. }
  1493. /*-----------------------------------------------------------------------------+
  1494. * program_rtr.
  1495. *-----------------------------------------------------------------------------*/
  1496. static void program_rtr(unsigned long *dimm_populated,
  1497. unsigned char *iic0_dimm_addr,
  1498. unsigned long num_dimm_banks)
  1499. {
  1500. PPC4xx_SYS_INFO board_cfg;
  1501. unsigned long max_refresh_rate;
  1502. unsigned long dimm_num;
  1503. unsigned long refresh_rate_type;
  1504. unsigned long refresh_rate;
  1505. unsigned long rint;
  1506. unsigned long sdram_freq;
  1507. unsigned long sdr_ddrpll;
  1508. unsigned long val;
  1509. /*------------------------------------------------------------------
  1510. * Get the board configuration info.
  1511. *-----------------------------------------------------------------*/
  1512. get_sys_info(&board_cfg);
  1513. /*------------------------------------------------------------------
  1514. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1515. *-----------------------------------------------------------------*/
  1516. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1517. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1518. max_refresh_rate = 0;
  1519. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1520. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1521. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1522. refresh_rate_type &= 0x7F;
  1523. switch (refresh_rate_type) {
  1524. case 0:
  1525. refresh_rate = 15625;
  1526. break;
  1527. case 1:
  1528. refresh_rate = 3906;
  1529. break;
  1530. case 2:
  1531. refresh_rate = 7812;
  1532. break;
  1533. case 3:
  1534. refresh_rate = 31250;
  1535. break;
  1536. case 4:
  1537. refresh_rate = 62500;
  1538. break;
  1539. case 5:
  1540. refresh_rate = 125000;
  1541. break;
  1542. default:
  1543. refresh_rate = 0;
  1544. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1545. (unsigned int)dimm_num);
  1546. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1547. spd_ddr_init_hang ();
  1548. break;
  1549. }
  1550. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1551. }
  1552. }
  1553. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1554. mfsdram(SDRAM_RTR, val);
  1555. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1556. (SDRAM_RTR_RINT_ENCODE(rint)));
  1557. }
  1558. /*------------------------------------------------------------------
  1559. * This routine programs the SDRAM_TRx registers.
  1560. *-----------------------------------------------------------------*/
  1561. static void program_tr(unsigned long *dimm_populated,
  1562. unsigned char *iic0_dimm_addr,
  1563. unsigned long num_dimm_banks)
  1564. {
  1565. unsigned long dimm_num;
  1566. unsigned long sdram_ddr1;
  1567. unsigned long t_rp_ns;
  1568. unsigned long t_rcd_ns;
  1569. unsigned long t_rrd_ns;
  1570. unsigned long t_ras_ns;
  1571. unsigned long t_rc_ns;
  1572. unsigned long t_rfc_ns;
  1573. unsigned long t_wpc_ns;
  1574. unsigned long t_wtr_ns;
  1575. unsigned long t_rpc_ns;
  1576. unsigned long t_rp_clk;
  1577. unsigned long t_rcd_clk;
  1578. unsigned long t_rrd_clk;
  1579. unsigned long t_ras_clk;
  1580. unsigned long t_rc_clk;
  1581. unsigned long t_rfc_clk;
  1582. unsigned long t_wpc_clk;
  1583. unsigned long t_wtr_clk;
  1584. unsigned long t_rpc_clk;
  1585. unsigned long sdtr1, sdtr2, sdtr3;
  1586. unsigned long ddr_check;
  1587. unsigned long sdram_freq;
  1588. unsigned long sdr_ddrpll;
  1589. PPC4xx_SYS_INFO board_cfg;
  1590. /*------------------------------------------------------------------
  1591. * Get the board configuration info.
  1592. *-----------------------------------------------------------------*/
  1593. get_sys_info(&board_cfg);
  1594. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1595. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1596. /*------------------------------------------------------------------
  1597. * Handle the timing. We need to find the worst case timing of all
  1598. * the dimm modules installed.
  1599. *-----------------------------------------------------------------*/
  1600. t_rp_ns = 0;
  1601. t_rrd_ns = 0;
  1602. t_rcd_ns = 0;
  1603. t_ras_ns = 0;
  1604. t_rc_ns = 0;
  1605. t_rfc_ns = 0;
  1606. t_wpc_ns = 0;
  1607. t_wtr_ns = 0;
  1608. t_rpc_ns = 0;
  1609. sdram_ddr1 = TRUE;
  1610. /* loop through all the DIMM slots on the board */
  1611. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1612. /* If a dimm is installed in a particular slot ... */
  1613. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1614. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1615. sdram_ddr1 = TRUE;
  1616. else
  1617. sdram_ddr1 = FALSE;
  1618. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1619. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1620. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1621. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1622. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1623. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1624. }
  1625. }
  1626. /*------------------------------------------------------------------
  1627. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1628. *-----------------------------------------------------------------*/
  1629. mfsdram(SDRAM_SDTR1, sdtr1);
  1630. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1631. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1632. /* default values */
  1633. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1634. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1635. /* normal operations */
  1636. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1637. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1638. mtsdram(SDRAM_SDTR1, sdtr1);
  1639. /*------------------------------------------------------------------
  1640. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1641. *-----------------------------------------------------------------*/
  1642. mfsdram(SDRAM_SDTR2, sdtr2);
  1643. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1644. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1645. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1646. SDRAM_SDTR2_RRD_MASK);
  1647. /*
  1648. * convert t_rcd from nanoseconds to ddr clocks
  1649. * round up if necessary
  1650. */
  1651. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1652. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1653. if (sdram_freq != ddr_check)
  1654. t_rcd_clk++;
  1655. switch (t_rcd_clk) {
  1656. case 0:
  1657. case 1:
  1658. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1659. break;
  1660. case 2:
  1661. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1662. break;
  1663. case 3:
  1664. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1665. break;
  1666. case 4:
  1667. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1668. break;
  1669. default:
  1670. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1671. break;
  1672. }
  1673. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1674. if (sdram_freq < 200000000) {
  1675. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1676. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1677. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1678. } else {
  1679. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1680. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1681. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1682. }
  1683. } else { /* DDR2 */
  1684. /* loop through all the DIMM slots on the board */
  1685. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1686. /* If a dimm is installed in a particular slot ... */
  1687. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1688. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1689. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1690. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1691. }
  1692. }
  1693. /*
  1694. * convert from nanoseconds to ddr clocks
  1695. * round up if necessary
  1696. */
  1697. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1698. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1699. if (sdram_freq != ddr_check)
  1700. t_wpc_clk++;
  1701. switch (t_wpc_clk) {
  1702. case 0:
  1703. case 1:
  1704. case 2:
  1705. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1706. break;
  1707. case 3:
  1708. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1709. break;
  1710. case 4:
  1711. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1712. break;
  1713. case 5:
  1714. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1715. break;
  1716. default:
  1717. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1718. break;
  1719. }
  1720. /*
  1721. * convert from nanoseconds to ddr clocks
  1722. * round up if necessary
  1723. */
  1724. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1725. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1726. if (sdram_freq != ddr_check)
  1727. t_wtr_clk++;
  1728. switch (t_wtr_clk) {
  1729. case 0:
  1730. case 1:
  1731. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1732. break;
  1733. case 2:
  1734. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1735. break;
  1736. case 3:
  1737. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1738. break;
  1739. default:
  1740. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1741. break;
  1742. }
  1743. /*
  1744. * convert from nanoseconds to ddr clocks
  1745. * round up if necessary
  1746. */
  1747. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1748. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1749. if (sdram_freq != ddr_check)
  1750. t_rpc_clk++;
  1751. switch (t_rpc_clk) {
  1752. case 0:
  1753. case 1:
  1754. case 2:
  1755. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1756. break;
  1757. case 3:
  1758. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1759. break;
  1760. default:
  1761. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1762. break;
  1763. }
  1764. }
  1765. /* default value */
  1766. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1767. /*
  1768. * convert t_rrd from nanoseconds to ddr clocks
  1769. * round up if necessary
  1770. */
  1771. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1772. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1773. if (sdram_freq != ddr_check)
  1774. t_rrd_clk++;
  1775. if (t_rrd_clk == 3)
  1776. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1777. else
  1778. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1779. /*
  1780. * convert t_rp from nanoseconds to ddr clocks
  1781. * round up if necessary
  1782. */
  1783. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1784. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1785. if (sdram_freq != ddr_check)
  1786. t_rp_clk++;
  1787. switch (t_rp_clk) {
  1788. case 0:
  1789. case 1:
  1790. case 2:
  1791. case 3:
  1792. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1793. break;
  1794. case 4:
  1795. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1796. break;
  1797. case 5:
  1798. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1799. break;
  1800. case 6:
  1801. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1802. break;
  1803. default:
  1804. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1805. break;
  1806. }
  1807. mtsdram(SDRAM_SDTR2, sdtr2);
  1808. /*------------------------------------------------------------------
  1809. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1810. *-----------------------------------------------------------------*/
  1811. mfsdram(SDRAM_SDTR3, sdtr3);
  1812. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1813. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1814. /*
  1815. * convert t_ras from nanoseconds to ddr clocks
  1816. * round up if necessary
  1817. */
  1818. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1819. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1820. if (sdram_freq != ddr_check)
  1821. t_ras_clk++;
  1822. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1823. /*
  1824. * convert t_rc from nanoseconds to ddr clocks
  1825. * round up if necessary
  1826. */
  1827. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1828. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1829. if (sdram_freq != ddr_check)
  1830. t_rc_clk++;
  1831. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1832. /* default xcs value */
  1833. sdtr3 |= SDRAM_SDTR3_XCS;
  1834. /*
  1835. * convert t_rfc from nanoseconds to ddr clocks
  1836. * round up if necessary
  1837. */
  1838. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1839. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1840. if (sdram_freq != ddr_check)
  1841. t_rfc_clk++;
  1842. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1843. mtsdram(SDRAM_SDTR3, sdtr3);
  1844. }
  1845. /*-----------------------------------------------------------------------------+
  1846. * program_bxcf.
  1847. *-----------------------------------------------------------------------------*/
  1848. static void program_bxcf(unsigned long *dimm_populated,
  1849. unsigned char *iic0_dimm_addr,
  1850. unsigned long num_dimm_banks)
  1851. {
  1852. unsigned long dimm_num;
  1853. unsigned long num_col_addr;
  1854. unsigned long num_ranks;
  1855. unsigned long num_banks;
  1856. unsigned long mode;
  1857. unsigned long ind_rank;
  1858. unsigned long ind;
  1859. unsigned long ind_bank;
  1860. unsigned long bank_0_populated;
  1861. /*------------------------------------------------------------------
  1862. * Set the BxCF regs. First, wipe out the bank config registers.
  1863. *-----------------------------------------------------------------*/
  1864. mtsdram(SDRAM_MB0CF, 0x00000000);
  1865. mtsdram(SDRAM_MB1CF, 0x00000000);
  1866. mtsdram(SDRAM_MB2CF, 0x00000000);
  1867. mtsdram(SDRAM_MB3CF, 0x00000000);
  1868. mode = SDRAM_BXCF_M_BE_ENABLE;
  1869. bank_0_populated = 0;
  1870. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1871. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1872. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1873. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1874. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1875. num_ranks = (num_ranks & 0x0F) +1;
  1876. else
  1877. num_ranks = num_ranks & 0x0F;
  1878. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1879. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1880. if (num_banks == 4)
  1881. ind = 0;
  1882. else
  1883. ind = 5;
  1884. switch (num_col_addr) {
  1885. case 0x08:
  1886. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1887. break;
  1888. case 0x09:
  1889. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1890. break;
  1891. case 0x0A:
  1892. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1893. break;
  1894. case 0x0B:
  1895. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1896. break;
  1897. case 0x0C:
  1898. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1899. break;
  1900. default:
  1901. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1902. (unsigned int)dimm_num);
  1903. printf("ERROR: Unsupported value for number of "
  1904. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1905. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1906. spd_ddr_init_hang ();
  1907. }
  1908. }
  1909. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1910. bank_0_populated = 1;
  1911. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1912. mtsdram(SDRAM_MB0CF +
  1913. ((dimm_num + bank_0_populated + ind_rank) << 2),
  1914. mode);
  1915. }
  1916. }
  1917. }
  1918. }
  1919. /*------------------------------------------------------------------
  1920. * program memory queue.
  1921. *-----------------------------------------------------------------*/
  1922. static void program_memory_queue(unsigned long *dimm_populated,
  1923. unsigned char *iic0_dimm_addr,
  1924. unsigned long num_dimm_banks)
  1925. {
  1926. unsigned long dimm_num;
  1927. unsigned long rank_base_addr;
  1928. unsigned long rank_reg;
  1929. unsigned long rank_size_bytes;
  1930. unsigned long rank_size_id;
  1931. unsigned long num_ranks;
  1932. unsigned long baseadd_size;
  1933. unsigned long i;
  1934. unsigned long bank_0_populated = 0;
  1935. unsigned long total_size = 0;
  1936. /*------------------------------------------------------------------
  1937. * Reset the rank_base_address.
  1938. *-----------------------------------------------------------------*/
  1939. rank_reg = SDRAM_R0BAS;
  1940. rank_base_addr = 0x00000000;
  1941. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1942. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1943. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1944. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1945. num_ranks = (num_ranks & 0x0F) + 1;
  1946. else
  1947. num_ranks = num_ranks & 0x0F;
  1948. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1949. /*------------------------------------------------------------------
  1950. * Set the sizes
  1951. *-----------------------------------------------------------------*/
  1952. baseadd_size = 0;
  1953. switch (rank_size_id) {
  1954. case 0x01:
  1955. baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
  1956. total_size = 1024;
  1957. break;
  1958. case 0x02:
  1959. baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
  1960. total_size = 2048;
  1961. break;
  1962. case 0x04:
  1963. baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
  1964. total_size = 4096;
  1965. break;
  1966. case 0x08:
  1967. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1968. total_size = 32;
  1969. break;
  1970. case 0x10:
  1971. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1972. total_size = 64;
  1973. break;
  1974. case 0x20:
  1975. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1976. total_size = 128;
  1977. break;
  1978. case 0x40:
  1979. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1980. total_size = 256;
  1981. break;
  1982. case 0x80:
  1983. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1984. total_size = 512;
  1985. break;
  1986. default:
  1987. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1988. (unsigned int)dimm_num);
  1989. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1990. (unsigned int)rank_size_id);
  1991. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1992. spd_ddr_init_hang ();
  1993. }
  1994. rank_size_bytes = total_size << 20;
  1995. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1996. bank_0_populated = 1;
  1997. for (i = 0; i < num_ranks; i++) {
  1998. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1999. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  2000. baseadd_size));
  2001. rank_base_addr += rank_size_bytes;
  2002. }
  2003. }
  2004. }
  2005. #if defined(CONFIG_460EX) || defined(CONFIG_460GT)
  2006. /*
  2007. * Enable high bandwidth access on 460EX/GT.
  2008. * This should/could probably be done on other
  2009. * PPC's too, like 440SPe.
  2010. * This is currently not used, but with this setup
  2011. * it is possible to use it later on in e.g. the Linux
  2012. * EMAC driver for performance gain.
  2013. */
  2014. mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
  2015. mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
  2016. #endif
  2017. }
  2018. /*-----------------------------------------------------------------------------+
  2019. * is_ecc_enabled.
  2020. *-----------------------------------------------------------------------------*/
  2021. static unsigned long is_ecc_enabled(void)
  2022. {
  2023. unsigned long dimm_num;
  2024. unsigned long ecc;
  2025. unsigned long val;
  2026. ecc = 0;
  2027. /* loop through all the DIMM slots on the board */
  2028. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2029. mfsdram(SDRAM_MCOPT1, val);
  2030. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  2031. }
  2032. return ecc;
  2033. }
  2034. static void blank_string(int size)
  2035. {
  2036. int i;
  2037. for (i=0; i<size; i++)
  2038. putc('\b');
  2039. for (i=0; i<size; i++)
  2040. putc(' ');
  2041. for (i=0; i<size; i++)
  2042. putc('\b');
  2043. }
  2044. #ifdef CONFIG_DDR_ECC
  2045. /*-----------------------------------------------------------------------------+
  2046. * program_ecc.
  2047. *-----------------------------------------------------------------------------*/
  2048. static void program_ecc(unsigned long *dimm_populated,
  2049. unsigned char *iic0_dimm_addr,
  2050. unsigned long num_dimm_banks,
  2051. unsigned long tlb_word2_i_value)
  2052. {
  2053. unsigned long mcopt1;
  2054. unsigned long mcopt2;
  2055. unsigned long mcstat;
  2056. unsigned long dimm_num;
  2057. unsigned long ecc;
  2058. ecc = 0;
  2059. /* loop through all the DIMM slots on the board */
  2060. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2061. /* If a dimm is installed in a particular slot ... */
  2062. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2063. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2064. }
  2065. if (ecc == 0)
  2066. return;
  2067. mfsdram(SDRAM_MCOPT1, mcopt1);
  2068. mfsdram(SDRAM_MCOPT2, mcopt2);
  2069. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2070. /* DDR controller must be enabled and not in self-refresh. */
  2071. mfsdram(SDRAM_MCSTAT, mcstat);
  2072. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2073. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2074. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2075. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2076. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2077. }
  2078. }
  2079. return;
  2080. }
  2081. static void wait_ddr_idle(void)
  2082. {
  2083. u32 val;
  2084. do {
  2085. mfsdram(SDRAM_MCSTAT, val);
  2086. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2087. }
  2088. /*-----------------------------------------------------------------------------+
  2089. * program_ecc_addr.
  2090. *-----------------------------------------------------------------------------*/
  2091. static void program_ecc_addr(unsigned long start_address,
  2092. unsigned long num_bytes,
  2093. unsigned long tlb_word2_i_value)
  2094. {
  2095. unsigned long current_address;
  2096. unsigned long end_address;
  2097. unsigned long address_increment;
  2098. unsigned long mcopt1;
  2099. char str[] = "ECC generation -";
  2100. char slash[] = "\\|/-\\|/-";
  2101. int loop = 0;
  2102. int loopi = 0;
  2103. current_address = start_address;
  2104. mfsdram(SDRAM_MCOPT1, mcopt1);
  2105. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2106. mtsdram(SDRAM_MCOPT1,
  2107. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2108. sync();
  2109. eieio();
  2110. wait_ddr_idle();
  2111. puts(str);
  2112. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2113. /* ECC bit set method for non-cached memory */
  2114. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2115. address_increment = 4;
  2116. else
  2117. address_increment = 8;
  2118. end_address = current_address + num_bytes;
  2119. while (current_address < end_address) {
  2120. *((unsigned long *)current_address) = 0x00000000;
  2121. current_address += address_increment;
  2122. if ((loop++ % (2 << 20)) == 0) {
  2123. putc('\b');
  2124. putc(slash[loopi++ % 8]);
  2125. }
  2126. }
  2127. } else {
  2128. /* ECC bit set method for cached memory */
  2129. dcbz_area(start_address, num_bytes);
  2130. dflush();
  2131. }
  2132. blank_string(strlen(str));
  2133. sync();
  2134. eieio();
  2135. wait_ddr_idle();
  2136. /* clear ECC error repoting registers */
  2137. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2138. mtdcr(0x4c, 0xffffffff);
  2139. mtsdram(SDRAM_MCOPT1,
  2140. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2141. sync();
  2142. eieio();
  2143. wait_ddr_idle();
  2144. }
  2145. }
  2146. #endif
  2147. /*-----------------------------------------------------------------------------+
  2148. * program_DQS_calibration.
  2149. *-----------------------------------------------------------------------------*/
  2150. static void program_DQS_calibration(unsigned long *dimm_populated,
  2151. unsigned char *iic0_dimm_addr,
  2152. unsigned long num_dimm_banks)
  2153. {
  2154. unsigned long val;
  2155. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2156. mtsdram(SDRAM_RQDC, 0x80000037);
  2157. mtsdram(SDRAM_RDCC, 0x40000000);
  2158. mtsdram(SDRAM_RFDC, 0x000001DF);
  2159. test();
  2160. #else
  2161. /*------------------------------------------------------------------
  2162. * Program RDCC register
  2163. * Read sample cycle auto-update enable
  2164. *-----------------------------------------------------------------*/
  2165. mfsdram(SDRAM_RDCC, val);
  2166. mtsdram(SDRAM_RDCC,
  2167. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2168. | SDRAM_RDCC_RSAE_ENABLE);
  2169. /*------------------------------------------------------------------
  2170. * Program RQDC register
  2171. * Internal DQS delay mechanism enable
  2172. *-----------------------------------------------------------------*/
  2173. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2174. /*------------------------------------------------------------------
  2175. * Program RFDC register
  2176. * Set Feedback Fractional Oversample
  2177. * Auto-detect read sample cycle enable
  2178. *-----------------------------------------------------------------*/
  2179. mfsdram(SDRAM_RFDC, val);
  2180. mtsdram(SDRAM_RFDC,
  2181. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2182. SDRAM_RFDC_RFFD_MASK))
  2183. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2184. SDRAM_RFDC_RFFD_ENCODE(0)));
  2185. DQS_calibration_process();
  2186. #endif
  2187. }
  2188. static int short_mem_test(void)
  2189. {
  2190. u32 *membase;
  2191. u32 bxcr_num;
  2192. u32 bxcf;
  2193. int i;
  2194. int j;
  2195. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2196. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2197. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2198. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2199. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2200. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2201. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2202. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2203. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2204. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2205. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2206. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2207. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2208. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2209. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2210. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2211. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2212. int l;
  2213. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2214. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2215. /* Banks enabled */
  2216. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2217. /* Bank is enabled */
  2218. /*------------------------------------------------------------------
  2219. * Run the short memory test.
  2220. *-----------------------------------------------------------------*/
  2221. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2222. for (i = 0; i < NUMMEMTESTS; i++) {
  2223. for (j = 0; j < NUMMEMWORDS; j++) {
  2224. membase[j] = test[i][j];
  2225. ppcDcbf((u32)&(membase[j]));
  2226. }
  2227. sync();
  2228. for (l=0; l<NUMLOOPS; l++) {
  2229. for (j = 0; j < NUMMEMWORDS; j++) {
  2230. if (membase[j] != test[i][j]) {
  2231. ppcDcbf((u32)&(membase[j]));
  2232. return 0;
  2233. }
  2234. ppcDcbf((u32)&(membase[j]));
  2235. }
  2236. sync();
  2237. }
  2238. }
  2239. } /* if bank enabled */
  2240. } /* for bxcf_num */
  2241. return 1;
  2242. }
  2243. #ifndef HARD_CODED_DQS
  2244. /*-----------------------------------------------------------------------------+
  2245. * DQS_calibration_process.
  2246. *-----------------------------------------------------------------------------*/
  2247. static void DQS_calibration_process(void)
  2248. {
  2249. unsigned long rfdc_reg;
  2250. unsigned long rffd;
  2251. unsigned long val;
  2252. long rffd_average;
  2253. long max_start;
  2254. long min_end;
  2255. unsigned long begin_rqfd[MAXRANKS];
  2256. unsigned long begin_rffd[MAXRANKS];
  2257. unsigned long end_rqfd[MAXRANKS];
  2258. unsigned long end_rffd[MAXRANKS];
  2259. char window_found;
  2260. unsigned long dlycal;
  2261. unsigned long dly_val;
  2262. unsigned long max_pass_length;
  2263. unsigned long current_pass_length;
  2264. unsigned long current_fail_length;
  2265. unsigned long current_start;
  2266. long max_end;
  2267. unsigned char fail_found;
  2268. unsigned char pass_found;
  2269. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2270. u32 rqdc_reg;
  2271. u32 rqfd;
  2272. u32 rqfd_start;
  2273. u32 rqfd_average;
  2274. int loopi = 0;
  2275. char str[] = "Auto calibration -";
  2276. char slash[] = "\\|/-\\|/-";
  2277. /*------------------------------------------------------------------
  2278. * Test to determine the best read clock delay tuning bits.
  2279. *
  2280. * Before the DDR controller can be used, the read clock delay needs to be
  2281. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2282. * This value cannot be hardcoded into the program because it changes
  2283. * depending on the board's setup and environment.
  2284. * To do this, all delay values are tested to see if they
  2285. * work or not. By doing this, you get groups of fails with groups of
  2286. * passing values. The idea is to find the start and end of a passing
  2287. * window and take the center of it to use as the read clock delay.
  2288. *
  2289. * A failure has to be seen first so that when we hit a pass, we know
  2290. * that it is truely the start of the window. If we get passing values
  2291. * to start off with, we don't know if we are at the start of the window.
  2292. *
  2293. * The code assumes that a failure will always be found.
  2294. * If a failure is not found, there is no easy way to get the middle
  2295. * of the passing window. I guess we can pretty much pick any value
  2296. * but some values will be better than others. Since the lowest speed
  2297. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2298. * from experimentation it is safe to say you will always have a failure.
  2299. *-----------------------------------------------------------------*/
  2300. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2301. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2302. puts(str);
  2303. calibration_loop:
  2304. mfsdram(SDRAM_RQDC, rqdc_reg);
  2305. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2306. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2307. #else /* CONFIG_DDR_RQDC_FIXED */
  2308. /*
  2309. * On Katmai the complete auto-calibration somehow doesn't seem to
  2310. * produce the best results, meaning optimal values for RQFD/RFFD.
  2311. * This was discovered by GDA using a high bandwidth scope,
  2312. * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
  2313. * so now on Katmai "only" RFFD is auto-calibrated.
  2314. */
  2315. mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
  2316. #endif /* CONFIG_DDR_RQDC_FIXED */
  2317. max_start = 0;
  2318. min_end = 0;
  2319. begin_rqfd[0] = 0;
  2320. begin_rffd[0] = 0;
  2321. begin_rqfd[1] = 0;
  2322. begin_rffd[1] = 0;
  2323. end_rqfd[0] = 0;
  2324. end_rffd[0] = 0;
  2325. end_rqfd[1] = 0;
  2326. end_rffd[1] = 0;
  2327. window_found = FALSE;
  2328. max_pass_length = 0;
  2329. max_start = 0;
  2330. max_end = 0;
  2331. current_pass_length = 0;
  2332. current_fail_length = 0;
  2333. current_start = 0;
  2334. window_found = FALSE;
  2335. fail_found = FALSE;
  2336. pass_found = FALSE;
  2337. /*
  2338. * get the delay line calibration register value
  2339. */
  2340. mfsdram(SDRAM_DLCR, dlycal);
  2341. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2342. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2343. mfsdram(SDRAM_RFDC, rfdc_reg);
  2344. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2345. /*------------------------------------------------------------------
  2346. * Set the timing reg for the test.
  2347. *-----------------------------------------------------------------*/
  2348. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2349. /*------------------------------------------------------------------
  2350. * See if the rffd value passed.
  2351. *-----------------------------------------------------------------*/
  2352. if (short_mem_test()) {
  2353. if (fail_found == TRUE) {
  2354. pass_found = TRUE;
  2355. if (current_pass_length == 0)
  2356. current_start = rffd;
  2357. current_fail_length = 0;
  2358. current_pass_length++;
  2359. if (current_pass_length > max_pass_length) {
  2360. max_pass_length = current_pass_length;
  2361. max_start = current_start;
  2362. max_end = rffd;
  2363. }
  2364. }
  2365. } else {
  2366. current_pass_length = 0;
  2367. current_fail_length++;
  2368. if (current_fail_length >= (dly_val >> 2)) {
  2369. if (fail_found == FALSE) {
  2370. fail_found = TRUE;
  2371. } else if (pass_found == TRUE) {
  2372. window_found = TRUE;
  2373. break;
  2374. }
  2375. }
  2376. }
  2377. } /* for rffd */
  2378. /*------------------------------------------------------------------
  2379. * Set the average RFFD value
  2380. *-----------------------------------------------------------------*/
  2381. rffd_average = ((max_start + max_end) >> 1);
  2382. if (rffd_average < 0)
  2383. rffd_average = 0;
  2384. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2385. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2386. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2387. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2388. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2389. max_pass_length = 0;
  2390. max_start = 0;
  2391. max_end = 0;
  2392. current_pass_length = 0;
  2393. current_fail_length = 0;
  2394. current_start = 0;
  2395. window_found = FALSE;
  2396. fail_found = FALSE;
  2397. pass_found = FALSE;
  2398. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2399. mfsdram(SDRAM_RQDC, rqdc_reg);
  2400. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2401. /*------------------------------------------------------------------
  2402. * Set the timing reg for the test.
  2403. *-----------------------------------------------------------------*/
  2404. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2405. /*------------------------------------------------------------------
  2406. * See if the rffd value passed.
  2407. *-----------------------------------------------------------------*/
  2408. if (short_mem_test()) {
  2409. if (fail_found == TRUE) {
  2410. pass_found = TRUE;
  2411. if (current_pass_length == 0)
  2412. current_start = rqfd;
  2413. current_fail_length = 0;
  2414. current_pass_length++;
  2415. if (current_pass_length > max_pass_length) {
  2416. max_pass_length = current_pass_length;
  2417. max_start = current_start;
  2418. max_end = rqfd;
  2419. }
  2420. }
  2421. } else {
  2422. current_pass_length = 0;
  2423. current_fail_length++;
  2424. if (fail_found == FALSE) {
  2425. fail_found = TRUE;
  2426. } else if (pass_found == TRUE) {
  2427. window_found = TRUE;
  2428. break;
  2429. }
  2430. }
  2431. }
  2432. rqfd_average = ((max_start + max_end) >> 1);
  2433. /*------------------------------------------------------------------
  2434. * Make sure we found the valid read passing window. Halt if not
  2435. *-----------------------------------------------------------------*/
  2436. if (window_found == FALSE) {
  2437. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2438. putc('\b');
  2439. putc(slash[loopi++ % 8]);
  2440. /* try again from with a different RQFD start value */
  2441. rqfd_start++;
  2442. goto calibration_loop;
  2443. }
  2444. printf("\nERROR: Cannot determine a common read delay for the "
  2445. "DIMM(s) installed.\n");
  2446. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2447. ppc440sp_sdram_register_dump();
  2448. spd_ddr_init_hang ();
  2449. }
  2450. if (rqfd_average < 0)
  2451. rqfd_average = 0;
  2452. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2453. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2454. mtsdram(SDRAM_RQDC,
  2455. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2456. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2457. blank_string(strlen(str));
  2458. #endif /* CONFIG_DDR_RQDC_FIXED */
  2459. /*
  2460. * Now complete RDSS configuration as mentioned on page 7 of the AMCC
  2461. * PowerPC440SP/SPe DDR2 application note:
  2462. * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
  2463. */
  2464. mfsdram(SDRAM_RTSR, val);
  2465. if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
  2466. mfsdram(SDRAM_RDCC, val);
  2467. if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
  2468. val += 0x40000000;
  2469. mtsdram(SDRAM_RDCC, val);
  2470. }
  2471. }
  2472. mfsdram(SDRAM_DLCR, val);
  2473. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2474. mfsdram(SDRAM_RQDC, val);
  2475. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2476. mfsdram(SDRAM_RFDC, val);
  2477. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2478. mfsdram(SDRAM_RDCC, val);
  2479. debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2480. }
  2481. #else /* calibration test with hardvalues */
  2482. /*-----------------------------------------------------------------------------+
  2483. * DQS_calibration_process.
  2484. *-----------------------------------------------------------------------------*/
  2485. static void test(void)
  2486. {
  2487. unsigned long dimm_num;
  2488. unsigned long ecc_temp;
  2489. unsigned long i, j;
  2490. unsigned long *membase;
  2491. unsigned long bxcf[MAXRANKS];
  2492. unsigned long val;
  2493. char window_found;
  2494. char begin_found[MAXDIMMS];
  2495. char end_found[MAXDIMMS];
  2496. char search_end[MAXDIMMS];
  2497. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2498. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2499. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2500. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2501. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2502. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2503. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2504. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2505. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2506. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2507. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2508. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2509. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2510. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2511. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2512. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2513. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2514. /*------------------------------------------------------------------
  2515. * Test to determine the best read clock delay tuning bits.
  2516. *
  2517. * Before the DDR controller can be used, the read clock delay needs to be
  2518. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2519. * This value cannot be hardcoded into the program because it changes
  2520. * depending on the board's setup and environment.
  2521. * To do this, all delay values are tested to see if they
  2522. * work or not. By doing this, you get groups of fails with groups of
  2523. * passing values. The idea is to find the start and end of a passing
  2524. * window and take the center of it to use as the read clock delay.
  2525. *
  2526. * A failure has to be seen first so that when we hit a pass, we know
  2527. * that it is truely the start of the window. If we get passing values
  2528. * to start off with, we don't know if we are at the start of the window.
  2529. *
  2530. * The code assumes that a failure will always be found.
  2531. * If a failure is not found, there is no easy way to get the middle
  2532. * of the passing window. I guess we can pretty much pick any value
  2533. * but some values will be better than others. Since the lowest speed
  2534. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2535. * from experimentation it is safe to say you will always have a failure.
  2536. *-----------------------------------------------------------------*/
  2537. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2538. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2539. mfsdram(SDRAM_MCOPT1, val);
  2540. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2541. SDRAM_MCOPT1_MCHK_NON);
  2542. window_found = FALSE;
  2543. begin_found[0] = FALSE;
  2544. end_found[0] = FALSE;
  2545. search_end[0] = FALSE;
  2546. begin_found[1] = FALSE;
  2547. end_found[1] = FALSE;
  2548. search_end[1] = FALSE;
  2549. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2550. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2551. /* Banks enabled */
  2552. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2553. /* Bank is enabled */
  2554. membase =
  2555. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2556. /*------------------------------------------------------------------
  2557. * Run the short memory test.
  2558. *-----------------------------------------------------------------*/
  2559. for (i = 0; i < NUMMEMTESTS; i++) {
  2560. for (j = 0; j < NUMMEMWORDS; j++) {
  2561. membase[j] = test[i][j];
  2562. ppcDcbf((u32)&(membase[j]));
  2563. }
  2564. sync();
  2565. for (j = 0; j < NUMMEMWORDS; j++) {
  2566. if (membase[j] != test[i][j]) {
  2567. ppcDcbf((u32)&(membase[j]));
  2568. break;
  2569. }
  2570. ppcDcbf((u32)&(membase[j]));
  2571. }
  2572. sync();
  2573. if (j < NUMMEMWORDS)
  2574. break;
  2575. }
  2576. /*------------------------------------------------------------------
  2577. * See if the rffd value passed.
  2578. *-----------------------------------------------------------------*/
  2579. if (i < NUMMEMTESTS) {
  2580. if ((end_found[dimm_num] == FALSE) &&
  2581. (search_end[dimm_num] == TRUE)) {
  2582. end_found[dimm_num] = TRUE;
  2583. }
  2584. if ((end_found[0] == TRUE) &&
  2585. (end_found[1] == TRUE))
  2586. break;
  2587. } else {
  2588. if (begin_found[dimm_num] == FALSE) {
  2589. begin_found[dimm_num] = TRUE;
  2590. search_end[dimm_num] = TRUE;
  2591. }
  2592. }
  2593. } else {
  2594. begin_found[dimm_num] = TRUE;
  2595. end_found[dimm_num] = TRUE;
  2596. }
  2597. }
  2598. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2599. window_found = TRUE;
  2600. /*------------------------------------------------------------------
  2601. * Make sure we found the valid read passing window. Halt if not
  2602. *-----------------------------------------------------------------*/
  2603. if (window_found == FALSE) {
  2604. printf("ERROR: Cannot determine a common read delay for the "
  2605. "DIMM(s) installed.\n");
  2606. spd_ddr_init_hang ();
  2607. }
  2608. /*------------------------------------------------------------------
  2609. * Restore the ECC variable to what it originally was
  2610. *-----------------------------------------------------------------*/
  2611. mtsdram(SDRAM_MCOPT1,
  2612. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2613. | ecc_temp);
  2614. }
  2615. #endif
  2616. #if defined(DEBUG)
  2617. static void ppc440sp_sdram_register_dump(void)
  2618. {
  2619. unsigned int sdram_reg;
  2620. unsigned int sdram_data;
  2621. unsigned int dcr_data;
  2622. printf("\n Register Dump:\n");
  2623. sdram_reg = SDRAM_MCSTAT;
  2624. mfsdram(sdram_reg, sdram_data);
  2625. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2626. sdram_reg = SDRAM_MCOPT1;
  2627. mfsdram(sdram_reg, sdram_data);
  2628. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2629. sdram_reg = SDRAM_MCOPT2;
  2630. mfsdram(sdram_reg, sdram_data);
  2631. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2632. sdram_reg = SDRAM_MODT0;
  2633. mfsdram(sdram_reg, sdram_data);
  2634. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2635. sdram_reg = SDRAM_MODT1;
  2636. mfsdram(sdram_reg, sdram_data);
  2637. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2638. sdram_reg = SDRAM_MODT2;
  2639. mfsdram(sdram_reg, sdram_data);
  2640. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2641. sdram_reg = SDRAM_MODT3;
  2642. mfsdram(sdram_reg, sdram_data);
  2643. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2644. sdram_reg = SDRAM_CODT;
  2645. mfsdram(sdram_reg, sdram_data);
  2646. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2647. sdram_reg = SDRAM_VVPR;
  2648. mfsdram(sdram_reg, sdram_data);
  2649. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2650. sdram_reg = SDRAM_OPARS;
  2651. mfsdram(sdram_reg, sdram_data);
  2652. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2653. /*
  2654. * OPAR2 is only used as a trigger register.
  2655. * No data is contained in this register, and reading or writing
  2656. * to is can cause bad things to happen (hangs). Just skip it
  2657. * and report NA
  2658. * sdram_reg = SDRAM_OPAR2;
  2659. * mfsdram(sdram_reg, sdram_data);
  2660. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2661. */
  2662. printf(" SDRAM_OPART = N/A ");
  2663. sdram_reg = SDRAM_RTR;
  2664. mfsdram(sdram_reg, sdram_data);
  2665. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2666. sdram_reg = SDRAM_MB0CF;
  2667. mfsdram(sdram_reg, sdram_data);
  2668. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2669. sdram_reg = SDRAM_MB1CF;
  2670. mfsdram(sdram_reg, sdram_data);
  2671. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2672. sdram_reg = SDRAM_MB2CF;
  2673. mfsdram(sdram_reg, sdram_data);
  2674. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2675. sdram_reg = SDRAM_MB3CF;
  2676. mfsdram(sdram_reg, sdram_data);
  2677. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2678. sdram_reg = SDRAM_INITPLR0;
  2679. mfsdram(sdram_reg, sdram_data);
  2680. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2681. sdram_reg = SDRAM_INITPLR1;
  2682. mfsdram(sdram_reg, sdram_data);
  2683. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2684. sdram_reg = SDRAM_INITPLR2;
  2685. mfsdram(sdram_reg, sdram_data);
  2686. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2687. sdram_reg = SDRAM_INITPLR3;
  2688. mfsdram(sdram_reg, sdram_data);
  2689. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2690. sdram_reg = SDRAM_INITPLR4;
  2691. mfsdram(sdram_reg, sdram_data);
  2692. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2693. sdram_reg = SDRAM_INITPLR5;
  2694. mfsdram(sdram_reg, sdram_data);
  2695. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2696. sdram_reg = SDRAM_INITPLR6;
  2697. mfsdram(sdram_reg, sdram_data);
  2698. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2699. sdram_reg = SDRAM_INITPLR7;
  2700. mfsdram(sdram_reg, sdram_data);
  2701. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2702. sdram_reg = SDRAM_INITPLR8;
  2703. mfsdram(sdram_reg, sdram_data);
  2704. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2705. sdram_reg = SDRAM_INITPLR9;
  2706. mfsdram(sdram_reg, sdram_data);
  2707. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2708. sdram_reg = SDRAM_INITPLR10;
  2709. mfsdram(sdram_reg, sdram_data);
  2710. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2711. sdram_reg = SDRAM_INITPLR11;
  2712. mfsdram(sdram_reg, sdram_data);
  2713. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2714. sdram_reg = SDRAM_INITPLR12;
  2715. mfsdram(sdram_reg, sdram_data);
  2716. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2717. sdram_reg = SDRAM_INITPLR13;
  2718. mfsdram(sdram_reg, sdram_data);
  2719. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2720. sdram_reg = SDRAM_INITPLR14;
  2721. mfsdram(sdram_reg, sdram_data);
  2722. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2723. sdram_reg = SDRAM_INITPLR15;
  2724. mfsdram(sdram_reg, sdram_data);
  2725. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2726. sdram_reg = SDRAM_RQDC;
  2727. mfsdram(sdram_reg, sdram_data);
  2728. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2729. sdram_reg = SDRAM_RFDC;
  2730. mfsdram(sdram_reg, sdram_data);
  2731. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2732. sdram_reg = SDRAM_RDCC;
  2733. mfsdram(sdram_reg, sdram_data);
  2734. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2735. sdram_reg = SDRAM_DLCR;
  2736. mfsdram(sdram_reg, sdram_data);
  2737. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2738. sdram_reg = SDRAM_CLKTR;
  2739. mfsdram(sdram_reg, sdram_data);
  2740. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2741. sdram_reg = SDRAM_WRDTR;
  2742. mfsdram(sdram_reg, sdram_data);
  2743. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2744. sdram_reg = SDRAM_SDTR1;
  2745. mfsdram(sdram_reg, sdram_data);
  2746. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2747. sdram_reg = SDRAM_SDTR2;
  2748. mfsdram(sdram_reg, sdram_data);
  2749. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2750. sdram_reg = SDRAM_SDTR3;
  2751. mfsdram(sdram_reg, sdram_data);
  2752. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2753. sdram_reg = SDRAM_MMODE;
  2754. mfsdram(sdram_reg, sdram_data);
  2755. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2756. sdram_reg = SDRAM_MEMODE;
  2757. mfsdram(sdram_reg, sdram_data);
  2758. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2759. sdram_reg = SDRAM_ECCCR;
  2760. mfsdram(sdram_reg, sdram_data);
  2761. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2762. dcr_data = mfdcr(SDRAM_R0BAS);
  2763. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2764. dcr_data = mfdcr(SDRAM_R1BAS);
  2765. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2766. dcr_data = mfdcr(SDRAM_R2BAS);
  2767. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2768. dcr_data = mfdcr(SDRAM_R3BAS);
  2769. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2770. }
  2771. #else
  2772. static void ppc440sp_sdram_register_dump(void)
  2773. {
  2774. }
  2775. #endif
  2776. #endif /* CONFIG_SPD_EEPROM */