mtdpart.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * (C) 2000 Nicolas Pitre <nico@cam.org>
  5. *
  6. * This code is GPL
  7. *
  8. * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
  9. * added support for read_oob, write_oob
  10. */
  11. #include <common.h>
  12. #include <malloc.h>
  13. #include <asm/errno.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/mtd/mtd.h>
  17. #include <linux/mtd/partitions.h>
  18. #include <linux/mtd/compat.h>
  19. /* Our partition linked list */
  20. struct list_head mtd_partitions;
  21. /* Our partition node structure */
  22. struct mtd_part {
  23. struct mtd_info mtd;
  24. struct mtd_info *master;
  25. u_int32_t offset;
  26. int index;
  27. struct list_head list;
  28. int registered;
  29. };
  30. /*
  31. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  32. * the pointer to that structure with this macro.
  33. */
  34. #define PART(x) ((struct mtd_part *)(x))
  35. /*
  36. * MTD methods which simply translate the effective address and pass through
  37. * to the _real_ device.
  38. */
  39. static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
  40. size_t *retlen, u_char *buf)
  41. {
  42. struct mtd_part *part = PART(mtd);
  43. int res;
  44. if (from >= mtd->size)
  45. len = 0;
  46. else if (from + len > mtd->size)
  47. len = mtd->size - from;
  48. res = part->master->read (part->master, from + part->offset,
  49. len, retlen, buf);
  50. if (unlikely(res)) {
  51. if (res == -EUCLEAN)
  52. mtd->ecc_stats.corrected++;
  53. if (res == -EBADMSG)
  54. mtd->ecc_stats.failed++;
  55. }
  56. return res;
  57. }
  58. #ifdef MTD_LINUX
  59. static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
  60. size_t *retlen, void **virt, resource_size_t *phys)
  61. {
  62. struct mtd_part *part = PART(mtd);
  63. if (from >= mtd->size)
  64. len = 0;
  65. else if (from + len > mtd->size)
  66. len = mtd->size - from;
  67. return part->master->point (part->master, from + part->offset,
  68. len, retlen, virt, phys);
  69. }
  70. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  71. {
  72. struct mtd_part *part = PART(mtd);
  73. part->master->unpoint(part->master, from + part->offset, len);
  74. }
  75. #endif
  76. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  77. struct mtd_oob_ops *ops)
  78. {
  79. struct mtd_part *part = PART(mtd);
  80. int res;
  81. if (from >= mtd->size)
  82. return -EINVAL;
  83. if (ops->datbuf && from + ops->len > mtd->size)
  84. return -EINVAL;
  85. res = part->master->read_oob(part->master, from + part->offset, ops);
  86. if (unlikely(res)) {
  87. if (res == -EUCLEAN)
  88. mtd->ecc_stats.corrected++;
  89. if (res == -EBADMSG)
  90. mtd->ecc_stats.failed++;
  91. }
  92. return res;
  93. }
  94. static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  95. size_t *retlen, u_char *buf)
  96. {
  97. struct mtd_part *part = PART(mtd);
  98. return part->master->read_user_prot_reg (part->master, from,
  99. len, retlen, buf);
  100. }
  101. static int part_get_user_prot_info (struct mtd_info *mtd,
  102. struct otp_info *buf, size_t len)
  103. {
  104. struct mtd_part *part = PART(mtd);
  105. return part->master->get_user_prot_info (part->master, buf, len);
  106. }
  107. static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  108. size_t *retlen, u_char *buf)
  109. {
  110. struct mtd_part *part = PART(mtd);
  111. return part->master->read_fact_prot_reg (part->master, from,
  112. len, retlen, buf);
  113. }
  114. static int part_get_fact_prot_info (struct mtd_info *mtd,
  115. struct otp_info *buf, size_t len)
  116. {
  117. struct mtd_part *part = PART(mtd);
  118. return part->master->get_fact_prot_info (part->master, buf, len);
  119. }
  120. static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
  121. size_t *retlen, const u_char *buf)
  122. {
  123. struct mtd_part *part = PART(mtd);
  124. if (!(mtd->flags & MTD_WRITEABLE))
  125. return -EROFS;
  126. if (to >= mtd->size)
  127. len = 0;
  128. else if (to + len > mtd->size)
  129. len = mtd->size - to;
  130. return part->master->write (part->master, to + part->offset,
  131. len, retlen, buf);
  132. }
  133. #ifdef MTD_LINUX
  134. static int part_panic_write (struct mtd_info *mtd, loff_t to, size_t len,
  135. size_t *retlen, const u_char *buf)
  136. {
  137. struct mtd_part *part = PART(mtd);
  138. if (!(mtd->flags & MTD_WRITEABLE))
  139. return -EROFS;
  140. if (to >= mtd->size)
  141. len = 0;
  142. else if (to + len > mtd->size)
  143. len = mtd->size - to;
  144. return part->master->panic_write (part->master, to + part->offset,
  145. len, retlen, buf);
  146. }
  147. #endif
  148. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  149. struct mtd_oob_ops *ops)
  150. {
  151. struct mtd_part *part = PART(mtd);
  152. if (!(mtd->flags & MTD_WRITEABLE))
  153. return -EROFS;
  154. if (to >= mtd->size)
  155. return -EINVAL;
  156. if (ops->datbuf && to + ops->len > mtd->size)
  157. return -EINVAL;
  158. return part->master->write_oob(part->master, to + part->offset, ops);
  159. }
  160. static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  161. size_t *retlen, u_char *buf)
  162. {
  163. struct mtd_part *part = PART(mtd);
  164. return part->master->write_user_prot_reg (part->master, from,
  165. len, retlen, buf);
  166. }
  167. static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
  168. {
  169. struct mtd_part *part = PART(mtd);
  170. return part->master->lock_user_prot_reg (part->master, from, len);
  171. }
  172. #ifdef MTD_LINUX
  173. static int part_writev (struct mtd_info *mtd, const struct kvec *vecs,
  174. unsigned long count, loff_t to, size_t *retlen)
  175. {
  176. struct mtd_part *part = PART(mtd);
  177. if (!(mtd->flags & MTD_WRITEABLE))
  178. return -EROFS;
  179. return part->master->writev (part->master, vecs, count,
  180. to + part->offset, retlen);
  181. }
  182. #endif
  183. static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
  184. {
  185. struct mtd_part *part = PART(mtd);
  186. int ret;
  187. if (!(mtd->flags & MTD_WRITEABLE))
  188. return -EROFS;
  189. if (instr->addr >= mtd->size)
  190. return -EINVAL;
  191. instr->addr += part->offset;
  192. ret = part->master->erase(part->master, instr);
  193. if (ret) {
  194. if (instr->fail_addr != 0xffffffff)
  195. instr->fail_addr -= part->offset;
  196. instr->addr -= part->offset;
  197. }
  198. return ret;
  199. }
  200. void mtd_erase_callback(struct erase_info *instr)
  201. {
  202. if (instr->mtd->erase == part_erase) {
  203. struct mtd_part *part = PART(instr->mtd);
  204. if (instr->fail_addr != 0xffffffff)
  205. instr->fail_addr -= part->offset;
  206. instr->addr -= part->offset;
  207. }
  208. if (instr->callback)
  209. instr->callback(instr);
  210. }
  211. #ifdef MTD_LINUX
  212. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  213. #endif
  214. #ifdef MTD_LINUX
  215. static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
  216. {
  217. struct mtd_part *part = PART(mtd);
  218. if ((len + ofs) > mtd->size)
  219. return -EINVAL;
  220. return part->master->lock(part->master, ofs + part->offset, len);
  221. }
  222. static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
  223. {
  224. struct mtd_part *part = PART(mtd);
  225. if ((len + ofs) > mtd->size)
  226. return -EINVAL;
  227. return part->master->unlock(part->master, ofs + part->offset, len);
  228. }
  229. #endif
  230. static void part_sync(struct mtd_info *mtd)
  231. {
  232. struct mtd_part *part = PART(mtd);
  233. part->master->sync(part->master);
  234. }
  235. #ifdef MTD_LINUX
  236. static int part_suspend(struct mtd_info *mtd)
  237. {
  238. struct mtd_part *part = PART(mtd);
  239. return part->master->suspend(part->master);
  240. }
  241. static void part_resume(struct mtd_info *mtd)
  242. {
  243. struct mtd_part *part = PART(mtd);
  244. part->master->resume(part->master);
  245. }
  246. #endif
  247. static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
  248. {
  249. struct mtd_part *part = PART(mtd);
  250. if (ofs >= mtd->size)
  251. return -EINVAL;
  252. ofs += part->offset;
  253. return part->master->block_isbad(part->master, ofs);
  254. }
  255. static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
  256. {
  257. struct mtd_part *part = PART(mtd);
  258. int res;
  259. if (!(mtd->flags & MTD_WRITEABLE))
  260. return -EROFS;
  261. if (ofs >= mtd->size)
  262. return -EINVAL;
  263. ofs += part->offset;
  264. res = part->master->block_markbad(part->master, ofs);
  265. #ifdef MTD_LINUX
  266. if (!res)
  267. mtd->ecc_stats.badblocks++;
  268. #endif
  269. return res;
  270. }
  271. /*
  272. * This function unregisters and destroy all slave MTD objects which are
  273. * attached to the given master MTD object.
  274. */
  275. int del_mtd_partitions(struct mtd_info *master)
  276. {
  277. struct list_head *node;
  278. struct mtd_part *slave;
  279. for (node = mtd_partitions.next;
  280. node != &mtd_partitions;
  281. node = node->next) {
  282. slave = list_entry(node, struct mtd_part, list);
  283. if (slave->master == master) {
  284. struct list_head *prev = node->prev;
  285. __list_del(prev, node->next);
  286. if(slave->registered)
  287. del_mtd_device(&slave->mtd);
  288. kfree(slave);
  289. node = prev;
  290. }
  291. }
  292. return 0;
  293. }
  294. /*
  295. * This function, given a master MTD object and a partition table, creates
  296. * and registers slave MTD objects which are bound to the master according to
  297. * the partition definitions.
  298. * (Q: should we register the master MTD object as well?)
  299. */
  300. int add_mtd_partitions(struct mtd_info *master,
  301. const struct mtd_partition *parts,
  302. int nbparts)
  303. {
  304. struct mtd_part *slave;
  305. u_int32_t cur_offset = 0;
  306. int i;
  307. /*
  308. * Need to init the list here, since LIST_INIT() does not
  309. * work on platforms where relocation has problems (like MIPS
  310. * & PPC).
  311. */
  312. if (mtd_partitions.next == NULL)
  313. INIT_LIST_HEAD(&mtd_partitions);
  314. printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  315. for (i = 0; i < nbparts; i++) {
  316. /* allocate the partition structure */
  317. slave = kzalloc (sizeof(*slave), GFP_KERNEL);
  318. if (!slave) {
  319. printk ("memory allocation error while creating partitions for \"%s\"\n",
  320. master->name);
  321. del_mtd_partitions(master);
  322. return -ENOMEM;
  323. }
  324. list_add(&slave->list, &mtd_partitions);
  325. /* set up the MTD object for this partition */
  326. slave->mtd.type = master->type;
  327. slave->mtd.flags = master->flags & ~parts[i].mask_flags;
  328. slave->mtd.size = parts[i].size;
  329. slave->mtd.writesize = master->writesize;
  330. slave->mtd.oobsize = master->oobsize;
  331. slave->mtd.oobavail = master->oobavail;
  332. slave->mtd.subpage_sft = master->subpage_sft;
  333. slave->mtd.name = parts[i].name;
  334. slave->mtd.owner = master->owner;
  335. slave->mtd.read = part_read;
  336. slave->mtd.write = part_write;
  337. #ifdef MTD_LINUX
  338. if (master->panic_write)
  339. slave->mtd.panic_write = part_panic_write;
  340. if(master->point && master->unpoint){
  341. slave->mtd.point = part_point;
  342. slave->mtd.unpoint = part_unpoint;
  343. }
  344. #endif
  345. if (master->read_oob)
  346. slave->mtd.read_oob = part_read_oob;
  347. if (master->write_oob)
  348. slave->mtd.write_oob = part_write_oob;
  349. if(master->read_user_prot_reg)
  350. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  351. if(master->read_fact_prot_reg)
  352. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  353. if(master->write_user_prot_reg)
  354. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  355. if(master->lock_user_prot_reg)
  356. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  357. if(master->get_user_prot_info)
  358. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  359. if(master->get_fact_prot_info)
  360. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  361. if (master->sync)
  362. slave->mtd.sync = part_sync;
  363. #ifdef MTD_LINUX
  364. if (!i && master->suspend && master->resume) {
  365. slave->mtd.suspend = part_suspend;
  366. slave->mtd.resume = part_resume;
  367. }
  368. if (master->writev)
  369. slave->mtd.writev = part_writev;
  370. if (master->lock)
  371. slave->mtd.lock = part_lock;
  372. if (master->unlock)
  373. slave->mtd.unlock = part_unlock;
  374. #endif
  375. if (master->block_isbad)
  376. slave->mtd.block_isbad = part_block_isbad;
  377. if (master->block_markbad)
  378. slave->mtd.block_markbad = part_block_markbad;
  379. slave->mtd.erase = part_erase;
  380. slave->master = master;
  381. slave->offset = parts[i].offset;
  382. slave->index = i;
  383. if (slave->offset == MTDPART_OFS_APPEND)
  384. slave->offset = cur_offset;
  385. if (slave->offset == MTDPART_OFS_NXTBLK) {
  386. slave->offset = cur_offset;
  387. if ((cur_offset % master->erasesize) != 0) {
  388. /* Round up to next erasesize */
  389. slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
  390. printk(KERN_NOTICE "Moving partition %d: "
  391. "0x%08x -> 0x%08x\n", i,
  392. cur_offset, slave->offset);
  393. }
  394. }
  395. if (slave->mtd.size == MTDPART_SIZ_FULL)
  396. slave->mtd.size = master->size - slave->offset;
  397. cur_offset = slave->offset + slave->mtd.size;
  398. printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
  399. slave->offset + slave->mtd.size, slave->mtd.name);
  400. /* let's do some sanity checks */
  401. if (slave->offset >= master->size) {
  402. /* let's register it anyway to preserve ordering */
  403. slave->offset = 0;
  404. slave->mtd.size = 0;
  405. printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
  406. parts[i].name);
  407. }
  408. if (slave->offset + slave->mtd.size > master->size) {
  409. slave->mtd.size = master->size - slave->offset;
  410. printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
  411. parts[i].name, master->name, slave->mtd.size);
  412. }
  413. if (master->numeraseregions>1) {
  414. /* Deal with variable erase size stuff */
  415. int i;
  416. struct mtd_erase_region_info *regions = master->eraseregions;
  417. /* Find the first erase regions which is part of this partition. */
  418. for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
  419. ;
  420. for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
  421. if (slave->mtd.erasesize < regions[i].erasesize) {
  422. slave->mtd.erasesize = regions[i].erasesize;
  423. }
  424. }
  425. } else {
  426. /* Single erase size */
  427. slave->mtd.erasesize = master->erasesize;
  428. }
  429. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  430. (slave->offset % slave->mtd.erasesize)) {
  431. /* Doesn't start on a boundary of major erase size */
  432. /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
  433. slave->mtd.flags &= ~MTD_WRITEABLE;
  434. printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  435. parts[i].name);
  436. }
  437. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  438. (slave->mtd.size % slave->mtd.erasesize)) {
  439. slave->mtd.flags &= ~MTD_WRITEABLE;
  440. printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  441. parts[i].name);
  442. }
  443. slave->mtd.ecclayout = master->ecclayout;
  444. if (master->block_isbad) {
  445. uint32_t offs = 0;
  446. while(offs < slave->mtd.size) {
  447. if (master->block_isbad(master,
  448. offs + slave->offset))
  449. slave->mtd.ecc_stats.badblocks++;
  450. offs += slave->mtd.erasesize;
  451. }
  452. }
  453. #ifdef MTD_LINUX
  454. if (parts[i].mtdp) {
  455. /* store the object pointer
  456. * (caller may or may not register it */
  457. *parts[i].mtdp = &slave->mtd;
  458. slave->registered = 0;
  459. } else {
  460. /* register our partition */
  461. add_mtd_device(&slave->mtd);
  462. slave->registered = 1;
  463. }
  464. #else
  465. /* register our partition */
  466. add_mtd_device(&slave->mtd);
  467. slave->registered = 1;
  468. #endif
  469. }
  470. return 0;
  471. }
  472. #ifdef MTD_LINUX
  473. EXPORT_SYMBOL(add_mtd_partitions);
  474. EXPORT_SYMBOL(del_mtd_partitions);
  475. #endif