articiaS.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704
  1. /*
  2. * (C) Copyright 2002
  3. * Hyperion Entertainment, ThomasF@hyperion-entertainment.com
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <pci.h>
  25. #include <asm/processor.h>
  26. #include "memio.h"
  27. #include "articiaS.h"
  28. #include "smbus.h"
  29. #include "via686.h"
  30. DECLARE_GLOBAL_DATA_PTR;
  31. #undef DEBUG
  32. struct dimm_bank {
  33. uint8 used; /* Bank is populated */
  34. uint32 rows; /* Number of row addresses */
  35. uint32 columns; /* Number of column addresses */
  36. uint8 registered; /* SIMM is registered */
  37. uint8 ecc; /* SIMM has ecc */
  38. uint8 burst_len; /* Supported burst lengths */
  39. uint32 cas_lat; /* Supported CAS latencies */
  40. uint32 cas_used; /* CAS to use (not set by user) */
  41. uint32 trcd; /* RAS to CAS latency */
  42. uint32 trp; /* Precharge latency */
  43. uint32 tclk_hi; /* SDRAM cycle time (highest CAS latency) */
  44. uint32 tclk_2hi; /* SDRAM second highest CAS latency */
  45. uint32 size; /* Size of bank in bytes */
  46. uint8 auto_refresh; /* Module supports auto refresh */
  47. uint32 refresh_time; /* Refresh time (in ns) */
  48. };
  49. /*
  50. ** Based in part on the evb64260 code
  51. */
  52. /*
  53. * translate ns.ns/10 coding of SPD timing values
  54. * into 10 ps unit values
  55. */
  56. static inline unsigned short NS10to10PS (unsigned char spd_byte)
  57. {
  58. unsigned short ns, ns10;
  59. /* isolate upper nibble */
  60. ns = (spd_byte >> 4) & 0x0F;
  61. /* isolate lower nibble */
  62. ns10 = (spd_byte & 0x0F);
  63. return (ns * 100 + ns10 * 10);
  64. }
  65. /*
  66. * translate ns coding of SPD timing values
  67. * into 10 ps unit values
  68. */
  69. static inline unsigned short NSto10PS (unsigned char spd_byte)
  70. {
  71. return (spd_byte * 100);
  72. }
  73. long detect_sdram (uint8 * rom, int dimmNum, struct dimm_bank *banks)
  74. {
  75. int dimm_address = (dimmNum == 0) ? SM_DIMM0_ADDR : SM_DIMM1_ADDR;
  76. uint32 busclock = gd->bus_clk;
  77. uint32 memclock = busclock;
  78. uint32 tmemclock = 1000000000 / (memclock / 100);
  79. uint32 datawidth;
  80. if (sm_get_data (rom, dimm_address) == 0) {
  81. /* Nothing in slot, make both banks empty */
  82. debug ("Slot %d: vacant\n", dimmNum);
  83. banks[0].used = 0;
  84. banks[1].used = 0;
  85. return 0;
  86. }
  87. if (rom[2] != 0x04) {
  88. debug ("Slot %d: No SDRAM\n", dimmNum);
  89. banks[0].used = 0;
  90. banks[1].used = 0;
  91. return 0;
  92. }
  93. /* Determine number of banks/rows */
  94. if (rom[5] == 1) {
  95. banks[0].used = 1;
  96. banks[1].used = 0;
  97. } else {
  98. banks[0].used = 1;
  99. banks[1].used = 1;
  100. }
  101. /* Determine number of row addresses */
  102. if (rom[3] & 0xf0) {
  103. /* Different banks sizes */
  104. banks[0].rows = rom[3] & 0x0f;
  105. banks[1].rows = (rom[3] & 0xf0) >> 4;
  106. } else {
  107. /* Equal sized banks */
  108. banks[0].rows = rom[3] & 0x0f;
  109. banks[1].rows = banks[0].rows;
  110. }
  111. /* Determine number of column addresses */
  112. if (rom[4] & 0xf0) {
  113. /* Different bank sizes */
  114. banks[0].columns = rom[4] & 0x0f;
  115. banks[1].columns = (rom[4] & 0xf0) >> 4;
  116. } else {
  117. banks[0].columns = rom[4] & 0x0f;
  118. banks[1].columns = banks[0].columns;
  119. }
  120. /* Check Jedec revision, and modify row/column accordingly */
  121. if (rom[62] > 0x10) {
  122. if (banks[0].rows <= 3)
  123. banks[0].rows += 15;
  124. if (banks[1].rows <= 3)
  125. banks[1].rows += 15;
  126. if (banks[0].columns <= 3)
  127. banks[0].columns += 15;
  128. if (banks[0].columns <= 3)
  129. banks[0].columns += 15;
  130. }
  131. /* Check registered/unregisterd */
  132. if (rom[21] & 0x12) {
  133. banks[0].registered = 1;
  134. banks[1].registered = 1;
  135. } else {
  136. banks[0].registered = 0;
  137. banks[1].registered = 0;
  138. }
  139. #ifdef CONFIG_ECC
  140. /* Check parity/ECC */
  141. banks[0].ecc = (rom[11] == 0x02);
  142. banks[1].ecc = (rom[11] == 0x02);
  143. #endif
  144. /* Find burst lengths supported */
  145. banks[0].burst_len = rom[16] & 0x8f;
  146. banks[1].burst_len = rom[16] & 0x8f;
  147. /* Find possible cas latencies */
  148. banks[0].cas_lat = rom[18] & 0x7F;
  149. banks[1].cas_lat = rom[18] & 0x7F;
  150. /* RAS/CAS latency */
  151. banks[0].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock;
  152. banks[1].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock;
  153. /* Precharge latency */
  154. banks[0].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock;
  155. banks[1].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock;
  156. /* highest CAS latency */
  157. banks[0].tclk_hi = NS10to10PS (rom[9]);
  158. banks[1].tclk_hi = NS10to10PS (rom[9]);
  159. /* second highest CAS latency */
  160. banks[0].tclk_2hi = NS10to10PS (rom[23]);
  161. banks[1].tclk_2hi = NS10to10PS (rom[23]);
  162. /* bank sizes */
  163. datawidth = rom[13] & 0x7f;
  164. banks[0].size =
  165. (1L << (banks[0].rows + banks[0].columns)) *
  166. /* FIXME datawidth */ 8 * rom[17];
  167. if (rom[13] & 0x80)
  168. banks[1].size = 2 * banks[0].size;
  169. else
  170. banks[1].size = (1L << (banks[1].rows + banks[1].columns)) *
  171. /* FIXME datawidth */ 8 * rom[17];
  172. /* Refresh */
  173. if (rom[12] & 0x80) {
  174. banks[0].auto_refresh = 1;
  175. banks[1].auto_refresh = 1;
  176. } else {
  177. banks[0].auto_refresh = 0;
  178. banks[1].auto_refresh = 0;
  179. }
  180. switch (rom[12] & 0x7f) {
  181. case 0:
  182. banks[0].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock;
  183. banks[1].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock;
  184. break;
  185. case 1:
  186. banks[0].refresh_time = (390600 + (tmemclock - 1)) / tmemclock;
  187. banks[1].refresh_time = (390600 + (tmemclock - 1)) / tmemclock;
  188. break;
  189. case 2:
  190. banks[0].refresh_time = (781200 + (tmemclock - 1)) / tmemclock;
  191. banks[1].refresh_time = (781200 + (tmemclock - 1)) / tmemclock;
  192. break;
  193. case 3:
  194. banks[0].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock;
  195. banks[1].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock;
  196. break;
  197. case 4:
  198. banks[0].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock;
  199. banks[1].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock;
  200. break;
  201. case 5:
  202. banks[0].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock;
  203. banks[1].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock;
  204. break;
  205. default:
  206. banks[0].refresh_time = 0x100; /* Default of Articia S */
  207. banks[1].refresh_time = 0x100;
  208. break;
  209. }
  210. #ifdef DEBUG
  211. printf ("\nInformation for SIMM bank %ld:\n", dimmNum);
  212. printf ("Number of banks: %ld\n", banks[0].used + banks[1].used);
  213. printf ("Number of row addresses: %ld\n", banks[0].rows);
  214. printf ("Number of coumns addresses: %ld\n", banks[0].columns);
  215. printf ("SIMM is %sregistered\n",
  216. banks[0].registered == 0 ? "not " : "");
  217. #ifdef CONFIG_ECC
  218. printf ("SIMM %s ECC\n",
  219. banks[0].ecc == 1 ? "supports" : "doesn't support");
  220. #endif
  221. printf ("Supported burst lenghts: %s %s %s %s %s\n",
  222. banks[0].burst_len & 0x08 ? "8" : " ",
  223. banks[0].burst_len & 0x04 ? "4" : " ",
  224. banks[0].burst_len & 0x02 ? "2" : " ",
  225. banks[0].burst_len & 0x01 ? "1" : " ",
  226. banks[0].burst_len & 0x80 ? "PAGE" : " ");
  227. printf ("Supported CAS latencies: %s %s %s\n",
  228. banks[0].cas_lat & 0x04 ? "CAS 3" : " ",
  229. banks[0].cas_lat & 0x02 ? "CAS 2" : " ",
  230. banks[0].cas_lat & 0x01 ? "CAS 1" : " ");
  231. printf ("RAS to CAS latency: %ld\n", banks[0].trcd);
  232. printf ("Precharge latency: %ld\n", banks[0].trp);
  233. printf ("SDRAM highest CAS latency: %ld\n", banks[0].tclk_hi);
  234. printf ("SDRAM 2nd highest CAS latency: %ld\n", banks[0].tclk_2hi);
  235. printf ("SDRAM data width: %ld\n", datawidth);
  236. printf ("Auto Refresh %ssupported\n",
  237. banks[0].auto_refresh ? "" : "not ");
  238. printf ("Refresh time: %ld clocks\n", banks[0].refresh_time);
  239. if (banks[0].used)
  240. printf ("Bank 0 size: %ld MB\n", banks[0].size / 1024 / 1024);
  241. if (banks[1].used)
  242. printf ("Bank 1 size: %ld MB\n", banks[1].size / 1024 / 1024);
  243. printf ("\n");
  244. #endif
  245. sm_term ();
  246. return 1;
  247. }
  248. void select_cas (struct dimm_bank *banks, uint8 fast)
  249. {
  250. if (!banks[0].used) {
  251. banks[0].cas_used = 0;
  252. banks[0].cas_used = 0;
  253. return;
  254. }
  255. if (fast) {
  256. /* Search for fast CAS */
  257. uint32 i;
  258. uint32 c = 0x01;
  259. for (i = 1; i < 5; i++) {
  260. if (banks[0].cas_lat & c) {
  261. banks[0].cas_used = i;
  262. banks[1].cas_used = i;
  263. debug ("Using CAS %d (fast)\n", i);
  264. return;
  265. }
  266. c <<= 1;
  267. }
  268. /* Default to CAS 3 */
  269. banks[0].cas_used = 3;
  270. banks[1].cas_used = 3;
  271. debug ("Using CAS 3 (fast)\n");
  272. return;
  273. } else {
  274. /* Search for slow cas */
  275. uint32 i;
  276. uint32 c = 0x08;
  277. for (i = 4; i > 1; i--) {
  278. if (banks[0].cas_lat & c) {
  279. banks[0].cas_used = i;
  280. banks[1].cas_used = i;
  281. debug ("Using CAS %d (slow)\n", i);
  282. return;
  283. }
  284. c >>= 1;
  285. }
  286. /* Default to CAS 3 */
  287. banks[0].cas_used = 3;
  288. banks[1].cas_used = 3;
  289. debug ("Using CAS 3 (slow)\n");
  290. return;
  291. }
  292. banks[0].cas_used = 3;
  293. banks[1].cas_used = 3;
  294. debug ("Using CAS 3\n");
  295. return;
  296. }
  297. uint32 get_reg_setting (uint32 banks, uint32 rows, uint32 columns, uint32 size)
  298. {
  299. uint32 i;
  300. struct RowColumnSize {
  301. uint32 banks;
  302. uint32 rows;
  303. uint32 columns;
  304. uint32 size;
  305. uint32 register_value;
  306. };
  307. struct RowColumnSize rcs_map[] = {
  308. /* Sbk Radr Cadr MB Value */
  309. {1, 11, 8, 8, 0x00840f00},
  310. {1, 11, 9, 16, 0x00925f00},
  311. {1, 11, 10, 32, 0x00a64f00},
  312. {2, 12, 8, 32, 0x00c55f00},
  313. {2, 12, 9, 64, 0x00d66f00},
  314. {2, 12, 10, 128, 0x00e77f00},
  315. {2, 12, 11, 256, 0x00ff8f00},
  316. {2, 13, 11, 512, 0x00ff9f00},
  317. {0, 0, 0, 0, 0x00000000}
  318. };
  319. i = 0;
  320. while (rcs_map[i].banks != 0) {
  321. if (rows == rcs_map[i].rows
  322. && columns == rcs_map[i].columns
  323. && (size / 1024 / 1024) == rcs_map[i].size)
  324. return rcs_map[i].register_value;
  325. i++;
  326. }
  327. return 0;
  328. }
  329. uint32 burst_to_len (uint32 support)
  330. {
  331. if (support & 0x80)
  332. return 0x7;
  333. else if (support & 0x8)
  334. return 0x3;
  335. else if (support & 0x4)
  336. return 0x2;
  337. else if (support & 0x2)
  338. return 0x1;
  339. else if (support & 0x1)
  340. return 0x0;
  341. return 0;
  342. }
  343. long articiaS_ram_init (void)
  344. {
  345. register uint32 i;
  346. register uint32 value1;
  347. register uint32 value2;
  348. uint8 rom[128];
  349. uint32 burst_len;
  350. uint32 burst_support;
  351. uint32 total_ram = 0;
  352. struct dimm_bank banks[4]; /* FIXME: Move to initram */
  353. uint32 busclock = gd->bus_clk;
  354. uint32 memclock = busclock;
  355. uint32 reg32;
  356. uint32 refresh_clocks;
  357. uint8 auto_refresh;
  358. memset (banks, 0, sizeof (struct dimm_bank) * 4);
  359. detect_sdram (rom, 0, &banks[0]);
  360. detect_sdram (rom, 1, &banks[2]);
  361. for (i = 0; i < 4; i++) {
  362. total_ram = total_ram + (banks[i].used * banks[i].size);
  363. }
  364. pci_write_cfg_long (0, 0, GLOBALINFO0, 0x117430c0);
  365. pci_write_cfg_long (0, 0, HBUSACR0, 0x1f0100b0);
  366. pci_write_cfg_long (0, 0, SRAM_CR, 0x00f12000); /* Note: Might also try 0x00f10000 (original: 0x00f12000) */
  367. pci_write_cfg_byte (0, 0, DRAM_RAS_CTL0, 0x3f);
  368. pci_write_cfg_byte (0, 0, DRAM_RAS_CTL1, 0x00); /* was: 0x04); */
  369. pci_write_cfg_word (0, 0, DRAM_ECC0, 0x2020); /* was: 0x2400); No ECC yet */
  370. /* FIXME: Move this stuff to seperate function, like setup_dimm_bank */
  371. if (banks[0].used) {
  372. value1 = get_reg_setting (banks[0].used + banks[1].used,
  373. banks[0].rows, banks[0].columns,
  374. banks[0].size);
  375. } else {
  376. value1 = 0;
  377. }
  378. if (banks[1].used) {
  379. value2 = get_reg_setting (banks[0].used + banks[1].used,
  380. banks[1].rows, banks[1].columns,
  381. banks[1].size);
  382. } else {
  383. value2 = 0;
  384. }
  385. pci_write_cfg_long (0, 0, DIMM0_B0_SCR0, value1);
  386. pci_write_cfg_long (0, 0, DIMM0_B1_SCR0, value2);
  387. debug ("DIMM0_B0_SCR0 = 0x%08x\n", value1);
  388. debug ("DIMM0_B1_SCR0 = 0x%08x\n", value2);
  389. if (banks[2].used) {
  390. value1 = get_reg_setting (banks[2].used + banks[3].used,
  391. banks[2].rows, banks[2].columns,
  392. banks[2].size);
  393. } else {
  394. value1 = 0;
  395. }
  396. if (banks[3].used) {
  397. value2 = get_reg_setting (banks[2].used + banks[3].used,
  398. banks[3].rows, banks[3].columns,
  399. banks[3].size);
  400. } else {
  401. value2 = 0;
  402. }
  403. pci_write_cfg_long (0, 0, DIMM1_B2_SCR0, value1);
  404. pci_write_cfg_long (0, 0, DIMM1_B3_SCR0, value2);
  405. debug ("DIMM0_B2_SCR0 = 0x%08x\n", value1);
  406. debug ("DIMM0_B3_SCR0 = 0x%08x\n", value2);
  407. pci_write_cfg_long (0, 0, DIMM2_B4_SCR0, 0);
  408. pci_write_cfg_long (0, 0, DIMM2_B5_SCR0, 0);
  409. pci_write_cfg_long (0, 0, DIMM3_B6_SCR0, 0);
  410. pci_write_cfg_long (0, 0, DIMM3_B7_SCR0, 0);
  411. /* Determine timing */
  412. select_cas (&banks[0], 0);
  413. select_cas (&banks[2], 0);
  414. /* FIXME: What about write recovery */
  415. /* Auto refresh Precharge */
  416. #if 0
  417. reg32 = (0x3 << 13) | (0x7 << 10) | ((banks[0].trp - 2) << 8) |
  418. /* Write recovery CAS Latency */
  419. (0x1 << 6) | (banks[0].cas_used << 4) |
  420. /* RAS/CAS latency */
  421. ((banks[0].trcd - 1) << 0);
  422. reg32 |= ((0x3 << 13) | (0x7 << 10) | ((banks[2].trp - 2) << 8) |
  423. (0x1 << 6) | (banks[2].cas_used << 4) |
  424. ((banks[2].trcd - 1) << 0)) << 16;
  425. #else
  426. if (100000000 == gd->bus_clk)
  427. reg32 = 0x71737173;
  428. else
  429. reg32 = 0x69736973;
  430. #endif
  431. pci_write_cfg_long (0, 0, DIMM0_TCR0, reg32);
  432. debug ("DIMM0_TCR0 = 0x%08x\n", reg32);
  433. /* Write default in DIMM2/3 (not used on A1) */
  434. pci_write_cfg_long (0, 0, DIMM2_TCR0, 0x7d737d73);
  435. /* Determine buffered/unbuffered mode for each SIMM. Uses first bank as reference (second, if present, uses the same) */
  436. reg32 = pci_read_cfg_long (0, 0, DRAM_GCR0);
  437. reg32 &= 0xFF00FFFF;
  438. #if 0
  439. if (banks[0].used && banks[0].registered)
  440. reg32 |= 0x1 << 16;
  441. if (banks[2].used && banks[2].registered)
  442. reg32 |= 0x1 << 18;
  443. #else
  444. if (banks[0].registered || banks[2].registered)
  445. reg32 |= 0x55 << 16;
  446. #endif
  447. pci_write_cfg_long (0, 0, DRAM_GCR0, reg32);
  448. debug ("DRAM_GCR0 = 0x%08x\n", reg32);
  449. /* Determine refresh */
  450. refresh_clocks = 0xffffffff;
  451. auto_refresh = 1;
  452. for (i = 0; i < 4; i++) {
  453. if (banks[i].used) {
  454. if (banks[i].auto_refresh == 0)
  455. auto_refresh = 0;
  456. if (banks[i].refresh_time < refresh_clocks)
  457. refresh_clocks = banks[i].refresh_time;
  458. }
  459. }
  460. #if 1
  461. /* It seems this is suggested by the ArticiaS data book */
  462. if (100000000 == gd->bus_clk)
  463. refresh_clocks = 1561;
  464. else
  465. refresh_clocks = 2083;
  466. #endif
  467. debug ("Refresh set to %ld clocks, auto refresh %s\n",
  468. refresh_clocks, auto_refresh ? "on" : "off");
  469. pci_write_cfg_long (0, 0, DRAM_REFRESH0,
  470. (1 << 16) | (1 << 15) | (auto_refresh << 12) |
  471. (refresh_clocks));
  472. debug ("DRAM_REFRESH0 = 0x%08x\n",
  473. (1 << 16) | (1 << 15) | (auto_refresh << 12) |
  474. (refresh_clocks));
  475. /* pci_write_cfg_long(0, 0, DRAM_REFRESH0, 0x00019400); */
  476. /* Set mode registers */
  477. /* FIXME: For now, set same burst len for all modules. Dunno if that's necessary */
  478. /* Find a common burst len */
  479. burst_support = 0xff;
  480. if (banks[0].used)
  481. burst_support = banks[0].burst_len;
  482. if (banks[1].used)
  483. burst_support = banks[1].burst_len;
  484. if (banks[2].used)
  485. burst_support = banks[2].burst_len;
  486. if (banks[3].used)
  487. burst_support = banks[3].burst_len;
  488. /*
  489. ** Mode register:
  490. ** Bits Use
  491. ** 0-2 Burst len
  492. ** 3 Burst type (0 = sequential, 1 = interleave)
  493. ** 4-6 CAS latency
  494. ** 7-8 Operation mode (0 = default, all others invalid)
  495. ** 9 Write burst
  496. ** 10-11 Reserved
  497. **
  498. ** Mode register burst table:
  499. ** A2 A1 A0 lenght
  500. ** 0 0 0 1
  501. ** 0 0 1 2
  502. ** 0 1 0 4
  503. ** 0 1 1 8
  504. ** 1 0 0 invalid
  505. ** 1 0 1 invalid
  506. ** 1 1 0 invalid
  507. ** 1 1 1 page (only valid for non-interleaved)
  508. */
  509. burst_len = burst_to_len (burst_support);
  510. burst_len = 2; /* FIXME */
  511. if (banks[0].used) {
  512. pci_write_cfg_word (0, 0, DRAM_PCR0,
  513. 0x8000 | burst_len | (banks[0].cas_used << 4));
  514. debug ("Mode bank 0: 0x%08x\n",
  515. 0x8000 | burst_len | (banks[0].cas_used << 4));
  516. } else {
  517. /* Seems to be needed to disable the bank */
  518. pci_write_cfg_word (0, 0, DRAM_PCR0, 0x0000 | 0x032);
  519. }
  520. if (banks[1].used) {
  521. pci_write_cfg_word (0, 0, DRAM_PCR0,
  522. 0x9000 | burst_len | (banks[1].cas_used << 4));
  523. debug ("Mode bank 1: 0x%08x\n",
  524. 0x8000 | burst_len | (banks[1].cas_used << 4));
  525. } else {
  526. /* Seems to be needed to disable the bank */
  527. pci_write_cfg_word (0, 0, DRAM_PCR0, 0x1000 | 0x032);
  528. }
  529. if (banks[2].used) {
  530. pci_write_cfg_word (0, 0, DRAM_PCR0,
  531. 0xa000 | burst_len | (banks[2].cas_used << 4));
  532. debug ("Mode bank 2: 0x%08x\n",
  533. 0x8000 | burst_len | (banks[2].cas_used << 4));
  534. } else {
  535. /* Seems to be needed to disable the bank */
  536. pci_write_cfg_word (0, 0, DRAM_PCR0, 0x2000 | 0x032);
  537. }
  538. if (banks[3].used) {
  539. pci_write_cfg_word (0, 0, DRAM_PCR0,
  540. 0xb000 | burst_len | (banks[3].cas_used << 4));
  541. debug ("Mode bank 3: 0x%08x\n",
  542. 0x8000 | burst_len | (banks[3].cas_used << 4));
  543. } else {
  544. /* Seems to be needed to disable the bank */
  545. pci_write_cfg_word (0, 0, DRAM_PCR0, 0x3000 | 0x032);
  546. }
  547. pci_write_cfg_word (0, 0, 0xba, 0x00);
  548. return total_ram;
  549. }
  550. extern int drv_isa_kbd_init (void);
  551. int last_stage_init (void)
  552. {
  553. drv_isa_kbd_init ();
  554. return 0;
  555. }
  556. int overwrite_console (void)
  557. {
  558. return (0);
  559. }
  560. #define in_8 read_byte
  561. #define out_8 write_byte
  562. static __inline__ unsigned long get_msr (void)
  563. {
  564. unsigned long msr;
  565. asm volatile ("mfmsr %0":"=r" (msr):);
  566. return msr;
  567. }
  568. static __inline__ void set_msr (unsigned long msr)
  569. {
  570. asm volatile ("mtmsr %0"::"r" (msr));
  571. }
  572. int board_early_init_f (void)
  573. {
  574. unsigned char c_value = 0;
  575. unsigned long msr;
  576. /* Basic init of PS/2 keyboard (needed for some reason)... */
  577. /* Ripped from John's code */
  578. while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
  579. out_8 ((unsigned char *) 0xfe000064, 0xaa);
  580. while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0);
  581. c_value = in_8 ((unsigned char *) 0xfe000060);
  582. while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
  583. out_8 ((unsigned char *) 0xfe000064, 0xab);
  584. while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0);
  585. c_value = in_8 ((unsigned char *) 0xfe000060);
  586. while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
  587. out_8 ((unsigned char *) 0xfe000064, 0xae);
  588. /* while ((in_8((unsigned char *)0xfe000064) & 0x01) == 0); */
  589. /* c_value = in_8((unsigned char *)0xfe000060); */
  590. /* Enable FPU */
  591. msr = get_msr ();
  592. set_msr (msr | MSR_FP);
  593. via_calibrate_bus_freq ();
  594. return 0;
  595. }