clock.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842
  1. /*
  2. * (C) Copyright 2007
  3. * Sascha Hauer, Pengutronix
  4. *
  5. * (C) Copyright 2009 Freescale Semiconductor, Inc.
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <asm/io.h>
  27. #include <asm/errno.h>
  28. #include <asm/arch/imx-regs.h>
  29. #include <asm/arch/crm_regs.h>
  30. #include <asm/arch/clock.h>
  31. #include <div64.h>
  32. #include <asm/arch/sys_proto.h>
  33. enum pll_clocks {
  34. PLL1_CLOCK = 0,
  35. PLL2_CLOCK,
  36. PLL3_CLOCK,
  37. PLL4_CLOCK,
  38. PLL_CLOCKS,
  39. };
  40. struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
  41. [PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
  42. [PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
  43. [PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
  44. #ifdef CONFIG_MX53
  45. [PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
  46. #endif
  47. };
  48. #define AHB_CLK_ROOT 133333333
  49. #define SZ_DEC_1M 1000000
  50. #define PLL_PD_MAX 16 /* Actual pd+1 */
  51. #define PLL_MFI_MAX 15
  52. #define PLL_MFI_MIN 5
  53. #define ARM_DIV_MAX 8
  54. #define IPG_DIV_MAX 4
  55. #define AHB_DIV_MAX 8
  56. #define EMI_DIV_MAX 8
  57. #define NFC_DIV_MAX 8
  58. #define MX5_CBCMR 0x00015154
  59. #define MX5_CBCDR 0x02888945
  60. struct fixed_pll_mfd {
  61. u32 ref_clk_hz;
  62. u32 mfd;
  63. };
  64. const struct fixed_pll_mfd fixed_mfd[] = {
  65. {MXC_HCLK, 24 * 16},
  66. };
  67. struct pll_param {
  68. u32 pd;
  69. u32 mfi;
  70. u32 mfn;
  71. u32 mfd;
  72. };
  73. #define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
  74. #define PLL_FREQ_MIN(ref_clk) \
  75. ((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
  76. #define MAX_DDR_CLK 420000000
  77. #define NFC_CLK_MAX 34000000
  78. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
  79. void set_usboh3_clk(void)
  80. {
  81. clrsetbits_le32(&mxc_ccm->cscmr1,
  82. MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
  83. MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
  84. clrsetbits_le32(&mxc_ccm->cscdr1,
  85. MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
  86. MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
  87. MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
  88. MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
  89. }
  90. void enable_usboh3_clk(unsigned char enable)
  91. {
  92. if (enable)
  93. setbits_le32(&mxc_ccm->CCGR2, 1 << MXC_CCM_CCGR2_CG14_OFFSET);
  94. else
  95. clrbits_le32(&mxc_ccm->CCGR2, 1 << MXC_CCM_CCGR2_CG14_OFFSET);
  96. }
  97. #ifdef CONFIG_I2C_MXC
  98. /* i2c_num can be from 0 - 2 */
  99. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  100. {
  101. u32 mask;
  102. if (i2c_num > 2)
  103. return -EINVAL;
  104. mask = MXC_CCM_CCGR_CG_MASK << ((i2c_num + 9) << 1);
  105. if (enable)
  106. setbits_le32(&mxc_ccm->CCGR1, mask);
  107. else
  108. clrbits_le32(&mxc_ccm->CCGR1, mask);
  109. return 0;
  110. }
  111. #endif
  112. void set_usb_phy1_clk(void)
  113. {
  114. clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
  115. }
  116. void enable_usb_phy1_clk(unsigned char enable)
  117. {
  118. if (enable)
  119. setbits_le32(&mxc_ccm->CCGR4, 1 << MXC_CCM_CCGR4_CG5_OFFSET);
  120. else
  121. clrbits_le32(&mxc_ccm->CCGR4, 1 << MXC_CCM_CCGR4_CG5_OFFSET);
  122. }
  123. void set_usb_phy2_clk(void)
  124. {
  125. clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
  126. }
  127. void enable_usb_phy2_clk(unsigned char enable)
  128. {
  129. if (enable)
  130. setbits_le32(&mxc_ccm->CCGR4, 1 << MXC_CCM_CCGR4_CG6_OFFSET);
  131. else
  132. clrbits_le32(&mxc_ccm->CCGR4, 1 << MXC_CCM_CCGR4_CG6_OFFSET);
  133. }
  134. /*
  135. * Calculate the frequency of PLLn.
  136. */
  137. static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
  138. {
  139. uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
  140. uint64_t refclk, temp;
  141. int32_t mfn_abs;
  142. ctrl = readl(&pll->ctrl);
  143. if (ctrl & MXC_DPLLC_CTL_HFSM) {
  144. mfn = readl(&pll->hfs_mfn);
  145. mfd = readl(&pll->hfs_mfd);
  146. op = readl(&pll->hfs_op);
  147. } else {
  148. mfn = readl(&pll->mfn);
  149. mfd = readl(&pll->mfd);
  150. op = readl(&pll->op);
  151. }
  152. mfd &= MXC_DPLLC_MFD_MFD_MASK;
  153. mfn &= MXC_DPLLC_MFN_MFN_MASK;
  154. pdf = op & MXC_DPLLC_OP_PDF_MASK;
  155. mfi = MXC_DPLLC_OP_MFI_RD(op);
  156. /* 21.2.3 */
  157. if (mfi < 5)
  158. mfi = 5;
  159. /* Sign extend */
  160. if (mfn >= 0x04000000) {
  161. mfn |= 0xfc000000;
  162. mfn_abs = -mfn;
  163. } else
  164. mfn_abs = mfn;
  165. refclk = infreq * 2;
  166. if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
  167. refclk *= 2;
  168. do_div(refclk, pdf + 1);
  169. temp = refclk * mfn_abs;
  170. do_div(temp, mfd + 1);
  171. ret = refclk * mfi;
  172. if ((int)mfn < 0)
  173. ret -= temp;
  174. else
  175. ret += temp;
  176. return ret;
  177. }
  178. /*
  179. * Get mcu main rate
  180. */
  181. u32 get_mcu_main_clk(void)
  182. {
  183. u32 reg, freq;
  184. reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
  185. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  186. return freq / (reg + 1);
  187. }
  188. /*
  189. * Get the rate of peripheral's root clock.
  190. */
  191. u32 get_periph_clk(void)
  192. {
  193. u32 reg;
  194. reg = readl(&mxc_ccm->cbcdr);
  195. if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
  196. return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  197. reg = readl(&mxc_ccm->cbcmr);
  198. switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
  199. case 0:
  200. return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  201. case 1:
  202. return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  203. default:
  204. return 0;
  205. }
  206. /* NOTREACHED */
  207. }
  208. /*
  209. * Get the rate of ipg clock.
  210. */
  211. static u32 get_ipg_clk(void)
  212. {
  213. uint32_t freq, reg, div;
  214. freq = get_ahb_clk();
  215. reg = readl(&mxc_ccm->cbcdr);
  216. div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
  217. return freq / div;
  218. }
  219. /*
  220. * Get the rate of ipg_per clock.
  221. */
  222. static u32 get_ipg_per_clk(void)
  223. {
  224. u32 pred1, pred2, podf;
  225. if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
  226. return get_ipg_clk();
  227. /* Fixme: not handle what about lpm*/
  228. podf = readl(&mxc_ccm->cbcdr);
  229. pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
  230. pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
  231. podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
  232. return get_periph_clk() / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
  233. }
  234. /*
  235. * Get the rate of uart clk.
  236. */
  237. static u32 get_uart_clk(void)
  238. {
  239. unsigned int freq, reg, pred, podf;
  240. reg = readl(&mxc_ccm->cscmr1);
  241. switch (MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg)) {
  242. case 0x0:
  243. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  244. break;
  245. case 0x1:
  246. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  247. break;
  248. case 0x2:
  249. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  250. break;
  251. default:
  252. return 66500000;
  253. }
  254. reg = readl(&mxc_ccm->cscdr1);
  255. pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
  256. podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
  257. freq /= (pred + 1) * (podf + 1);
  258. return freq;
  259. }
  260. /*
  261. * This function returns the low power audio clock.
  262. */
  263. static u32 get_lp_apm(void)
  264. {
  265. u32 ret_val = 0;
  266. u32 ccsr = readl(&mxc_ccm->ccsr);
  267. if (((ccsr >> 9) & 1) == 0)
  268. ret_val = MXC_HCLK;
  269. else
  270. ret_val = MXC_CLK32 * 1024;
  271. return ret_val;
  272. }
  273. /*
  274. * get cspi clock rate.
  275. */
  276. static u32 imx_get_cspiclk(void)
  277. {
  278. u32 ret_val = 0, pdf, pre_pdf, clk_sel;
  279. u32 cscmr1 = readl(&mxc_ccm->cscmr1);
  280. u32 cscdr2 = readl(&mxc_ccm->cscdr2);
  281. pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
  282. pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
  283. clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
  284. switch (clk_sel) {
  285. case 0:
  286. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK) /
  287. ((pre_pdf + 1) * (pdf + 1));
  288. break;
  289. case 1:
  290. ret_val = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK) /
  291. ((pre_pdf + 1) * (pdf + 1));
  292. break;
  293. case 2:
  294. ret_val = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK) /
  295. ((pre_pdf + 1) * (pdf + 1));
  296. break;
  297. default:
  298. ret_val = get_lp_apm() / ((pre_pdf + 1) * (pdf + 1));
  299. break;
  300. }
  301. return ret_val;
  302. }
  303. static u32 get_axi_a_clk(void)
  304. {
  305. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  306. u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
  307. return get_periph_clk() / (pdf + 1);
  308. }
  309. static u32 get_axi_b_clk(void)
  310. {
  311. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  312. u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
  313. return get_periph_clk() / (pdf + 1);
  314. }
  315. static u32 get_emi_slow_clk(void)
  316. {
  317. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  318. u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
  319. u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
  320. if (emi_clk_sel)
  321. return get_ahb_clk() / (pdf + 1);
  322. return get_periph_clk() / (pdf + 1);
  323. }
  324. static u32 get_ddr_clk(void)
  325. {
  326. u32 ret_val = 0;
  327. u32 cbcmr = readl(&mxc_ccm->cbcmr);
  328. u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
  329. #ifdef CONFIG_MX51
  330. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  331. if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
  332. u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
  333. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  334. ret_val /= ddr_clk_podf + 1;
  335. return ret_val;
  336. }
  337. #endif
  338. switch (ddr_clk_sel) {
  339. case 0:
  340. ret_val = get_axi_a_clk();
  341. break;
  342. case 1:
  343. ret_val = get_axi_b_clk();
  344. break;
  345. case 2:
  346. ret_val = get_emi_slow_clk();
  347. break;
  348. case 3:
  349. ret_val = get_ahb_clk();
  350. break;
  351. default:
  352. break;
  353. }
  354. return ret_val;
  355. }
  356. /*
  357. * The API of get mxc clocks.
  358. */
  359. unsigned int mxc_get_clock(enum mxc_clock clk)
  360. {
  361. switch (clk) {
  362. case MXC_ARM_CLK:
  363. return get_mcu_main_clk();
  364. case MXC_AHB_CLK:
  365. return get_ahb_clk();
  366. case MXC_IPG_CLK:
  367. return get_ipg_clk();
  368. case MXC_IPG_PERCLK:
  369. case MXC_I2C_CLK:
  370. return get_ipg_per_clk();
  371. case MXC_UART_CLK:
  372. return get_uart_clk();
  373. case MXC_CSPI_CLK:
  374. return imx_get_cspiclk();
  375. case MXC_FEC_CLK:
  376. return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  377. case MXC_SATA_CLK:
  378. return get_ahb_clk();
  379. case MXC_DDR_CLK:
  380. return get_ddr_clk();
  381. default:
  382. break;
  383. }
  384. return -EINVAL;
  385. }
  386. u32 imx_get_uartclk(void)
  387. {
  388. return get_uart_clk();
  389. }
  390. u32 imx_get_fecclk(void)
  391. {
  392. return mxc_get_clock(MXC_IPG_CLK);
  393. }
  394. static int gcd(int m, int n)
  395. {
  396. int t;
  397. while (m > 0) {
  398. if (n > m) {
  399. t = m;
  400. m = n;
  401. n = t;
  402. } /* swap */
  403. m -= n;
  404. }
  405. return n;
  406. }
  407. /*
  408. * This is to calculate various parameters based on reference clock and
  409. * targeted clock based on the equation:
  410. * t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
  411. * This calculation is based on a fixed MFD value for simplicity.
  412. */
  413. static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
  414. {
  415. u64 pd, mfi = 1, mfn, mfd, t1;
  416. u32 n_target = target;
  417. u32 n_ref = ref, i;
  418. /*
  419. * Make sure targeted freq is in the valid range.
  420. * Otherwise the following calculation might be wrong!!!
  421. */
  422. if (n_target < PLL_FREQ_MIN(ref) ||
  423. n_target > PLL_FREQ_MAX(ref)) {
  424. printf("Targeted peripheral clock should be"
  425. "within [%d - %d]\n",
  426. PLL_FREQ_MIN(ref) / SZ_DEC_1M,
  427. PLL_FREQ_MAX(ref) / SZ_DEC_1M);
  428. return -EINVAL;
  429. }
  430. for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
  431. if (fixed_mfd[i].ref_clk_hz == ref) {
  432. mfd = fixed_mfd[i].mfd;
  433. break;
  434. }
  435. }
  436. if (i == ARRAY_SIZE(fixed_mfd))
  437. return -EINVAL;
  438. /* Use n_target and n_ref to avoid overflow */
  439. for (pd = 1; pd <= PLL_PD_MAX; pd++) {
  440. t1 = n_target * pd;
  441. do_div(t1, (4 * n_ref));
  442. mfi = t1;
  443. if (mfi > PLL_MFI_MAX)
  444. return -EINVAL;
  445. else if (mfi < 5)
  446. continue;
  447. break;
  448. }
  449. /*
  450. * Now got pd and mfi already
  451. *
  452. * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
  453. */
  454. t1 = n_target * pd;
  455. do_div(t1, 4);
  456. t1 -= n_ref * mfi;
  457. t1 *= mfd;
  458. do_div(t1, n_ref);
  459. mfn = t1;
  460. debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
  461. ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
  462. i = 1;
  463. if (mfn != 0)
  464. i = gcd(mfd, mfn);
  465. pll->pd = (u32)pd;
  466. pll->mfi = (u32)mfi;
  467. do_div(mfn, i);
  468. pll->mfn = (u32)mfn;
  469. do_div(mfd, i);
  470. pll->mfd = (u32)mfd;
  471. return 0;
  472. }
  473. #define calc_div(tgt_clk, src_clk, limit) ({ \
  474. u32 v = 0; \
  475. if (((src_clk) % (tgt_clk)) <= 100) \
  476. v = (src_clk) / (tgt_clk); \
  477. else \
  478. v = ((src_clk) / (tgt_clk)) + 1;\
  479. if (v > limit) \
  480. v = limit; \
  481. (v - 1); \
  482. })
  483. #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
  484. { \
  485. writel(0x1232, &pll->ctrl); \
  486. writel(0x2, &pll->config); \
  487. writel((((pd) - 1) << 0) | ((fi) << 4), \
  488. &pll->op); \
  489. writel(fn, &(pll->mfn)); \
  490. writel((fd) - 1, &pll->mfd); \
  491. writel((((pd) - 1) << 0) | ((fi) << 4), \
  492. &pll->hfs_op); \
  493. writel(fn, &pll->hfs_mfn); \
  494. writel((fd) - 1, &pll->hfs_mfd); \
  495. writel(0x1232, &pll->ctrl); \
  496. while (!readl(&pll->ctrl) & 0x1) \
  497. ;\
  498. }
  499. static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
  500. {
  501. u32 ccsr = readl(&mxc_ccm->ccsr);
  502. struct mxc_pll_reg *pll = mxc_plls[index];
  503. switch (index) {
  504. case PLL1_CLOCK:
  505. /* Switch ARM to PLL2 clock */
  506. writel(ccsr | 0x4, &mxc_ccm->ccsr);
  507. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  508. pll_param->mfi, pll_param->mfn,
  509. pll_param->mfd);
  510. /* Switch back */
  511. writel(ccsr & ~0x4, &mxc_ccm->ccsr);
  512. break;
  513. case PLL2_CLOCK:
  514. /* Switch to pll2 bypass clock */
  515. writel(ccsr | 0x2, &mxc_ccm->ccsr);
  516. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  517. pll_param->mfi, pll_param->mfn,
  518. pll_param->mfd);
  519. /* Switch back */
  520. writel(ccsr & ~0x2, &mxc_ccm->ccsr);
  521. break;
  522. case PLL3_CLOCK:
  523. /* Switch to pll3 bypass clock */
  524. writel(ccsr | 0x1, &mxc_ccm->ccsr);
  525. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  526. pll_param->mfi, pll_param->mfn,
  527. pll_param->mfd);
  528. /* Switch back */
  529. writel(ccsr & ~0x1, &mxc_ccm->ccsr);
  530. break;
  531. case PLL4_CLOCK:
  532. /* Switch to pll4 bypass clock */
  533. writel(ccsr | 0x20, &mxc_ccm->ccsr);
  534. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  535. pll_param->mfi, pll_param->mfn,
  536. pll_param->mfd);
  537. /* Switch back */
  538. writel(ccsr & ~0x20, &mxc_ccm->ccsr);
  539. break;
  540. default:
  541. return -EINVAL;
  542. }
  543. return 0;
  544. }
  545. /* Config CPU clock */
  546. static int config_core_clk(u32 ref, u32 freq)
  547. {
  548. int ret = 0;
  549. struct pll_param pll_param;
  550. memset(&pll_param, 0, sizeof(struct pll_param));
  551. /* The case that periph uses PLL1 is not considered here */
  552. ret = calc_pll_params(ref, freq, &pll_param);
  553. if (ret != 0) {
  554. printf("Error:Can't find pll parameters: %d\n", ret);
  555. return ret;
  556. }
  557. return config_pll_clk(PLL1_CLOCK, &pll_param);
  558. }
  559. static int config_nfc_clk(u32 nfc_clk)
  560. {
  561. u32 parent_rate = get_emi_slow_clk();
  562. u32 div = parent_rate / nfc_clk;
  563. if (nfc_clk <= 0)
  564. return -EINVAL;
  565. if (div == 0)
  566. div++;
  567. if (parent_rate / div > NFC_CLK_MAX)
  568. div++;
  569. clrsetbits_le32(&mxc_ccm->cbcdr,
  570. MXC_CCM_CBCDR_NFC_PODF_MASK,
  571. MXC_CCM_CBCDR_NFC_PODF(div - 1));
  572. while (readl(&mxc_ccm->cdhipr) != 0)
  573. ;
  574. return 0;
  575. }
  576. /* Config main_bus_clock for periphs */
  577. static int config_periph_clk(u32 ref, u32 freq)
  578. {
  579. int ret = 0;
  580. struct pll_param pll_param;
  581. memset(&pll_param, 0, sizeof(struct pll_param));
  582. if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  583. ret = calc_pll_params(ref, freq, &pll_param);
  584. if (ret != 0) {
  585. printf("Error:Can't find pll parameters: %d\n",
  586. ret);
  587. return ret;
  588. }
  589. switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
  590. readl(&mxc_ccm->cbcmr))) {
  591. case 0:
  592. return config_pll_clk(PLL1_CLOCK, &pll_param);
  593. break;
  594. case 1:
  595. return config_pll_clk(PLL3_CLOCK, &pll_param);
  596. break;
  597. default:
  598. return -EINVAL;
  599. }
  600. }
  601. return 0;
  602. }
  603. static int config_ddr_clk(u32 emi_clk)
  604. {
  605. u32 clk_src;
  606. s32 shift = 0, clk_sel, div = 1;
  607. u32 cbcmr = readl(&mxc_ccm->cbcmr);
  608. if (emi_clk > MAX_DDR_CLK) {
  609. printf("Warning:DDR clock should not exceed %d MHz\n",
  610. MAX_DDR_CLK / SZ_DEC_1M);
  611. emi_clk = MAX_DDR_CLK;
  612. }
  613. clk_src = get_periph_clk();
  614. /* Find DDR clock input */
  615. clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
  616. switch (clk_sel) {
  617. case 0:
  618. shift = 16;
  619. break;
  620. case 1:
  621. shift = 19;
  622. break;
  623. case 2:
  624. shift = 22;
  625. break;
  626. case 3:
  627. shift = 10;
  628. break;
  629. default:
  630. return -EINVAL;
  631. }
  632. if ((clk_src % emi_clk) < 10000000)
  633. div = clk_src / emi_clk;
  634. else
  635. div = (clk_src / emi_clk) + 1;
  636. if (div > 8)
  637. div = 8;
  638. clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
  639. while (readl(&mxc_ccm->cdhipr) != 0)
  640. ;
  641. writel(0x0, &mxc_ccm->ccdr);
  642. return 0;
  643. }
  644. /*
  645. * This function assumes the expected core clock has to be changed by
  646. * modifying the PLL. This is NOT true always but for most of the times,
  647. * it is. So it assumes the PLL output freq is the same as the expected
  648. * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
  649. * In the latter case, it will try to increase the presc value until
  650. * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
  651. * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
  652. * on the targeted PLL and reference input clock to the PLL. Lastly,
  653. * it sets the register based on these values along with the dividers.
  654. * Note 1) There is no value checking for the passed-in divider values
  655. * so the caller has to make sure those values are sensible.
  656. * 2) Also adjust the NFC divider such that the NFC clock doesn't
  657. * exceed NFC_CLK_MAX.
  658. * 3) IPU HSP clock is independent of AHB clock. Even it can go up to
  659. * 177MHz for higher voltage, this function fixes the max to 133MHz.
  660. * 4) This function should not have allowed diag_printf() calls since
  661. * the serial driver has been stoped. But leave then here to allow
  662. * easy debugging by NOT calling the cyg_hal_plf_serial_stop().
  663. */
  664. int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
  665. {
  666. freq *= SZ_DEC_1M;
  667. switch (clk) {
  668. case MXC_ARM_CLK:
  669. if (config_core_clk(ref, freq))
  670. return -EINVAL;
  671. break;
  672. case MXC_PERIPH_CLK:
  673. if (config_periph_clk(ref, freq))
  674. return -EINVAL;
  675. break;
  676. case MXC_DDR_CLK:
  677. if (config_ddr_clk(freq))
  678. return -EINVAL;
  679. break;
  680. case MXC_NFC_CLK:
  681. if (config_nfc_clk(freq))
  682. return -EINVAL;
  683. break;
  684. default:
  685. printf("Warning:Unsupported or invalid clock type\n");
  686. }
  687. return 0;
  688. }
  689. #ifdef CONFIG_MX53
  690. /*
  691. * The clock for the external interface can be set to use internal clock
  692. * if fuse bank 4, row 3, bit 2 is set.
  693. * This is an undocumented feature and it was confirmed by Freescale's support:
  694. * Fuses (but not pins) may be used to configure SATA clocks.
  695. * Particularly the i.MX53 Fuse_Map contains the next information
  696. * about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
  697. * '00' - 100MHz (External)
  698. * '01' - 50MHz (External)
  699. * '10' - 120MHz, internal (USB PHY)
  700. * '11' - Reserved
  701. */
  702. void mxc_set_sata_internal_clock(void)
  703. {
  704. u32 *tmp_base =
  705. (u32 *)(IIM_BASE_ADDR + 0x180c);
  706. set_usb_phy1_clk();
  707. clrsetbits_le32(tmp_base, 0x6, 0x4);
  708. }
  709. #endif
  710. /*
  711. * Dump some core clockes.
  712. */
  713. int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  714. {
  715. u32 freq;
  716. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  717. printf("PLL1 %8d MHz\n", freq / 1000000);
  718. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  719. printf("PLL2 %8d MHz\n", freq / 1000000);
  720. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  721. printf("PLL3 %8d MHz\n", freq / 1000000);
  722. #ifdef CONFIG_MX53
  723. freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
  724. printf("PLL4 %8d MHz\n", freq / 1000000);
  725. #endif
  726. printf("\n");
  727. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  728. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  729. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  730. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  731. return 0;
  732. }
  733. /***************************************************/
  734. U_BOOT_CMD(
  735. clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
  736. "display clocks",
  737. ""
  738. );