44x_spd_ddr2.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007-2008
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  43. /*-----------------------------------------------------------------------------+
  44. * Defines
  45. *-----------------------------------------------------------------------------*/
  46. #ifndef TRUE
  47. #define TRUE 1
  48. #endif
  49. #ifndef FALSE
  50. #define FALSE 0
  51. #endif
  52. #define SDRAM_DDR1 1
  53. #define SDRAM_DDR2 2
  54. #define SDRAM_NONE 0
  55. #define MAXDIMMS 2
  56. #define MAXRANKS 4
  57. #define MAXBXCF 4
  58. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  59. #define ONE_BILLION 1000000000
  60. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  61. #define CMD_NOP (7 << 19)
  62. #define CMD_PRECHARGE (2 << 19)
  63. #define CMD_REFRESH (1 << 19)
  64. #define CMD_EMR (0 << 19)
  65. #define CMD_READ (5 << 19)
  66. #define CMD_WRITE (4 << 19)
  67. #define SELECT_MR (0 << 16)
  68. #define SELECT_EMR (1 << 16)
  69. #define SELECT_EMR2 (2 << 16)
  70. #define SELECT_EMR3 (3 << 16)
  71. /* MR */
  72. #define DLL_RESET 0x00000100
  73. #define WRITE_RECOV_2 (1 << 9)
  74. #define WRITE_RECOV_3 (2 << 9)
  75. #define WRITE_RECOV_4 (3 << 9)
  76. #define WRITE_RECOV_5 (4 << 9)
  77. #define WRITE_RECOV_6 (5 << 9)
  78. #define BURST_LEN_4 0x00000002
  79. /* EMR */
  80. #define ODT_0_OHM 0x00000000
  81. #define ODT_50_OHM 0x00000044
  82. #define ODT_75_OHM 0x00000004
  83. #define ODT_150_OHM 0x00000040
  84. #define ODS_FULL 0x00000000
  85. #define ODS_REDUCED 0x00000002
  86. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  87. #define ODT_EB0R (0x80000000 >> 8)
  88. #define ODT_EB0W (0x80000000 >> 7)
  89. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  90. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  91. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  92. /* Defines for the Read Cycle Delay test */
  93. #define NUMMEMTESTS 8
  94. #define NUMMEMWORDS 8
  95. #define NUMLOOPS 64 /* memory test loops */
  96. #undef CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
  97. /*
  98. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  99. * region. Right now the cache should still be disabled in U-Boot because of the
  100. * EMAC driver, that need it's buffer descriptor to be located in non cached
  101. * memory.
  102. *
  103. * If at some time this restriction doesn't apply anymore, just define
  104. * CONFIG_4xx_DCACHE in the board config file and this code should setup
  105. * everything correctly.
  106. */
  107. #ifdef CONFIG_4xx_DCACHE
  108. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  109. #else
  110. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  111. #endif
  112. /*
  113. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  114. */
  115. void __spd_ddr_init_hang (void)
  116. {
  117. hang ();
  118. }
  119. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  120. /*
  121. * To provide an interface for board specific config values in this common
  122. * DDR setup code, we implement he "weak" default functions here. They return
  123. * the default value back to the caller.
  124. *
  125. * Please see include/configs/yucca.h for an example fora board specific
  126. * implementation.
  127. */
  128. u32 __ddr_wrdtr(u32 default_val)
  129. {
  130. return default_val;
  131. }
  132. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  133. u32 __ddr_clktr(u32 default_val)
  134. {
  135. return default_val;
  136. }
  137. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  138. /* Private Structure Definitions */
  139. /* enum only to ease code for cas latency setting */
  140. typedef enum ddr_cas_id {
  141. DDR_CAS_2 = 20,
  142. DDR_CAS_2_5 = 25,
  143. DDR_CAS_3 = 30,
  144. DDR_CAS_4 = 40,
  145. DDR_CAS_5 = 50
  146. } ddr_cas_id_t;
  147. /*-----------------------------------------------------------------------------+
  148. * Prototypes
  149. *-----------------------------------------------------------------------------*/
  150. static unsigned long sdram_memsize(void);
  151. static void get_spd_info(unsigned long *dimm_populated,
  152. unsigned char *iic0_dimm_addr,
  153. unsigned long num_dimm_banks);
  154. static void check_mem_type(unsigned long *dimm_populated,
  155. unsigned char *iic0_dimm_addr,
  156. unsigned long num_dimm_banks);
  157. static void check_frequency(unsigned long *dimm_populated,
  158. unsigned char *iic0_dimm_addr,
  159. unsigned long num_dimm_banks);
  160. static void check_rank_number(unsigned long *dimm_populated,
  161. unsigned char *iic0_dimm_addr,
  162. unsigned long num_dimm_banks);
  163. static void check_voltage_type(unsigned long *dimm_populated,
  164. unsigned char *iic0_dimm_addr,
  165. unsigned long num_dimm_banks);
  166. static void program_memory_queue(unsigned long *dimm_populated,
  167. unsigned char *iic0_dimm_addr,
  168. unsigned long num_dimm_banks);
  169. static void program_codt(unsigned long *dimm_populated,
  170. unsigned char *iic0_dimm_addr,
  171. unsigned long num_dimm_banks);
  172. static void program_mode(unsigned long *dimm_populated,
  173. unsigned char *iic0_dimm_addr,
  174. unsigned long num_dimm_banks,
  175. ddr_cas_id_t *selected_cas,
  176. int *write_recovery);
  177. static void program_tr(unsigned long *dimm_populated,
  178. unsigned char *iic0_dimm_addr,
  179. unsigned long num_dimm_banks);
  180. static void program_rtr(unsigned long *dimm_populated,
  181. unsigned char *iic0_dimm_addr,
  182. unsigned long num_dimm_banks);
  183. static void program_bxcf(unsigned long *dimm_populated,
  184. unsigned char *iic0_dimm_addr,
  185. unsigned long num_dimm_banks);
  186. static void program_copt1(unsigned long *dimm_populated,
  187. unsigned char *iic0_dimm_addr,
  188. unsigned long num_dimm_banks);
  189. static void program_initplr(unsigned long *dimm_populated,
  190. unsigned char *iic0_dimm_addr,
  191. unsigned long num_dimm_banks,
  192. ddr_cas_id_t selected_cas,
  193. int write_recovery);
  194. static unsigned long is_ecc_enabled(void);
  195. #ifdef CONFIG_DDR_ECC
  196. static void program_ecc(unsigned long *dimm_populated,
  197. unsigned char *iic0_dimm_addr,
  198. unsigned long num_dimm_banks,
  199. unsigned long tlb_word2_i_value);
  200. static void program_ecc_addr(unsigned long start_address,
  201. unsigned long num_bytes,
  202. unsigned long tlb_word2_i_value);
  203. #endif
  204. static void program_DQS_calibration(unsigned long *dimm_populated,
  205. unsigned char *iic0_dimm_addr,
  206. unsigned long num_dimm_banks);
  207. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  208. static void test(void);
  209. #else
  210. static void DQS_calibration_process(void);
  211. #endif
  212. static void ppc440sp_sdram_register_dump(void);
  213. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  214. void dcbz_area(u32 start_address, u32 num_bytes);
  215. void dflush(void);
  216. static u32 mfdcr_any(u32 dcr)
  217. {
  218. u32 val;
  219. switch (dcr) {
  220. case SDRAM_R0BAS + 0:
  221. val = mfdcr(SDRAM_R0BAS + 0);
  222. break;
  223. case SDRAM_R0BAS + 1:
  224. val = mfdcr(SDRAM_R0BAS + 1);
  225. break;
  226. case SDRAM_R0BAS + 2:
  227. val = mfdcr(SDRAM_R0BAS + 2);
  228. break;
  229. case SDRAM_R0BAS + 3:
  230. val = mfdcr(SDRAM_R0BAS + 3);
  231. break;
  232. default:
  233. printf("DCR %d not defined in case statement!!!\n", dcr);
  234. val = 0; /* just to satisfy the compiler */
  235. }
  236. return val;
  237. }
  238. static void mtdcr_any(u32 dcr, u32 val)
  239. {
  240. switch (dcr) {
  241. case SDRAM_R0BAS + 0:
  242. mtdcr(SDRAM_R0BAS + 0, val);
  243. break;
  244. case SDRAM_R0BAS + 1:
  245. mtdcr(SDRAM_R0BAS + 1, val);
  246. break;
  247. case SDRAM_R0BAS + 2:
  248. mtdcr(SDRAM_R0BAS + 2, val);
  249. break;
  250. case SDRAM_R0BAS + 3:
  251. mtdcr(SDRAM_R0BAS + 3, val);
  252. break;
  253. default:
  254. printf("DCR %d not defined in case statement!!!\n", dcr);
  255. }
  256. }
  257. static unsigned char spd_read(uchar chip, uint addr)
  258. {
  259. unsigned char data[2];
  260. if (i2c_probe(chip) == 0)
  261. if (i2c_read(chip, addr, 1, data, 1) == 0)
  262. return data[0];
  263. return 0;
  264. }
  265. /*-----------------------------------------------------------------------------+
  266. * sdram_memsize
  267. *-----------------------------------------------------------------------------*/
  268. static unsigned long sdram_memsize(void)
  269. {
  270. unsigned long mem_size;
  271. unsigned long mcopt2;
  272. unsigned long mcstat;
  273. unsigned long mb0cf;
  274. unsigned long sdsz;
  275. unsigned long i;
  276. mem_size = 0;
  277. mfsdram(SDRAM_MCOPT2, mcopt2);
  278. mfsdram(SDRAM_MCSTAT, mcstat);
  279. /* DDR controller must be enabled and not in self-refresh. */
  280. /* Otherwise memsize is zero. */
  281. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  282. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  283. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  284. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  285. for (i = 0; i < MAXBXCF; i++) {
  286. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  287. /* Banks enabled */
  288. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  289. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  290. switch(sdsz) {
  291. case SDRAM_RXBAS_SDSZ_8:
  292. mem_size+=8;
  293. break;
  294. case SDRAM_RXBAS_SDSZ_16:
  295. mem_size+=16;
  296. break;
  297. case SDRAM_RXBAS_SDSZ_32:
  298. mem_size+=32;
  299. break;
  300. case SDRAM_RXBAS_SDSZ_64:
  301. mem_size+=64;
  302. break;
  303. case SDRAM_RXBAS_SDSZ_128:
  304. mem_size+=128;
  305. break;
  306. case SDRAM_RXBAS_SDSZ_256:
  307. mem_size+=256;
  308. break;
  309. case SDRAM_RXBAS_SDSZ_512:
  310. mem_size+=512;
  311. break;
  312. case SDRAM_RXBAS_SDSZ_1024:
  313. mem_size+=1024;
  314. break;
  315. case SDRAM_RXBAS_SDSZ_2048:
  316. mem_size+=2048;
  317. break;
  318. case SDRAM_RXBAS_SDSZ_4096:
  319. mem_size+=4096;
  320. break;
  321. default:
  322. mem_size=0;
  323. break;
  324. }
  325. }
  326. }
  327. }
  328. mem_size *= 1024 * 1024;
  329. return(mem_size);
  330. }
  331. /*-----------------------------------------------------------------------------+
  332. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  333. * Note: This routine runs from flash with a stack set up in the chip's
  334. * sram space. It is important that the routine does not require .sbss, .bss or
  335. * .data sections. It also cannot call routines that require these sections.
  336. *-----------------------------------------------------------------------------*/
  337. /*-----------------------------------------------------------------------------
  338. * Function: initdram
  339. * Description: Configures SDRAM memory banks for DDR operation.
  340. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  341. * via the IIC bus and then configures the DDR SDRAM memory
  342. * banks appropriately. If Auto Memory Configuration is
  343. * not used, it is assumed that no DIMM is plugged
  344. *-----------------------------------------------------------------------------*/
  345. long int initdram(int board_type)
  346. {
  347. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  348. unsigned char spd0[MAX_SPD_BYTES];
  349. unsigned char spd1[MAX_SPD_BYTES];
  350. unsigned char *dimm_spd[MAXDIMMS];
  351. unsigned long dimm_populated[MAXDIMMS];
  352. unsigned long num_dimm_banks; /* on board dimm banks */
  353. unsigned long val;
  354. ddr_cas_id_t selected_cas;
  355. int write_recovery;
  356. unsigned long dram_size = 0;
  357. num_dimm_banks = sizeof(iic0_dimm_addr);
  358. /*------------------------------------------------------------------
  359. * Set up an array of SPD matrixes.
  360. *-----------------------------------------------------------------*/
  361. dimm_spd[0] = spd0;
  362. dimm_spd[1] = spd1;
  363. /*------------------------------------------------------------------
  364. * Reset the DDR-SDRAM controller.
  365. *-----------------------------------------------------------------*/
  366. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  367. mtsdr(SDR0_SRST, 0x00000000);
  368. /*
  369. * Make sure I2C controller is initialized
  370. * before continuing.
  371. */
  372. /* switch to correct I2C bus */
  373. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  374. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  375. /*------------------------------------------------------------------
  376. * Clear out the serial presence detect buffers.
  377. * Perform IIC reads from the dimm. Fill in the spds.
  378. * Check to see if the dimm slots are populated
  379. *-----------------------------------------------------------------*/
  380. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  381. /*------------------------------------------------------------------
  382. * Check the memory type for the dimms plugged.
  383. *-----------------------------------------------------------------*/
  384. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  385. /*------------------------------------------------------------------
  386. * Check the frequency supported for the dimms plugged.
  387. *-----------------------------------------------------------------*/
  388. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  389. /*------------------------------------------------------------------
  390. * Check the total rank number.
  391. *-----------------------------------------------------------------*/
  392. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  393. /*------------------------------------------------------------------
  394. * Check the voltage type for the dimms plugged.
  395. *-----------------------------------------------------------------*/
  396. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  397. /*------------------------------------------------------------------
  398. * Program SDRAM controller options 2 register
  399. * Except Enabling of the memory controller.
  400. *-----------------------------------------------------------------*/
  401. mfsdram(SDRAM_MCOPT2, val);
  402. mtsdram(SDRAM_MCOPT2,
  403. (val &
  404. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  405. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  406. SDRAM_MCOPT2_ISIE_MASK))
  407. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  408. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  409. SDRAM_MCOPT2_ISIE_ENABLE));
  410. /*------------------------------------------------------------------
  411. * Program SDRAM controller options 1 register
  412. * Note: Does not enable the memory controller.
  413. *-----------------------------------------------------------------*/
  414. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  415. /*------------------------------------------------------------------
  416. * Set the SDRAM Controller On Die Termination Register
  417. *-----------------------------------------------------------------*/
  418. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  419. /*------------------------------------------------------------------
  420. * Program SDRAM refresh register.
  421. *-----------------------------------------------------------------*/
  422. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  423. /*------------------------------------------------------------------
  424. * Program SDRAM mode register.
  425. *-----------------------------------------------------------------*/
  426. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  427. &selected_cas, &write_recovery);
  428. /*------------------------------------------------------------------
  429. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  430. *-----------------------------------------------------------------*/
  431. mfsdram(SDRAM_WRDTR, val);
  432. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  433. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  434. /*------------------------------------------------------------------
  435. * Set the SDRAM Clock Timing Register
  436. *-----------------------------------------------------------------*/
  437. mfsdram(SDRAM_CLKTR, val);
  438. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  439. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  440. /*------------------------------------------------------------------
  441. * Program the BxCF registers.
  442. *-----------------------------------------------------------------*/
  443. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  444. /*------------------------------------------------------------------
  445. * Program SDRAM timing registers.
  446. *-----------------------------------------------------------------*/
  447. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  448. /*------------------------------------------------------------------
  449. * Set the Extended Mode register
  450. *-----------------------------------------------------------------*/
  451. mfsdram(SDRAM_MEMODE, val);
  452. mtsdram(SDRAM_MEMODE,
  453. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  454. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  455. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  456. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  457. /*------------------------------------------------------------------
  458. * Program Initialization preload registers.
  459. *-----------------------------------------------------------------*/
  460. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  461. selected_cas, write_recovery);
  462. /*------------------------------------------------------------------
  463. * Delay to ensure 200usec have elapsed since reset.
  464. *-----------------------------------------------------------------*/
  465. udelay(400);
  466. /*------------------------------------------------------------------
  467. * Set the memory queue core base addr.
  468. *-----------------------------------------------------------------*/
  469. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  470. /*------------------------------------------------------------------
  471. * Program SDRAM controller options 2 register
  472. * Enable the memory controller.
  473. *-----------------------------------------------------------------*/
  474. mfsdram(SDRAM_MCOPT2, val);
  475. mtsdram(SDRAM_MCOPT2,
  476. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  477. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  478. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  479. /*------------------------------------------------------------------
  480. * Wait for SDRAM_CFG0_DC_EN to complete.
  481. *-----------------------------------------------------------------*/
  482. do {
  483. mfsdram(SDRAM_MCSTAT, val);
  484. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  485. /* get installed memory size */
  486. dram_size = sdram_memsize();
  487. /* and program tlb entries for this size (dynamic) */
  488. /*
  489. * Program TLB entries with caches enabled, for best performace
  490. * while auto-calibrating and ECC generation
  491. */
  492. program_tlb(0, 0, dram_size, 0);
  493. /*------------------------------------------------------------------
  494. * DQS calibration.
  495. *-----------------------------------------------------------------*/
  496. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  497. #ifdef CONFIG_DDR_ECC
  498. /*------------------------------------------------------------------
  499. * If ecc is enabled, initialize the parity bits.
  500. *-----------------------------------------------------------------*/
  501. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  502. #endif
  503. /*
  504. * Now after initialization (auto-calibration and ECC generation)
  505. * remove the TLB entries with caches enabled and program again with
  506. * desired cache functionality
  507. */
  508. remove_tlb(0, dram_size);
  509. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  510. ppc440sp_sdram_register_dump();
  511. return dram_size;
  512. }
  513. static void get_spd_info(unsigned long *dimm_populated,
  514. unsigned char *iic0_dimm_addr,
  515. unsigned long num_dimm_banks)
  516. {
  517. unsigned long dimm_num;
  518. unsigned long dimm_found;
  519. unsigned char num_of_bytes;
  520. unsigned char total_size;
  521. dimm_found = FALSE;
  522. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  523. num_of_bytes = 0;
  524. total_size = 0;
  525. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  526. debug("\nspd_read(0x%x) returned %d\n",
  527. iic0_dimm_addr[dimm_num], num_of_bytes);
  528. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  529. debug("spd_read(0x%x) returned %d\n",
  530. iic0_dimm_addr[dimm_num], total_size);
  531. if ((num_of_bytes != 0) && (total_size != 0)) {
  532. dimm_populated[dimm_num] = TRUE;
  533. dimm_found = TRUE;
  534. debug("DIMM slot %lu: populated\n", dimm_num);
  535. } else {
  536. dimm_populated[dimm_num] = FALSE;
  537. debug("DIMM slot %lu: Not populated\n", dimm_num);
  538. }
  539. }
  540. if (dimm_found == FALSE) {
  541. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  542. spd_ddr_init_hang ();
  543. }
  544. }
  545. void board_add_ram_info(int use_default)
  546. {
  547. PPC4xx_SYS_INFO board_cfg;
  548. u32 val;
  549. if (is_ecc_enabled())
  550. puts(" (ECC");
  551. else
  552. puts(" (ECC not");
  553. get_sys_info(&board_cfg);
  554. mfsdr(SDR0_DDR0, val);
  555. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  556. printf(" enabled, %d MHz", (val * 2) / 1000000);
  557. mfsdram(SDRAM_MMODE, val);
  558. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  559. printf(", CL%d)", val);
  560. }
  561. /*------------------------------------------------------------------
  562. * For the memory DIMMs installed, this routine verifies that they
  563. * really are DDR specific DIMMs.
  564. *-----------------------------------------------------------------*/
  565. static void check_mem_type(unsigned long *dimm_populated,
  566. unsigned char *iic0_dimm_addr,
  567. unsigned long num_dimm_banks)
  568. {
  569. unsigned long dimm_num;
  570. unsigned long dimm_type;
  571. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  572. if (dimm_populated[dimm_num] == TRUE) {
  573. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  574. switch (dimm_type) {
  575. case 1:
  576. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  577. "slot %d.\n", (unsigned int)dimm_num);
  578. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  579. printf("Replace the DIMM module with a supported DIMM.\n\n");
  580. spd_ddr_init_hang ();
  581. break;
  582. case 2:
  583. printf("ERROR: EDO DIMM detected in slot %d.\n",
  584. (unsigned int)dimm_num);
  585. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  586. printf("Replace the DIMM module with a supported DIMM.\n\n");
  587. spd_ddr_init_hang ();
  588. break;
  589. case 3:
  590. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  591. (unsigned int)dimm_num);
  592. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  593. printf("Replace the DIMM module with a supported DIMM.\n\n");
  594. spd_ddr_init_hang ();
  595. break;
  596. case 4:
  597. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  598. (unsigned int)dimm_num);
  599. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  600. printf("Replace the DIMM module with a supported DIMM.\n\n");
  601. spd_ddr_init_hang ();
  602. break;
  603. case 5:
  604. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  605. (unsigned int)dimm_num);
  606. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  607. printf("Replace the DIMM module with a supported DIMM.\n\n");
  608. spd_ddr_init_hang ();
  609. break;
  610. case 6:
  611. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  612. (unsigned int)dimm_num);
  613. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  614. printf("Replace the DIMM module with a supported DIMM.\n\n");
  615. spd_ddr_init_hang ();
  616. break;
  617. case 7:
  618. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  619. dimm_populated[dimm_num] = SDRAM_DDR1;
  620. break;
  621. case 8:
  622. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  623. dimm_populated[dimm_num] = SDRAM_DDR2;
  624. break;
  625. default:
  626. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  627. (unsigned int)dimm_num);
  628. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  629. printf("Replace the DIMM module with a supported DIMM.\n\n");
  630. spd_ddr_init_hang ();
  631. break;
  632. }
  633. }
  634. }
  635. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  636. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  637. && (dimm_populated[dimm_num] != SDRAM_NONE)
  638. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  639. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  640. spd_ddr_init_hang ();
  641. }
  642. }
  643. }
  644. /*------------------------------------------------------------------
  645. * For the memory DIMMs installed, this routine verifies that
  646. * frequency previously calculated is supported.
  647. *-----------------------------------------------------------------*/
  648. static void check_frequency(unsigned long *dimm_populated,
  649. unsigned char *iic0_dimm_addr,
  650. unsigned long num_dimm_banks)
  651. {
  652. unsigned long dimm_num;
  653. unsigned long tcyc_reg;
  654. unsigned long cycle_time;
  655. unsigned long calc_cycle_time;
  656. unsigned long sdram_freq;
  657. unsigned long sdr_ddrpll;
  658. PPC4xx_SYS_INFO board_cfg;
  659. /*------------------------------------------------------------------
  660. * Get the board configuration info.
  661. *-----------------------------------------------------------------*/
  662. get_sys_info(&board_cfg);
  663. mfsdr(SDR0_DDR0, sdr_ddrpll);
  664. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  665. /*
  666. * calc_cycle_time is calculated from DDR frequency set by board/chip
  667. * and is expressed in multiple of 10 picoseconds
  668. * to match the way DIMM cycle time is calculated below.
  669. */
  670. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  671. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  672. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  673. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  674. /*
  675. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  676. * the higher order nibble (bits 4-7) designates the cycle time
  677. * to a granularity of 1ns;
  678. * the value presented by the lower order nibble (bits 0-3)
  679. * has a granularity of .1ns and is added to the value designated
  680. * by the higher nibble. In addition, four lines of the lower order
  681. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  682. */
  683. /* Convert from hex to decimal */
  684. if ((tcyc_reg & 0x0F) == 0x0D)
  685. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  686. else if ((tcyc_reg & 0x0F) == 0x0C)
  687. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  688. else if ((tcyc_reg & 0x0F) == 0x0B)
  689. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  690. else if ((tcyc_reg & 0x0F) == 0x0A)
  691. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  692. else
  693. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  694. ((tcyc_reg & 0x0F)*10);
  695. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  696. if (cycle_time > (calc_cycle_time + 10)) {
  697. /*
  698. * the provided sdram cycle_time is too small
  699. * for the available DIMM cycle_time.
  700. * The additionnal 100ps is here to accept a small incertainty.
  701. */
  702. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  703. "slot %d \n while calculated cycle time is %d ps.\n",
  704. (unsigned int)(cycle_time*10),
  705. (unsigned int)dimm_num,
  706. (unsigned int)(calc_cycle_time*10));
  707. printf("Replace the DIMM, or change DDR frequency via "
  708. "strapping bits.\n\n");
  709. spd_ddr_init_hang ();
  710. }
  711. }
  712. }
  713. }
  714. /*------------------------------------------------------------------
  715. * For the memory DIMMs installed, this routine verifies two
  716. * ranks/banks maximum are availables.
  717. *-----------------------------------------------------------------*/
  718. static void check_rank_number(unsigned long *dimm_populated,
  719. unsigned char *iic0_dimm_addr,
  720. unsigned long num_dimm_banks)
  721. {
  722. unsigned long dimm_num;
  723. unsigned long dimm_rank;
  724. unsigned long total_rank = 0;
  725. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  726. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  727. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  728. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  729. dimm_rank = (dimm_rank & 0x0F) +1;
  730. else
  731. dimm_rank = dimm_rank & 0x0F;
  732. if (dimm_rank > MAXRANKS) {
  733. printf("ERROR: DRAM DIMM detected with %d ranks in "
  734. "slot %d is not supported.\n", dimm_rank, dimm_num);
  735. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  736. printf("Replace the DIMM module with a supported DIMM.\n\n");
  737. spd_ddr_init_hang ();
  738. } else
  739. total_rank += dimm_rank;
  740. }
  741. if (total_rank > MAXRANKS) {
  742. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  743. "for all slots.\n", (unsigned int)total_rank);
  744. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  745. printf("Remove one of the DIMM modules.\n\n");
  746. spd_ddr_init_hang ();
  747. }
  748. }
  749. }
  750. /*------------------------------------------------------------------
  751. * only support 2.5V modules.
  752. * This routine verifies this.
  753. *-----------------------------------------------------------------*/
  754. static void check_voltage_type(unsigned long *dimm_populated,
  755. unsigned char *iic0_dimm_addr,
  756. unsigned long num_dimm_banks)
  757. {
  758. unsigned long dimm_num;
  759. unsigned long voltage_type;
  760. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  761. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  762. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  763. switch (voltage_type) {
  764. case 0x00:
  765. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  766. printf("This DIMM is 5.0 Volt/TTL.\n");
  767. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  768. (unsigned int)dimm_num);
  769. spd_ddr_init_hang ();
  770. break;
  771. case 0x01:
  772. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  773. printf("This DIMM is LVTTL.\n");
  774. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  775. (unsigned int)dimm_num);
  776. spd_ddr_init_hang ();
  777. break;
  778. case 0x02:
  779. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  780. printf("This DIMM is 1.5 Volt.\n");
  781. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  782. (unsigned int)dimm_num);
  783. spd_ddr_init_hang ();
  784. break;
  785. case 0x03:
  786. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  787. printf("This DIMM is 3.3 Volt/TTL.\n");
  788. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  789. (unsigned int)dimm_num);
  790. spd_ddr_init_hang ();
  791. break;
  792. case 0x04:
  793. /* 2.5 Voltage only for DDR1 */
  794. break;
  795. case 0x05:
  796. /* 1.8 Voltage only for DDR2 */
  797. break;
  798. default:
  799. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  800. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  801. (unsigned int)dimm_num);
  802. spd_ddr_init_hang ();
  803. break;
  804. }
  805. }
  806. }
  807. }
  808. /*-----------------------------------------------------------------------------+
  809. * program_copt1.
  810. *-----------------------------------------------------------------------------*/
  811. static void program_copt1(unsigned long *dimm_populated,
  812. unsigned char *iic0_dimm_addr,
  813. unsigned long num_dimm_banks)
  814. {
  815. unsigned long dimm_num;
  816. unsigned long mcopt1;
  817. unsigned long ecc_enabled;
  818. unsigned long ecc = 0;
  819. unsigned long data_width = 0;
  820. unsigned long dimm_32bit;
  821. unsigned long dimm_64bit;
  822. unsigned long registered = 0;
  823. unsigned long attribute = 0;
  824. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  825. unsigned long bankcount;
  826. unsigned long ddrtype;
  827. unsigned long val;
  828. #ifdef CONFIG_DDR_ECC
  829. ecc_enabled = TRUE;
  830. #else
  831. ecc_enabled = FALSE;
  832. #endif
  833. dimm_32bit = FALSE;
  834. dimm_64bit = FALSE;
  835. buf0 = FALSE;
  836. buf1 = FALSE;
  837. /*------------------------------------------------------------------
  838. * Set memory controller options reg 1, SDRAM_MCOPT1.
  839. *-----------------------------------------------------------------*/
  840. mfsdram(SDRAM_MCOPT1, val);
  841. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  842. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  843. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  844. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  845. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  846. SDRAM_MCOPT1_DREF_MASK);
  847. mcopt1 |= SDRAM_MCOPT1_QDEP;
  848. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  849. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  850. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  851. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  852. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  853. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  854. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  855. /* test ecc support */
  856. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  857. if (ecc != 0x02) /* ecc not supported */
  858. ecc_enabled = FALSE;
  859. /* test bank count */
  860. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  861. if (bankcount == 0x04) /* bank count = 4 */
  862. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  863. else /* bank count = 8 */
  864. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  865. /* test DDR type */
  866. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  867. /* test for buffered/unbuffered, registered, differential clocks */
  868. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  869. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  870. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  871. if (dimm_num == 0) {
  872. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  873. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  874. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  875. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  876. if (registered == 1) { /* DDR2 always buffered */
  877. /* TODO: what about above comments ? */
  878. mcopt1 |= SDRAM_MCOPT1_RDEN;
  879. buf0 = TRUE;
  880. } else {
  881. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  882. if ((attribute & 0x02) == 0x00) {
  883. /* buffered not supported */
  884. buf0 = FALSE;
  885. } else {
  886. mcopt1 |= SDRAM_MCOPT1_RDEN;
  887. buf0 = TRUE;
  888. }
  889. }
  890. }
  891. else if (dimm_num == 1) {
  892. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  893. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  894. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  895. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  896. if (registered == 1) {
  897. /* DDR2 always buffered */
  898. mcopt1 |= SDRAM_MCOPT1_RDEN;
  899. buf1 = TRUE;
  900. } else {
  901. if ((attribute & 0x02) == 0x00) {
  902. /* buffered not supported */
  903. buf1 = FALSE;
  904. } else {
  905. mcopt1 |= SDRAM_MCOPT1_RDEN;
  906. buf1 = TRUE;
  907. }
  908. }
  909. }
  910. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  911. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  912. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  913. switch (data_width) {
  914. case 72:
  915. case 64:
  916. dimm_64bit = TRUE;
  917. break;
  918. case 40:
  919. case 32:
  920. dimm_32bit = TRUE;
  921. break;
  922. default:
  923. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  924. data_width);
  925. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  926. break;
  927. }
  928. }
  929. }
  930. /* verify matching properties */
  931. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  932. if (buf0 != buf1) {
  933. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  934. spd_ddr_init_hang ();
  935. }
  936. }
  937. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  938. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  939. spd_ddr_init_hang ();
  940. }
  941. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  942. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  943. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  944. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  945. } else {
  946. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  947. spd_ddr_init_hang ();
  948. }
  949. if (ecc_enabled == TRUE)
  950. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  951. else
  952. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  953. mtsdram(SDRAM_MCOPT1, mcopt1);
  954. }
  955. /*-----------------------------------------------------------------------------+
  956. * program_codt.
  957. *-----------------------------------------------------------------------------*/
  958. static void program_codt(unsigned long *dimm_populated,
  959. unsigned char *iic0_dimm_addr,
  960. unsigned long num_dimm_banks)
  961. {
  962. unsigned long codt;
  963. unsigned long modt0 = 0;
  964. unsigned long modt1 = 0;
  965. unsigned long modt2 = 0;
  966. unsigned long modt3 = 0;
  967. unsigned char dimm_num;
  968. unsigned char dimm_rank;
  969. unsigned char total_rank = 0;
  970. unsigned char total_dimm = 0;
  971. unsigned char dimm_type = 0;
  972. unsigned char firstSlot = 0;
  973. /*------------------------------------------------------------------
  974. * Set the SDRAM Controller On Die Termination Register
  975. *-----------------------------------------------------------------*/
  976. mfsdram(SDRAM_CODT, codt);
  977. codt |= (SDRAM_CODT_IO_NMODE
  978. & (~SDRAM_CODT_DQS_SINGLE_END
  979. & ~SDRAM_CODT_CKSE_SINGLE_END
  980. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  981. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  982. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  983. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  984. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  985. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  986. dimm_rank = (dimm_rank & 0x0F) + 1;
  987. dimm_type = SDRAM_DDR2;
  988. } else {
  989. dimm_rank = dimm_rank & 0x0F;
  990. dimm_type = SDRAM_DDR1;
  991. }
  992. total_rank += dimm_rank;
  993. total_dimm++;
  994. if ((dimm_num == 0) && (total_dimm == 1))
  995. firstSlot = TRUE;
  996. else
  997. firstSlot = FALSE;
  998. }
  999. }
  1000. if (dimm_type == SDRAM_DDR2) {
  1001. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1002. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1003. if (total_rank == 1) {
  1004. codt |= CALC_ODT_R(0);
  1005. modt0 = CALC_ODT_W(0);
  1006. modt1 = 0x00000000;
  1007. modt2 = 0x00000000;
  1008. modt3 = 0x00000000;
  1009. }
  1010. if (total_rank == 2) {
  1011. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1012. modt0 = CALC_ODT_W(0);
  1013. modt1 = CALC_ODT_W(0);
  1014. modt2 = 0x00000000;
  1015. modt3 = 0x00000000;
  1016. }
  1017. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1018. if (total_rank == 1) {
  1019. codt |= CALC_ODT_R(2);
  1020. modt0 = 0x00000000;
  1021. modt1 = 0x00000000;
  1022. modt2 = CALC_ODT_W(2);
  1023. modt3 = 0x00000000;
  1024. }
  1025. if (total_rank == 2) {
  1026. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1027. modt0 = 0x00000000;
  1028. modt1 = 0x00000000;
  1029. modt2 = CALC_ODT_W(2);
  1030. modt3 = CALC_ODT_W(2);
  1031. }
  1032. }
  1033. if (total_dimm == 2) {
  1034. if (total_rank == 2) {
  1035. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1036. modt0 = CALC_ODT_RW(2);
  1037. modt1 = 0x00000000;
  1038. modt2 = CALC_ODT_RW(0);
  1039. modt3 = 0x00000000;
  1040. }
  1041. if (total_rank == 4) {
  1042. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1043. CALC_ODT_R(2) | CALC_ODT_R(3);
  1044. modt0 = CALC_ODT_RW(2);
  1045. modt1 = 0x00000000;
  1046. modt2 = CALC_ODT_RW(0);
  1047. modt3 = 0x00000000;
  1048. }
  1049. }
  1050. } else {
  1051. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1052. modt0 = 0x00000000;
  1053. modt1 = 0x00000000;
  1054. modt2 = 0x00000000;
  1055. modt3 = 0x00000000;
  1056. if (total_dimm == 1) {
  1057. if (total_rank == 1)
  1058. codt |= 0x00800000;
  1059. if (total_rank == 2)
  1060. codt |= 0x02800000;
  1061. }
  1062. if (total_dimm == 2) {
  1063. if (total_rank == 2)
  1064. codt |= 0x08800000;
  1065. if (total_rank == 4)
  1066. codt |= 0x2a800000;
  1067. }
  1068. }
  1069. debug("nb of dimm %d\n", total_dimm);
  1070. debug("nb of rank %d\n", total_rank);
  1071. if (total_dimm == 1)
  1072. debug("dimm in slot %d\n", firstSlot);
  1073. mtsdram(SDRAM_CODT, codt);
  1074. mtsdram(SDRAM_MODT0, modt0);
  1075. mtsdram(SDRAM_MODT1, modt1);
  1076. mtsdram(SDRAM_MODT2, modt2);
  1077. mtsdram(SDRAM_MODT3, modt3);
  1078. }
  1079. /*-----------------------------------------------------------------------------+
  1080. * program_initplr.
  1081. *-----------------------------------------------------------------------------*/
  1082. static void program_initplr(unsigned long *dimm_populated,
  1083. unsigned char *iic0_dimm_addr,
  1084. unsigned long num_dimm_banks,
  1085. ddr_cas_id_t selected_cas,
  1086. int write_recovery)
  1087. {
  1088. u32 cas = 0;
  1089. u32 odt = 0;
  1090. u32 ods = 0;
  1091. u32 mr;
  1092. u32 wr;
  1093. u32 emr;
  1094. u32 emr2;
  1095. u32 emr3;
  1096. int dimm_num;
  1097. int total_dimm = 0;
  1098. /******************************************************
  1099. ** Assumption: if more than one DIMM, all DIMMs are the same
  1100. ** as already checked in check_memory_type
  1101. ******************************************************/
  1102. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1103. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1104. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1105. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1106. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1107. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1108. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1109. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1110. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1111. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1112. switch (selected_cas) {
  1113. case DDR_CAS_3:
  1114. cas = 3 << 4;
  1115. break;
  1116. case DDR_CAS_4:
  1117. cas = 4 << 4;
  1118. break;
  1119. case DDR_CAS_5:
  1120. cas = 5 << 4;
  1121. break;
  1122. default:
  1123. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1124. spd_ddr_init_hang ();
  1125. break;
  1126. }
  1127. #if 0
  1128. /*
  1129. * ToDo - Still a problem with the write recovery:
  1130. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1131. * in the INITPLR reg to the value calculated in program_mode()
  1132. * results in not correctly working DDR2 memory (crash after
  1133. * relocation).
  1134. *
  1135. * So for now, set the write recovery to 3. This seems to work
  1136. * on the Corair module too.
  1137. *
  1138. * 2007-03-01, sr
  1139. */
  1140. switch (write_recovery) {
  1141. case 3:
  1142. wr = WRITE_RECOV_3;
  1143. break;
  1144. case 4:
  1145. wr = WRITE_RECOV_4;
  1146. break;
  1147. case 5:
  1148. wr = WRITE_RECOV_5;
  1149. break;
  1150. case 6:
  1151. wr = WRITE_RECOV_6;
  1152. break;
  1153. default:
  1154. printf("ERROR: write recovery not support (%d)", write_recovery);
  1155. spd_ddr_init_hang ();
  1156. break;
  1157. }
  1158. #else
  1159. wr = WRITE_RECOV_3; /* test-only, see description above */
  1160. #endif
  1161. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1162. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1163. total_dimm++;
  1164. if (total_dimm == 1) {
  1165. odt = ODT_150_OHM;
  1166. ods = ODS_FULL;
  1167. } else if (total_dimm == 2) {
  1168. odt = ODT_75_OHM;
  1169. ods = ODS_REDUCED;
  1170. } else {
  1171. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1172. spd_ddr_init_hang ();
  1173. }
  1174. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1175. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1176. emr2 = CMD_EMR | SELECT_EMR2;
  1177. emr3 = CMD_EMR | SELECT_EMR3;
  1178. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1179. udelay(1000);
  1180. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1181. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1182. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1183. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1184. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1185. udelay(1000);
  1186. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1187. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1188. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1189. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1190. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1191. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1192. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1193. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1194. } else {
  1195. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1196. spd_ddr_init_hang ();
  1197. }
  1198. }
  1199. /*------------------------------------------------------------------
  1200. * This routine programs the SDRAM_MMODE register.
  1201. * the selected_cas is an output parameter, that will be passed
  1202. * by caller to call the above program_initplr( )
  1203. *-----------------------------------------------------------------*/
  1204. static void program_mode(unsigned long *dimm_populated,
  1205. unsigned char *iic0_dimm_addr,
  1206. unsigned long num_dimm_banks,
  1207. ddr_cas_id_t *selected_cas,
  1208. int *write_recovery)
  1209. {
  1210. unsigned long dimm_num;
  1211. unsigned long sdram_ddr1;
  1212. unsigned long t_wr_ns;
  1213. unsigned long t_wr_clk;
  1214. unsigned long cas_bit;
  1215. unsigned long cas_index;
  1216. unsigned long sdram_freq;
  1217. unsigned long ddr_check;
  1218. unsigned long mmode;
  1219. unsigned long tcyc_reg;
  1220. unsigned long cycle_2_0_clk;
  1221. unsigned long cycle_2_5_clk;
  1222. unsigned long cycle_3_0_clk;
  1223. unsigned long cycle_4_0_clk;
  1224. unsigned long cycle_5_0_clk;
  1225. unsigned long max_2_0_tcyc_ns_x_100;
  1226. unsigned long max_2_5_tcyc_ns_x_100;
  1227. unsigned long max_3_0_tcyc_ns_x_100;
  1228. unsigned long max_4_0_tcyc_ns_x_100;
  1229. unsigned long max_5_0_tcyc_ns_x_100;
  1230. unsigned long cycle_time_ns_x_100[3];
  1231. PPC4xx_SYS_INFO board_cfg;
  1232. unsigned char cas_2_0_available;
  1233. unsigned char cas_2_5_available;
  1234. unsigned char cas_3_0_available;
  1235. unsigned char cas_4_0_available;
  1236. unsigned char cas_5_0_available;
  1237. unsigned long sdr_ddrpll;
  1238. /*------------------------------------------------------------------
  1239. * Get the board configuration info.
  1240. *-----------------------------------------------------------------*/
  1241. get_sys_info(&board_cfg);
  1242. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1243. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1244. debug("sdram_freq=%d\n", sdram_freq);
  1245. /*------------------------------------------------------------------
  1246. * Handle the timing. We need to find the worst case timing of all
  1247. * the dimm modules installed.
  1248. *-----------------------------------------------------------------*/
  1249. t_wr_ns = 0;
  1250. cas_2_0_available = TRUE;
  1251. cas_2_5_available = TRUE;
  1252. cas_3_0_available = TRUE;
  1253. cas_4_0_available = TRUE;
  1254. cas_5_0_available = TRUE;
  1255. max_2_0_tcyc_ns_x_100 = 10;
  1256. max_2_5_tcyc_ns_x_100 = 10;
  1257. max_3_0_tcyc_ns_x_100 = 10;
  1258. max_4_0_tcyc_ns_x_100 = 10;
  1259. max_5_0_tcyc_ns_x_100 = 10;
  1260. sdram_ddr1 = TRUE;
  1261. /* loop through all the DIMM slots on the board */
  1262. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1263. /* If a dimm is installed in a particular slot ... */
  1264. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1265. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1266. sdram_ddr1 = TRUE;
  1267. else
  1268. sdram_ddr1 = FALSE;
  1269. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1270. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1271. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1272. /* For a particular DIMM, grab the three CAS values it supports */
  1273. for (cas_index = 0; cas_index < 3; cas_index++) {
  1274. switch (cas_index) {
  1275. case 0:
  1276. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1277. break;
  1278. case 1:
  1279. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1280. break;
  1281. default:
  1282. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1283. break;
  1284. }
  1285. if ((tcyc_reg & 0x0F) >= 10) {
  1286. if ((tcyc_reg & 0x0F) == 0x0D) {
  1287. /* Convert from hex to decimal */
  1288. cycle_time_ns_x_100[cas_index] =
  1289. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1290. } else {
  1291. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1292. "in slot %d\n", (unsigned int)dimm_num);
  1293. spd_ddr_init_hang ();
  1294. }
  1295. } else {
  1296. /* Convert from hex to decimal */
  1297. cycle_time_ns_x_100[cas_index] =
  1298. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1299. ((tcyc_reg & 0x0F)*10);
  1300. }
  1301. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1302. cycle_time_ns_x_100[cas_index]);
  1303. }
  1304. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1305. /* supported for a particular DIMM. */
  1306. cas_index = 0;
  1307. if (sdram_ddr1) {
  1308. /*
  1309. * DDR devices use the following bitmask for CAS latency:
  1310. * Bit 7 6 5 4 3 2 1 0
  1311. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1312. */
  1313. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1314. (cycle_time_ns_x_100[cas_index] != 0)) {
  1315. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1316. cycle_time_ns_x_100[cas_index]);
  1317. cas_index++;
  1318. } else {
  1319. if (cas_index != 0)
  1320. cas_index++;
  1321. cas_4_0_available = FALSE;
  1322. }
  1323. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1324. (cycle_time_ns_x_100[cas_index] != 0)) {
  1325. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1326. cycle_time_ns_x_100[cas_index]);
  1327. cas_index++;
  1328. } else {
  1329. if (cas_index != 0)
  1330. cas_index++;
  1331. cas_3_0_available = FALSE;
  1332. }
  1333. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1334. (cycle_time_ns_x_100[cas_index] != 0)) {
  1335. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1336. cycle_time_ns_x_100[cas_index]);
  1337. cas_index++;
  1338. } else {
  1339. if (cas_index != 0)
  1340. cas_index++;
  1341. cas_2_5_available = FALSE;
  1342. }
  1343. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1344. (cycle_time_ns_x_100[cas_index] != 0)) {
  1345. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1346. cycle_time_ns_x_100[cas_index]);
  1347. cas_index++;
  1348. } else {
  1349. if (cas_index != 0)
  1350. cas_index++;
  1351. cas_2_0_available = FALSE;
  1352. }
  1353. } else {
  1354. /*
  1355. * DDR2 devices use the following bitmask for CAS latency:
  1356. * Bit 7 6 5 4 3 2 1 0
  1357. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1358. */
  1359. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1360. (cycle_time_ns_x_100[cas_index] != 0)) {
  1361. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1362. cycle_time_ns_x_100[cas_index]);
  1363. cas_index++;
  1364. } else {
  1365. if (cas_index != 0)
  1366. cas_index++;
  1367. cas_5_0_available = FALSE;
  1368. }
  1369. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1370. (cycle_time_ns_x_100[cas_index] != 0)) {
  1371. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1372. cycle_time_ns_x_100[cas_index]);
  1373. cas_index++;
  1374. } else {
  1375. if (cas_index != 0)
  1376. cas_index++;
  1377. cas_4_0_available = FALSE;
  1378. }
  1379. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1380. (cycle_time_ns_x_100[cas_index] != 0)) {
  1381. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1382. cycle_time_ns_x_100[cas_index]);
  1383. cas_index++;
  1384. } else {
  1385. if (cas_index != 0)
  1386. cas_index++;
  1387. cas_3_0_available = FALSE;
  1388. }
  1389. }
  1390. }
  1391. }
  1392. /*------------------------------------------------------------------
  1393. * Set the SDRAM mode, SDRAM_MMODE
  1394. *-----------------------------------------------------------------*/
  1395. mfsdram(SDRAM_MMODE, mmode);
  1396. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1397. /* add 10 here because of rounding problems */
  1398. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1399. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1400. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1401. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1402. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1403. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1404. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1405. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1406. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1407. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1408. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1409. *selected_cas = DDR_CAS_2;
  1410. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1411. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1412. *selected_cas = DDR_CAS_2_5;
  1413. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1414. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1415. *selected_cas = DDR_CAS_3;
  1416. } else {
  1417. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1418. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1419. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1420. spd_ddr_init_hang ();
  1421. }
  1422. } else { /* DDR2 */
  1423. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1424. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1425. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1426. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1427. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1428. *selected_cas = DDR_CAS_3;
  1429. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1430. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1431. *selected_cas = DDR_CAS_4;
  1432. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1433. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1434. *selected_cas = DDR_CAS_5;
  1435. } else {
  1436. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1437. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1438. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1439. printf("cas3=%d cas4=%d cas5=%d\n",
  1440. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1441. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1442. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1443. spd_ddr_init_hang ();
  1444. }
  1445. }
  1446. if (sdram_ddr1 == TRUE)
  1447. mmode |= SDRAM_MMODE_WR_DDR1;
  1448. else {
  1449. /* loop through all the DIMM slots on the board */
  1450. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1451. /* If a dimm is installed in a particular slot ... */
  1452. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1453. t_wr_ns = max(t_wr_ns,
  1454. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1455. }
  1456. /*
  1457. * convert from nanoseconds to ddr clocks
  1458. * round up if necessary
  1459. */
  1460. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1461. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1462. if (sdram_freq != ddr_check)
  1463. t_wr_clk++;
  1464. switch (t_wr_clk) {
  1465. case 0:
  1466. case 1:
  1467. case 2:
  1468. case 3:
  1469. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1470. break;
  1471. case 4:
  1472. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1473. break;
  1474. case 5:
  1475. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1476. break;
  1477. default:
  1478. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1479. break;
  1480. }
  1481. *write_recovery = t_wr_clk;
  1482. }
  1483. debug("CAS latency = %d\n", *selected_cas);
  1484. debug("Write recovery = %d\n", *write_recovery);
  1485. mtsdram(SDRAM_MMODE, mmode);
  1486. }
  1487. /*-----------------------------------------------------------------------------+
  1488. * program_rtr.
  1489. *-----------------------------------------------------------------------------*/
  1490. static void program_rtr(unsigned long *dimm_populated,
  1491. unsigned char *iic0_dimm_addr,
  1492. unsigned long num_dimm_banks)
  1493. {
  1494. PPC4xx_SYS_INFO board_cfg;
  1495. unsigned long max_refresh_rate;
  1496. unsigned long dimm_num;
  1497. unsigned long refresh_rate_type;
  1498. unsigned long refresh_rate;
  1499. unsigned long rint;
  1500. unsigned long sdram_freq;
  1501. unsigned long sdr_ddrpll;
  1502. unsigned long val;
  1503. /*------------------------------------------------------------------
  1504. * Get the board configuration info.
  1505. *-----------------------------------------------------------------*/
  1506. get_sys_info(&board_cfg);
  1507. /*------------------------------------------------------------------
  1508. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1509. *-----------------------------------------------------------------*/
  1510. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1511. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1512. max_refresh_rate = 0;
  1513. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1514. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1515. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1516. refresh_rate_type &= 0x7F;
  1517. switch (refresh_rate_type) {
  1518. case 0:
  1519. refresh_rate = 15625;
  1520. break;
  1521. case 1:
  1522. refresh_rate = 3906;
  1523. break;
  1524. case 2:
  1525. refresh_rate = 7812;
  1526. break;
  1527. case 3:
  1528. refresh_rate = 31250;
  1529. break;
  1530. case 4:
  1531. refresh_rate = 62500;
  1532. break;
  1533. case 5:
  1534. refresh_rate = 125000;
  1535. break;
  1536. default:
  1537. refresh_rate = 0;
  1538. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1539. (unsigned int)dimm_num);
  1540. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1541. spd_ddr_init_hang ();
  1542. break;
  1543. }
  1544. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1545. }
  1546. }
  1547. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1548. mfsdram(SDRAM_RTR, val);
  1549. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1550. (SDRAM_RTR_RINT_ENCODE(rint)));
  1551. }
  1552. /*------------------------------------------------------------------
  1553. * This routine programs the SDRAM_TRx registers.
  1554. *-----------------------------------------------------------------*/
  1555. static void program_tr(unsigned long *dimm_populated,
  1556. unsigned char *iic0_dimm_addr,
  1557. unsigned long num_dimm_banks)
  1558. {
  1559. unsigned long dimm_num;
  1560. unsigned long sdram_ddr1;
  1561. unsigned long t_rp_ns;
  1562. unsigned long t_rcd_ns;
  1563. unsigned long t_rrd_ns;
  1564. unsigned long t_ras_ns;
  1565. unsigned long t_rc_ns;
  1566. unsigned long t_rfc_ns;
  1567. unsigned long t_wpc_ns;
  1568. unsigned long t_wtr_ns;
  1569. unsigned long t_rpc_ns;
  1570. unsigned long t_rp_clk;
  1571. unsigned long t_rcd_clk;
  1572. unsigned long t_rrd_clk;
  1573. unsigned long t_ras_clk;
  1574. unsigned long t_rc_clk;
  1575. unsigned long t_rfc_clk;
  1576. unsigned long t_wpc_clk;
  1577. unsigned long t_wtr_clk;
  1578. unsigned long t_rpc_clk;
  1579. unsigned long sdtr1, sdtr2, sdtr3;
  1580. unsigned long ddr_check;
  1581. unsigned long sdram_freq;
  1582. unsigned long sdr_ddrpll;
  1583. PPC4xx_SYS_INFO board_cfg;
  1584. /*------------------------------------------------------------------
  1585. * Get the board configuration info.
  1586. *-----------------------------------------------------------------*/
  1587. get_sys_info(&board_cfg);
  1588. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1589. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1590. /*------------------------------------------------------------------
  1591. * Handle the timing. We need to find the worst case timing of all
  1592. * the dimm modules installed.
  1593. *-----------------------------------------------------------------*/
  1594. t_rp_ns = 0;
  1595. t_rrd_ns = 0;
  1596. t_rcd_ns = 0;
  1597. t_ras_ns = 0;
  1598. t_rc_ns = 0;
  1599. t_rfc_ns = 0;
  1600. t_wpc_ns = 0;
  1601. t_wtr_ns = 0;
  1602. t_rpc_ns = 0;
  1603. sdram_ddr1 = TRUE;
  1604. /* loop through all the DIMM slots on the board */
  1605. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1606. /* If a dimm is installed in a particular slot ... */
  1607. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1608. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1609. sdram_ddr1 = TRUE;
  1610. else
  1611. sdram_ddr1 = FALSE;
  1612. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1613. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1614. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1615. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1616. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1617. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1618. }
  1619. }
  1620. /*------------------------------------------------------------------
  1621. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1622. *-----------------------------------------------------------------*/
  1623. mfsdram(SDRAM_SDTR1, sdtr1);
  1624. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1625. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1626. /* default values */
  1627. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1628. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1629. /* normal operations */
  1630. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1631. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1632. mtsdram(SDRAM_SDTR1, sdtr1);
  1633. /*------------------------------------------------------------------
  1634. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1635. *-----------------------------------------------------------------*/
  1636. mfsdram(SDRAM_SDTR2, sdtr2);
  1637. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1638. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1639. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1640. SDRAM_SDTR2_RRD_MASK);
  1641. /*
  1642. * convert t_rcd from nanoseconds to ddr clocks
  1643. * round up if necessary
  1644. */
  1645. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1646. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1647. if (sdram_freq != ddr_check)
  1648. t_rcd_clk++;
  1649. switch (t_rcd_clk) {
  1650. case 0:
  1651. case 1:
  1652. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1653. break;
  1654. case 2:
  1655. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1656. break;
  1657. case 3:
  1658. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1659. break;
  1660. case 4:
  1661. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1662. break;
  1663. default:
  1664. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1665. break;
  1666. }
  1667. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1668. if (sdram_freq < 200000000) {
  1669. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1670. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1671. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1672. } else {
  1673. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1674. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1675. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1676. }
  1677. } else { /* DDR2 */
  1678. /* loop through all the DIMM slots on the board */
  1679. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1680. /* If a dimm is installed in a particular slot ... */
  1681. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1682. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1683. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1684. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1685. }
  1686. }
  1687. /*
  1688. * convert from nanoseconds to ddr clocks
  1689. * round up if necessary
  1690. */
  1691. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1692. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1693. if (sdram_freq != ddr_check)
  1694. t_wpc_clk++;
  1695. switch (t_wpc_clk) {
  1696. case 0:
  1697. case 1:
  1698. case 2:
  1699. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1700. break;
  1701. case 3:
  1702. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1703. break;
  1704. case 4:
  1705. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1706. break;
  1707. case 5:
  1708. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1709. break;
  1710. default:
  1711. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1712. break;
  1713. }
  1714. /*
  1715. * convert from nanoseconds to ddr clocks
  1716. * round up if necessary
  1717. */
  1718. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1719. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1720. if (sdram_freq != ddr_check)
  1721. t_wtr_clk++;
  1722. switch (t_wtr_clk) {
  1723. case 0:
  1724. case 1:
  1725. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1726. break;
  1727. case 2:
  1728. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1729. break;
  1730. case 3:
  1731. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1732. break;
  1733. default:
  1734. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1735. break;
  1736. }
  1737. /*
  1738. * convert from nanoseconds to ddr clocks
  1739. * round up if necessary
  1740. */
  1741. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1742. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1743. if (sdram_freq != ddr_check)
  1744. t_rpc_clk++;
  1745. switch (t_rpc_clk) {
  1746. case 0:
  1747. case 1:
  1748. case 2:
  1749. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1750. break;
  1751. case 3:
  1752. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1753. break;
  1754. default:
  1755. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1756. break;
  1757. }
  1758. }
  1759. /* default value */
  1760. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1761. /*
  1762. * convert t_rrd from nanoseconds to ddr clocks
  1763. * round up if necessary
  1764. */
  1765. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1766. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1767. if (sdram_freq != ddr_check)
  1768. t_rrd_clk++;
  1769. if (t_rrd_clk == 3)
  1770. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1771. else
  1772. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1773. /*
  1774. * convert t_rp from nanoseconds to ddr clocks
  1775. * round up if necessary
  1776. */
  1777. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1778. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1779. if (sdram_freq != ddr_check)
  1780. t_rp_clk++;
  1781. switch (t_rp_clk) {
  1782. case 0:
  1783. case 1:
  1784. case 2:
  1785. case 3:
  1786. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1787. break;
  1788. case 4:
  1789. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1790. break;
  1791. case 5:
  1792. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1793. break;
  1794. case 6:
  1795. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1796. break;
  1797. default:
  1798. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1799. break;
  1800. }
  1801. mtsdram(SDRAM_SDTR2, sdtr2);
  1802. /*------------------------------------------------------------------
  1803. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1804. *-----------------------------------------------------------------*/
  1805. mfsdram(SDRAM_SDTR3, sdtr3);
  1806. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1807. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1808. /*
  1809. * convert t_ras from nanoseconds to ddr clocks
  1810. * round up if necessary
  1811. */
  1812. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1813. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1814. if (sdram_freq != ddr_check)
  1815. t_ras_clk++;
  1816. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1817. /*
  1818. * convert t_rc from nanoseconds to ddr clocks
  1819. * round up if necessary
  1820. */
  1821. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1822. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1823. if (sdram_freq != ddr_check)
  1824. t_rc_clk++;
  1825. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1826. /* default xcs value */
  1827. sdtr3 |= SDRAM_SDTR3_XCS;
  1828. /*
  1829. * convert t_rfc from nanoseconds to ddr clocks
  1830. * round up if necessary
  1831. */
  1832. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1833. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1834. if (sdram_freq != ddr_check)
  1835. t_rfc_clk++;
  1836. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1837. mtsdram(SDRAM_SDTR3, sdtr3);
  1838. }
  1839. /*-----------------------------------------------------------------------------+
  1840. * program_bxcf.
  1841. *-----------------------------------------------------------------------------*/
  1842. static void program_bxcf(unsigned long *dimm_populated,
  1843. unsigned char *iic0_dimm_addr,
  1844. unsigned long num_dimm_banks)
  1845. {
  1846. unsigned long dimm_num;
  1847. unsigned long num_col_addr;
  1848. unsigned long num_ranks;
  1849. unsigned long num_banks;
  1850. unsigned long mode;
  1851. unsigned long ind_rank;
  1852. unsigned long ind;
  1853. unsigned long ind_bank;
  1854. unsigned long bank_0_populated;
  1855. /*------------------------------------------------------------------
  1856. * Set the BxCF regs. First, wipe out the bank config registers.
  1857. *-----------------------------------------------------------------*/
  1858. mtsdram(SDRAM_MB0CF, 0x00000000);
  1859. mtsdram(SDRAM_MB1CF, 0x00000000);
  1860. mtsdram(SDRAM_MB2CF, 0x00000000);
  1861. mtsdram(SDRAM_MB3CF, 0x00000000);
  1862. mode = SDRAM_BXCF_M_BE_ENABLE;
  1863. bank_0_populated = 0;
  1864. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1865. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1866. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1867. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1868. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1869. num_ranks = (num_ranks & 0x0F) +1;
  1870. else
  1871. num_ranks = num_ranks & 0x0F;
  1872. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1873. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1874. if (num_banks == 4)
  1875. ind = 0;
  1876. else
  1877. ind = 5;
  1878. switch (num_col_addr) {
  1879. case 0x08:
  1880. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1881. break;
  1882. case 0x09:
  1883. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1884. break;
  1885. case 0x0A:
  1886. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1887. break;
  1888. case 0x0B:
  1889. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1890. break;
  1891. case 0x0C:
  1892. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1893. break;
  1894. default:
  1895. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1896. (unsigned int)dimm_num);
  1897. printf("ERROR: Unsupported value for number of "
  1898. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1899. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1900. spd_ddr_init_hang ();
  1901. }
  1902. }
  1903. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1904. bank_0_populated = 1;
  1905. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1906. mtsdram(SDRAM_MB0CF +
  1907. ((dimm_num + bank_0_populated + ind_rank) << 2),
  1908. mode);
  1909. }
  1910. }
  1911. }
  1912. }
  1913. /*------------------------------------------------------------------
  1914. * program memory queue.
  1915. *-----------------------------------------------------------------*/
  1916. static void program_memory_queue(unsigned long *dimm_populated,
  1917. unsigned char *iic0_dimm_addr,
  1918. unsigned long num_dimm_banks)
  1919. {
  1920. unsigned long dimm_num;
  1921. unsigned long rank_base_addr;
  1922. unsigned long rank_reg;
  1923. unsigned long rank_size_bytes;
  1924. unsigned long rank_size_id;
  1925. unsigned long num_ranks;
  1926. unsigned long baseadd_size;
  1927. unsigned long i;
  1928. unsigned long bank_0_populated = 0;
  1929. /*------------------------------------------------------------------
  1930. * Reset the rank_base_address.
  1931. *-----------------------------------------------------------------*/
  1932. rank_reg = SDRAM_R0BAS;
  1933. rank_base_addr = 0x00000000;
  1934. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1935. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1936. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1937. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1938. num_ranks = (num_ranks & 0x0F) + 1;
  1939. else
  1940. num_ranks = num_ranks & 0x0F;
  1941. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1942. /*------------------------------------------------------------------
  1943. * Set the sizes
  1944. *-----------------------------------------------------------------*/
  1945. baseadd_size = 0;
  1946. rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
  1947. switch (rank_size_id) {
  1948. case 0x02:
  1949. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1950. break;
  1951. case 0x04:
  1952. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1953. break;
  1954. case 0x08:
  1955. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1956. break;
  1957. case 0x10:
  1958. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1959. break;
  1960. case 0x20:
  1961. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1962. break;
  1963. case 0x40:
  1964. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1965. break;
  1966. case 0x80:
  1967. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1968. break;
  1969. default:
  1970. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1971. (unsigned int)dimm_num);
  1972. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1973. (unsigned int)rank_size_id);
  1974. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1975. spd_ddr_init_hang ();
  1976. }
  1977. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1978. bank_0_populated = 1;
  1979. for (i = 0; i < num_ranks; i++) {
  1980. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1981. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  1982. baseadd_size));
  1983. rank_base_addr += rank_size_bytes;
  1984. }
  1985. }
  1986. }
  1987. }
  1988. /*-----------------------------------------------------------------------------+
  1989. * is_ecc_enabled.
  1990. *-----------------------------------------------------------------------------*/
  1991. static unsigned long is_ecc_enabled(void)
  1992. {
  1993. unsigned long dimm_num;
  1994. unsigned long ecc;
  1995. unsigned long val;
  1996. ecc = 0;
  1997. /* loop through all the DIMM slots on the board */
  1998. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1999. mfsdram(SDRAM_MCOPT1, val);
  2000. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  2001. }
  2002. return ecc;
  2003. }
  2004. static void blank_string(int size)
  2005. {
  2006. int i;
  2007. for (i=0; i<size; i++)
  2008. putc('\b');
  2009. for (i=0; i<size; i++)
  2010. putc(' ');
  2011. for (i=0; i<size; i++)
  2012. putc('\b');
  2013. }
  2014. #ifdef CONFIG_DDR_ECC
  2015. /*-----------------------------------------------------------------------------+
  2016. * program_ecc.
  2017. *-----------------------------------------------------------------------------*/
  2018. static void program_ecc(unsigned long *dimm_populated,
  2019. unsigned char *iic0_dimm_addr,
  2020. unsigned long num_dimm_banks,
  2021. unsigned long tlb_word2_i_value)
  2022. {
  2023. unsigned long mcopt1;
  2024. unsigned long mcopt2;
  2025. unsigned long mcstat;
  2026. unsigned long dimm_num;
  2027. unsigned long ecc;
  2028. ecc = 0;
  2029. /* loop through all the DIMM slots on the board */
  2030. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2031. /* If a dimm is installed in a particular slot ... */
  2032. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2033. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2034. }
  2035. if (ecc == 0)
  2036. return;
  2037. mfsdram(SDRAM_MCOPT1, mcopt1);
  2038. mfsdram(SDRAM_MCOPT2, mcopt2);
  2039. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2040. /* DDR controller must be enabled and not in self-refresh. */
  2041. mfsdram(SDRAM_MCSTAT, mcstat);
  2042. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2043. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2044. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2045. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2046. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2047. }
  2048. }
  2049. return;
  2050. }
  2051. #ifdef CONFIG_ECC_ERROR_RESET
  2052. /*
  2053. * Check for ECC errors and reset board upon any error here
  2054. *
  2055. * On the Katmai 440SPe eval board, from time to time, the first
  2056. * lword write access after DDR2 initializazion with ECC checking
  2057. * enabled, leads to an ECC error. I couldn't find a configuration
  2058. * without this happening. On my board with the current setup it
  2059. * happens about 1 from 10 times.
  2060. *
  2061. * The ECC modules used for testing are:
  2062. * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
  2063. *
  2064. * This has to get fixed for the Katmai and tested for the other
  2065. * board (440SP/440SPe) that will eventually use this code in the
  2066. * future.
  2067. *
  2068. * 2007-03-01, sr
  2069. */
  2070. static void check_ecc(void)
  2071. {
  2072. u32 val;
  2073. mfsdram(SDRAM_ECCCR, val);
  2074. if (val != 0) {
  2075. printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
  2076. val, mfdcr(0x4c), mfdcr(0x4e));
  2077. printf("ECC error occured, resetting board...\n");
  2078. do_reset(NULL, 0, 0, NULL);
  2079. }
  2080. }
  2081. #endif
  2082. static void wait_ddr_idle(void)
  2083. {
  2084. u32 val;
  2085. do {
  2086. mfsdram(SDRAM_MCSTAT, val);
  2087. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2088. }
  2089. /*-----------------------------------------------------------------------------+
  2090. * program_ecc_addr.
  2091. *-----------------------------------------------------------------------------*/
  2092. static void program_ecc_addr(unsigned long start_address,
  2093. unsigned long num_bytes,
  2094. unsigned long tlb_word2_i_value)
  2095. {
  2096. unsigned long current_address;
  2097. unsigned long end_address;
  2098. unsigned long address_increment;
  2099. unsigned long mcopt1;
  2100. char str[] = "ECC generation -";
  2101. char slash[] = "\\|/-\\|/-";
  2102. int loop = 0;
  2103. int loopi = 0;
  2104. current_address = start_address;
  2105. mfsdram(SDRAM_MCOPT1, mcopt1);
  2106. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2107. mtsdram(SDRAM_MCOPT1,
  2108. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2109. sync();
  2110. eieio();
  2111. wait_ddr_idle();
  2112. puts(str);
  2113. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2114. /* ECC bit set method for non-cached memory */
  2115. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2116. address_increment = 4;
  2117. else
  2118. address_increment = 8;
  2119. end_address = current_address + num_bytes;
  2120. while (current_address < end_address) {
  2121. *((unsigned long *)current_address) = 0x00000000;
  2122. current_address += address_increment;
  2123. if ((loop++ % (2 << 20)) == 0) {
  2124. putc('\b');
  2125. putc(slash[loopi++ % 8]);
  2126. }
  2127. }
  2128. } else {
  2129. /* ECC bit set method for cached memory */
  2130. dcbz_area(start_address, num_bytes);
  2131. dflush();
  2132. }
  2133. blank_string(strlen(str));
  2134. sync();
  2135. eieio();
  2136. wait_ddr_idle();
  2137. /* clear ECC error repoting registers */
  2138. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2139. mtdcr(0x4c, 0xffffffff);
  2140. mtsdram(SDRAM_MCOPT1,
  2141. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2142. sync();
  2143. eieio();
  2144. wait_ddr_idle();
  2145. #ifdef CONFIG_ECC_ERROR_RESET
  2146. /*
  2147. * One write to 0 is enough to trigger this ECC error
  2148. * (see description above)
  2149. */
  2150. out_be32(0, 0x12345678);
  2151. check_ecc();
  2152. #endif
  2153. }
  2154. }
  2155. #endif
  2156. /*-----------------------------------------------------------------------------+
  2157. * program_DQS_calibration.
  2158. *-----------------------------------------------------------------------------*/
  2159. static void program_DQS_calibration(unsigned long *dimm_populated,
  2160. unsigned char *iic0_dimm_addr,
  2161. unsigned long num_dimm_banks)
  2162. {
  2163. unsigned long val;
  2164. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2165. mtsdram(SDRAM_RQDC, 0x80000037);
  2166. mtsdram(SDRAM_RDCC, 0x40000000);
  2167. mtsdram(SDRAM_RFDC, 0x000001DF);
  2168. test();
  2169. #else
  2170. /*------------------------------------------------------------------
  2171. * Program RDCC register
  2172. * Read sample cycle auto-update enable
  2173. *-----------------------------------------------------------------*/
  2174. mfsdram(SDRAM_RDCC, val);
  2175. mtsdram(SDRAM_RDCC,
  2176. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2177. | SDRAM_RDCC_RSAE_ENABLE);
  2178. /*------------------------------------------------------------------
  2179. * Program RQDC register
  2180. * Internal DQS delay mechanism enable
  2181. *-----------------------------------------------------------------*/
  2182. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2183. /*------------------------------------------------------------------
  2184. * Program RFDC register
  2185. * Set Feedback Fractional Oversample
  2186. * Auto-detect read sample cycle enable
  2187. *-----------------------------------------------------------------*/
  2188. mfsdram(SDRAM_RFDC, val);
  2189. mtsdram(SDRAM_RFDC,
  2190. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2191. SDRAM_RFDC_RFFD_MASK))
  2192. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2193. SDRAM_RFDC_RFFD_ENCODE(0)));
  2194. DQS_calibration_process();
  2195. #endif
  2196. }
  2197. static int short_mem_test(void)
  2198. {
  2199. u32 *membase;
  2200. u32 bxcr_num;
  2201. u32 bxcf;
  2202. int i;
  2203. int j;
  2204. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2205. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2206. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2207. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2208. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2209. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2210. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2211. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2212. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2213. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2214. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2215. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2216. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2217. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2218. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2219. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2220. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2221. int l;
  2222. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2223. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2224. /* Banks enabled */
  2225. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2226. /* Bank is enabled */
  2227. /*------------------------------------------------------------------
  2228. * Run the short memory test.
  2229. *-----------------------------------------------------------------*/
  2230. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2231. for (i = 0; i < NUMMEMTESTS; i++) {
  2232. for (j = 0; j < NUMMEMWORDS; j++) {
  2233. membase[j] = test[i][j];
  2234. ppcDcbf((u32)&(membase[j]));
  2235. }
  2236. sync();
  2237. for (l=0; l<NUMLOOPS; l++) {
  2238. for (j = 0; j < NUMMEMWORDS; j++) {
  2239. if (membase[j] != test[i][j]) {
  2240. ppcDcbf((u32)&(membase[j]));
  2241. return 0;
  2242. }
  2243. ppcDcbf((u32)&(membase[j]));
  2244. }
  2245. sync();
  2246. }
  2247. }
  2248. } /* if bank enabled */
  2249. } /* for bxcf_num */
  2250. return 1;
  2251. }
  2252. #ifndef HARD_CODED_DQS
  2253. /*-----------------------------------------------------------------------------+
  2254. * DQS_calibration_process.
  2255. *-----------------------------------------------------------------------------*/
  2256. static void DQS_calibration_process(void)
  2257. {
  2258. unsigned long rfdc_reg;
  2259. unsigned long rffd;
  2260. unsigned long val;
  2261. long rffd_average;
  2262. long max_start;
  2263. long min_end;
  2264. unsigned long begin_rqfd[MAXRANKS];
  2265. unsigned long begin_rffd[MAXRANKS];
  2266. unsigned long end_rqfd[MAXRANKS];
  2267. unsigned long end_rffd[MAXRANKS];
  2268. char window_found;
  2269. unsigned long dlycal;
  2270. unsigned long dly_val;
  2271. unsigned long max_pass_length;
  2272. unsigned long current_pass_length;
  2273. unsigned long current_fail_length;
  2274. unsigned long current_start;
  2275. long max_end;
  2276. unsigned char fail_found;
  2277. unsigned char pass_found;
  2278. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2279. u32 rqdc_reg;
  2280. u32 rqfd;
  2281. u32 rqfd_start;
  2282. u32 rqfd_average;
  2283. int loopi = 0;
  2284. char str[] = "Auto calibration -";
  2285. char slash[] = "\\|/-\\|/-";
  2286. /*------------------------------------------------------------------
  2287. * Test to determine the best read clock delay tuning bits.
  2288. *
  2289. * Before the DDR controller can be used, the read clock delay needs to be
  2290. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2291. * This value cannot be hardcoded into the program because it changes
  2292. * depending on the board's setup and environment.
  2293. * To do this, all delay values are tested to see if they
  2294. * work or not. By doing this, you get groups of fails with groups of
  2295. * passing values. The idea is to find the start and end of a passing
  2296. * window and take the center of it to use as the read clock delay.
  2297. *
  2298. * A failure has to be seen first so that when we hit a pass, we know
  2299. * that it is truely the start of the window. If we get passing values
  2300. * to start off with, we don't know if we are at the start of the window.
  2301. *
  2302. * The code assumes that a failure will always be found.
  2303. * If a failure is not found, there is no easy way to get the middle
  2304. * of the passing window. I guess we can pretty much pick any value
  2305. * but some values will be better than others. Since the lowest speed
  2306. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2307. * from experimentation it is safe to say you will always have a failure.
  2308. *-----------------------------------------------------------------*/
  2309. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2310. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2311. puts(str);
  2312. calibration_loop:
  2313. mfsdram(SDRAM_RQDC, rqdc_reg);
  2314. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2315. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2316. #else /* CONFIG_DDR_RQDC_FIXED */
  2317. /*
  2318. * On Katmai the complete auto-calibration somehow doesn't seem to
  2319. * produce the best results, meaning optimal values for RQFD/RFFD.
  2320. * This was discovered by GDA using a high bandwidth scope,
  2321. * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
  2322. * so now on Katmai "only" RFFD is auto-calibrated.
  2323. */
  2324. mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
  2325. #endif /* CONFIG_DDR_RQDC_FIXED */
  2326. max_start = 0;
  2327. min_end = 0;
  2328. begin_rqfd[0] = 0;
  2329. begin_rffd[0] = 0;
  2330. begin_rqfd[1] = 0;
  2331. begin_rffd[1] = 0;
  2332. end_rqfd[0] = 0;
  2333. end_rffd[0] = 0;
  2334. end_rqfd[1] = 0;
  2335. end_rffd[1] = 0;
  2336. window_found = FALSE;
  2337. max_pass_length = 0;
  2338. max_start = 0;
  2339. max_end = 0;
  2340. current_pass_length = 0;
  2341. current_fail_length = 0;
  2342. current_start = 0;
  2343. window_found = FALSE;
  2344. fail_found = FALSE;
  2345. pass_found = FALSE;
  2346. /*
  2347. * get the delay line calibration register value
  2348. */
  2349. mfsdram(SDRAM_DLCR, dlycal);
  2350. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2351. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2352. mfsdram(SDRAM_RFDC, rfdc_reg);
  2353. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2354. /*------------------------------------------------------------------
  2355. * Set the timing reg for the test.
  2356. *-----------------------------------------------------------------*/
  2357. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2358. /*------------------------------------------------------------------
  2359. * See if the rffd value passed.
  2360. *-----------------------------------------------------------------*/
  2361. if (short_mem_test()) {
  2362. if (fail_found == TRUE) {
  2363. pass_found = TRUE;
  2364. if (current_pass_length == 0)
  2365. current_start = rffd;
  2366. current_fail_length = 0;
  2367. current_pass_length++;
  2368. if (current_pass_length > max_pass_length) {
  2369. max_pass_length = current_pass_length;
  2370. max_start = current_start;
  2371. max_end = rffd;
  2372. }
  2373. }
  2374. } else {
  2375. current_pass_length = 0;
  2376. current_fail_length++;
  2377. if (current_fail_length >= (dly_val >> 2)) {
  2378. if (fail_found == FALSE) {
  2379. fail_found = TRUE;
  2380. } else if (pass_found == TRUE) {
  2381. window_found = TRUE;
  2382. break;
  2383. }
  2384. }
  2385. }
  2386. } /* for rffd */
  2387. /*------------------------------------------------------------------
  2388. * Set the average RFFD value
  2389. *-----------------------------------------------------------------*/
  2390. rffd_average = ((max_start + max_end) >> 1);
  2391. if (rffd_average < 0)
  2392. rffd_average = 0;
  2393. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2394. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2395. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2396. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2397. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2398. max_pass_length = 0;
  2399. max_start = 0;
  2400. max_end = 0;
  2401. current_pass_length = 0;
  2402. current_fail_length = 0;
  2403. current_start = 0;
  2404. window_found = FALSE;
  2405. fail_found = FALSE;
  2406. pass_found = FALSE;
  2407. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2408. mfsdram(SDRAM_RQDC, rqdc_reg);
  2409. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2410. /*------------------------------------------------------------------
  2411. * Set the timing reg for the test.
  2412. *-----------------------------------------------------------------*/
  2413. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2414. /*------------------------------------------------------------------
  2415. * See if the rffd value passed.
  2416. *-----------------------------------------------------------------*/
  2417. if (short_mem_test()) {
  2418. if (fail_found == TRUE) {
  2419. pass_found = TRUE;
  2420. if (current_pass_length == 0)
  2421. current_start = rqfd;
  2422. current_fail_length = 0;
  2423. current_pass_length++;
  2424. if (current_pass_length > max_pass_length) {
  2425. max_pass_length = current_pass_length;
  2426. max_start = current_start;
  2427. max_end = rqfd;
  2428. }
  2429. }
  2430. } else {
  2431. current_pass_length = 0;
  2432. current_fail_length++;
  2433. if (fail_found == FALSE) {
  2434. fail_found = TRUE;
  2435. } else if (pass_found == TRUE) {
  2436. window_found = TRUE;
  2437. break;
  2438. }
  2439. }
  2440. }
  2441. rqfd_average = ((max_start + max_end) >> 1);
  2442. /*------------------------------------------------------------------
  2443. * Make sure we found the valid read passing window. Halt if not
  2444. *-----------------------------------------------------------------*/
  2445. if (window_found == FALSE) {
  2446. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2447. putc('\b');
  2448. putc(slash[loopi++ % 8]);
  2449. /* try again from with a different RQFD start value */
  2450. rqfd_start++;
  2451. goto calibration_loop;
  2452. }
  2453. printf("\nERROR: Cannot determine a common read delay for the "
  2454. "DIMM(s) installed.\n");
  2455. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2456. ppc440sp_sdram_register_dump();
  2457. spd_ddr_init_hang ();
  2458. }
  2459. if (rqfd_average < 0)
  2460. rqfd_average = 0;
  2461. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2462. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2463. mtsdram(SDRAM_RQDC,
  2464. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2465. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2466. blank_string(strlen(str));
  2467. #endif /* CONFIG_DDR_RQDC_FIXED */
  2468. /*
  2469. * Now complete RDSS configuration as mentioned on page 7 of the AMCC
  2470. * PowerPC440SP/SPe DDR2 application note:
  2471. * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
  2472. */
  2473. mfsdram(SDRAM_RTSR, val);
  2474. if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
  2475. mfsdram(SDRAM_RDCC, val);
  2476. if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
  2477. val += 0x40000000;
  2478. mtsdram(SDRAM_RDCC, val);
  2479. }
  2480. }
  2481. mfsdram(SDRAM_DLCR, val);
  2482. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2483. mfsdram(SDRAM_RQDC, val);
  2484. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2485. mfsdram(SDRAM_RFDC, val);
  2486. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2487. mfsdram(SDRAM_RDCC, val);
  2488. debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2489. }
  2490. #else /* calibration test with hardvalues */
  2491. /*-----------------------------------------------------------------------------+
  2492. * DQS_calibration_process.
  2493. *-----------------------------------------------------------------------------*/
  2494. static void test(void)
  2495. {
  2496. unsigned long dimm_num;
  2497. unsigned long ecc_temp;
  2498. unsigned long i, j;
  2499. unsigned long *membase;
  2500. unsigned long bxcf[MAXRANKS];
  2501. unsigned long val;
  2502. char window_found;
  2503. char begin_found[MAXDIMMS];
  2504. char end_found[MAXDIMMS];
  2505. char search_end[MAXDIMMS];
  2506. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2507. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2508. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2509. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2510. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2511. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2512. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2513. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2514. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2515. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2516. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2517. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2518. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2519. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2520. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2521. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2522. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2523. /*------------------------------------------------------------------
  2524. * Test to determine the best read clock delay tuning bits.
  2525. *
  2526. * Before the DDR controller can be used, the read clock delay needs to be
  2527. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2528. * This value cannot be hardcoded into the program because it changes
  2529. * depending on the board's setup and environment.
  2530. * To do this, all delay values are tested to see if they
  2531. * work or not. By doing this, you get groups of fails with groups of
  2532. * passing values. The idea is to find the start and end of a passing
  2533. * window and take the center of it to use as the read clock delay.
  2534. *
  2535. * A failure has to be seen first so that when we hit a pass, we know
  2536. * that it is truely the start of the window. If we get passing values
  2537. * to start off with, we don't know if we are at the start of the window.
  2538. *
  2539. * The code assumes that a failure will always be found.
  2540. * If a failure is not found, there is no easy way to get the middle
  2541. * of the passing window. I guess we can pretty much pick any value
  2542. * but some values will be better than others. Since the lowest speed
  2543. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2544. * from experimentation it is safe to say you will always have a failure.
  2545. *-----------------------------------------------------------------*/
  2546. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2547. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2548. mfsdram(SDRAM_MCOPT1, val);
  2549. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2550. SDRAM_MCOPT1_MCHK_NON);
  2551. window_found = FALSE;
  2552. begin_found[0] = FALSE;
  2553. end_found[0] = FALSE;
  2554. search_end[0] = FALSE;
  2555. begin_found[1] = FALSE;
  2556. end_found[1] = FALSE;
  2557. search_end[1] = FALSE;
  2558. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2559. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2560. /* Banks enabled */
  2561. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2562. /* Bank is enabled */
  2563. membase =
  2564. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2565. /*------------------------------------------------------------------
  2566. * Run the short memory test.
  2567. *-----------------------------------------------------------------*/
  2568. for (i = 0; i < NUMMEMTESTS; i++) {
  2569. for (j = 0; j < NUMMEMWORDS; j++) {
  2570. membase[j] = test[i][j];
  2571. ppcDcbf((u32)&(membase[j]));
  2572. }
  2573. sync();
  2574. for (j = 0; j < NUMMEMWORDS; j++) {
  2575. if (membase[j] != test[i][j]) {
  2576. ppcDcbf((u32)&(membase[j]));
  2577. break;
  2578. }
  2579. ppcDcbf((u32)&(membase[j]));
  2580. }
  2581. sync();
  2582. if (j < NUMMEMWORDS)
  2583. break;
  2584. }
  2585. /*------------------------------------------------------------------
  2586. * See if the rffd value passed.
  2587. *-----------------------------------------------------------------*/
  2588. if (i < NUMMEMTESTS) {
  2589. if ((end_found[dimm_num] == FALSE) &&
  2590. (search_end[dimm_num] == TRUE)) {
  2591. end_found[dimm_num] = TRUE;
  2592. }
  2593. if ((end_found[0] == TRUE) &&
  2594. (end_found[1] == TRUE))
  2595. break;
  2596. } else {
  2597. if (begin_found[dimm_num] == FALSE) {
  2598. begin_found[dimm_num] = TRUE;
  2599. search_end[dimm_num] = TRUE;
  2600. }
  2601. }
  2602. } else {
  2603. begin_found[dimm_num] = TRUE;
  2604. end_found[dimm_num] = TRUE;
  2605. }
  2606. }
  2607. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2608. window_found = TRUE;
  2609. /*------------------------------------------------------------------
  2610. * Make sure we found the valid read passing window. Halt if not
  2611. *-----------------------------------------------------------------*/
  2612. if (window_found == FALSE) {
  2613. printf("ERROR: Cannot determine a common read delay for the "
  2614. "DIMM(s) installed.\n");
  2615. spd_ddr_init_hang ();
  2616. }
  2617. /*------------------------------------------------------------------
  2618. * Restore the ECC variable to what it originally was
  2619. *-----------------------------------------------------------------*/
  2620. mtsdram(SDRAM_MCOPT1,
  2621. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2622. | ecc_temp);
  2623. }
  2624. #endif
  2625. #if defined(DEBUG)
  2626. static void ppc440sp_sdram_register_dump(void)
  2627. {
  2628. unsigned int sdram_reg;
  2629. unsigned int sdram_data;
  2630. unsigned int dcr_data;
  2631. printf("\n Register Dump:\n");
  2632. sdram_reg = SDRAM_MCSTAT;
  2633. mfsdram(sdram_reg, sdram_data);
  2634. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2635. sdram_reg = SDRAM_MCOPT1;
  2636. mfsdram(sdram_reg, sdram_data);
  2637. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2638. sdram_reg = SDRAM_MCOPT2;
  2639. mfsdram(sdram_reg, sdram_data);
  2640. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2641. sdram_reg = SDRAM_MODT0;
  2642. mfsdram(sdram_reg, sdram_data);
  2643. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2644. sdram_reg = SDRAM_MODT1;
  2645. mfsdram(sdram_reg, sdram_data);
  2646. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2647. sdram_reg = SDRAM_MODT2;
  2648. mfsdram(sdram_reg, sdram_data);
  2649. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2650. sdram_reg = SDRAM_MODT3;
  2651. mfsdram(sdram_reg, sdram_data);
  2652. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2653. sdram_reg = SDRAM_CODT;
  2654. mfsdram(sdram_reg, sdram_data);
  2655. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2656. sdram_reg = SDRAM_VVPR;
  2657. mfsdram(sdram_reg, sdram_data);
  2658. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2659. sdram_reg = SDRAM_OPARS;
  2660. mfsdram(sdram_reg, sdram_data);
  2661. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2662. /*
  2663. * OPAR2 is only used as a trigger register.
  2664. * No data is contained in this register, and reading or writing
  2665. * to is can cause bad things to happen (hangs). Just skip it
  2666. * and report NA
  2667. * sdram_reg = SDRAM_OPAR2;
  2668. * mfsdram(sdram_reg, sdram_data);
  2669. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2670. */
  2671. printf(" SDRAM_OPART = N/A ");
  2672. sdram_reg = SDRAM_RTR;
  2673. mfsdram(sdram_reg, sdram_data);
  2674. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2675. sdram_reg = SDRAM_MB0CF;
  2676. mfsdram(sdram_reg, sdram_data);
  2677. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2678. sdram_reg = SDRAM_MB1CF;
  2679. mfsdram(sdram_reg, sdram_data);
  2680. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2681. sdram_reg = SDRAM_MB2CF;
  2682. mfsdram(sdram_reg, sdram_data);
  2683. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2684. sdram_reg = SDRAM_MB3CF;
  2685. mfsdram(sdram_reg, sdram_data);
  2686. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2687. sdram_reg = SDRAM_INITPLR0;
  2688. mfsdram(sdram_reg, sdram_data);
  2689. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2690. sdram_reg = SDRAM_INITPLR1;
  2691. mfsdram(sdram_reg, sdram_data);
  2692. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2693. sdram_reg = SDRAM_INITPLR2;
  2694. mfsdram(sdram_reg, sdram_data);
  2695. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2696. sdram_reg = SDRAM_INITPLR3;
  2697. mfsdram(sdram_reg, sdram_data);
  2698. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2699. sdram_reg = SDRAM_INITPLR4;
  2700. mfsdram(sdram_reg, sdram_data);
  2701. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2702. sdram_reg = SDRAM_INITPLR5;
  2703. mfsdram(sdram_reg, sdram_data);
  2704. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2705. sdram_reg = SDRAM_INITPLR6;
  2706. mfsdram(sdram_reg, sdram_data);
  2707. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2708. sdram_reg = SDRAM_INITPLR7;
  2709. mfsdram(sdram_reg, sdram_data);
  2710. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2711. sdram_reg = SDRAM_INITPLR8;
  2712. mfsdram(sdram_reg, sdram_data);
  2713. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2714. sdram_reg = SDRAM_INITPLR9;
  2715. mfsdram(sdram_reg, sdram_data);
  2716. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2717. sdram_reg = SDRAM_INITPLR10;
  2718. mfsdram(sdram_reg, sdram_data);
  2719. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2720. sdram_reg = SDRAM_INITPLR11;
  2721. mfsdram(sdram_reg, sdram_data);
  2722. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2723. sdram_reg = SDRAM_INITPLR12;
  2724. mfsdram(sdram_reg, sdram_data);
  2725. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2726. sdram_reg = SDRAM_INITPLR13;
  2727. mfsdram(sdram_reg, sdram_data);
  2728. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2729. sdram_reg = SDRAM_INITPLR14;
  2730. mfsdram(sdram_reg, sdram_data);
  2731. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2732. sdram_reg = SDRAM_INITPLR15;
  2733. mfsdram(sdram_reg, sdram_data);
  2734. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2735. sdram_reg = SDRAM_RQDC;
  2736. mfsdram(sdram_reg, sdram_data);
  2737. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2738. sdram_reg = SDRAM_RFDC;
  2739. mfsdram(sdram_reg, sdram_data);
  2740. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2741. sdram_reg = SDRAM_RDCC;
  2742. mfsdram(sdram_reg, sdram_data);
  2743. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2744. sdram_reg = SDRAM_DLCR;
  2745. mfsdram(sdram_reg, sdram_data);
  2746. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2747. sdram_reg = SDRAM_CLKTR;
  2748. mfsdram(sdram_reg, sdram_data);
  2749. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2750. sdram_reg = SDRAM_WRDTR;
  2751. mfsdram(sdram_reg, sdram_data);
  2752. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2753. sdram_reg = SDRAM_SDTR1;
  2754. mfsdram(sdram_reg, sdram_data);
  2755. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2756. sdram_reg = SDRAM_SDTR2;
  2757. mfsdram(sdram_reg, sdram_data);
  2758. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2759. sdram_reg = SDRAM_SDTR3;
  2760. mfsdram(sdram_reg, sdram_data);
  2761. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2762. sdram_reg = SDRAM_MMODE;
  2763. mfsdram(sdram_reg, sdram_data);
  2764. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2765. sdram_reg = SDRAM_MEMODE;
  2766. mfsdram(sdram_reg, sdram_data);
  2767. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2768. sdram_reg = SDRAM_ECCCR;
  2769. mfsdram(sdram_reg, sdram_data);
  2770. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2771. dcr_data = mfdcr(SDRAM_R0BAS);
  2772. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2773. dcr_data = mfdcr(SDRAM_R1BAS);
  2774. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2775. dcr_data = mfdcr(SDRAM_R2BAS);
  2776. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2777. dcr_data = mfdcr(SDRAM_R3BAS);
  2778. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2779. }
  2780. #else
  2781. static void ppc440sp_sdram_register_dump(void)
  2782. {
  2783. }
  2784. #endif
  2785. #endif /* CONFIG_SPD_EEPROM */