clock.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. /*
  2. * (C) Copyright 2007
  3. * Sascha Hauer, Pengutronix
  4. *
  5. * (C) Copyright 2009 Freescale Semiconductor, Inc.
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <asm/io.h>
  27. #include <asm/errno.h>
  28. #include <asm/arch/imx-regs.h>
  29. #include <asm/arch/crm_regs.h>
  30. #include <asm/arch/clock.h>
  31. #include <div64.h>
  32. #include <asm/arch/sys_proto.h>
  33. enum pll_clocks {
  34. PLL1_CLOCK = 0,
  35. PLL2_CLOCK,
  36. PLL3_CLOCK,
  37. PLL4_CLOCK,
  38. PLL_CLOCKS,
  39. };
  40. struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
  41. [PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
  42. [PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
  43. [PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
  44. #ifdef CONFIG_MX53
  45. [PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
  46. #endif
  47. };
  48. #define AHB_CLK_ROOT 133333333
  49. #define SZ_DEC_1M 1000000
  50. #define PLL_PD_MAX 16 /* Actual pd+1 */
  51. #define PLL_MFI_MAX 15
  52. #define PLL_MFI_MIN 5
  53. #define ARM_DIV_MAX 8
  54. #define IPG_DIV_MAX 4
  55. #define AHB_DIV_MAX 8
  56. #define EMI_DIV_MAX 8
  57. #define NFC_DIV_MAX 8
  58. #define MX5_CBCMR 0x00015154
  59. #define MX5_CBCDR 0x02888945
  60. struct fixed_pll_mfd {
  61. u32 ref_clk_hz;
  62. u32 mfd;
  63. };
  64. const struct fixed_pll_mfd fixed_mfd[] = {
  65. {MXC_HCLK, 24 * 16},
  66. };
  67. struct pll_param {
  68. u32 pd;
  69. u32 mfi;
  70. u32 mfn;
  71. u32 mfd;
  72. };
  73. #define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
  74. #define PLL_FREQ_MIN(ref_clk) \
  75. ((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
  76. #define MAX_DDR_CLK 420000000
  77. #define NFC_CLK_MAX 34000000
  78. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
  79. void set_usboh3_clk(void)
  80. {
  81. unsigned int reg;
  82. reg = readl(&mxc_ccm->cscmr1) &
  83. ~MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK;
  84. reg |= 1 << MXC_CCM_CSCMR1_USBOH3_CLK_SEL_OFFSET;
  85. writel(reg, &mxc_ccm->cscmr1);
  86. reg = readl(&mxc_ccm->cscdr1);
  87. reg &= ~MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK;
  88. reg &= ~MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK;
  89. reg |= 4 << MXC_CCM_CSCDR1_USBOH3_CLK_PRED_OFFSET;
  90. reg |= 1 << MXC_CCM_CSCDR1_USBOH3_CLK_PODF_OFFSET;
  91. writel(reg, &mxc_ccm->cscdr1);
  92. }
  93. void enable_usboh3_clk(unsigned char enable)
  94. {
  95. unsigned int reg;
  96. reg = readl(&mxc_ccm->CCGR2);
  97. if (enable)
  98. reg |= 1 << MXC_CCM_CCGR2_CG14_OFFSET;
  99. else
  100. reg &= ~(1 << MXC_CCM_CCGR2_CG14_OFFSET);
  101. writel(reg, &mxc_ccm->CCGR2);
  102. }
  103. #ifdef CONFIG_I2C_MXC
  104. /* i2c_num can be from 0 - 2 */
  105. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  106. {
  107. u32 reg;
  108. u32 mask;
  109. if (i2c_num > 2)
  110. return -EINVAL;
  111. mask = MXC_CCM_CCGR_CG_MASK << ((i2c_num + 9) << 1);
  112. reg = __raw_readl(&mxc_ccm->CCGR1);
  113. if (enable)
  114. reg |= mask;
  115. else
  116. reg &= ~mask;
  117. __raw_writel(reg, &mxc_ccm->CCGR1);
  118. return 0;
  119. }
  120. #endif
  121. void set_usb_phy1_clk(void)
  122. {
  123. unsigned int reg;
  124. reg = readl(&mxc_ccm->cscmr1);
  125. reg &= ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL;
  126. writel(reg, &mxc_ccm->cscmr1);
  127. }
  128. void enable_usb_phy1_clk(unsigned char enable)
  129. {
  130. unsigned int reg;
  131. reg = readl(&mxc_ccm->CCGR4);
  132. if (enable)
  133. reg |= 1 << MXC_CCM_CCGR4_CG5_OFFSET;
  134. else
  135. reg &= ~(1 << MXC_CCM_CCGR4_CG5_OFFSET);
  136. writel(reg, &mxc_ccm->CCGR4);
  137. }
  138. void set_usb_phy2_clk(void)
  139. {
  140. unsigned int reg;
  141. reg = readl(&mxc_ccm->cscmr1);
  142. reg &= ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL;
  143. writel(reg, &mxc_ccm->cscmr1);
  144. }
  145. void enable_usb_phy2_clk(unsigned char enable)
  146. {
  147. unsigned int reg;
  148. reg = readl(&mxc_ccm->CCGR4);
  149. if (enable)
  150. reg |= 1 << MXC_CCM_CCGR4_CG6_OFFSET;
  151. else
  152. reg &= ~(1 << MXC_CCM_CCGR4_CG6_OFFSET);
  153. writel(reg, &mxc_ccm->CCGR4);
  154. }
  155. /*
  156. * Calculate the frequency of PLLn.
  157. */
  158. static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
  159. {
  160. uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
  161. uint64_t refclk, temp;
  162. int32_t mfn_abs;
  163. ctrl = readl(&pll->ctrl);
  164. if (ctrl & MXC_DPLLC_CTL_HFSM) {
  165. mfn = __raw_readl(&pll->hfs_mfn);
  166. mfd = __raw_readl(&pll->hfs_mfd);
  167. op = __raw_readl(&pll->hfs_op);
  168. } else {
  169. mfn = __raw_readl(&pll->mfn);
  170. mfd = __raw_readl(&pll->mfd);
  171. op = __raw_readl(&pll->op);
  172. }
  173. mfd &= MXC_DPLLC_MFD_MFD_MASK;
  174. mfn &= MXC_DPLLC_MFN_MFN_MASK;
  175. pdf = op & MXC_DPLLC_OP_PDF_MASK;
  176. mfi = (op & MXC_DPLLC_OP_MFI_MASK) >> MXC_DPLLC_OP_MFI_OFFSET;
  177. /* 21.2.3 */
  178. if (mfi < 5)
  179. mfi = 5;
  180. /* Sign extend */
  181. if (mfn >= 0x04000000) {
  182. mfn |= 0xfc000000;
  183. mfn_abs = -mfn;
  184. } else
  185. mfn_abs = mfn;
  186. refclk = infreq * 2;
  187. if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
  188. refclk *= 2;
  189. do_div(refclk, pdf + 1);
  190. temp = refclk * mfn_abs;
  191. do_div(temp, mfd + 1);
  192. ret = refclk * mfi;
  193. if ((int)mfn < 0)
  194. ret -= temp;
  195. else
  196. ret += temp;
  197. return ret;
  198. }
  199. /*
  200. * Get mcu main rate
  201. */
  202. u32 get_mcu_main_clk(void)
  203. {
  204. u32 reg, freq;
  205. reg = (__raw_readl(&mxc_ccm->cacrr) & MXC_CCM_CACRR_ARM_PODF_MASK) >>
  206. MXC_CCM_CACRR_ARM_PODF_OFFSET;
  207. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  208. return freq / (reg + 1);
  209. }
  210. /*
  211. * Get the rate of peripheral's root clock.
  212. */
  213. u32 get_periph_clk(void)
  214. {
  215. u32 reg;
  216. reg = __raw_readl(&mxc_ccm->cbcdr);
  217. if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
  218. return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  219. reg = __raw_readl(&mxc_ccm->cbcmr);
  220. switch ((reg & MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >>
  221. MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
  222. case 0:
  223. return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  224. case 1:
  225. return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  226. default:
  227. return 0;
  228. }
  229. /* NOTREACHED */
  230. }
  231. /*
  232. * Get the rate of ipg clock.
  233. */
  234. static u32 get_ipg_clk(void)
  235. {
  236. uint32_t freq, reg, div;
  237. freq = get_ahb_clk();
  238. reg = __raw_readl(&mxc_ccm->cbcdr);
  239. div = ((reg & MXC_CCM_CBCDR_IPG_PODF_MASK) >>
  240. MXC_CCM_CBCDR_IPG_PODF_OFFSET) + 1;
  241. return freq / div;
  242. }
  243. /*
  244. * Get the rate of ipg_per clock.
  245. */
  246. static u32 get_ipg_per_clk(void)
  247. {
  248. u32 pred1, pred2, podf;
  249. if (__raw_readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
  250. return get_ipg_clk();
  251. /* Fixme: not handle what about lpm*/
  252. podf = __raw_readl(&mxc_ccm->cbcdr);
  253. pred1 = (podf & MXC_CCM_CBCDR_PERCLK_PRED1_MASK) >>
  254. MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET;
  255. pred2 = (podf & MXC_CCM_CBCDR_PERCLK_PRED2_MASK) >>
  256. MXC_CCM_CBCDR_PERCLK_PRED2_OFFSET;
  257. podf = (podf & MXC_CCM_CBCDR_PERCLK_PODF_MASK) >>
  258. MXC_CCM_CBCDR_PERCLK_PODF_OFFSET;
  259. return get_periph_clk() / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
  260. }
  261. /*
  262. * Get the rate of uart clk.
  263. */
  264. static u32 get_uart_clk(void)
  265. {
  266. unsigned int freq, reg, pred, podf;
  267. reg = __raw_readl(&mxc_ccm->cscmr1);
  268. switch ((reg & MXC_CCM_CSCMR1_UART_CLK_SEL_MASK) >>
  269. MXC_CCM_CSCMR1_UART_CLK_SEL_OFFSET) {
  270. case 0x0:
  271. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  272. break;
  273. case 0x1:
  274. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  275. break;
  276. case 0x2:
  277. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  278. break;
  279. default:
  280. return 66500000;
  281. }
  282. reg = __raw_readl(&mxc_ccm->cscdr1);
  283. pred = (reg & MXC_CCM_CSCDR1_UART_CLK_PRED_MASK) >>
  284. MXC_CCM_CSCDR1_UART_CLK_PRED_OFFSET;
  285. podf = (reg & MXC_CCM_CSCDR1_UART_CLK_PODF_MASK) >>
  286. MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
  287. freq /= (pred + 1) * (podf + 1);
  288. return freq;
  289. }
  290. /*
  291. * This function returns the low power audio clock.
  292. */
  293. static u32 get_lp_apm(void)
  294. {
  295. u32 ret_val = 0;
  296. u32 ccsr = __raw_readl(&mxc_ccm->ccsr);
  297. if (((ccsr >> 9) & 1) == 0)
  298. ret_val = MXC_HCLK;
  299. else
  300. ret_val = MXC_CLK32 * 1024;
  301. return ret_val;
  302. }
  303. /*
  304. * get cspi clock rate.
  305. */
  306. static u32 imx_get_cspiclk(void)
  307. {
  308. u32 ret_val = 0, pdf, pre_pdf, clk_sel;
  309. u32 cscmr1 = __raw_readl(&mxc_ccm->cscmr1);
  310. u32 cscdr2 = __raw_readl(&mxc_ccm->cscdr2);
  311. pre_pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PRED_MASK) \
  312. >> MXC_CCM_CSCDR2_CSPI_CLK_PRED_OFFSET;
  313. pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PODF_MASK) \
  314. >> MXC_CCM_CSCDR2_CSPI_CLK_PODF_OFFSET;
  315. clk_sel = (cscmr1 & MXC_CCM_CSCMR1_CSPI_CLK_SEL_MASK) \
  316. >> MXC_CCM_CSCMR1_CSPI_CLK_SEL_OFFSET;
  317. switch (clk_sel) {
  318. case 0:
  319. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK) /
  320. ((pre_pdf + 1) * (pdf + 1));
  321. break;
  322. case 1:
  323. ret_val = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK) /
  324. ((pre_pdf + 1) * (pdf + 1));
  325. break;
  326. case 2:
  327. ret_val = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK) /
  328. ((pre_pdf + 1) * (pdf + 1));
  329. break;
  330. default:
  331. ret_val = get_lp_apm() / ((pre_pdf + 1) * (pdf + 1));
  332. break;
  333. }
  334. return ret_val;
  335. }
  336. static u32 get_axi_a_clk(void)
  337. {
  338. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  339. u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_A_PODF_MASK) \
  340. >> MXC_CCM_CBCDR_AXI_A_PODF_OFFSET;
  341. return get_periph_clk() / (pdf + 1);
  342. }
  343. static u32 get_axi_b_clk(void)
  344. {
  345. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  346. u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_B_PODF_MASK) \
  347. >> MXC_CCM_CBCDR_AXI_B_PODF_OFFSET;
  348. return get_periph_clk() / (pdf + 1);
  349. }
  350. static u32 get_emi_slow_clk(void)
  351. {
  352. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  353. u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
  354. u32 pdf = (cbcdr & MXC_CCM_CBCDR_EMI_PODF_MASK) \
  355. >> MXC_CCM_CBCDR_EMI_PODF_OFFSET;
  356. if (emi_clk_sel)
  357. return get_ahb_clk() / (pdf + 1);
  358. return get_periph_clk() / (pdf + 1);
  359. }
  360. static u32 get_ddr_clk(void)
  361. {
  362. u32 ret_val = 0;
  363. u32 cbcmr = __raw_readl(&mxc_ccm->cbcmr);
  364. u32 ddr_clk_sel = (cbcmr & MXC_CCM_CBCMR_DDR_CLK_SEL_MASK) \
  365. >> MXC_CCM_CBCMR_DDR_CLK_SEL_OFFSET;
  366. #ifdef CONFIG_MX51
  367. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  368. if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
  369. u32 ddr_clk_podf = (cbcdr & MXC_CCM_CBCDR_DDR_PODF_MASK) >> \
  370. MXC_CCM_CBCDR_DDR_PODF_OFFSET;
  371. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  372. ret_val /= ddr_clk_podf + 1;
  373. return ret_val;
  374. }
  375. #endif
  376. switch (ddr_clk_sel) {
  377. case 0:
  378. ret_val = get_axi_a_clk();
  379. break;
  380. case 1:
  381. ret_val = get_axi_b_clk();
  382. break;
  383. case 2:
  384. ret_val = get_emi_slow_clk();
  385. break;
  386. case 3:
  387. ret_val = get_ahb_clk();
  388. break;
  389. default:
  390. break;
  391. }
  392. return ret_val;
  393. }
  394. /*
  395. * The API of get mxc clocks.
  396. */
  397. unsigned int mxc_get_clock(enum mxc_clock clk)
  398. {
  399. switch (clk) {
  400. case MXC_ARM_CLK:
  401. return get_mcu_main_clk();
  402. case MXC_AHB_CLK:
  403. return get_ahb_clk();
  404. case MXC_IPG_CLK:
  405. return get_ipg_clk();
  406. case MXC_IPG_PERCLK:
  407. case MXC_I2C_CLK:
  408. return get_ipg_per_clk();
  409. case MXC_UART_CLK:
  410. return get_uart_clk();
  411. case MXC_CSPI_CLK:
  412. return imx_get_cspiclk();
  413. case MXC_FEC_CLK:
  414. return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  415. case MXC_SATA_CLK:
  416. return get_ahb_clk();
  417. case MXC_DDR_CLK:
  418. return get_ddr_clk();
  419. default:
  420. break;
  421. }
  422. return -EINVAL;
  423. }
  424. u32 imx_get_uartclk(void)
  425. {
  426. return get_uart_clk();
  427. }
  428. u32 imx_get_fecclk(void)
  429. {
  430. return mxc_get_clock(MXC_IPG_CLK);
  431. }
  432. static int gcd(int m, int n)
  433. {
  434. int t;
  435. while (m > 0) {
  436. if (n > m) {
  437. t = m;
  438. m = n;
  439. n = t;
  440. } /* swap */
  441. m -= n;
  442. }
  443. return n;
  444. }
  445. /*
  446. * This is to calculate various parameters based on reference clock and
  447. * targeted clock based on the equation:
  448. * t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
  449. * This calculation is based on a fixed MFD value for simplicity.
  450. */
  451. static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
  452. {
  453. u64 pd, mfi = 1, mfn, mfd, t1;
  454. u32 n_target = target;
  455. u32 n_ref = ref, i;
  456. /*
  457. * Make sure targeted freq is in the valid range.
  458. * Otherwise the following calculation might be wrong!!!
  459. */
  460. if (n_target < PLL_FREQ_MIN(ref) ||
  461. n_target > PLL_FREQ_MAX(ref)) {
  462. printf("Targeted peripheral clock should be"
  463. "within [%d - %d]\n",
  464. PLL_FREQ_MIN(ref) / SZ_DEC_1M,
  465. PLL_FREQ_MAX(ref) / SZ_DEC_1M);
  466. return -EINVAL;
  467. }
  468. for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
  469. if (fixed_mfd[i].ref_clk_hz == ref) {
  470. mfd = fixed_mfd[i].mfd;
  471. break;
  472. }
  473. }
  474. if (i == ARRAY_SIZE(fixed_mfd))
  475. return -EINVAL;
  476. /* Use n_target and n_ref to avoid overflow */
  477. for (pd = 1; pd <= PLL_PD_MAX; pd++) {
  478. t1 = n_target * pd;
  479. do_div(t1, (4 * n_ref));
  480. mfi = t1;
  481. if (mfi > PLL_MFI_MAX)
  482. return -EINVAL;
  483. else if (mfi < 5)
  484. continue;
  485. break;
  486. }
  487. /*
  488. * Now got pd and mfi already
  489. *
  490. * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
  491. */
  492. t1 = n_target * pd;
  493. do_div(t1, 4);
  494. t1 -= n_ref * mfi;
  495. t1 *= mfd;
  496. do_div(t1, n_ref);
  497. mfn = t1;
  498. debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
  499. ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
  500. i = 1;
  501. if (mfn != 0)
  502. i = gcd(mfd, mfn);
  503. pll->pd = (u32)pd;
  504. pll->mfi = (u32)mfi;
  505. do_div(mfn, i);
  506. pll->mfn = (u32)mfn;
  507. do_div(mfd, i);
  508. pll->mfd = (u32)mfd;
  509. return 0;
  510. }
  511. #define calc_div(tgt_clk, src_clk, limit) ({ \
  512. u32 v = 0; \
  513. if (((src_clk) % (tgt_clk)) <= 100) \
  514. v = (src_clk) / (tgt_clk); \
  515. else \
  516. v = ((src_clk) / (tgt_clk)) + 1;\
  517. if (v > limit) \
  518. v = limit; \
  519. (v - 1); \
  520. })
  521. #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
  522. { \
  523. __raw_writel(0x1232, &pll->ctrl); \
  524. __raw_writel(0x2, &pll->config); \
  525. __raw_writel((((pd) - 1) << 0) | ((fi) << 4), \
  526. &pll->op); \
  527. __raw_writel(fn, &(pll->mfn)); \
  528. __raw_writel((fd) - 1, &pll->mfd); \
  529. __raw_writel((((pd) - 1) << 0) | ((fi) << 4), \
  530. &pll->hfs_op); \
  531. __raw_writel(fn, &pll->hfs_mfn); \
  532. __raw_writel((fd) - 1, &pll->hfs_mfd); \
  533. __raw_writel(0x1232, &pll->ctrl); \
  534. while (!__raw_readl(&pll->ctrl) & 0x1) \
  535. ;\
  536. }
  537. static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
  538. {
  539. u32 ccsr = __raw_readl(&mxc_ccm->ccsr);
  540. struct mxc_pll_reg *pll = mxc_plls[index];
  541. switch (index) {
  542. case PLL1_CLOCK:
  543. /* Switch ARM to PLL2 clock */
  544. __raw_writel(ccsr | 0x4, &mxc_ccm->ccsr);
  545. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  546. pll_param->mfi, pll_param->mfn,
  547. pll_param->mfd);
  548. /* Switch back */
  549. __raw_writel(ccsr & ~0x4, &mxc_ccm->ccsr);
  550. break;
  551. case PLL2_CLOCK:
  552. /* Switch to pll2 bypass clock */
  553. __raw_writel(ccsr | 0x2, &mxc_ccm->ccsr);
  554. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  555. pll_param->mfi, pll_param->mfn,
  556. pll_param->mfd);
  557. /* Switch back */
  558. __raw_writel(ccsr & ~0x2, &mxc_ccm->ccsr);
  559. break;
  560. case PLL3_CLOCK:
  561. /* Switch to pll3 bypass clock */
  562. __raw_writel(ccsr | 0x1, &mxc_ccm->ccsr);
  563. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  564. pll_param->mfi, pll_param->mfn,
  565. pll_param->mfd);
  566. /* Switch back */
  567. __raw_writel(ccsr & ~0x1, &mxc_ccm->ccsr);
  568. break;
  569. case PLL4_CLOCK:
  570. /* Switch to pll4 bypass clock */
  571. __raw_writel(ccsr | 0x20, &mxc_ccm->ccsr);
  572. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  573. pll_param->mfi, pll_param->mfn,
  574. pll_param->mfd);
  575. /* Switch back */
  576. __raw_writel(ccsr & ~0x20, &mxc_ccm->ccsr);
  577. break;
  578. default:
  579. return -EINVAL;
  580. }
  581. return 0;
  582. }
  583. /* Config CPU clock */
  584. static int config_core_clk(u32 ref, u32 freq)
  585. {
  586. int ret = 0;
  587. struct pll_param pll_param;
  588. memset(&pll_param, 0, sizeof(struct pll_param));
  589. /* The case that periph uses PLL1 is not considered here */
  590. ret = calc_pll_params(ref, freq, &pll_param);
  591. if (ret != 0) {
  592. printf("Error:Can't find pll parameters: %d\n", ret);
  593. return ret;
  594. }
  595. return config_pll_clk(PLL1_CLOCK, &pll_param);
  596. }
  597. static int config_nfc_clk(u32 nfc_clk)
  598. {
  599. u32 reg;
  600. u32 parent_rate = get_emi_slow_clk();
  601. u32 div = parent_rate / nfc_clk;
  602. if (nfc_clk <= 0)
  603. return -EINVAL;
  604. if (div == 0)
  605. div++;
  606. if (parent_rate / div > NFC_CLK_MAX)
  607. div++;
  608. reg = __raw_readl(&mxc_ccm->cbcdr);
  609. reg &= ~MXC_CCM_CBCDR_NFC_PODF_MASK;
  610. reg |= (div - 1) << MXC_CCM_CBCDR_NFC_PODF_OFFSET;
  611. __raw_writel(reg, &mxc_ccm->cbcdr);
  612. while (__raw_readl(&mxc_ccm->cdhipr) != 0)
  613. ;
  614. return 0;
  615. }
  616. /* Config main_bus_clock for periphs */
  617. static int config_periph_clk(u32 ref, u32 freq)
  618. {
  619. int ret = 0;
  620. struct pll_param pll_param;
  621. memset(&pll_param, 0, sizeof(struct pll_param));
  622. if (__raw_readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  623. ret = calc_pll_params(ref, freq, &pll_param);
  624. if (ret != 0) {
  625. printf("Error:Can't find pll parameters: %d\n",
  626. ret);
  627. return ret;
  628. }
  629. switch ((__raw_readl(&mxc_ccm->cbcmr) & \
  630. MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >> \
  631. MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
  632. case 0:
  633. return config_pll_clk(PLL1_CLOCK, &pll_param);
  634. break;
  635. case 1:
  636. return config_pll_clk(PLL3_CLOCK, &pll_param);
  637. break;
  638. default:
  639. return -EINVAL;
  640. }
  641. }
  642. return 0;
  643. }
  644. static int config_ddr_clk(u32 emi_clk)
  645. {
  646. u32 clk_src;
  647. s32 shift = 0, clk_sel, div = 1;
  648. u32 cbcmr = __raw_readl(&mxc_ccm->cbcmr);
  649. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  650. if (emi_clk > MAX_DDR_CLK) {
  651. printf("Warning:DDR clock should not exceed %d MHz\n",
  652. MAX_DDR_CLK / SZ_DEC_1M);
  653. emi_clk = MAX_DDR_CLK;
  654. }
  655. clk_src = get_periph_clk();
  656. /* Find DDR clock input */
  657. clk_sel = (cbcmr >> 10) & 0x3;
  658. switch (clk_sel) {
  659. case 0:
  660. shift = 16;
  661. break;
  662. case 1:
  663. shift = 19;
  664. break;
  665. case 2:
  666. shift = 22;
  667. break;
  668. case 3:
  669. shift = 10;
  670. break;
  671. default:
  672. return -EINVAL;
  673. }
  674. if ((clk_src % emi_clk) < 10000000)
  675. div = clk_src / emi_clk;
  676. else
  677. div = (clk_src / emi_clk) + 1;
  678. if (div > 8)
  679. div = 8;
  680. cbcdr = cbcdr & ~(0x7 << shift);
  681. cbcdr |= ((div - 1) << shift);
  682. __raw_writel(cbcdr, &mxc_ccm->cbcdr);
  683. while (__raw_readl(&mxc_ccm->cdhipr) != 0)
  684. ;
  685. __raw_writel(0x0, &mxc_ccm->ccdr);
  686. return 0;
  687. }
  688. /*
  689. * This function assumes the expected core clock has to be changed by
  690. * modifying the PLL. This is NOT true always but for most of the times,
  691. * it is. So it assumes the PLL output freq is the same as the expected
  692. * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
  693. * In the latter case, it will try to increase the presc value until
  694. * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
  695. * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
  696. * on the targeted PLL and reference input clock to the PLL. Lastly,
  697. * it sets the register based on these values along with the dividers.
  698. * Note 1) There is no value checking for the passed-in divider values
  699. * so the caller has to make sure those values are sensible.
  700. * 2) Also adjust the NFC divider such that the NFC clock doesn't
  701. * exceed NFC_CLK_MAX.
  702. * 3) IPU HSP clock is independent of AHB clock. Even it can go up to
  703. * 177MHz for higher voltage, this function fixes the max to 133MHz.
  704. * 4) This function should not have allowed diag_printf() calls since
  705. * the serial driver has been stoped. But leave then here to allow
  706. * easy debugging by NOT calling the cyg_hal_plf_serial_stop().
  707. */
  708. int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
  709. {
  710. freq *= SZ_DEC_1M;
  711. switch (clk) {
  712. case MXC_ARM_CLK:
  713. if (config_core_clk(ref, freq))
  714. return -EINVAL;
  715. break;
  716. case MXC_PERIPH_CLK:
  717. if (config_periph_clk(ref, freq))
  718. return -EINVAL;
  719. break;
  720. case MXC_DDR_CLK:
  721. if (config_ddr_clk(freq))
  722. return -EINVAL;
  723. break;
  724. case MXC_NFC_CLK:
  725. if (config_nfc_clk(freq))
  726. return -EINVAL;
  727. break;
  728. default:
  729. printf("Warning:Unsupported or invalid clock type\n");
  730. }
  731. return 0;
  732. }
  733. #ifdef CONFIG_MX53
  734. /*
  735. * The clock for the external interface can be set to use internal clock
  736. * if fuse bank 4, row 3, bit 2 is set.
  737. * This is an undocumented feature and it was confirmed by Freescale's support:
  738. * Fuses (but not pins) may be used to configure SATA clocks.
  739. * Particularly the i.MX53 Fuse_Map contains the next information
  740. * about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
  741. * '00' - 100MHz (External)
  742. * '01' - 50MHz (External)
  743. * '10' - 120MHz, internal (USB PHY)
  744. * '11' - Reserved
  745. */
  746. void mxc_set_sata_internal_clock(void)
  747. {
  748. u32 *tmp_base =
  749. (u32 *)(IIM_BASE_ADDR + 0x180c);
  750. set_usb_phy1_clk();
  751. writel((readl(tmp_base) & (~0x6)) | 0x4, tmp_base);
  752. }
  753. #endif
  754. /*
  755. * Dump some core clockes.
  756. */
  757. int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  758. {
  759. u32 freq;
  760. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  761. printf("PLL1 %8d MHz\n", freq / 1000000);
  762. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  763. printf("PLL2 %8d MHz\n", freq / 1000000);
  764. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  765. printf("PLL3 %8d MHz\n", freq / 1000000);
  766. #ifdef CONFIG_MX53
  767. freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
  768. printf("PLL4 %8d MHz\n", freq / 1000000);
  769. #endif
  770. printf("\n");
  771. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  772. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  773. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  774. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  775. return 0;
  776. }
  777. /***************************************************/
  778. U_BOOT_CMD(
  779. clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
  780. "display clocks",
  781. ""
  782. );