lc_common_dimm_params.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. /*
  2. * Copyright 2008-2012 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * Version 2 as published by the Free Software Foundation.
  7. */
  8. #include <common.h>
  9. #include <asm/fsl_ddr_sdram.h>
  10. #include "ddr.h"
  11. unsigned int
  12. compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
  13. common_timing_params_t *outpdimm,
  14. unsigned int number_of_dimms)
  15. {
  16. unsigned int i;
  17. unsigned int tAAmin_ps = 0;
  18. unsigned int tCKmin_X_ps = 0;
  19. unsigned int common_caslat;
  20. unsigned int caslat_actual;
  21. unsigned int retry = 16;
  22. unsigned int tmp;
  23. const unsigned int mclk_ps = get_memory_clk_period_ps();
  24. /* compute the common CAS latency supported between slots */
  25. tmp = dimm_params[0].caslat_X;
  26. for (i = 1; i < number_of_dimms; i++) {
  27. if (dimm_params[i].n_ranks)
  28. tmp &= dimm_params[i].caslat_X;
  29. }
  30. common_caslat = tmp;
  31. /* compute the max tAAmin tCKmin between slots */
  32. for (i = 0; i < number_of_dimms; i++) {
  33. tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
  34. tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
  35. }
  36. /* validate if the memory clk is in the range of dimms */
  37. if (mclk_ps < tCKmin_X_ps) {
  38. printf("DDR clock (MCLK cycle %u ps) is faster than "
  39. "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
  40. mclk_ps, tCKmin_X_ps);
  41. return 1;
  42. }
  43. /* determine the acutal cas latency */
  44. caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
  45. /* check if the dimms support the CAS latency */
  46. while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
  47. caslat_actual++;
  48. retry--;
  49. }
  50. /* once the caculation of caslat_actual is completed
  51. * we must verify that this CAS latency value does not
  52. * exceed tAAmax, which is 20 ns for all DDR3 speed grades
  53. */
  54. if (caslat_actual * mclk_ps > 20000) {
  55. printf("The choosen cas latency %d is too large\n",
  56. caslat_actual);
  57. return 1;
  58. }
  59. outpdimm->lowest_common_SPD_caslat = caslat_actual;
  60. return 0;
  61. }
  62. /*
  63. * compute_lowest_common_dimm_parameters()
  64. *
  65. * Determine the worst-case DIMM timing parameters from the set of DIMMs
  66. * whose parameters have been computed into the array pointed to
  67. * by dimm_params.
  68. */
  69. unsigned int
  70. compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
  71. common_timing_params_t *outpdimm,
  72. unsigned int number_of_dimms)
  73. {
  74. unsigned int i, j;
  75. unsigned int tCKmin_X_ps = 0;
  76. unsigned int tCKmax_ps = 0xFFFFFFFF;
  77. unsigned int tCKmax_max_ps = 0;
  78. unsigned int tRCD_ps = 0;
  79. unsigned int tRP_ps = 0;
  80. unsigned int tRAS_ps = 0;
  81. unsigned int tWR_ps = 0;
  82. unsigned int tWTR_ps = 0;
  83. unsigned int tRFC_ps = 0;
  84. unsigned int tRRD_ps = 0;
  85. unsigned int tRC_ps = 0;
  86. unsigned int refresh_rate_ps = 0;
  87. unsigned int tIS_ps = 0;
  88. unsigned int tIH_ps = 0;
  89. unsigned int tDS_ps = 0;
  90. unsigned int tDH_ps = 0;
  91. unsigned int tRTP_ps = 0;
  92. unsigned int tDQSQ_max_ps = 0;
  93. unsigned int tQHS_ps = 0;
  94. unsigned int temp1, temp2;
  95. unsigned int additive_latency = 0;
  96. #if !defined(CONFIG_FSL_DDR3)
  97. const unsigned int mclk_ps = get_memory_clk_period_ps();
  98. unsigned int lowest_good_caslat;
  99. unsigned int not_ok;
  100. debug("using mclk_ps = %u\n", mclk_ps);
  101. #endif
  102. temp1 = 0;
  103. for (i = 0; i < number_of_dimms; i++) {
  104. /*
  105. * If there are no ranks on this DIMM,
  106. * it probably doesn't exist, so skip it.
  107. */
  108. if (dimm_params[i].n_ranks == 0) {
  109. temp1++;
  110. continue;
  111. }
  112. if (dimm_params[i].n_ranks == 4 && i != 0) {
  113. printf("Found Quad-rank DIMM in wrong bank, ignored."
  114. " Software may not run as expected.\n");
  115. temp1++;
  116. continue;
  117. }
  118. if (dimm_params[i].n_ranks == 4 && \
  119. CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
  120. printf("Found Quad-rank DIMM, not able to support.");
  121. temp1++;
  122. continue;
  123. }
  124. /*
  125. * Find minimum tCKmax_ps to find fastest slow speed,
  126. * i.e., this is the slowest the whole system can go.
  127. */
  128. tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
  129. /* Either find maximum value to determine slowest
  130. * speed, delay, time, period, etc */
  131. tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
  132. tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
  133. tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
  134. tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
  135. tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
  136. tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
  137. tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
  138. tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
  139. tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
  140. tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
  141. tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
  142. tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
  143. tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
  144. tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
  145. tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
  146. tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
  147. refresh_rate_ps = max(refresh_rate_ps,
  148. dimm_params[i].refresh_rate_ps);
  149. /*
  150. * Find maximum tDQSQ_max_ps to find slowest.
  151. *
  152. * FIXME: is finding the slowest value the correct
  153. * strategy for this parameter?
  154. */
  155. tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
  156. }
  157. outpdimm->ndimms_present = number_of_dimms - temp1;
  158. if (temp1 == number_of_dimms) {
  159. debug("no dimms this memory controller\n");
  160. return 0;
  161. }
  162. outpdimm->tCKmin_X_ps = tCKmin_X_ps;
  163. outpdimm->tCKmax_ps = tCKmax_ps;
  164. outpdimm->tCKmax_max_ps = tCKmax_max_ps;
  165. outpdimm->tRCD_ps = tRCD_ps;
  166. outpdimm->tRP_ps = tRP_ps;
  167. outpdimm->tRAS_ps = tRAS_ps;
  168. outpdimm->tWR_ps = tWR_ps;
  169. outpdimm->tWTR_ps = tWTR_ps;
  170. outpdimm->tRFC_ps = tRFC_ps;
  171. outpdimm->tRRD_ps = tRRD_ps;
  172. outpdimm->tRC_ps = tRC_ps;
  173. outpdimm->refresh_rate_ps = refresh_rate_ps;
  174. outpdimm->tIS_ps = tIS_ps;
  175. outpdimm->tIH_ps = tIH_ps;
  176. outpdimm->tDS_ps = tDS_ps;
  177. outpdimm->tDH_ps = tDH_ps;
  178. outpdimm->tRTP_ps = tRTP_ps;
  179. outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
  180. outpdimm->tQHS_ps = tQHS_ps;
  181. /* Determine common burst length for all DIMMs. */
  182. temp1 = 0xff;
  183. for (i = 0; i < number_of_dimms; i++) {
  184. if (dimm_params[i].n_ranks) {
  185. temp1 &= dimm_params[i].burst_lengths_bitmask;
  186. }
  187. }
  188. outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
  189. /* Determine if all DIMMs registered buffered. */
  190. temp1 = temp2 = 0;
  191. for (i = 0; i < number_of_dimms; i++) {
  192. if (dimm_params[i].n_ranks) {
  193. if (dimm_params[i].registered_dimm) {
  194. temp1 = 1;
  195. printf("Detected RDIMM %s\n",
  196. dimm_params[i].mpart);
  197. } else {
  198. temp2 = 1;
  199. printf("Detected UDIMM %s\n",
  200. dimm_params[i].mpart);
  201. }
  202. }
  203. }
  204. outpdimm->all_DIMMs_registered = 0;
  205. outpdimm->all_DIMMs_unbuffered = 0;
  206. if (temp1 && !temp2) {
  207. outpdimm->all_DIMMs_registered = 1;
  208. } else if (!temp1 && temp2) {
  209. outpdimm->all_DIMMs_unbuffered = 1;
  210. } else {
  211. printf("ERROR: Mix of registered buffered and unbuffered "
  212. "DIMMs detected!\n");
  213. }
  214. temp1 = 0;
  215. if (outpdimm->all_DIMMs_registered)
  216. for (j = 0; j < 16; j++) {
  217. outpdimm->rcw[j] = dimm_params[0].rcw[j];
  218. for (i = 1; i < number_of_dimms; i++)
  219. if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
  220. temp1 = 1;
  221. break;
  222. }
  223. }
  224. if (temp1 != 0)
  225. printf("ERROR: Mix different RDIMM detected!\n");
  226. #if defined(CONFIG_FSL_DDR3)
  227. if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
  228. return 1;
  229. #else
  230. /*
  231. * Compute a CAS latency suitable for all DIMMs
  232. *
  233. * Strategy for SPD-defined latencies: compute only
  234. * CAS latency defined by all DIMMs.
  235. */
  236. /*
  237. * Step 1: find CAS latency common to all DIMMs using bitwise
  238. * operation.
  239. */
  240. temp1 = 0xFF;
  241. for (i = 0; i < number_of_dimms; i++) {
  242. if (dimm_params[i].n_ranks) {
  243. temp2 = 0;
  244. temp2 |= 1 << dimm_params[i].caslat_X;
  245. temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
  246. temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
  247. /*
  248. * FIXME: If there was no entry for X-2 (X-1) in
  249. * the SPD, then caslat_X_minus_2
  250. * (caslat_X_minus_1) contains either 255 or
  251. * 0xFFFFFFFF because that's what the glorious
  252. * __ilog2 function returns for an input of 0.
  253. * On 32-bit PowerPC, left shift counts with bit
  254. * 26 set (that the value of 255 or 0xFFFFFFFF
  255. * will have), cause the destination register to
  256. * be 0. That is why this works.
  257. */
  258. temp1 &= temp2;
  259. }
  260. }
  261. /*
  262. * Step 2: check each common CAS latency against tCK of each
  263. * DIMM's SPD.
  264. */
  265. lowest_good_caslat = 0;
  266. temp2 = 0;
  267. while (temp1) {
  268. not_ok = 0;
  269. temp2 = __ilog2(temp1);
  270. debug("checking common caslat = %u\n", temp2);
  271. /* Check if this CAS latency will work on all DIMMs at tCK. */
  272. for (i = 0; i < number_of_dimms; i++) {
  273. if (!dimm_params[i].n_ranks) {
  274. continue;
  275. }
  276. if (dimm_params[i].caslat_X == temp2) {
  277. if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
  278. debug("CL = %u ok on DIMM %u at tCK=%u"
  279. " ps with its tCKmin_X_ps of %u\n",
  280. temp2, i, mclk_ps,
  281. dimm_params[i].tCKmin_X_ps);
  282. continue;
  283. } else {
  284. not_ok++;
  285. }
  286. }
  287. if (dimm_params[i].caslat_X_minus_1 == temp2) {
  288. unsigned int tCKmin_X_minus_1_ps
  289. = dimm_params[i].tCKmin_X_minus_1_ps;
  290. if (mclk_ps >= tCKmin_X_minus_1_ps) {
  291. debug("CL = %u ok on DIMM %u at "
  292. "tCK=%u ps with its "
  293. "tCKmin_X_minus_1_ps of %u\n",
  294. temp2, i, mclk_ps,
  295. tCKmin_X_minus_1_ps);
  296. continue;
  297. } else {
  298. not_ok++;
  299. }
  300. }
  301. if (dimm_params[i].caslat_X_minus_2 == temp2) {
  302. unsigned int tCKmin_X_minus_2_ps
  303. = dimm_params[i].tCKmin_X_minus_2_ps;
  304. if (mclk_ps >= tCKmin_X_minus_2_ps) {
  305. debug("CL = %u ok on DIMM %u at "
  306. "tCK=%u ps with its "
  307. "tCKmin_X_minus_2_ps of %u\n",
  308. temp2, i, mclk_ps,
  309. tCKmin_X_minus_2_ps);
  310. continue;
  311. } else {
  312. not_ok++;
  313. }
  314. }
  315. }
  316. if (!not_ok) {
  317. lowest_good_caslat = temp2;
  318. }
  319. temp1 &= ~(1 << temp2);
  320. }
  321. debug("lowest common SPD-defined CAS latency = %u\n",
  322. lowest_good_caslat);
  323. outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
  324. /*
  325. * Compute a common 'de-rated' CAS latency.
  326. *
  327. * The strategy here is to find the *highest* dereated cas latency
  328. * with the assumption that all of the DIMMs will support a dereated
  329. * CAS latency higher than or equal to their lowest dereated value.
  330. */
  331. temp1 = 0;
  332. for (i = 0; i < number_of_dimms; i++) {
  333. temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
  334. }
  335. outpdimm->highest_common_derated_caslat = temp1;
  336. debug("highest common dereated CAS latency = %u\n", temp1);
  337. #endif /* #if defined(CONFIG_FSL_DDR3) */
  338. /* Determine if all DIMMs ECC capable. */
  339. temp1 = 1;
  340. for (i = 0; i < number_of_dimms; i++) {
  341. if (dimm_params[i].n_ranks &&
  342. !(dimm_params[i].edc_config & EDC_ECC)) {
  343. temp1 = 0;
  344. break;
  345. }
  346. }
  347. if (temp1) {
  348. debug("all DIMMs ECC capable\n");
  349. } else {
  350. debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
  351. }
  352. outpdimm->all_DIMMs_ECC_capable = temp1;
  353. #ifndef CONFIG_FSL_DDR3
  354. /* FIXME: move to somewhere else to validate. */
  355. if (mclk_ps > tCKmax_max_ps) {
  356. printf("Warning: some of the installed DIMMs "
  357. "can not operate this slowly.\n");
  358. return 1;
  359. }
  360. #endif
  361. /*
  362. * Compute additive latency.
  363. *
  364. * For DDR1, additive latency should be 0.
  365. *
  366. * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
  367. * which comes from Trcd, and also note that:
  368. * add_lat + caslat must be >= 4
  369. *
  370. * For DDR3, we use the AL=0
  371. *
  372. * When to use additive latency for DDR2:
  373. *
  374. * I. Because you are using CL=3 and need to do ODT on writes and
  375. * want functionality.
  376. * 1. Are you going to use ODT? (Does your board not have
  377. * additional termination circuitry for DQ, DQS, DQS_,
  378. * DM, RDQS, RDQS_ for x4/x8 configs?)
  379. * 2. If so, is your lowest supported CL going to be 3?
  380. * 3. If so, then you must set AL=1 because
  381. *
  382. * WL >= 3 for ODT on writes
  383. * RL = AL + CL
  384. * WL = RL - 1
  385. * ->
  386. * WL = AL + CL - 1
  387. * AL + CL - 1 >= 3
  388. * AL + CL >= 4
  389. * QED
  390. *
  391. * RL >= 3 for ODT on reads
  392. * RL = AL + CL
  393. *
  394. * Since CL aren't usually less than 2, AL=0 is a minimum,
  395. * so the WL-derived AL should be the -- FIXME?
  396. *
  397. * II. Because you are using auto-precharge globally and want to
  398. * use additive latency (posted CAS) to get more bandwidth.
  399. * 1. Are you going to use auto-precharge mode globally?
  400. *
  401. * Use addtivie latency and compute AL to be 1 cycle less than
  402. * tRCD, i.e. the READ or WRITE command is in the cycle
  403. * immediately following the ACTIVATE command..
  404. *
  405. * III. Because you feel like it or want to do some sort of
  406. * degraded-performance experiment.
  407. * 1. Do you just want to use additive latency because you feel
  408. * like it?
  409. *
  410. * Validation: AL is less than tRCD, and within the other
  411. * read-to-precharge constraints.
  412. */
  413. additive_latency = 0;
  414. #if defined(CONFIG_FSL_DDR2)
  415. if (lowest_good_caslat < 4) {
  416. additive_latency = (picos_to_mclk(tRCD_ps) > lowest_good_caslat)
  417. ? picos_to_mclk(tRCD_ps) - lowest_good_caslat : 0;
  418. if (mclk_to_picos(additive_latency) > tRCD_ps) {
  419. additive_latency = picos_to_mclk(tRCD_ps);
  420. debug("setting additive_latency to %u because it was "
  421. " greater than tRCD_ps\n", additive_latency);
  422. }
  423. }
  424. #elif defined(CONFIG_FSL_DDR3)
  425. /*
  426. * The system will not use the global auto-precharge mode.
  427. * However, it uses the page mode, so we set AL=0
  428. */
  429. additive_latency = 0;
  430. #endif
  431. /*
  432. * Validate additive latency
  433. * FIXME: move to somewhere else to validate
  434. *
  435. * AL <= tRCD(min)
  436. */
  437. if (mclk_to_picos(additive_latency) > tRCD_ps) {
  438. printf("Error: invalid additive latency exceeds tRCD(min).\n");
  439. return 1;
  440. }
  441. /*
  442. * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled
  443. * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled
  444. * ADD_LAT (the register) must be set to a value less
  445. * than ACTTORW if WL = 1, then AL must be set to 1
  446. * RD_TO_PRE (the register) must be set to a minimum
  447. * tRTP + AL if AL is nonzero
  448. */
  449. /*
  450. * Additive latency will be applied only if the memctl option to
  451. * use it.
  452. */
  453. outpdimm->additive_latency = additive_latency;
  454. debug("tCKmin_ps = %u\n", outpdimm->tCKmin_X_ps);
  455. debug("tRCD_ps = %u\n", outpdimm->tRCD_ps);
  456. debug("tRP_ps = %u\n", outpdimm->tRP_ps);
  457. debug("tRAS_ps = %u\n", outpdimm->tRAS_ps);
  458. debug("tWR_ps = %u\n", outpdimm->tWR_ps);
  459. debug("tWTR_ps = %u\n", outpdimm->tWTR_ps);
  460. debug("tRFC_ps = %u\n", outpdimm->tRFC_ps);
  461. debug("tRRD_ps = %u\n", outpdimm->tRRD_ps);
  462. debug("tRC_ps = %u\n", outpdimm->tRC_ps);
  463. return 0;
  464. }