44x_spd_ddr2.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those currently are:
  5. *
  6. * 405: 405EX(r)
  7. * 440/460: 440SP/440SPe/460EX/460GT
  8. *
  9. * Copyright (c) 2008 Nuovation System Designs, LLC
  10. * Grant Erickson <gerickson@nuovations.com>
  11. * (C) Copyright 2007-2008
  12. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  13. *
  14. * COPYRIGHT AMCC CORPORATION 2004
  15. *
  16. * See file CREDITS for list of people who contributed to this
  17. * project.
  18. *
  19. * This program is free software; you can redistribute it and/or
  20. * modify it under the terms of the GNU General Public License as
  21. * published by the Free Software Foundation; either version 2 of
  22. * the License, or (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  32. * MA 02111-1307 USA
  33. *
  34. */
  35. /* define DEBUG for debugging output (obviously ;-)) */
  36. #if 0
  37. #define DEBUG
  38. #endif
  39. #include <common.h>
  40. #include <command.h>
  41. #include <ppc4xx.h>
  42. #include <i2c.h>
  43. #include <asm/io.h>
  44. #include <asm/processor.h>
  45. #include <asm/mmu.h>
  46. #include <asm/cache.h>
  47. #include "ecc.h"
  48. #if defined(CONFIG_SPD_EEPROM) && \
  49. (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  50. defined(CONFIG_460EX) || defined(CONFIG_460GT) || \
  51. defined(CONFIG_460SX))
  52. /*-----------------------------------------------------------------------------+
  53. * Defines
  54. *-----------------------------------------------------------------------------*/
  55. #ifndef TRUE
  56. #define TRUE 1
  57. #endif
  58. #ifndef FALSE
  59. #define FALSE 0
  60. #endif
  61. #define SDRAM_DDR1 1
  62. #define SDRAM_DDR2 2
  63. #define SDRAM_NONE 0
  64. #define MAXDIMMS 2
  65. #define MAXRANKS 4
  66. #define MAXBXCF 4
  67. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  68. #define ONE_BILLION 1000000000
  69. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  70. #define CMD_NOP (7 << 19)
  71. #define CMD_PRECHARGE (2 << 19)
  72. #define CMD_REFRESH (1 << 19)
  73. #define CMD_EMR (0 << 19)
  74. #define CMD_READ (5 << 19)
  75. #define CMD_WRITE (4 << 19)
  76. #define SELECT_MR (0 << 16)
  77. #define SELECT_EMR (1 << 16)
  78. #define SELECT_EMR2 (2 << 16)
  79. #define SELECT_EMR3 (3 << 16)
  80. /* MR */
  81. #define DLL_RESET 0x00000100
  82. #define WRITE_RECOV_2 (1 << 9)
  83. #define WRITE_RECOV_3 (2 << 9)
  84. #define WRITE_RECOV_4 (3 << 9)
  85. #define WRITE_RECOV_5 (4 << 9)
  86. #define WRITE_RECOV_6 (5 << 9)
  87. #define BURST_LEN_4 0x00000002
  88. /* EMR */
  89. #define ODT_0_OHM 0x00000000
  90. #define ODT_50_OHM 0x00000044
  91. #define ODT_75_OHM 0x00000004
  92. #define ODT_150_OHM 0x00000040
  93. #define ODS_FULL 0x00000000
  94. #define ODS_REDUCED 0x00000002
  95. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  96. #define ODT_EB0R (0x80000000 >> 8)
  97. #define ODT_EB0W (0x80000000 >> 7)
  98. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  99. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  100. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  101. /* Defines for the Read Cycle Delay test */
  102. #define NUMMEMTESTS 8
  103. #define NUMMEMWORDS 8
  104. #define NUMLOOPS 64 /* memory test loops */
  105. /*
  106. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  107. * region. Right now the cache should still be disabled in U-Boot because of the
  108. * EMAC driver, that need it's buffer descriptor to be located in non cached
  109. * memory.
  110. *
  111. * If at some time this restriction doesn't apply anymore, just define
  112. * CONFIG_4xx_DCACHE in the board config file and this code should setup
  113. * everything correctly.
  114. */
  115. #ifdef CONFIG_4xx_DCACHE
  116. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  117. #else
  118. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  119. #endif
  120. /*
  121. * Newer PPC's like 440SPe, 460EX/GT can be equipped with more than 2GB of SDRAM.
  122. * To support such configurations, we "only" map the first 2GB via the TLB's. We
  123. * need some free virtual address space for the remaining peripherals like, SoC
  124. * devices, FLASH etc.
  125. *
  126. * Note that ECC is currently not supported on configurations with more than 2GB
  127. * SDRAM. This is because we only map the first 2GB on such systems, and therefore
  128. * the ECC parity byte of the remaining area can't be written.
  129. */
  130. #ifndef CONFIG_MAX_MEM_MAPPED
  131. #define CONFIG_MAX_MEM_MAPPED ((phys_size_t)2 << 30)
  132. #endif
  133. /*
  134. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  135. */
  136. void __spd_ddr_init_hang (void)
  137. {
  138. hang ();
  139. }
  140. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  141. /*
  142. * To provide an interface for board specific config values in this common
  143. * DDR setup code, we implement he "weak" default functions here. They return
  144. * the default value back to the caller.
  145. *
  146. * Please see include/configs/yucca.h for an example fora board specific
  147. * implementation.
  148. */
  149. u32 __ddr_wrdtr(u32 default_val)
  150. {
  151. return default_val;
  152. }
  153. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  154. u32 __ddr_clktr(u32 default_val)
  155. {
  156. return default_val;
  157. }
  158. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  159. /* Private Structure Definitions */
  160. /* enum only to ease code for cas latency setting */
  161. typedef enum ddr_cas_id {
  162. DDR_CAS_2 = 20,
  163. DDR_CAS_2_5 = 25,
  164. DDR_CAS_3 = 30,
  165. DDR_CAS_4 = 40,
  166. DDR_CAS_5 = 50
  167. } ddr_cas_id_t;
  168. /*-----------------------------------------------------------------------------+
  169. * Prototypes
  170. *-----------------------------------------------------------------------------*/
  171. static phys_size_t sdram_memsize(void);
  172. static void get_spd_info(unsigned long *dimm_populated,
  173. unsigned char *iic0_dimm_addr,
  174. unsigned long num_dimm_banks);
  175. static void check_mem_type(unsigned long *dimm_populated,
  176. unsigned char *iic0_dimm_addr,
  177. unsigned long num_dimm_banks);
  178. static void check_frequency(unsigned long *dimm_populated,
  179. unsigned char *iic0_dimm_addr,
  180. unsigned long num_dimm_banks);
  181. static void check_rank_number(unsigned long *dimm_populated,
  182. unsigned char *iic0_dimm_addr,
  183. unsigned long num_dimm_banks);
  184. static void check_voltage_type(unsigned long *dimm_populated,
  185. unsigned char *iic0_dimm_addr,
  186. unsigned long num_dimm_banks);
  187. static void program_memory_queue(unsigned long *dimm_populated,
  188. unsigned char *iic0_dimm_addr,
  189. unsigned long num_dimm_banks);
  190. static void program_codt(unsigned long *dimm_populated,
  191. unsigned char *iic0_dimm_addr,
  192. unsigned long num_dimm_banks);
  193. static void program_mode(unsigned long *dimm_populated,
  194. unsigned char *iic0_dimm_addr,
  195. unsigned long num_dimm_banks,
  196. ddr_cas_id_t *selected_cas,
  197. int *write_recovery);
  198. static void program_tr(unsigned long *dimm_populated,
  199. unsigned char *iic0_dimm_addr,
  200. unsigned long num_dimm_banks);
  201. static void program_rtr(unsigned long *dimm_populated,
  202. unsigned char *iic0_dimm_addr,
  203. unsigned long num_dimm_banks);
  204. static void program_bxcf(unsigned long *dimm_populated,
  205. unsigned char *iic0_dimm_addr,
  206. unsigned long num_dimm_banks);
  207. static void program_copt1(unsigned long *dimm_populated,
  208. unsigned char *iic0_dimm_addr,
  209. unsigned long num_dimm_banks);
  210. static void program_initplr(unsigned long *dimm_populated,
  211. unsigned char *iic0_dimm_addr,
  212. unsigned long num_dimm_banks,
  213. ddr_cas_id_t selected_cas,
  214. int write_recovery);
  215. static unsigned long is_ecc_enabled(void);
  216. #ifdef CONFIG_DDR_ECC
  217. static void program_ecc(unsigned long *dimm_populated,
  218. unsigned char *iic0_dimm_addr,
  219. unsigned long num_dimm_banks,
  220. unsigned long tlb_word2_i_value);
  221. static void program_ecc_addr(unsigned long start_address,
  222. unsigned long num_bytes,
  223. unsigned long tlb_word2_i_value);
  224. #endif
  225. static void program_DQS_calibration(unsigned long *dimm_populated,
  226. unsigned char *iic0_dimm_addr,
  227. unsigned long num_dimm_banks);
  228. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  229. static void test(void);
  230. #else
  231. static void DQS_calibration_process(void);
  232. #endif
  233. static void ppc440sp_sdram_register_dump(void);
  234. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  235. void dcbz_area(u32 start_address, u32 num_bytes);
  236. static u32 mfdcr_any(u32 dcr)
  237. {
  238. u32 val;
  239. switch (dcr) {
  240. case SDRAM_R0BAS + 0:
  241. val = mfdcr(SDRAM_R0BAS + 0);
  242. break;
  243. case SDRAM_R0BAS + 1:
  244. val = mfdcr(SDRAM_R0BAS + 1);
  245. break;
  246. case SDRAM_R0BAS + 2:
  247. val = mfdcr(SDRAM_R0BAS + 2);
  248. break;
  249. case SDRAM_R0BAS + 3:
  250. val = mfdcr(SDRAM_R0BAS + 3);
  251. break;
  252. default:
  253. printf("DCR %d not defined in case statement!!!\n", dcr);
  254. val = 0; /* just to satisfy the compiler */
  255. }
  256. return val;
  257. }
  258. static void mtdcr_any(u32 dcr, u32 val)
  259. {
  260. switch (dcr) {
  261. case SDRAM_R0BAS + 0:
  262. mtdcr(SDRAM_R0BAS + 0, val);
  263. break;
  264. case SDRAM_R0BAS + 1:
  265. mtdcr(SDRAM_R0BAS + 1, val);
  266. break;
  267. case SDRAM_R0BAS + 2:
  268. mtdcr(SDRAM_R0BAS + 2, val);
  269. break;
  270. case SDRAM_R0BAS + 3:
  271. mtdcr(SDRAM_R0BAS + 3, val);
  272. break;
  273. default:
  274. printf("DCR %d not defined in case statement!!!\n", dcr);
  275. }
  276. }
  277. static unsigned char spd_read(uchar chip, uint addr)
  278. {
  279. unsigned char data[2];
  280. if (i2c_probe(chip) == 0)
  281. if (i2c_read(chip, addr, 1, data, 1) == 0)
  282. return data[0];
  283. return 0;
  284. }
  285. /*-----------------------------------------------------------------------------+
  286. * sdram_memsize
  287. *-----------------------------------------------------------------------------*/
  288. static phys_size_t sdram_memsize(void)
  289. {
  290. phys_size_t mem_size;
  291. unsigned long mcopt2;
  292. unsigned long mcstat;
  293. unsigned long mb0cf;
  294. unsigned long sdsz;
  295. unsigned long i;
  296. mem_size = 0;
  297. mfsdram(SDRAM_MCOPT2, mcopt2);
  298. mfsdram(SDRAM_MCSTAT, mcstat);
  299. /* DDR controller must be enabled and not in self-refresh. */
  300. /* Otherwise memsize is zero. */
  301. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  302. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  303. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  304. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  305. for (i = 0; i < MAXBXCF; i++) {
  306. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  307. /* Banks enabled */
  308. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  309. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  310. switch(sdsz) {
  311. case SDRAM_RXBAS_SDSZ_8:
  312. mem_size+=8;
  313. break;
  314. case SDRAM_RXBAS_SDSZ_16:
  315. mem_size+=16;
  316. break;
  317. case SDRAM_RXBAS_SDSZ_32:
  318. mem_size+=32;
  319. break;
  320. case SDRAM_RXBAS_SDSZ_64:
  321. mem_size+=64;
  322. break;
  323. case SDRAM_RXBAS_SDSZ_128:
  324. mem_size+=128;
  325. break;
  326. case SDRAM_RXBAS_SDSZ_256:
  327. mem_size+=256;
  328. break;
  329. case SDRAM_RXBAS_SDSZ_512:
  330. mem_size+=512;
  331. break;
  332. case SDRAM_RXBAS_SDSZ_1024:
  333. mem_size+=1024;
  334. break;
  335. case SDRAM_RXBAS_SDSZ_2048:
  336. mem_size+=2048;
  337. break;
  338. case SDRAM_RXBAS_SDSZ_4096:
  339. mem_size+=4096;
  340. break;
  341. default:
  342. printf("WARNING: Unsupported bank size (SDSZ=0x%lx)!\n"
  343. , sdsz);
  344. mem_size=0;
  345. break;
  346. }
  347. }
  348. }
  349. }
  350. return mem_size << 20;
  351. }
  352. /*-----------------------------------------------------------------------------+
  353. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  354. * Note: This routine runs from flash with a stack set up in the chip's
  355. * sram space. It is important that the routine does not require .sbss, .bss or
  356. * .data sections. It also cannot call routines that require these sections.
  357. *-----------------------------------------------------------------------------*/
  358. /*-----------------------------------------------------------------------------
  359. * Function: initdram
  360. * Description: Configures SDRAM memory banks for DDR operation.
  361. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  362. * via the IIC bus and then configures the DDR SDRAM memory
  363. * banks appropriately. If Auto Memory Configuration is
  364. * not used, it is assumed that no DIMM is plugged
  365. *-----------------------------------------------------------------------------*/
  366. phys_size_t initdram(int board_type)
  367. {
  368. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  369. unsigned char spd0[MAX_SPD_BYTES];
  370. unsigned char spd1[MAX_SPD_BYTES];
  371. unsigned char *dimm_spd[MAXDIMMS];
  372. unsigned long dimm_populated[MAXDIMMS];
  373. unsigned long num_dimm_banks; /* on board dimm banks */
  374. unsigned long val;
  375. ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */
  376. int write_recovery;
  377. phys_size_t dram_size = 0;
  378. num_dimm_banks = sizeof(iic0_dimm_addr);
  379. /*------------------------------------------------------------------
  380. * Set up an array of SPD matrixes.
  381. *-----------------------------------------------------------------*/
  382. dimm_spd[0] = spd0;
  383. dimm_spd[1] = spd1;
  384. /*------------------------------------------------------------------
  385. * Reset the DDR-SDRAM controller.
  386. *-----------------------------------------------------------------*/
  387. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  388. mtsdr(SDR0_SRST, 0x00000000);
  389. /*
  390. * Make sure I2C controller is initialized
  391. * before continuing.
  392. */
  393. /* switch to correct I2C bus */
  394. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  395. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  396. /*------------------------------------------------------------------
  397. * Clear out the serial presence detect buffers.
  398. * Perform IIC reads from the dimm. Fill in the spds.
  399. * Check to see if the dimm slots are populated
  400. *-----------------------------------------------------------------*/
  401. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  402. /*------------------------------------------------------------------
  403. * Check the memory type for the dimms plugged.
  404. *-----------------------------------------------------------------*/
  405. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  406. /*------------------------------------------------------------------
  407. * Check the frequency supported for the dimms plugged.
  408. *-----------------------------------------------------------------*/
  409. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  410. /*------------------------------------------------------------------
  411. * Check the total rank number.
  412. *-----------------------------------------------------------------*/
  413. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  414. /*------------------------------------------------------------------
  415. * Check the voltage type for the dimms plugged.
  416. *-----------------------------------------------------------------*/
  417. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  418. /*------------------------------------------------------------------
  419. * Program SDRAM controller options 2 register
  420. * Except Enabling of the memory controller.
  421. *-----------------------------------------------------------------*/
  422. mfsdram(SDRAM_MCOPT2, val);
  423. mtsdram(SDRAM_MCOPT2,
  424. (val &
  425. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  426. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  427. SDRAM_MCOPT2_ISIE_MASK))
  428. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  429. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  430. SDRAM_MCOPT2_ISIE_ENABLE));
  431. /*------------------------------------------------------------------
  432. * Program SDRAM controller options 1 register
  433. * Note: Does not enable the memory controller.
  434. *-----------------------------------------------------------------*/
  435. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  436. /*------------------------------------------------------------------
  437. * Set the SDRAM Controller On Die Termination Register
  438. *-----------------------------------------------------------------*/
  439. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  440. /*------------------------------------------------------------------
  441. * Program SDRAM refresh register.
  442. *-----------------------------------------------------------------*/
  443. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  444. /*------------------------------------------------------------------
  445. * Program SDRAM mode register.
  446. *-----------------------------------------------------------------*/
  447. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  448. &selected_cas, &write_recovery);
  449. /*------------------------------------------------------------------
  450. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  451. *-----------------------------------------------------------------*/
  452. mfsdram(SDRAM_WRDTR, val);
  453. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  454. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  455. /*------------------------------------------------------------------
  456. * Set the SDRAM Clock Timing Register
  457. *-----------------------------------------------------------------*/
  458. mfsdram(SDRAM_CLKTR, val);
  459. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  460. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  461. /*------------------------------------------------------------------
  462. * Program the BxCF registers.
  463. *-----------------------------------------------------------------*/
  464. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  465. /*------------------------------------------------------------------
  466. * Program SDRAM timing registers.
  467. *-----------------------------------------------------------------*/
  468. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  469. /*------------------------------------------------------------------
  470. * Set the Extended Mode register
  471. *-----------------------------------------------------------------*/
  472. mfsdram(SDRAM_MEMODE, val);
  473. mtsdram(SDRAM_MEMODE,
  474. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  475. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  476. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  477. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  478. /*------------------------------------------------------------------
  479. * Program Initialization preload registers.
  480. *-----------------------------------------------------------------*/
  481. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  482. selected_cas, write_recovery);
  483. /*------------------------------------------------------------------
  484. * Delay to ensure 200usec have elapsed since reset.
  485. *-----------------------------------------------------------------*/
  486. udelay(400);
  487. /*------------------------------------------------------------------
  488. * Set the memory queue core base addr.
  489. *-----------------------------------------------------------------*/
  490. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  491. /*------------------------------------------------------------------
  492. * Program SDRAM controller options 2 register
  493. * Enable the memory controller.
  494. *-----------------------------------------------------------------*/
  495. mfsdram(SDRAM_MCOPT2, val);
  496. mtsdram(SDRAM_MCOPT2,
  497. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  498. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  499. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  500. /*------------------------------------------------------------------
  501. * Wait for SDRAM_CFG0_DC_EN to complete.
  502. *-----------------------------------------------------------------*/
  503. do {
  504. mfsdram(SDRAM_MCSTAT, val);
  505. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  506. /* get installed memory size */
  507. dram_size = sdram_memsize();
  508. /*
  509. * Limit size to 2GB
  510. */
  511. if (dram_size > CONFIG_MAX_MEM_MAPPED)
  512. dram_size = CONFIG_MAX_MEM_MAPPED;
  513. /* and program tlb entries for this size (dynamic) */
  514. /*
  515. * Program TLB entries with caches enabled, for best performace
  516. * while auto-calibrating and ECC generation
  517. */
  518. program_tlb(0, 0, dram_size, 0);
  519. /*------------------------------------------------------------------
  520. * DQS calibration.
  521. *-----------------------------------------------------------------*/
  522. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  523. #ifdef CONFIG_DDR_ECC
  524. /*------------------------------------------------------------------
  525. * If ecc is enabled, initialize the parity bits.
  526. *-----------------------------------------------------------------*/
  527. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  528. #endif
  529. /*
  530. * Now after initialization (auto-calibration and ECC generation)
  531. * remove the TLB entries with caches enabled and program again with
  532. * desired cache functionality
  533. */
  534. remove_tlb(0, dram_size);
  535. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  536. ppc440sp_sdram_register_dump();
  537. /*
  538. * Clear potential errors resulting from auto-calibration.
  539. * If not done, then we could get an interrupt later on when
  540. * exceptions are enabled.
  541. */
  542. set_mcsr(get_mcsr());
  543. return sdram_memsize();
  544. }
  545. static void get_spd_info(unsigned long *dimm_populated,
  546. unsigned char *iic0_dimm_addr,
  547. unsigned long num_dimm_banks)
  548. {
  549. unsigned long dimm_num;
  550. unsigned long dimm_found;
  551. unsigned char num_of_bytes;
  552. unsigned char total_size;
  553. dimm_found = FALSE;
  554. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  555. num_of_bytes = 0;
  556. total_size = 0;
  557. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  558. debug("\nspd_read(0x%x) returned %d\n",
  559. iic0_dimm_addr[dimm_num], num_of_bytes);
  560. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  561. debug("spd_read(0x%x) returned %d\n",
  562. iic0_dimm_addr[dimm_num], total_size);
  563. if ((num_of_bytes != 0) && (total_size != 0)) {
  564. dimm_populated[dimm_num] = TRUE;
  565. dimm_found = TRUE;
  566. debug("DIMM slot %lu: populated\n", dimm_num);
  567. } else {
  568. dimm_populated[dimm_num] = FALSE;
  569. debug("DIMM slot %lu: Not populated\n", dimm_num);
  570. }
  571. }
  572. if (dimm_found == FALSE) {
  573. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  574. spd_ddr_init_hang ();
  575. }
  576. }
  577. void board_add_ram_info(int use_default)
  578. {
  579. PPC4xx_SYS_INFO board_cfg;
  580. u32 val;
  581. if (is_ecc_enabled())
  582. puts(" (ECC");
  583. else
  584. puts(" (ECC not");
  585. get_sys_info(&board_cfg);
  586. mfsdr(SDR0_DDR0, val);
  587. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  588. printf(" enabled, %d MHz", (val * 2) / 1000000);
  589. mfsdram(SDRAM_MMODE, val);
  590. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  591. printf(", CL%d)", val);
  592. }
  593. /*------------------------------------------------------------------
  594. * For the memory DIMMs installed, this routine verifies that they
  595. * really are DDR specific DIMMs.
  596. *-----------------------------------------------------------------*/
  597. static void check_mem_type(unsigned long *dimm_populated,
  598. unsigned char *iic0_dimm_addr,
  599. unsigned long num_dimm_banks)
  600. {
  601. unsigned long dimm_num;
  602. unsigned long dimm_type;
  603. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  604. if (dimm_populated[dimm_num] == TRUE) {
  605. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  606. switch (dimm_type) {
  607. case 1:
  608. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  609. "slot %d.\n", (unsigned int)dimm_num);
  610. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  611. printf("Replace the DIMM module with a supported DIMM.\n\n");
  612. spd_ddr_init_hang ();
  613. break;
  614. case 2:
  615. printf("ERROR: EDO DIMM detected in slot %d.\n",
  616. (unsigned int)dimm_num);
  617. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  618. printf("Replace the DIMM module with a supported DIMM.\n\n");
  619. spd_ddr_init_hang ();
  620. break;
  621. case 3:
  622. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  623. (unsigned int)dimm_num);
  624. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  625. printf("Replace the DIMM module with a supported DIMM.\n\n");
  626. spd_ddr_init_hang ();
  627. break;
  628. case 4:
  629. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  630. (unsigned int)dimm_num);
  631. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  632. printf("Replace the DIMM module with a supported DIMM.\n\n");
  633. spd_ddr_init_hang ();
  634. break;
  635. case 5:
  636. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  637. (unsigned int)dimm_num);
  638. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  639. printf("Replace the DIMM module with a supported DIMM.\n\n");
  640. spd_ddr_init_hang ();
  641. break;
  642. case 6:
  643. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  644. (unsigned int)dimm_num);
  645. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  646. printf("Replace the DIMM module with a supported DIMM.\n\n");
  647. spd_ddr_init_hang ();
  648. break;
  649. case 7:
  650. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  651. dimm_populated[dimm_num] = SDRAM_DDR1;
  652. break;
  653. case 8:
  654. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  655. dimm_populated[dimm_num] = SDRAM_DDR2;
  656. break;
  657. default:
  658. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  659. (unsigned int)dimm_num);
  660. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  661. printf("Replace the DIMM module with a supported DIMM.\n\n");
  662. spd_ddr_init_hang ();
  663. break;
  664. }
  665. }
  666. }
  667. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  668. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  669. && (dimm_populated[dimm_num] != SDRAM_NONE)
  670. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  671. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  672. spd_ddr_init_hang ();
  673. }
  674. }
  675. }
  676. /*------------------------------------------------------------------
  677. * For the memory DIMMs installed, this routine verifies that
  678. * frequency previously calculated is supported.
  679. *-----------------------------------------------------------------*/
  680. static void check_frequency(unsigned long *dimm_populated,
  681. unsigned char *iic0_dimm_addr,
  682. unsigned long num_dimm_banks)
  683. {
  684. unsigned long dimm_num;
  685. unsigned long tcyc_reg;
  686. unsigned long cycle_time;
  687. unsigned long calc_cycle_time;
  688. unsigned long sdram_freq;
  689. unsigned long sdr_ddrpll;
  690. PPC4xx_SYS_INFO board_cfg;
  691. /*------------------------------------------------------------------
  692. * Get the board configuration info.
  693. *-----------------------------------------------------------------*/
  694. get_sys_info(&board_cfg);
  695. mfsdr(SDR0_DDR0, sdr_ddrpll);
  696. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  697. /*
  698. * calc_cycle_time is calculated from DDR frequency set by board/chip
  699. * and is expressed in multiple of 10 picoseconds
  700. * to match the way DIMM cycle time is calculated below.
  701. */
  702. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  703. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  704. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  705. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  706. /*
  707. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  708. * the higher order nibble (bits 4-7) designates the cycle time
  709. * to a granularity of 1ns;
  710. * the value presented by the lower order nibble (bits 0-3)
  711. * has a granularity of .1ns and is added to the value designated
  712. * by the higher nibble. In addition, four lines of the lower order
  713. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  714. */
  715. /* Convert from hex to decimal */
  716. if ((tcyc_reg & 0x0F) == 0x0D)
  717. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  718. else if ((tcyc_reg & 0x0F) == 0x0C)
  719. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  720. else if ((tcyc_reg & 0x0F) == 0x0B)
  721. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  722. else if ((tcyc_reg & 0x0F) == 0x0A)
  723. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  724. else
  725. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  726. ((tcyc_reg & 0x0F)*10);
  727. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  728. if (cycle_time > (calc_cycle_time + 10)) {
  729. /*
  730. * the provided sdram cycle_time is too small
  731. * for the available DIMM cycle_time.
  732. * The additionnal 100ps is here to accept a small incertainty.
  733. */
  734. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  735. "slot %d \n while calculated cycle time is %d ps.\n",
  736. (unsigned int)(cycle_time*10),
  737. (unsigned int)dimm_num,
  738. (unsigned int)(calc_cycle_time*10));
  739. printf("Replace the DIMM, or change DDR frequency via "
  740. "strapping bits.\n\n");
  741. spd_ddr_init_hang ();
  742. }
  743. }
  744. }
  745. }
  746. /*------------------------------------------------------------------
  747. * For the memory DIMMs installed, this routine verifies two
  748. * ranks/banks maximum are availables.
  749. *-----------------------------------------------------------------*/
  750. static void check_rank_number(unsigned long *dimm_populated,
  751. unsigned char *iic0_dimm_addr,
  752. unsigned long num_dimm_banks)
  753. {
  754. unsigned long dimm_num;
  755. unsigned long dimm_rank;
  756. unsigned long total_rank = 0;
  757. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  758. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  759. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  760. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  761. dimm_rank = (dimm_rank & 0x0F) +1;
  762. else
  763. dimm_rank = dimm_rank & 0x0F;
  764. if (dimm_rank > MAXRANKS) {
  765. printf("ERROR: DRAM DIMM detected with %lu ranks in "
  766. "slot %lu is not supported.\n", dimm_rank, dimm_num);
  767. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  768. printf("Replace the DIMM module with a supported DIMM.\n\n");
  769. spd_ddr_init_hang ();
  770. } else
  771. total_rank += dimm_rank;
  772. }
  773. if (total_rank > MAXRANKS) {
  774. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  775. "for all slots.\n", (unsigned int)total_rank);
  776. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  777. printf("Remove one of the DIMM modules.\n\n");
  778. spd_ddr_init_hang ();
  779. }
  780. }
  781. }
  782. /*------------------------------------------------------------------
  783. * only support 2.5V modules.
  784. * This routine verifies this.
  785. *-----------------------------------------------------------------*/
  786. static void check_voltage_type(unsigned long *dimm_populated,
  787. unsigned char *iic0_dimm_addr,
  788. unsigned long num_dimm_banks)
  789. {
  790. unsigned long dimm_num;
  791. unsigned long voltage_type;
  792. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  793. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  794. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  795. switch (voltage_type) {
  796. case 0x00:
  797. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  798. printf("This DIMM is 5.0 Volt/TTL.\n");
  799. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  800. (unsigned int)dimm_num);
  801. spd_ddr_init_hang ();
  802. break;
  803. case 0x01:
  804. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  805. printf("This DIMM is LVTTL.\n");
  806. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  807. (unsigned int)dimm_num);
  808. spd_ddr_init_hang ();
  809. break;
  810. case 0x02:
  811. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  812. printf("This DIMM is 1.5 Volt.\n");
  813. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  814. (unsigned int)dimm_num);
  815. spd_ddr_init_hang ();
  816. break;
  817. case 0x03:
  818. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  819. printf("This DIMM is 3.3 Volt/TTL.\n");
  820. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  821. (unsigned int)dimm_num);
  822. spd_ddr_init_hang ();
  823. break;
  824. case 0x04:
  825. /* 2.5 Voltage only for DDR1 */
  826. break;
  827. case 0x05:
  828. /* 1.8 Voltage only for DDR2 */
  829. break;
  830. default:
  831. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  832. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  833. (unsigned int)dimm_num);
  834. spd_ddr_init_hang ();
  835. break;
  836. }
  837. }
  838. }
  839. }
  840. /*-----------------------------------------------------------------------------+
  841. * program_copt1.
  842. *-----------------------------------------------------------------------------*/
  843. static void program_copt1(unsigned long *dimm_populated,
  844. unsigned char *iic0_dimm_addr,
  845. unsigned long num_dimm_banks)
  846. {
  847. unsigned long dimm_num;
  848. unsigned long mcopt1;
  849. unsigned long ecc_enabled;
  850. unsigned long ecc = 0;
  851. unsigned long data_width = 0;
  852. unsigned long dimm_32bit;
  853. unsigned long dimm_64bit;
  854. unsigned long registered = 0;
  855. unsigned long attribute = 0;
  856. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  857. unsigned long bankcount;
  858. unsigned long ddrtype;
  859. unsigned long val;
  860. #ifdef CONFIG_DDR_ECC
  861. ecc_enabled = TRUE;
  862. #else
  863. ecc_enabled = FALSE;
  864. #endif
  865. dimm_32bit = FALSE;
  866. dimm_64bit = FALSE;
  867. buf0 = FALSE;
  868. buf1 = FALSE;
  869. /*------------------------------------------------------------------
  870. * Set memory controller options reg 1, SDRAM_MCOPT1.
  871. *-----------------------------------------------------------------*/
  872. mfsdram(SDRAM_MCOPT1, val);
  873. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  874. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  875. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  876. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  877. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  878. SDRAM_MCOPT1_DREF_MASK);
  879. mcopt1 |= SDRAM_MCOPT1_QDEP;
  880. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  881. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  882. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  883. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  884. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  885. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  886. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  887. /* test ecc support */
  888. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  889. if (ecc != 0x02) /* ecc not supported */
  890. ecc_enabled = FALSE;
  891. /* test bank count */
  892. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  893. if (bankcount == 0x04) /* bank count = 4 */
  894. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  895. else /* bank count = 8 */
  896. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  897. /* test DDR type */
  898. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  899. /* test for buffered/unbuffered, registered, differential clocks */
  900. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  901. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  902. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  903. if (dimm_num == 0) {
  904. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  905. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  906. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  907. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  908. if (registered == 1) { /* DDR2 always buffered */
  909. /* TODO: what about above comments ? */
  910. mcopt1 |= SDRAM_MCOPT1_RDEN;
  911. buf0 = TRUE;
  912. } else {
  913. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  914. if ((attribute & 0x02) == 0x00) {
  915. /* buffered not supported */
  916. buf0 = FALSE;
  917. } else {
  918. mcopt1 |= SDRAM_MCOPT1_RDEN;
  919. buf0 = TRUE;
  920. }
  921. }
  922. }
  923. else if (dimm_num == 1) {
  924. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  925. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  926. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  927. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  928. if (registered == 1) {
  929. /* DDR2 always buffered */
  930. mcopt1 |= SDRAM_MCOPT1_RDEN;
  931. buf1 = TRUE;
  932. } else {
  933. if ((attribute & 0x02) == 0x00) {
  934. /* buffered not supported */
  935. buf1 = FALSE;
  936. } else {
  937. mcopt1 |= SDRAM_MCOPT1_RDEN;
  938. buf1 = TRUE;
  939. }
  940. }
  941. }
  942. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  943. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  944. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  945. switch (data_width) {
  946. case 72:
  947. case 64:
  948. dimm_64bit = TRUE;
  949. break;
  950. case 40:
  951. case 32:
  952. dimm_32bit = TRUE;
  953. break;
  954. default:
  955. printf("WARNING: Detected a DIMM with a data width of %lu bits.\n",
  956. data_width);
  957. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  958. break;
  959. }
  960. }
  961. }
  962. /* verify matching properties */
  963. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  964. if (buf0 != buf1) {
  965. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  966. spd_ddr_init_hang ();
  967. }
  968. }
  969. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  970. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  971. spd_ddr_init_hang ();
  972. }
  973. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  974. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  975. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  976. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  977. } else {
  978. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  979. spd_ddr_init_hang ();
  980. }
  981. if (ecc_enabled == TRUE)
  982. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  983. else
  984. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  985. mtsdram(SDRAM_MCOPT1, mcopt1);
  986. }
  987. /*-----------------------------------------------------------------------------+
  988. * program_codt.
  989. *-----------------------------------------------------------------------------*/
  990. static void program_codt(unsigned long *dimm_populated,
  991. unsigned char *iic0_dimm_addr,
  992. unsigned long num_dimm_banks)
  993. {
  994. unsigned long codt;
  995. unsigned long modt0 = 0;
  996. unsigned long modt1 = 0;
  997. unsigned long modt2 = 0;
  998. unsigned long modt3 = 0;
  999. unsigned char dimm_num;
  1000. unsigned char dimm_rank;
  1001. unsigned char total_rank = 0;
  1002. unsigned char total_dimm = 0;
  1003. unsigned char dimm_type = 0;
  1004. unsigned char firstSlot = 0;
  1005. /*------------------------------------------------------------------
  1006. * Set the SDRAM Controller On Die Termination Register
  1007. *-----------------------------------------------------------------*/
  1008. mfsdram(SDRAM_CODT, codt);
  1009. codt |= (SDRAM_CODT_IO_NMODE
  1010. & (~SDRAM_CODT_DQS_SINGLE_END
  1011. & ~SDRAM_CODT_CKSE_SINGLE_END
  1012. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  1013. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  1014. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1015. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1016. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  1017. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  1018. dimm_rank = (dimm_rank & 0x0F) + 1;
  1019. dimm_type = SDRAM_DDR2;
  1020. } else {
  1021. dimm_rank = dimm_rank & 0x0F;
  1022. dimm_type = SDRAM_DDR1;
  1023. }
  1024. total_rank += dimm_rank;
  1025. total_dimm++;
  1026. if ((dimm_num == 0) && (total_dimm == 1))
  1027. firstSlot = TRUE;
  1028. else
  1029. firstSlot = FALSE;
  1030. }
  1031. }
  1032. if (dimm_type == SDRAM_DDR2) {
  1033. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1034. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1035. if (total_rank == 1) {
  1036. codt |= CALC_ODT_R(0);
  1037. modt0 = CALC_ODT_W(0);
  1038. modt1 = 0x00000000;
  1039. modt2 = 0x00000000;
  1040. modt3 = 0x00000000;
  1041. }
  1042. if (total_rank == 2) {
  1043. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1044. modt0 = CALC_ODT_W(0);
  1045. modt1 = CALC_ODT_W(0);
  1046. modt2 = 0x00000000;
  1047. modt3 = 0x00000000;
  1048. }
  1049. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1050. if (total_rank == 1) {
  1051. codt |= CALC_ODT_R(2);
  1052. modt0 = 0x00000000;
  1053. modt1 = 0x00000000;
  1054. modt2 = CALC_ODT_W(2);
  1055. modt3 = 0x00000000;
  1056. }
  1057. if (total_rank == 2) {
  1058. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1059. modt0 = 0x00000000;
  1060. modt1 = 0x00000000;
  1061. modt2 = CALC_ODT_W(2);
  1062. modt3 = CALC_ODT_W(2);
  1063. }
  1064. }
  1065. if (total_dimm == 2) {
  1066. if (total_rank == 2) {
  1067. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1068. modt0 = CALC_ODT_RW(2);
  1069. modt1 = 0x00000000;
  1070. modt2 = CALC_ODT_RW(0);
  1071. modt3 = 0x00000000;
  1072. }
  1073. if (total_rank == 4) {
  1074. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1075. CALC_ODT_R(2) | CALC_ODT_R(3);
  1076. modt0 = CALC_ODT_RW(2);
  1077. modt1 = 0x00000000;
  1078. modt2 = CALC_ODT_RW(0);
  1079. modt3 = 0x00000000;
  1080. }
  1081. }
  1082. } else {
  1083. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1084. modt0 = 0x00000000;
  1085. modt1 = 0x00000000;
  1086. modt2 = 0x00000000;
  1087. modt3 = 0x00000000;
  1088. if (total_dimm == 1) {
  1089. if (total_rank == 1)
  1090. codt |= 0x00800000;
  1091. if (total_rank == 2)
  1092. codt |= 0x02800000;
  1093. }
  1094. if (total_dimm == 2) {
  1095. if (total_rank == 2)
  1096. codt |= 0x08800000;
  1097. if (total_rank == 4)
  1098. codt |= 0x2a800000;
  1099. }
  1100. }
  1101. debug("nb of dimm %d\n", total_dimm);
  1102. debug("nb of rank %d\n", total_rank);
  1103. if (total_dimm == 1)
  1104. debug("dimm in slot %d\n", firstSlot);
  1105. mtsdram(SDRAM_CODT, codt);
  1106. mtsdram(SDRAM_MODT0, modt0);
  1107. mtsdram(SDRAM_MODT1, modt1);
  1108. mtsdram(SDRAM_MODT2, modt2);
  1109. mtsdram(SDRAM_MODT3, modt3);
  1110. }
  1111. /*-----------------------------------------------------------------------------+
  1112. * program_initplr.
  1113. *-----------------------------------------------------------------------------*/
  1114. static void program_initplr(unsigned long *dimm_populated,
  1115. unsigned char *iic0_dimm_addr,
  1116. unsigned long num_dimm_banks,
  1117. ddr_cas_id_t selected_cas,
  1118. int write_recovery)
  1119. {
  1120. u32 cas = 0;
  1121. u32 odt = 0;
  1122. u32 ods = 0;
  1123. u32 mr;
  1124. u32 wr;
  1125. u32 emr;
  1126. u32 emr2;
  1127. u32 emr3;
  1128. int dimm_num;
  1129. int total_dimm = 0;
  1130. /******************************************************
  1131. ** Assumption: if more than one DIMM, all DIMMs are the same
  1132. ** as already checked in check_memory_type
  1133. ******************************************************/
  1134. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1135. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1136. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1137. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1138. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1139. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1140. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1141. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1142. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1143. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1144. switch (selected_cas) {
  1145. case DDR_CAS_3:
  1146. cas = 3 << 4;
  1147. break;
  1148. case DDR_CAS_4:
  1149. cas = 4 << 4;
  1150. break;
  1151. case DDR_CAS_5:
  1152. cas = 5 << 4;
  1153. break;
  1154. default:
  1155. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1156. spd_ddr_init_hang ();
  1157. break;
  1158. }
  1159. #if 0
  1160. /*
  1161. * ToDo - Still a problem with the write recovery:
  1162. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1163. * in the INITPLR reg to the value calculated in program_mode()
  1164. * results in not correctly working DDR2 memory (crash after
  1165. * relocation).
  1166. *
  1167. * So for now, set the write recovery to 3. This seems to work
  1168. * on the Corair module too.
  1169. *
  1170. * 2007-03-01, sr
  1171. */
  1172. switch (write_recovery) {
  1173. case 3:
  1174. wr = WRITE_RECOV_3;
  1175. break;
  1176. case 4:
  1177. wr = WRITE_RECOV_4;
  1178. break;
  1179. case 5:
  1180. wr = WRITE_RECOV_5;
  1181. break;
  1182. case 6:
  1183. wr = WRITE_RECOV_6;
  1184. break;
  1185. default:
  1186. printf("ERROR: write recovery not support (%d)", write_recovery);
  1187. spd_ddr_init_hang ();
  1188. break;
  1189. }
  1190. #else
  1191. wr = WRITE_RECOV_3; /* test-only, see description above */
  1192. #endif
  1193. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1194. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1195. total_dimm++;
  1196. if (total_dimm == 1) {
  1197. odt = ODT_150_OHM;
  1198. ods = ODS_FULL;
  1199. } else if (total_dimm == 2) {
  1200. odt = ODT_75_OHM;
  1201. ods = ODS_REDUCED;
  1202. } else {
  1203. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1204. spd_ddr_init_hang ();
  1205. }
  1206. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1207. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1208. emr2 = CMD_EMR | SELECT_EMR2;
  1209. emr3 = CMD_EMR | SELECT_EMR3;
  1210. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1211. udelay(1000);
  1212. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1213. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1214. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1215. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1216. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1217. udelay(1000);
  1218. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1219. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1220. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1221. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1222. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1223. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1224. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1225. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1226. } else {
  1227. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1228. spd_ddr_init_hang ();
  1229. }
  1230. }
  1231. /*------------------------------------------------------------------
  1232. * This routine programs the SDRAM_MMODE register.
  1233. * the selected_cas is an output parameter, that will be passed
  1234. * by caller to call the above program_initplr( )
  1235. *-----------------------------------------------------------------*/
  1236. static void program_mode(unsigned long *dimm_populated,
  1237. unsigned char *iic0_dimm_addr,
  1238. unsigned long num_dimm_banks,
  1239. ddr_cas_id_t *selected_cas,
  1240. int *write_recovery)
  1241. {
  1242. unsigned long dimm_num;
  1243. unsigned long sdram_ddr1;
  1244. unsigned long t_wr_ns;
  1245. unsigned long t_wr_clk;
  1246. unsigned long cas_bit;
  1247. unsigned long cas_index;
  1248. unsigned long sdram_freq;
  1249. unsigned long ddr_check;
  1250. unsigned long mmode;
  1251. unsigned long tcyc_reg;
  1252. unsigned long cycle_2_0_clk;
  1253. unsigned long cycle_2_5_clk;
  1254. unsigned long cycle_3_0_clk;
  1255. unsigned long cycle_4_0_clk;
  1256. unsigned long cycle_5_0_clk;
  1257. unsigned long max_2_0_tcyc_ns_x_100;
  1258. unsigned long max_2_5_tcyc_ns_x_100;
  1259. unsigned long max_3_0_tcyc_ns_x_100;
  1260. unsigned long max_4_0_tcyc_ns_x_100;
  1261. unsigned long max_5_0_tcyc_ns_x_100;
  1262. unsigned long cycle_time_ns_x_100[3];
  1263. PPC4xx_SYS_INFO board_cfg;
  1264. unsigned char cas_2_0_available;
  1265. unsigned char cas_2_5_available;
  1266. unsigned char cas_3_0_available;
  1267. unsigned char cas_4_0_available;
  1268. unsigned char cas_5_0_available;
  1269. unsigned long sdr_ddrpll;
  1270. /*------------------------------------------------------------------
  1271. * Get the board configuration info.
  1272. *-----------------------------------------------------------------*/
  1273. get_sys_info(&board_cfg);
  1274. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1275. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1276. debug("sdram_freq=%d\n", sdram_freq);
  1277. /*------------------------------------------------------------------
  1278. * Handle the timing. We need to find the worst case timing of all
  1279. * the dimm modules installed.
  1280. *-----------------------------------------------------------------*/
  1281. t_wr_ns = 0;
  1282. cas_2_0_available = TRUE;
  1283. cas_2_5_available = TRUE;
  1284. cas_3_0_available = TRUE;
  1285. cas_4_0_available = TRUE;
  1286. cas_5_0_available = TRUE;
  1287. max_2_0_tcyc_ns_x_100 = 10;
  1288. max_2_5_tcyc_ns_x_100 = 10;
  1289. max_3_0_tcyc_ns_x_100 = 10;
  1290. max_4_0_tcyc_ns_x_100 = 10;
  1291. max_5_0_tcyc_ns_x_100 = 10;
  1292. sdram_ddr1 = TRUE;
  1293. /* loop through all the DIMM slots on the board */
  1294. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1295. /* If a dimm is installed in a particular slot ... */
  1296. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1297. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1298. sdram_ddr1 = TRUE;
  1299. else
  1300. sdram_ddr1 = FALSE;
  1301. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1302. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1303. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1304. /* For a particular DIMM, grab the three CAS values it supports */
  1305. for (cas_index = 0; cas_index < 3; cas_index++) {
  1306. switch (cas_index) {
  1307. case 0:
  1308. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1309. break;
  1310. case 1:
  1311. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1312. break;
  1313. default:
  1314. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1315. break;
  1316. }
  1317. if ((tcyc_reg & 0x0F) >= 10) {
  1318. if ((tcyc_reg & 0x0F) == 0x0D) {
  1319. /* Convert from hex to decimal */
  1320. cycle_time_ns_x_100[cas_index] =
  1321. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1322. } else {
  1323. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1324. "in slot %d\n", (unsigned int)dimm_num);
  1325. spd_ddr_init_hang ();
  1326. }
  1327. } else {
  1328. /* Convert from hex to decimal */
  1329. cycle_time_ns_x_100[cas_index] =
  1330. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1331. ((tcyc_reg & 0x0F)*10);
  1332. }
  1333. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1334. cycle_time_ns_x_100[cas_index]);
  1335. }
  1336. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1337. /* supported for a particular DIMM. */
  1338. cas_index = 0;
  1339. if (sdram_ddr1) {
  1340. /*
  1341. * DDR devices use the following bitmask for CAS latency:
  1342. * Bit 7 6 5 4 3 2 1 0
  1343. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1344. */
  1345. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1346. (cycle_time_ns_x_100[cas_index] != 0)) {
  1347. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1348. cycle_time_ns_x_100[cas_index]);
  1349. cas_index++;
  1350. } else {
  1351. if (cas_index != 0)
  1352. cas_index++;
  1353. cas_4_0_available = FALSE;
  1354. }
  1355. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1356. (cycle_time_ns_x_100[cas_index] != 0)) {
  1357. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1358. cycle_time_ns_x_100[cas_index]);
  1359. cas_index++;
  1360. } else {
  1361. if (cas_index != 0)
  1362. cas_index++;
  1363. cas_3_0_available = FALSE;
  1364. }
  1365. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1366. (cycle_time_ns_x_100[cas_index] != 0)) {
  1367. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1368. cycle_time_ns_x_100[cas_index]);
  1369. cas_index++;
  1370. } else {
  1371. if (cas_index != 0)
  1372. cas_index++;
  1373. cas_2_5_available = FALSE;
  1374. }
  1375. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1376. (cycle_time_ns_x_100[cas_index] != 0)) {
  1377. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1378. cycle_time_ns_x_100[cas_index]);
  1379. cas_index++;
  1380. } else {
  1381. if (cas_index != 0)
  1382. cas_index++;
  1383. cas_2_0_available = FALSE;
  1384. }
  1385. } else {
  1386. /*
  1387. * DDR2 devices use the following bitmask for CAS latency:
  1388. * Bit 7 6 5 4 3 2 1 0
  1389. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1390. */
  1391. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1392. (cycle_time_ns_x_100[cas_index] != 0)) {
  1393. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1394. cycle_time_ns_x_100[cas_index]);
  1395. cas_index++;
  1396. } else {
  1397. if (cas_index != 0)
  1398. cas_index++;
  1399. cas_5_0_available = FALSE;
  1400. }
  1401. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1402. (cycle_time_ns_x_100[cas_index] != 0)) {
  1403. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1404. cycle_time_ns_x_100[cas_index]);
  1405. cas_index++;
  1406. } else {
  1407. if (cas_index != 0)
  1408. cas_index++;
  1409. cas_4_0_available = FALSE;
  1410. }
  1411. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1412. (cycle_time_ns_x_100[cas_index] != 0)) {
  1413. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1414. cycle_time_ns_x_100[cas_index]);
  1415. cas_index++;
  1416. } else {
  1417. if (cas_index != 0)
  1418. cas_index++;
  1419. cas_3_0_available = FALSE;
  1420. }
  1421. }
  1422. }
  1423. }
  1424. /*------------------------------------------------------------------
  1425. * Set the SDRAM mode, SDRAM_MMODE
  1426. *-----------------------------------------------------------------*/
  1427. mfsdram(SDRAM_MMODE, mmode);
  1428. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1429. /* add 10 here because of rounding problems */
  1430. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1431. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1432. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1433. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1434. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1435. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1436. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1437. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1438. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1439. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1440. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1441. *selected_cas = DDR_CAS_2;
  1442. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1443. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1444. *selected_cas = DDR_CAS_2_5;
  1445. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1446. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1447. *selected_cas = DDR_CAS_3;
  1448. } else {
  1449. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1450. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1451. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1452. spd_ddr_init_hang ();
  1453. }
  1454. } else { /* DDR2 */
  1455. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1456. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1457. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1458. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1459. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1460. *selected_cas = DDR_CAS_3;
  1461. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1462. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1463. *selected_cas = DDR_CAS_4;
  1464. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1465. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1466. *selected_cas = DDR_CAS_5;
  1467. } else {
  1468. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1469. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1470. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1471. printf("cas3=%d cas4=%d cas5=%d\n",
  1472. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1473. printf("sdram_freq=%lu cycle3=%lu cycle4=%lu cycle5=%lu\n\n",
  1474. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1475. spd_ddr_init_hang ();
  1476. }
  1477. }
  1478. if (sdram_ddr1 == TRUE)
  1479. mmode |= SDRAM_MMODE_WR_DDR1;
  1480. else {
  1481. /* loop through all the DIMM slots on the board */
  1482. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1483. /* If a dimm is installed in a particular slot ... */
  1484. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1485. t_wr_ns = max(t_wr_ns,
  1486. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1487. }
  1488. /*
  1489. * convert from nanoseconds to ddr clocks
  1490. * round up if necessary
  1491. */
  1492. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1493. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1494. if (sdram_freq != ddr_check)
  1495. t_wr_clk++;
  1496. switch (t_wr_clk) {
  1497. case 0:
  1498. case 1:
  1499. case 2:
  1500. case 3:
  1501. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1502. break;
  1503. case 4:
  1504. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1505. break;
  1506. case 5:
  1507. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1508. break;
  1509. default:
  1510. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1511. break;
  1512. }
  1513. *write_recovery = t_wr_clk;
  1514. }
  1515. debug("CAS latency = %d\n", *selected_cas);
  1516. debug("Write recovery = %d\n", *write_recovery);
  1517. mtsdram(SDRAM_MMODE, mmode);
  1518. }
  1519. /*-----------------------------------------------------------------------------+
  1520. * program_rtr.
  1521. *-----------------------------------------------------------------------------*/
  1522. static void program_rtr(unsigned long *dimm_populated,
  1523. unsigned char *iic0_dimm_addr,
  1524. unsigned long num_dimm_banks)
  1525. {
  1526. PPC4xx_SYS_INFO board_cfg;
  1527. unsigned long max_refresh_rate;
  1528. unsigned long dimm_num;
  1529. unsigned long refresh_rate_type;
  1530. unsigned long refresh_rate;
  1531. unsigned long rint;
  1532. unsigned long sdram_freq;
  1533. unsigned long sdr_ddrpll;
  1534. unsigned long val;
  1535. /*------------------------------------------------------------------
  1536. * Get the board configuration info.
  1537. *-----------------------------------------------------------------*/
  1538. get_sys_info(&board_cfg);
  1539. /*------------------------------------------------------------------
  1540. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1541. *-----------------------------------------------------------------*/
  1542. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1543. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1544. max_refresh_rate = 0;
  1545. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1546. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1547. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1548. refresh_rate_type &= 0x7F;
  1549. switch (refresh_rate_type) {
  1550. case 0:
  1551. refresh_rate = 15625;
  1552. break;
  1553. case 1:
  1554. refresh_rate = 3906;
  1555. break;
  1556. case 2:
  1557. refresh_rate = 7812;
  1558. break;
  1559. case 3:
  1560. refresh_rate = 31250;
  1561. break;
  1562. case 4:
  1563. refresh_rate = 62500;
  1564. break;
  1565. case 5:
  1566. refresh_rate = 125000;
  1567. break;
  1568. default:
  1569. refresh_rate = 0;
  1570. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1571. (unsigned int)dimm_num);
  1572. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1573. spd_ddr_init_hang ();
  1574. break;
  1575. }
  1576. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1577. }
  1578. }
  1579. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1580. mfsdram(SDRAM_RTR, val);
  1581. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1582. (SDRAM_RTR_RINT_ENCODE(rint)));
  1583. }
  1584. /*------------------------------------------------------------------
  1585. * This routine programs the SDRAM_TRx registers.
  1586. *-----------------------------------------------------------------*/
  1587. static void program_tr(unsigned long *dimm_populated,
  1588. unsigned char *iic0_dimm_addr,
  1589. unsigned long num_dimm_banks)
  1590. {
  1591. unsigned long dimm_num;
  1592. unsigned long sdram_ddr1;
  1593. unsigned long t_rp_ns;
  1594. unsigned long t_rcd_ns;
  1595. unsigned long t_rrd_ns;
  1596. unsigned long t_ras_ns;
  1597. unsigned long t_rc_ns;
  1598. unsigned long t_rfc_ns;
  1599. unsigned long t_wpc_ns;
  1600. unsigned long t_wtr_ns;
  1601. unsigned long t_rpc_ns;
  1602. unsigned long t_rp_clk;
  1603. unsigned long t_rcd_clk;
  1604. unsigned long t_rrd_clk;
  1605. unsigned long t_ras_clk;
  1606. unsigned long t_rc_clk;
  1607. unsigned long t_rfc_clk;
  1608. unsigned long t_wpc_clk;
  1609. unsigned long t_wtr_clk;
  1610. unsigned long t_rpc_clk;
  1611. unsigned long sdtr1, sdtr2, sdtr3;
  1612. unsigned long ddr_check;
  1613. unsigned long sdram_freq;
  1614. unsigned long sdr_ddrpll;
  1615. PPC4xx_SYS_INFO board_cfg;
  1616. /*------------------------------------------------------------------
  1617. * Get the board configuration info.
  1618. *-----------------------------------------------------------------*/
  1619. get_sys_info(&board_cfg);
  1620. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1621. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1622. /*------------------------------------------------------------------
  1623. * Handle the timing. We need to find the worst case timing of all
  1624. * the dimm modules installed.
  1625. *-----------------------------------------------------------------*/
  1626. t_rp_ns = 0;
  1627. t_rrd_ns = 0;
  1628. t_rcd_ns = 0;
  1629. t_ras_ns = 0;
  1630. t_rc_ns = 0;
  1631. t_rfc_ns = 0;
  1632. t_wpc_ns = 0;
  1633. t_wtr_ns = 0;
  1634. t_rpc_ns = 0;
  1635. sdram_ddr1 = TRUE;
  1636. /* loop through all the DIMM slots on the board */
  1637. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1638. /* If a dimm is installed in a particular slot ... */
  1639. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1640. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1641. sdram_ddr1 = TRUE;
  1642. else
  1643. sdram_ddr1 = FALSE;
  1644. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1645. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1646. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1647. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1648. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1649. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1650. }
  1651. }
  1652. /*------------------------------------------------------------------
  1653. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1654. *-----------------------------------------------------------------*/
  1655. mfsdram(SDRAM_SDTR1, sdtr1);
  1656. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1657. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1658. /* default values */
  1659. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1660. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1661. /* normal operations */
  1662. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1663. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1664. mtsdram(SDRAM_SDTR1, sdtr1);
  1665. /*------------------------------------------------------------------
  1666. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1667. *-----------------------------------------------------------------*/
  1668. mfsdram(SDRAM_SDTR2, sdtr2);
  1669. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1670. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1671. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1672. SDRAM_SDTR2_RRD_MASK);
  1673. /*
  1674. * convert t_rcd from nanoseconds to ddr clocks
  1675. * round up if necessary
  1676. */
  1677. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1678. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1679. if (sdram_freq != ddr_check)
  1680. t_rcd_clk++;
  1681. switch (t_rcd_clk) {
  1682. case 0:
  1683. case 1:
  1684. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1685. break;
  1686. case 2:
  1687. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1688. break;
  1689. case 3:
  1690. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1691. break;
  1692. case 4:
  1693. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1694. break;
  1695. default:
  1696. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1697. break;
  1698. }
  1699. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1700. if (sdram_freq < 200000000) {
  1701. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1702. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1703. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1704. } else {
  1705. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1706. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1707. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1708. }
  1709. } else { /* DDR2 */
  1710. /* loop through all the DIMM slots on the board */
  1711. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1712. /* If a dimm is installed in a particular slot ... */
  1713. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1714. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1715. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1716. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1717. }
  1718. }
  1719. /*
  1720. * convert from nanoseconds to ddr clocks
  1721. * round up if necessary
  1722. */
  1723. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1724. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1725. if (sdram_freq != ddr_check)
  1726. t_wpc_clk++;
  1727. switch (t_wpc_clk) {
  1728. case 0:
  1729. case 1:
  1730. case 2:
  1731. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1732. break;
  1733. case 3:
  1734. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1735. break;
  1736. case 4:
  1737. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1738. break;
  1739. case 5:
  1740. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1741. break;
  1742. default:
  1743. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1744. break;
  1745. }
  1746. /*
  1747. * convert from nanoseconds to ddr clocks
  1748. * round up if necessary
  1749. */
  1750. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1751. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1752. if (sdram_freq != ddr_check)
  1753. t_wtr_clk++;
  1754. switch (t_wtr_clk) {
  1755. case 0:
  1756. case 1:
  1757. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1758. break;
  1759. case 2:
  1760. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1761. break;
  1762. case 3:
  1763. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1764. break;
  1765. default:
  1766. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1767. break;
  1768. }
  1769. /*
  1770. * convert from nanoseconds to ddr clocks
  1771. * round up if necessary
  1772. */
  1773. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1774. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1775. if (sdram_freq != ddr_check)
  1776. t_rpc_clk++;
  1777. switch (t_rpc_clk) {
  1778. case 0:
  1779. case 1:
  1780. case 2:
  1781. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1782. break;
  1783. case 3:
  1784. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1785. break;
  1786. default:
  1787. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1788. break;
  1789. }
  1790. }
  1791. /* default value */
  1792. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1793. /*
  1794. * convert t_rrd from nanoseconds to ddr clocks
  1795. * round up if necessary
  1796. */
  1797. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1798. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1799. if (sdram_freq != ddr_check)
  1800. t_rrd_clk++;
  1801. if (t_rrd_clk == 3)
  1802. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1803. else
  1804. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1805. /*
  1806. * convert t_rp from nanoseconds to ddr clocks
  1807. * round up if necessary
  1808. */
  1809. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1810. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1811. if (sdram_freq != ddr_check)
  1812. t_rp_clk++;
  1813. switch (t_rp_clk) {
  1814. case 0:
  1815. case 1:
  1816. case 2:
  1817. case 3:
  1818. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1819. break;
  1820. case 4:
  1821. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1822. break;
  1823. case 5:
  1824. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1825. break;
  1826. case 6:
  1827. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1828. break;
  1829. default:
  1830. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1831. break;
  1832. }
  1833. mtsdram(SDRAM_SDTR2, sdtr2);
  1834. /*------------------------------------------------------------------
  1835. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1836. *-----------------------------------------------------------------*/
  1837. mfsdram(SDRAM_SDTR3, sdtr3);
  1838. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1839. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1840. /*
  1841. * convert t_ras from nanoseconds to ddr clocks
  1842. * round up if necessary
  1843. */
  1844. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1845. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1846. if (sdram_freq != ddr_check)
  1847. t_ras_clk++;
  1848. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1849. /*
  1850. * convert t_rc from nanoseconds to ddr clocks
  1851. * round up if necessary
  1852. */
  1853. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1854. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1855. if (sdram_freq != ddr_check)
  1856. t_rc_clk++;
  1857. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1858. /* default xcs value */
  1859. sdtr3 |= SDRAM_SDTR3_XCS;
  1860. /*
  1861. * convert t_rfc from nanoseconds to ddr clocks
  1862. * round up if necessary
  1863. */
  1864. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1865. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1866. if (sdram_freq != ddr_check)
  1867. t_rfc_clk++;
  1868. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1869. mtsdram(SDRAM_SDTR3, sdtr3);
  1870. }
  1871. /*-----------------------------------------------------------------------------+
  1872. * program_bxcf.
  1873. *-----------------------------------------------------------------------------*/
  1874. static void program_bxcf(unsigned long *dimm_populated,
  1875. unsigned char *iic0_dimm_addr,
  1876. unsigned long num_dimm_banks)
  1877. {
  1878. unsigned long dimm_num;
  1879. unsigned long num_col_addr;
  1880. unsigned long num_ranks;
  1881. unsigned long num_banks;
  1882. unsigned long mode;
  1883. unsigned long ind_rank;
  1884. unsigned long ind;
  1885. unsigned long ind_bank;
  1886. unsigned long bank_0_populated;
  1887. /*------------------------------------------------------------------
  1888. * Set the BxCF regs. First, wipe out the bank config registers.
  1889. *-----------------------------------------------------------------*/
  1890. mtsdram(SDRAM_MB0CF, 0x00000000);
  1891. mtsdram(SDRAM_MB1CF, 0x00000000);
  1892. mtsdram(SDRAM_MB2CF, 0x00000000);
  1893. mtsdram(SDRAM_MB3CF, 0x00000000);
  1894. mode = SDRAM_BXCF_M_BE_ENABLE;
  1895. bank_0_populated = 0;
  1896. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1897. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1898. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1899. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1900. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1901. num_ranks = (num_ranks & 0x0F) +1;
  1902. else
  1903. num_ranks = num_ranks & 0x0F;
  1904. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1905. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1906. if (num_banks == 4)
  1907. ind = 0;
  1908. else
  1909. ind = 5 << 8;
  1910. switch (num_col_addr) {
  1911. case 0x08:
  1912. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1913. break;
  1914. case 0x09:
  1915. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1916. break;
  1917. case 0x0A:
  1918. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1919. break;
  1920. case 0x0B:
  1921. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1922. break;
  1923. case 0x0C:
  1924. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1925. break;
  1926. default:
  1927. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1928. (unsigned int)dimm_num);
  1929. printf("ERROR: Unsupported value for number of "
  1930. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1931. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1932. spd_ddr_init_hang ();
  1933. }
  1934. }
  1935. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1936. bank_0_populated = 1;
  1937. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1938. mtsdram(SDRAM_MB0CF +
  1939. ((dimm_num + bank_0_populated + ind_rank) << 2),
  1940. mode);
  1941. }
  1942. }
  1943. }
  1944. }
  1945. /*------------------------------------------------------------------
  1946. * program memory queue.
  1947. *-----------------------------------------------------------------*/
  1948. static void program_memory_queue(unsigned long *dimm_populated,
  1949. unsigned char *iic0_dimm_addr,
  1950. unsigned long num_dimm_banks)
  1951. {
  1952. unsigned long dimm_num;
  1953. phys_size_t rank_base_addr;
  1954. unsigned long rank_reg;
  1955. phys_size_t rank_size_bytes;
  1956. unsigned long rank_size_id;
  1957. unsigned long num_ranks;
  1958. unsigned long baseadd_size;
  1959. unsigned long i;
  1960. unsigned long bank_0_populated = 0;
  1961. phys_size_t total_size = 0;
  1962. /*------------------------------------------------------------------
  1963. * Reset the rank_base_address.
  1964. *-----------------------------------------------------------------*/
  1965. rank_reg = SDRAM_R0BAS;
  1966. rank_base_addr = 0x00000000;
  1967. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1968. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1969. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1970. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1971. num_ranks = (num_ranks & 0x0F) + 1;
  1972. else
  1973. num_ranks = num_ranks & 0x0F;
  1974. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1975. /*------------------------------------------------------------------
  1976. * Set the sizes
  1977. *-----------------------------------------------------------------*/
  1978. baseadd_size = 0;
  1979. switch (rank_size_id) {
  1980. case 0x01:
  1981. baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
  1982. total_size = 1024;
  1983. break;
  1984. case 0x02:
  1985. baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
  1986. total_size = 2048;
  1987. break;
  1988. case 0x04:
  1989. baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
  1990. total_size = 4096;
  1991. break;
  1992. case 0x08:
  1993. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1994. total_size = 32;
  1995. break;
  1996. case 0x10:
  1997. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1998. total_size = 64;
  1999. break;
  2000. case 0x20:
  2001. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  2002. total_size = 128;
  2003. break;
  2004. case 0x40:
  2005. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  2006. total_size = 256;
  2007. break;
  2008. case 0x80:
  2009. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  2010. total_size = 512;
  2011. break;
  2012. default:
  2013. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  2014. (unsigned int)dimm_num);
  2015. printf("ERROR: Unsupported value for the banksize: %d.\n",
  2016. (unsigned int)rank_size_id);
  2017. printf("Replace the DIMM module with a supported DIMM.\n\n");
  2018. spd_ddr_init_hang ();
  2019. }
  2020. rank_size_bytes = total_size << 20;
  2021. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  2022. bank_0_populated = 1;
  2023. for (i = 0; i < num_ranks; i++) {
  2024. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  2025. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  2026. baseadd_size));
  2027. rank_base_addr += rank_size_bytes;
  2028. }
  2029. }
  2030. }
  2031. #if defined(CONFIG_460EX) || defined(CONFIG_460GT)
  2032. /*
  2033. * Enable high bandwidth access on 460EX/GT.
  2034. * This should/could probably be done on other
  2035. * PPC's too, like 440SPe.
  2036. * This is currently not used, but with this setup
  2037. * it is possible to use it later on in e.g. the Linux
  2038. * EMAC driver for performance gain.
  2039. */
  2040. mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
  2041. mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
  2042. #endif
  2043. }
  2044. /*-----------------------------------------------------------------------------+
  2045. * is_ecc_enabled.
  2046. *-----------------------------------------------------------------------------*/
  2047. static unsigned long is_ecc_enabled(void)
  2048. {
  2049. unsigned long dimm_num;
  2050. unsigned long ecc;
  2051. unsigned long val;
  2052. ecc = 0;
  2053. /* loop through all the DIMM slots on the board */
  2054. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2055. mfsdram(SDRAM_MCOPT1, val);
  2056. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  2057. }
  2058. return ecc;
  2059. }
  2060. static void blank_string(int size)
  2061. {
  2062. int i;
  2063. for (i=0; i<size; i++)
  2064. putc('\b');
  2065. for (i=0; i<size; i++)
  2066. putc(' ');
  2067. for (i=0; i<size; i++)
  2068. putc('\b');
  2069. }
  2070. #ifdef CONFIG_DDR_ECC
  2071. /*-----------------------------------------------------------------------------+
  2072. * program_ecc.
  2073. *-----------------------------------------------------------------------------*/
  2074. static void program_ecc(unsigned long *dimm_populated,
  2075. unsigned char *iic0_dimm_addr,
  2076. unsigned long num_dimm_banks,
  2077. unsigned long tlb_word2_i_value)
  2078. {
  2079. unsigned long mcopt1;
  2080. unsigned long mcopt2;
  2081. unsigned long mcstat;
  2082. unsigned long dimm_num;
  2083. unsigned long ecc;
  2084. ecc = 0;
  2085. /* loop through all the DIMM slots on the board */
  2086. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2087. /* If a dimm is installed in a particular slot ... */
  2088. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2089. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2090. }
  2091. if (ecc == 0)
  2092. return;
  2093. if (sdram_memsize() > CONFIG_MAX_MEM_MAPPED) {
  2094. printf("\nWarning: Can't enable ECC on systems with more than 2GB of SDRAM!\n");
  2095. return;
  2096. }
  2097. mfsdram(SDRAM_MCOPT1, mcopt1);
  2098. mfsdram(SDRAM_MCOPT2, mcopt2);
  2099. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2100. /* DDR controller must be enabled and not in self-refresh. */
  2101. mfsdram(SDRAM_MCSTAT, mcstat);
  2102. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2103. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2104. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2105. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2106. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2107. }
  2108. }
  2109. return;
  2110. }
  2111. static void wait_ddr_idle(void)
  2112. {
  2113. u32 val;
  2114. do {
  2115. mfsdram(SDRAM_MCSTAT, val);
  2116. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2117. }
  2118. /*-----------------------------------------------------------------------------+
  2119. * program_ecc_addr.
  2120. *-----------------------------------------------------------------------------*/
  2121. static void program_ecc_addr(unsigned long start_address,
  2122. unsigned long num_bytes,
  2123. unsigned long tlb_word2_i_value)
  2124. {
  2125. unsigned long current_address;
  2126. unsigned long end_address;
  2127. unsigned long address_increment;
  2128. unsigned long mcopt1;
  2129. char str[] = "ECC generation -";
  2130. char slash[] = "\\|/-\\|/-";
  2131. int loop = 0;
  2132. int loopi = 0;
  2133. current_address = start_address;
  2134. mfsdram(SDRAM_MCOPT1, mcopt1);
  2135. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2136. mtsdram(SDRAM_MCOPT1,
  2137. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2138. sync();
  2139. eieio();
  2140. wait_ddr_idle();
  2141. puts(str);
  2142. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2143. /* ECC bit set method for non-cached memory */
  2144. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2145. address_increment = 4;
  2146. else
  2147. address_increment = 8;
  2148. end_address = current_address + num_bytes;
  2149. while (current_address < end_address) {
  2150. *((unsigned long *)current_address) = 0x00000000;
  2151. current_address += address_increment;
  2152. if ((loop++ % (2 << 20)) == 0) {
  2153. putc('\b');
  2154. putc(slash[loopi++ % 8]);
  2155. }
  2156. }
  2157. } else {
  2158. /* ECC bit set method for cached memory */
  2159. dcbz_area(start_address, num_bytes);
  2160. /* Write modified dcache lines back to memory */
  2161. clean_dcache_range(start_address, start_address + num_bytes);
  2162. }
  2163. blank_string(strlen(str));
  2164. sync();
  2165. eieio();
  2166. wait_ddr_idle();
  2167. /* clear ECC error repoting registers */
  2168. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2169. mtdcr(0x4c, 0xffffffff);
  2170. mtsdram(SDRAM_MCOPT1,
  2171. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2172. sync();
  2173. eieio();
  2174. wait_ddr_idle();
  2175. }
  2176. }
  2177. #endif
  2178. /*-----------------------------------------------------------------------------+
  2179. * program_DQS_calibration.
  2180. *-----------------------------------------------------------------------------*/
  2181. static void program_DQS_calibration(unsigned long *dimm_populated,
  2182. unsigned char *iic0_dimm_addr,
  2183. unsigned long num_dimm_banks)
  2184. {
  2185. unsigned long val;
  2186. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2187. mtsdram(SDRAM_RQDC, 0x80000037);
  2188. mtsdram(SDRAM_RDCC, 0x40000000);
  2189. mtsdram(SDRAM_RFDC, 0x000001DF);
  2190. test();
  2191. #else
  2192. /*------------------------------------------------------------------
  2193. * Program RDCC register
  2194. * Read sample cycle auto-update enable
  2195. *-----------------------------------------------------------------*/
  2196. mfsdram(SDRAM_RDCC, val);
  2197. mtsdram(SDRAM_RDCC,
  2198. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2199. | SDRAM_RDCC_RSAE_ENABLE);
  2200. /*------------------------------------------------------------------
  2201. * Program RQDC register
  2202. * Internal DQS delay mechanism enable
  2203. *-----------------------------------------------------------------*/
  2204. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2205. /*------------------------------------------------------------------
  2206. * Program RFDC register
  2207. * Set Feedback Fractional Oversample
  2208. * Auto-detect read sample cycle enable
  2209. *-----------------------------------------------------------------*/
  2210. mfsdram(SDRAM_RFDC, val);
  2211. mtsdram(SDRAM_RFDC,
  2212. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2213. SDRAM_RFDC_RFFD_MASK))
  2214. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2215. SDRAM_RFDC_RFFD_ENCODE(0)));
  2216. DQS_calibration_process();
  2217. #endif
  2218. }
  2219. static int short_mem_test(void)
  2220. {
  2221. u32 *membase;
  2222. u32 bxcr_num;
  2223. u32 bxcf;
  2224. int i;
  2225. int j;
  2226. phys_size_t base_addr;
  2227. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2228. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2229. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2230. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2231. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2232. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2233. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2234. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2235. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2236. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2237. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2238. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2239. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2240. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2241. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2242. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2243. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2244. int l;
  2245. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2246. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2247. /* Banks enabled */
  2248. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2249. /* Bank is enabled */
  2250. /*
  2251. * Only run test on accessable memory (below 2GB)
  2252. */
  2253. base_addr = SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num));
  2254. if (base_addr >= CONFIG_MAX_MEM_MAPPED)
  2255. continue;
  2256. /*------------------------------------------------------------------
  2257. * Run the short memory test.
  2258. *-----------------------------------------------------------------*/
  2259. membase = (u32 *)(u32)base_addr;
  2260. for (i = 0; i < NUMMEMTESTS; i++) {
  2261. for (j = 0; j < NUMMEMWORDS; j++) {
  2262. membase[j] = test[i][j];
  2263. ppcDcbf((u32)&(membase[j]));
  2264. }
  2265. sync();
  2266. for (l=0; l<NUMLOOPS; l++) {
  2267. for (j = 0; j < NUMMEMWORDS; j++) {
  2268. if (membase[j] != test[i][j]) {
  2269. ppcDcbf((u32)&(membase[j]));
  2270. return 0;
  2271. }
  2272. ppcDcbf((u32)&(membase[j]));
  2273. }
  2274. sync();
  2275. }
  2276. }
  2277. } /* if bank enabled */
  2278. } /* for bxcf_num */
  2279. return 1;
  2280. }
  2281. #ifndef HARD_CODED_DQS
  2282. /*-----------------------------------------------------------------------------+
  2283. * DQS_calibration_process.
  2284. *-----------------------------------------------------------------------------*/
  2285. static void DQS_calibration_process(void)
  2286. {
  2287. unsigned long rfdc_reg;
  2288. unsigned long rffd;
  2289. unsigned long val;
  2290. long rffd_average;
  2291. long max_start;
  2292. long min_end;
  2293. unsigned long begin_rqfd[MAXRANKS];
  2294. unsigned long begin_rffd[MAXRANKS];
  2295. unsigned long end_rqfd[MAXRANKS];
  2296. unsigned long end_rffd[MAXRANKS];
  2297. char window_found;
  2298. unsigned long dlycal;
  2299. unsigned long dly_val;
  2300. unsigned long max_pass_length;
  2301. unsigned long current_pass_length;
  2302. unsigned long current_fail_length;
  2303. unsigned long current_start;
  2304. long max_end;
  2305. unsigned char fail_found;
  2306. unsigned char pass_found;
  2307. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2308. u32 rqdc_reg;
  2309. u32 rqfd;
  2310. u32 rqfd_start;
  2311. u32 rqfd_average;
  2312. int loopi = 0;
  2313. char str[] = "Auto calibration -";
  2314. char slash[] = "\\|/-\\|/-";
  2315. /*------------------------------------------------------------------
  2316. * Test to determine the best read clock delay tuning bits.
  2317. *
  2318. * Before the DDR controller can be used, the read clock delay needs to be
  2319. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2320. * This value cannot be hardcoded into the program because it changes
  2321. * depending on the board's setup and environment.
  2322. * To do this, all delay values are tested to see if they
  2323. * work or not. By doing this, you get groups of fails with groups of
  2324. * passing values. The idea is to find the start and end of a passing
  2325. * window and take the center of it to use as the read clock delay.
  2326. *
  2327. * A failure has to be seen first so that when we hit a pass, we know
  2328. * that it is truely the start of the window. If we get passing values
  2329. * to start off with, we don't know if we are at the start of the window.
  2330. *
  2331. * The code assumes that a failure will always be found.
  2332. * If a failure is not found, there is no easy way to get the middle
  2333. * of the passing window. I guess we can pretty much pick any value
  2334. * but some values will be better than others. Since the lowest speed
  2335. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2336. * from experimentation it is safe to say you will always have a failure.
  2337. *-----------------------------------------------------------------*/
  2338. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2339. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2340. puts(str);
  2341. calibration_loop:
  2342. mfsdram(SDRAM_RQDC, rqdc_reg);
  2343. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2344. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2345. #else /* CONFIG_DDR_RQDC_FIXED */
  2346. /*
  2347. * On Katmai the complete auto-calibration somehow doesn't seem to
  2348. * produce the best results, meaning optimal values for RQFD/RFFD.
  2349. * This was discovered by GDA using a high bandwidth scope,
  2350. * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
  2351. * so now on Katmai "only" RFFD is auto-calibrated.
  2352. */
  2353. mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
  2354. #endif /* CONFIG_DDR_RQDC_FIXED */
  2355. max_start = 0;
  2356. min_end = 0;
  2357. begin_rqfd[0] = 0;
  2358. begin_rffd[0] = 0;
  2359. begin_rqfd[1] = 0;
  2360. begin_rffd[1] = 0;
  2361. end_rqfd[0] = 0;
  2362. end_rffd[0] = 0;
  2363. end_rqfd[1] = 0;
  2364. end_rffd[1] = 0;
  2365. window_found = FALSE;
  2366. max_pass_length = 0;
  2367. max_start = 0;
  2368. max_end = 0;
  2369. current_pass_length = 0;
  2370. current_fail_length = 0;
  2371. current_start = 0;
  2372. window_found = FALSE;
  2373. fail_found = FALSE;
  2374. pass_found = FALSE;
  2375. /*
  2376. * get the delay line calibration register value
  2377. */
  2378. mfsdram(SDRAM_DLCR, dlycal);
  2379. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2380. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2381. mfsdram(SDRAM_RFDC, rfdc_reg);
  2382. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2383. /*------------------------------------------------------------------
  2384. * Set the timing reg for the test.
  2385. *-----------------------------------------------------------------*/
  2386. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2387. /*------------------------------------------------------------------
  2388. * See if the rffd value passed.
  2389. *-----------------------------------------------------------------*/
  2390. if (short_mem_test()) {
  2391. if (fail_found == TRUE) {
  2392. pass_found = TRUE;
  2393. if (current_pass_length == 0)
  2394. current_start = rffd;
  2395. current_fail_length = 0;
  2396. current_pass_length++;
  2397. if (current_pass_length > max_pass_length) {
  2398. max_pass_length = current_pass_length;
  2399. max_start = current_start;
  2400. max_end = rffd;
  2401. }
  2402. }
  2403. } else {
  2404. current_pass_length = 0;
  2405. current_fail_length++;
  2406. if (current_fail_length >= (dly_val >> 2)) {
  2407. if (fail_found == FALSE) {
  2408. fail_found = TRUE;
  2409. } else if (pass_found == TRUE) {
  2410. window_found = TRUE;
  2411. break;
  2412. }
  2413. }
  2414. }
  2415. } /* for rffd */
  2416. /*------------------------------------------------------------------
  2417. * Set the average RFFD value
  2418. *-----------------------------------------------------------------*/
  2419. rffd_average = ((max_start + max_end) >> 1);
  2420. if (rffd_average < 0)
  2421. rffd_average = 0;
  2422. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2423. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2424. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2425. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2426. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2427. max_pass_length = 0;
  2428. max_start = 0;
  2429. max_end = 0;
  2430. current_pass_length = 0;
  2431. current_fail_length = 0;
  2432. current_start = 0;
  2433. window_found = FALSE;
  2434. fail_found = FALSE;
  2435. pass_found = FALSE;
  2436. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2437. mfsdram(SDRAM_RQDC, rqdc_reg);
  2438. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2439. /*------------------------------------------------------------------
  2440. * Set the timing reg for the test.
  2441. *-----------------------------------------------------------------*/
  2442. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2443. /*------------------------------------------------------------------
  2444. * See if the rffd value passed.
  2445. *-----------------------------------------------------------------*/
  2446. if (short_mem_test()) {
  2447. if (fail_found == TRUE) {
  2448. pass_found = TRUE;
  2449. if (current_pass_length == 0)
  2450. current_start = rqfd;
  2451. current_fail_length = 0;
  2452. current_pass_length++;
  2453. if (current_pass_length > max_pass_length) {
  2454. max_pass_length = current_pass_length;
  2455. max_start = current_start;
  2456. max_end = rqfd;
  2457. }
  2458. }
  2459. } else {
  2460. current_pass_length = 0;
  2461. current_fail_length++;
  2462. if (fail_found == FALSE) {
  2463. fail_found = TRUE;
  2464. } else if (pass_found == TRUE) {
  2465. window_found = TRUE;
  2466. break;
  2467. }
  2468. }
  2469. }
  2470. rqfd_average = ((max_start + max_end) >> 1);
  2471. /*------------------------------------------------------------------
  2472. * Make sure we found the valid read passing window. Halt if not
  2473. *-----------------------------------------------------------------*/
  2474. if (window_found == FALSE) {
  2475. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2476. putc('\b');
  2477. putc(slash[loopi++ % 8]);
  2478. /* try again from with a different RQFD start value */
  2479. rqfd_start++;
  2480. goto calibration_loop;
  2481. }
  2482. printf("\nERROR: Cannot determine a common read delay for the "
  2483. "DIMM(s) installed.\n");
  2484. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2485. ppc440sp_sdram_register_dump();
  2486. spd_ddr_init_hang ();
  2487. }
  2488. if (rqfd_average < 0)
  2489. rqfd_average = 0;
  2490. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2491. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2492. mtsdram(SDRAM_RQDC,
  2493. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2494. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2495. blank_string(strlen(str));
  2496. #endif /* CONFIG_DDR_RQDC_FIXED */
  2497. /*
  2498. * Now complete RDSS configuration as mentioned on page 7 of the AMCC
  2499. * PowerPC440SP/SPe DDR2 application note:
  2500. * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
  2501. */
  2502. mfsdram(SDRAM_RTSR, val);
  2503. if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
  2504. mfsdram(SDRAM_RDCC, val);
  2505. if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
  2506. val += 0x40000000;
  2507. mtsdram(SDRAM_RDCC, val);
  2508. }
  2509. }
  2510. mfsdram(SDRAM_DLCR, val);
  2511. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2512. mfsdram(SDRAM_RQDC, val);
  2513. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2514. mfsdram(SDRAM_RFDC, val);
  2515. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2516. mfsdram(SDRAM_RDCC, val);
  2517. debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2518. }
  2519. #else /* calibration test with hardvalues */
  2520. /*-----------------------------------------------------------------------------+
  2521. * DQS_calibration_process.
  2522. *-----------------------------------------------------------------------------*/
  2523. static void test(void)
  2524. {
  2525. unsigned long dimm_num;
  2526. unsigned long ecc_temp;
  2527. unsigned long i, j;
  2528. unsigned long *membase;
  2529. unsigned long bxcf[MAXRANKS];
  2530. unsigned long val;
  2531. char window_found;
  2532. char begin_found[MAXDIMMS];
  2533. char end_found[MAXDIMMS];
  2534. char search_end[MAXDIMMS];
  2535. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2536. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2537. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2538. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2539. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2540. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2541. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2542. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2543. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2544. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2545. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2546. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2547. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2548. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2549. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2550. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2551. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2552. /*------------------------------------------------------------------
  2553. * Test to determine the best read clock delay tuning bits.
  2554. *
  2555. * Before the DDR controller can be used, the read clock delay needs to be
  2556. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2557. * This value cannot be hardcoded into the program because it changes
  2558. * depending on the board's setup and environment.
  2559. * To do this, all delay values are tested to see if they
  2560. * work or not. By doing this, you get groups of fails with groups of
  2561. * passing values. The idea is to find the start and end of a passing
  2562. * window and take the center of it to use as the read clock delay.
  2563. *
  2564. * A failure has to be seen first so that when we hit a pass, we know
  2565. * that it is truely the start of the window. If we get passing values
  2566. * to start off with, we don't know if we are at the start of the window.
  2567. *
  2568. * The code assumes that a failure will always be found.
  2569. * If a failure is not found, there is no easy way to get the middle
  2570. * of the passing window. I guess we can pretty much pick any value
  2571. * but some values will be better than others. Since the lowest speed
  2572. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2573. * from experimentation it is safe to say you will always have a failure.
  2574. *-----------------------------------------------------------------*/
  2575. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2576. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2577. mfsdram(SDRAM_MCOPT1, val);
  2578. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2579. SDRAM_MCOPT1_MCHK_NON);
  2580. window_found = FALSE;
  2581. begin_found[0] = FALSE;
  2582. end_found[0] = FALSE;
  2583. search_end[0] = FALSE;
  2584. begin_found[1] = FALSE;
  2585. end_found[1] = FALSE;
  2586. search_end[1] = FALSE;
  2587. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2588. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2589. /* Banks enabled */
  2590. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2591. /* Bank is enabled */
  2592. membase =
  2593. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2594. /*------------------------------------------------------------------
  2595. * Run the short memory test.
  2596. *-----------------------------------------------------------------*/
  2597. for (i = 0; i < NUMMEMTESTS; i++) {
  2598. for (j = 0; j < NUMMEMWORDS; j++) {
  2599. membase[j] = test[i][j];
  2600. ppcDcbf((u32)&(membase[j]));
  2601. }
  2602. sync();
  2603. for (j = 0; j < NUMMEMWORDS; j++) {
  2604. if (membase[j] != test[i][j]) {
  2605. ppcDcbf((u32)&(membase[j]));
  2606. break;
  2607. }
  2608. ppcDcbf((u32)&(membase[j]));
  2609. }
  2610. sync();
  2611. if (j < NUMMEMWORDS)
  2612. break;
  2613. }
  2614. /*------------------------------------------------------------------
  2615. * See if the rffd value passed.
  2616. *-----------------------------------------------------------------*/
  2617. if (i < NUMMEMTESTS) {
  2618. if ((end_found[dimm_num] == FALSE) &&
  2619. (search_end[dimm_num] == TRUE)) {
  2620. end_found[dimm_num] = TRUE;
  2621. }
  2622. if ((end_found[0] == TRUE) &&
  2623. (end_found[1] == TRUE))
  2624. break;
  2625. } else {
  2626. if (begin_found[dimm_num] == FALSE) {
  2627. begin_found[dimm_num] = TRUE;
  2628. search_end[dimm_num] = TRUE;
  2629. }
  2630. }
  2631. } else {
  2632. begin_found[dimm_num] = TRUE;
  2633. end_found[dimm_num] = TRUE;
  2634. }
  2635. }
  2636. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2637. window_found = TRUE;
  2638. /*------------------------------------------------------------------
  2639. * Make sure we found the valid read passing window. Halt if not
  2640. *-----------------------------------------------------------------*/
  2641. if (window_found == FALSE) {
  2642. printf("ERROR: Cannot determine a common read delay for the "
  2643. "DIMM(s) installed.\n");
  2644. spd_ddr_init_hang ();
  2645. }
  2646. /*------------------------------------------------------------------
  2647. * Restore the ECC variable to what it originally was
  2648. *-----------------------------------------------------------------*/
  2649. mtsdram(SDRAM_MCOPT1,
  2650. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2651. | ecc_temp);
  2652. }
  2653. #endif
  2654. #if defined(DEBUG)
  2655. static void ppc440sp_sdram_register_dump(void)
  2656. {
  2657. unsigned int sdram_reg;
  2658. unsigned int sdram_data;
  2659. unsigned int dcr_data;
  2660. printf("\n Register Dump:\n");
  2661. sdram_reg = SDRAM_MCSTAT;
  2662. mfsdram(sdram_reg, sdram_data);
  2663. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2664. sdram_reg = SDRAM_MCOPT1;
  2665. mfsdram(sdram_reg, sdram_data);
  2666. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2667. sdram_reg = SDRAM_MCOPT2;
  2668. mfsdram(sdram_reg, sdram_data);
  2669. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2670. sdram_reg = SDRAM_MODT0;
  2671. mfsdram(sdram_reg, sdram_data);
  2672. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2673. sdram_reg = SDRAM_MODT1;
  2674. mfsdram(sdram_reg, sdram_data);
  2675. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2676. sdram_reg = SDRAM_MODT2;
  2677. mfsdram(sdram_reg, sdram_data);
  2678. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2679. sdram_reg = SDRAM_MODT3;
  2680. mfsdram(sdram_reg, sdram_data);
  2681. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2682. sdram_reg = SDRAM_CODT;
  2683. mfsdram(sdram_reg, sdram_data);
  2684. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2685. sdram_reg = SDRAM_VVPR;
  2686. mfsdram(sdram_reg, sdram_data);
  2687. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2688. sdram_reg = SDRAM_OPARS;
  2689. mfsdram(sdram_reg, sdram_data);
  2690. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2691. /*
  2692. * OPAR2 is only used as a trigger register.
  2693. * No data is contained in this register, and reading or writing
  2694. * to is can cause bad things to happen (hangs). Just skip it
  2695. * and report NA
  2696. * sdram_reg = SDRAM_OPAR2;
  2697. * mfsdram(sdram_reg, sdram_data);
  2698. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2699. */
  2700. printf(" SDRAM_OPART = N/A ");
  2701. sdram_reg = SDRAM_RTR;
  2702. mfsdram(sdram_reg, sdram_data);
  2703. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2704. sdram_reg = SDRAM_MB0CF;
  2705. mfsdram(sdram_reg, sdram_data);
  2706. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2707. sdram_reg = SDRAM_MB1CF;
  2708. mfsdram(sdram_reg, sdram_data);
  2709. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2710. sdram_reg = SDRAM_MB2CF;
  2711. mfsdram(sdram_reg, sdram_data);
  2712. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2713. sdram_reg = SDRAM_MB3CF;
  2714. mfsdram(sdram_reg, sdram_data);
  2715. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2716. sdram_reg = SDRAM_INITPLR0;
  2717. mfsdram(sdram_reg, sdram_data);
  2718. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2719. sdram_reg = SDRAM_INITPLR1;
  2720. mfsdram(sdram_reg, sdram_data);
  2721. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2722. sdram_reg = SDRAM_INITPLR2;
  2723. mfsdram(sdram_reg, sdram_data);
  2724. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2725. sdram_reg = SDRAM_INITPLR3;
  2726. mfsdram(sdram_reg, sdram_data);
  2727. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2728. sdram_reg = SDRAM_INITPLR4;
  2729. mfsdram(sdram_reg, sdram_data);
  2730. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2731. sdram_reg = SDRAM_INITPLR5;
  2732. mfsdram(sdram_reg, sdram_data);
  2733. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2734. sdram_reg = SDRAM_INITPLR6;
  2735. mfsdram(sdram_reg, sdram_data);
  2736. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2737. sdram_reg = SDRAM_INITPLR7;
  2738. mfsdram(sdram_reg, sdram_data);
  2739. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2740. sdram_reg = SDRAM_INITPLR8;
  2741. mfsdram(sdram_reg, sdram_data);
  2742. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2743. sdram_reg = SDRAM_INITPLR9;
  2744. mfsdram(sdram_reg, sdram_data);
  2745. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2746. sdram_reg = SDRAM_INITPLR10;
  2747. mfsdram(sdram_reg, sdram_data);
  2748. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2749. sdram_reg = SDRAM_INITPLR11;
  2750. mfsdram(sdram_reg, sdram_data);
  2751. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2752. sdram_reg = SDRAM_INITPLR12;
  2753. mfsdram(sdram_reg, sdram_data);
  2754. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2755. sdram_reg = SDRAM_INITPLR13;
  2756. mfsdram(sdram_reg, sdram_data);
  2757. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2758. sdram_reg = SDRAM_INITPLR14;
  2759. mfsdram(sdram_reg, sdram_data);
  2760. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2761. sdram_reg = SDRAM_INITPLR15;
  2762. mfsdram(sdram_reg, sdram_data);
  2763. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2764. sdram_reg = SDRAM_RQDC;
  2765. mfsdram(sdram_reg, sdram_data);
  2766. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2767. sdram_reg = SDRAM_RFDC;
  2768. mfsdram(sdram_reg, sdram_data);
  2769. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2770. sdram_reg = SDRAM_RDCC;
  2771. mfsdram(sdram_reg, sdram_data);
  2772. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2773. sdram_reg = SDRAM_DLCR;
  2774. mfsdram(sdram_reg, sdram_data);
  2775. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2776. sdram_reg = SDRAM_CLKTR;
  2777. mfsdram(sdram_reg, sdram_data);
  2778. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2779. sdram_reg = SDRAM_WRDTR;
  2780. mfsdram(sdram_reg, sdram_data);
  2781. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2782. sdram_reg = SDRAM_SDTR1;
  2783. mfsdram(sdram_reg, sdram_data);
  2784. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2785. sdram_reg = SDRAM_SDTR2;
  2786. mfsdram(sdram_reg, sdram_data);
  2787. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2788. sdram_reg = SDRAM_SDTR3;
  2789. mfsdram(sdram_reg, sdram_data);
  2790. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2791. sdram_reg = SDRAM_MMODE;
  2792. mfsdram(sdram_reg, sdram_data);
  2793. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2794. sdram_reg = SDRAM_MEMODE;
  2795. mfsdram(sdram_reg, sdram_data);
  2796. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2797. sdram_reg = SDRAM_ECCCR;
  2798. mfsdram(sdram_reg, sdram_data);
  2799. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2800. dcr_data = mfdcr(SDRAM_R0BAS);
  2801. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2802. dcr_data = mfdcr(SDRAM_R1BAS);
  2803. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2804. dcr_data = mfdcr(SDRAM_R2BAS);
  2805. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2806. dcr_data = mfdcr(SDRAM_R3BAS);
  2807. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2808. }
  2809. #else /* !defined(DEBUG) */
  2810. static void ppc440sp_sdram_register_dump(void)
  2811. {
  2812. }
  2813. #endif /* defined(DEBUG) */
  2814. #elif defined(CONFIG_405EX)
  2815. /*-----------------------------------------------------------------------------
  2816. * Function: initdram
  2817. * Description: Configures the PPC405EX(r) DDR1/DDR2 SDRAM memory
  2818. * banks. The configuration is performed using static, compile-
  2819. * time parameters.
  2820. *---------------------------------------------------------------------------*/
  2821. phys_size_t initdram(int board_type)
  2822. {
  2823. /*
  2824. * Only run this SDRAM init code once. For NAND booting
  2825. * targets like Kilauea, we call initdram() early from the
  2826. * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot().
  2827. * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT)
  2828. * which calls initdram() again. This time the controller
  2829. * mustn't be reconfigured again since we're already running
  2830. * from SDRAM.
  2831. */
  2832. #if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL)
  2833. unsigned long val;
  2834. /* Set Memory Bank Configuration Registers */
  2835. mtsdram(SDRAM_MB0CF, CFG_SDRAM0_MB0CF);
  2836. mtsdram(SDRAM_MB1CF, CFG_SDRAM0_MB1CF);
  2837. mtsdram(SDRAM_MB2CF, CFG_SDRAM0_MB2CF);
  2838. mtsdram(SDRAM_MB3CF, CFG_SDRAM0_MB3CF);
  2839. /* Set Memory Clock Timing Register */
  2840. mtsdram(SDRAM_CLKTR, CFG_SDRAM0_CLKTR);
  2841. /* Set Refresh Time Register */
  2842. mtsdram(SDRAM_RTR, CFG_SDRAM0_RTR);
  2843. /* Set SDRAM Timing Registers */
  2844. mtsdram(SDRAM_SDTR1, CFG_SDRAM0_SDTR1);
  2845. mtsdram(SDRAM_SDTR2, CFG_SDRAM0_SDTR2);
  2846. mtsdram(SDRAM_SDTR3, CFG_SDRAM0_SDTR3);
  2847. /* Set Mode and Extended Mode Registers */
  2848. mtsdram(SDRAM_MMODE, CFG_SDRAM0_MMODE);
  2849. mtsdram(SDRAM_MEMODE, CFG_SDRAM0_MEMODE);
  2850. /* Set Memory Controller Options 1 Register */
  2851. mtsdram(SDRAM_MCOPT1, CFG_SDRAM0_MCOPT1);
  2852. /* Set Manual Initialization Control Registers */
  2853. mtsdram(SDRAM_INITPLR0, CFG_SDRAM0_INITPLR0);
  2854. mtsdram(SDRAM_INITPLR1, CFG_SDRAM0_INITPLR1);
  2855. mtsdram(SDRAM_INITPLR2, CFG_SDRAM0_INITPLR2);
  2856. mtsdram(SDRAM_INITPLR3, CFG_SDRAM0_INITPLR3);
  2857. mtsdram(SDRAM_INITPLR4, CFG_SDRAM0_INITPLR4);
  2858. mtsdram(SDRAM_INITPLR5, CFG_SDRAM0_INITPLR5);
  2859. mtsdram(SDRAM_INITPLR6, CFG_SDRAM0_INITPLR6);
  2860. mtsdram(SDRAM_INITPLR7, CFG_SDRAM0_INITPLR7);
  2861. mtsdram(SDRAM_INITPLR8, CFG_SDRAM0_INITPLR8);
  2862. mtsdram(SDRAM_INITPLR9, CFG_SDRAM0_INITPLR9);
  2863. mtsdram(SDRAM_INITPLR10, CFG_SDRAM0_INITPLR10);
  2864. mtsdram(SDRAM_INITPLR11, CFG_SDRAM0_INITPLR11);
  2865. mtsdram(SDRAM_INITPLR12, CFG_SDRAM0_INITPLR12);
  2866. mtsdram(SDRAM_INITPLR13, CFG_SDRAM0_INITPLR13);
  2867. mtsdram(SDRAM_INITPLR14, CFG_SDRAM0_INITPLR14);
  2868. mtsdram(SDRAM_INITPLR15, CFG_SDRAM0_INITPLR15);
  2869. /* Set On-Die Termination Registers */
  2870. mtsdram(SDRAM_CODT, CFG_SDRAM0_CODT);
  2871. mtsdram(SDRAM_MODT0, CFG_SDRAM0_MODT0);
  2872. mtsdram(SDRAM_MODT1, CFG_SDRAM0_MODT1);
  2873. /* Set Write Timing Register */
  2874. mtsdram(SDRAM_WRDTR, CFG_SDRAM0_WRDTR);
  2875. /*
  2876. * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and
  2877. * SDRAM0_MCOPT2[IPTR] = 1
  2878. */
  2879. mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT |
  2880. SDRAM_MCOPT2_IPTR_EXECUTE));
  2881. /*
  2882. * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the
  2883. * completion of initialization.
  2884. */
  2885. do {
  2886. mfsdram(SDRAM_MCSTAT, val);
  2887. } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP);
  2888. /* Set Delay Control Registers */
  2889. mtsdram(SDRAM_DLCR, CFG_SDRAM0_DLCR);
  2890. mtsdram(SDRAM_RDCC, CFG_SDRAM0_RDCC);
  2891. mtsdram(SDRAM_RQDC, CFG_SDRAM0_RQDC);
  2892. mtsdram(SDRAM_RFDC, CFG_SDRAM0_RFDC);
  2893. /*
  2894. * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1:
  2895. */
  2896. mfsdram(SDRAM_MCOPT2, val);
  2897. mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE);
  2898. #if defined(CONFIG_DDR_ECC)
  2899. ecc_init(CFG_SDRAM_BASE, CFG_MBYTES_SDRAM << 20);
  2900. #endif /* defined(CONFIG_DDR_ECC) */
  2901. #endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */
  2902. return (CFG_MBYTES_SDRAM << 20);
  2903. }
  2904. #endif /* defined(CONFIG_SPD_EEPROM) && defined(CONFIG_440SP) || ... */