docecc.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. /*
  2. * ECC algorithm for M-systems disk on chip. We use the excellent Reed
  3. * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
  4. * GNU GPL License. The rest is simply to convert the disk on chip
  5. * syndrom into a standard syndom.
  6. *
  7. * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  8. * Copyright (C) 2000 Netgem S.A.
  9. *
  10. * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. */
  26. #include <config.h>
  27. #include <common.h>
  28. #include <malloc.h>
  29. #undef ECC_DEBUG
  30. #undef PSYCHO_DEBUG
  31. #include <linux/mtd/doc2000.h>
  32. /* need to undef it (from asm/termbits.h) */
  33. #undef B0
  34. #define MM 10 /* Symbol size in bits */
  35. #define KK (1023-4) /* Number of data symbols per block */
  36. #define B0 510 /* First root of generator polynomial, alpha form */
  37. #define PRIM 1 /* power of alpha used to generate roots of generator poly */
  38. #define NN ((1 << MM) - 1)
  39. typedef unsigned short dtype;
  40. /* 1+x^3+x^10 */
  41. static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
  42. /* This defines the type used to store an element of the Galois Field
  43. * used by the code. Make sure this is something larger than a char if
  44. * if anything larger than GF(256) is used.
  45. *
  46. * Note: unsigned char will work up to GF(256) but int seems to run
  47. * faster on the Pentium.
  48. */
  49. typedef int gf;
  50. /* No legal value in index form represents zero, so
  51. * we need a special value for this purpose
  52. */
  53. #define A0 (NN)
  54. /* Compute x % NN, where NN is 2**MM - 1,
  55. * without a slow divide
  56. */
  57. static inline gf
  58. modnn(int x)
  59. {
  60. while (x >= NN) {
  61. x -= NN;
  62. x = (x >> MM) + (x & NN);
  63. }
  64. return x;
  65. }
  66. #define CLEAR(a,n) {\
  67. int ci;\
  68. for(ci=(n)-1;ci >=0;ci--)\
  69. (a)[ci] = 0;\
  70. }
  71. #define COPY(a,b,n) {\
  72. int ci;\
  73. for(ci=(n)-1;ci >=0;ci--)\
  74. (a)[ci] = (b)[ci];\
  75. }
  76. #define COPYDOWN(a,b,n) {\
  77. int ci;\
  78. for(ci=(n)-1;ci >=0;ci--)\
  79. (a)[ci] = (b)[ci];\
  80. }
  81. #define Ldec 1
  82. /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
  83. lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
  84. polynomial form -> index form index_of[j=alpha**i] = i
  85. alpha=2 is the primitive element of GF(2**m)
  86. HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
  87. Let @ represent the primitive element commonly called "alpha" that
  88. is the root of the primitive polynomial p(x). Then in GF(2^m), for any
  89. 0 <= i <= 2^m-2,
  90. @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
  91. where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
  92. of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
  93. example the polynomial representation of @^5 would be given by the binary
  94. representation of the integer "alpha_to[5]".
  95. Similarily, index_of[] can be used as follows:
  96. As above, let @ represent the primitive element of GF(2^m) that is
  97. the root of the primitive polynomial p(x). In order to find the power
  98. of @ (alpha) that has the polynomial representation
  99. a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
  100. we consider the integer "i" whose binary representation with a(0) being LSB
  101. and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
  102. "index_of[i]". Now, @^index_of[i] is that element whose polynomial
  103. representation is (a(0),a(1),a(2),...,a(m-1)).
  104. NOTE:
  105. The element alpha_to[2^m-1] = 0 always signifying that the
  106. representation of "@^infinity" = 0 is (0,0,0,...,0).
  107. Similarily, the element index_of[0] = A0 always signifying
  108. that the power of alpha which has the polynomial representation
  109. (0,0,...,0) is "infinity".
  110. */
  111. static void
  112. generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
  113. {
  114. register int i, mask;
  115. mask = 1;
  116. Alpha_to[MM] = 0;
  117. for (i = 0; i < MM; i++) {
  118. Alpha_to[i] = mask;
  119. Index_of[Alpha_to[i]] = i;
  120. /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
  121. if (Pp[i] != 0)
  122. Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
  123. mask <<= 1; /* single left-shift */
  124. }
  125. Index_of[Alpha_to[MM]] = MM;
  126. /*
  127. * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
  128. * poly-repr of @^i shifted left one-bit and accounting for any @^MM
  129. * term that may occur when poly-repr of @^i is shifted.
  130. */
  131. mask >>= 1;
  132. for (i = MM + 1; i < NN; i++) {
  133. if (Alpha_to[i - 1] >= mask)
  134. Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
  135. else
  136. Alpha_to[i] = Alpha_to[i - 1] << 1;
  137. Index_of[Alpha_to[i]] = i;
  138. }
  139. Index_of[0] = A0;
  140. Alpha_to[NN] = 0;
  141. }
  142. /*
  143. * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
  144. * of the feedback shift register after having processed the data and
  145. * the ECC.
  146. *
  147. * Return number of symbols corrected, or -1 if codeword is illegal
  148. * or uncorrectable. If eras_pos is non-null, the detected error locations
  149. * are written back. NOTE! This array must be at least NN-KK elements long.
  150. * The corrected data are written in eras_val[]. They must be xor with the data
  151. * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
  152. *
  153. * First "no_eras" erasures are declared by the calling program. Then, the
  154. * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
  155. * If the number of channel errors is not greater than "t_after_eras" the
  156. * transmitted codeword will be recovered. Details of algorithm can be found
  157. * in R. Blahut's "Theory ... of Error-Correcting Codes".
  158. * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
  159. * will result. The decoder *could* check for this condition, but it would involve
  160. * extra time on every decoding operation.
  161. * */
  162. static int
  163. eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
  164. gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
  165. int no_eras)
  166. {
  167. int deg_lambda, el, deg_omega;
  168. int i, j, r,k;
  169. gf u,q,tmp,num1,num2,den,discr_r;
  170. gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
  171. * and syndrome poly */
  172. gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
  173. gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
  174. int syn_error, count;
  175. syn_error = 0;
  176. for(i=0;i<NN-KK;i++)
  177. syn_error |= bb[i];
  178. if (!syn_error) {
  179. /* if remainder is zero, data[] is a codeword and there are no
  180. * errors to correct. So return data[] unmodified
  181. */
  182. count = 0;
  183. goto finish;
  184. }
  185. for(i=1;i<=NN-KK;i++){
  186. s[i] = bb[0];
  187. }
  188. for(j=1;j<NN-KK;j++){
  189. if(bb[j] == 0)
  190. continue;
  191. tmp = Index_of[bb[j]];
  192. for(i=1;i<=NN-KK;i++)
  193. s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
  194. }
  195. /* undo the feedback register implicit multiplication and convert
  196. syndromes to index form */
  197. for(i=1;i<=NN-KK;i++) {
  198. tmp = Index_of[s[i]];
  199. if (tmp != A0)
  200. tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
  201. s[i] = tmp;
  202. }
  203. CLEAR(&lambda[1],NN-KK);
  204. lambda[0] = 1;
  205. if (no_eras > 0) {
  206. /* Init lambda to be the erasure locator polynomial */
  207. lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
  208. for (i = 1; i < no_eras; i++) {
  209. u = modnn(PRIM*eras_pos[i]);
  210. for (j = i+1; j > 0; j--) {
  211. tmp = Index_of[lambda[j - 1]];
  212. if(tmp != A0)
  213. lambda[j] ^= Alpha_to[modnn(u + tmp)];
  214. }
  215. }
  216. #ifdef ECC_DEBUG
  217. /* Test code that verifies the erasure locator polynomial just constructed
  218. Needed only for decoder debugging. */
  219. /* find roots of the erasure location polynomial */
  220. for(i=1;i<=no_eras;i++)
  221. reg[i] = Index_of[lambda[i]];
  222. count = 0;
  223. for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
  224. q = 1;
  225. for (j = 1; j <= no_eras; j++)
  226. if (reg[j] != A0) {
  227. reg[j] = modnn(reg[j] + j);
  228. q ^= Alpha_to[reg[j]];
  229. }
  230. if (q != 0)
  231. continue;
  232. /* store root and error location number indices */
  233. root[count] = i;
  234. loc[count] = k;
  235. count++;
  236. }
  237. if (count != no_eras) {
  238. printf("\n lambda(x) is WRONG\n");
  239. count = -1;
  240. goto finish;
  241. }
  242. #ifdef PSYCHO_DEBUG
  243. printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
  244. for (i = 0; i < count; i++)
  245. printf("%d ", loc[i]);
  246. printf("\n");
  247. #endif
  248. #endif
  249. }
  250. for(i=0;i<NN-KK+1;i++)
  251. b[i] = Index_of[lambda[i]];
  252. /*
  253. * Begin Berlekamp-Massey algorithm to determine error+erasure
  254. * locator polynomial
  255. */
  256. r = no_eras;
  257. el = no_eras;
  258. while (++r <= NN-KK) { /* r is the step number */
  259. /* Compute discrepancy at the r-th step in poly-form */
  260. discr_r = 0;
  261. for (i = 0; i < r; i++){
  262. if ((lambda[i] != 0) && (s[r - i] != A0)) {
  263. discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
  264. }
  265. }
  266. discr_r = Index_of[discr_r]; /* Index form */
  267. if (discr_r == A0) {
  268. /* 2 lines below: B(x) <-- x*B(x) */
  269. COPYDOWN(&b[1],b,NN-KK);
  270. b[0] = A0;
  271. } else {
  272. /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
  273. t[0] = lambda[0];
  274. for (i = 0 ; i < NN-KK; i++) {
  275. if(b[i] != A0)
  276. t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
  277. else
  278. t[i+1] = lambda[i+1];
  279. }
  280. if (2 * el <= r + no_eras - 1) {
  281. el = r + no_eras - el;
  282. /*
  283. * 2 lines below: B(x) <-- inv(discr_r) *
  284. * lambda(x)
  285. */
  286. for (i = 0; i <= NN-KK; i++)
  287. b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
  288. } else {
  289. /* 2 lines below: B(x) <-- x*B(x) */
  290. COPYDOWN(&b[1],b,NN-KK);
  291. b[0] = A0;
  292. }
  293. COPY(lambda,t,NN-KK+1);
  294. }
  295. }
  296. /* Convert lambda to index form and compute deg(lambda(x)) */
  297. deg_lambda = 0;
  298. for(i=0;i<NN-KK+1;i++){
  299. lambda[i] = Index_of[lambda[i]];
  300. if(lambda[i] != A0)
  301. deg_lambda = i;
  302. }
  303. /*
  304. * Find roots of the error+erasure locator polynomial by Chien
  305. * Search
  306. */
  307. COPY(&reg[1],&lambda[1],NN-KK);
  308. count = 0; /* Number of roots of lambda(x) */
  309. for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
  310. q = 1;
  311. for (j = deg_lambda; j > 0; j--){
  312. if (reg[j] != A0) {
  313. reg[j] = modnn(reg[j] + j);
  314. q ^= Alpha_to[reg[j]];
  315. }
  316. }
  317. if (q != 0)
  318. continue;
  319. /* store root (index-form) and error location number */
  320. root[count] = i;
  321. loc[count] = k;
  322. /* If we've already found max possible roots,
  323. * abort the search to save time
  324. */
  325. if(++count == deg_lambda)
  326. break;
  327. }
  328. if (deg_lambda != count) {
  329. /*
  330. * deg(lambda) unequal to number of roots => uncorrectable
  331. * error detected
  332. */
  333. count = -1;
  334. goto finish;
  335. }
  336. /*
  337. * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
  338. * x**(NN-KK)). in index form. Also find deg(omega).
  339. */
  340. deg_omega = 0;
  341. for (i = 0; i < NN-KK;i++){
  342. tmp = 0;
  343. j = (deg_lambda < i) ? deg_lambda : i;
  344. for(;j >= 0; j--){
  345. if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
  346. tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
  347. }
  348. if(tmp != 0)
  349. deg_omega = i;
  350. omega[i] = Index_of[tmp];
  351. }
  352. omega[NN-KK] = A0;
  353. /*
  354. * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
  355. * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
  356. */
  357. for (j = count-1; j >=0; j--) {
  358. num1 = 0;
  359. for (i = deg_omega; i >= 0; i--) {
  360. if (omega[i] != A0)
  361. num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
  362. }
  363. num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
  364. den = 0;
  365. /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
  366. for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
  367. if(lambda[i+1] != A0)
  368. den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
  369. }
  370. if (den == 0) {
  371. #ifdef ECC_DEBUG
  372. printf("\n ERROR: denominator = 0\n");
  373. #endif
  374. /* Convert to dual- basis */
  375. count = -1;
  376. goto finish;
  377. }
  378. /* Apply error to data */
  379. if (num1 != 0) {
  380. eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
  381. } else {
  382. eras_val[j] = 0;
  383. }
  384. }
  385. finish:
  386. for(i=0;i<count;i++)
  387. eras_pos[i] = loc[i];
  388. return count;
  389. }
  390. /***************************************************************************/
  391. /* The DOC specific code begins here */
  392. #define SECTOR_SIZE 512
  393. /* The sector bytes are packed into NB_DATA MM bits words */
  394. #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
  395. /*
  396. * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
  397. * content of the feedback shift register applyied to the sector and
  398. * the ECC. Return the number of errors corrected (and correct them in
  399. * sector), or -1 if error
  400. */
  401. int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
  402. {
  403. int parity, i, nb_errors;
  404. gf bb[NN - KK + 1];
  405. gf error_val[NN-KK];
  406. int error_pos[NN-KK], pos, bitpos, index, val;
  407. dtype *Alpha_to, *Index_of;
  408. /* init log and exp tables here to save memory. However, it is slower */
  409. Alpha_to = malloc((NN + 1) * sizeof(dtype));
  410. if (!Alpha_to)
  411. return -1;
  412. Index_of = malloc((NN + 1) * sizeof(dtype));
  413. if (!Index_of) {
  414. free(Alpha_to);
  415. return -1;
  416. }
  417. generate_gf(Alpha_to, Index_of);
  418. parity = ecc1[1];
  419. bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
  420. bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
  421. bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
  422. bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
  423. nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
  424. error_val, error_pos, 0);
  425. if (nb_errors <= 0)
  426. goto the_end;
  427. /* correct the errors */
  428. for(i=0;i<nb_errors;i++) {
  429. pos = error_pos[i];
  430. if (pos >= NB_DATA && pos < KK) {
  431. nb_errors = -1;
  432. goto the_end;
  433. }
  434. if (pos < NB_DATA) {
  435. /* extract bit position (MSB first) */
  436. pos = 10 * (NB_DATA - 1 - pos) - 6;
  437. /* now correct the following 10 bits. At most two bytes
  438. can be modified since pos is even */
  439. index = (pos >> 3) ^ 1;
  440. bitpos = pos & 7;
  441. if ((index >= 0 && index < SECTOR_SIZE) ||
  442. index == (SECTOR_SIZE + 1)) {
  443. val = error_val[i] >> (2 + bitpos);
  444. parity ^= val;
  445. if (index < SECTOR_SIZE)
  446. sector[index] ^= val;
  447. }
  448. index = ((pos >> 3) + 1) ^ 1;
  449. bitpos = (bitpos + 10) & 7;
  450. if (bitpos == 0)
  451. bitpos = 8;
  452. if ((index >= 0 && index < SECTOR_SIZE) ||
  453. index == (SECTOR_SIZE + 1)) {
  454. val = error_val[i] << (8 - bitpos);
  455. parity ^= val;
  456. if (index < SECTOR_SIZE)
  457. sector[index] ^= val;
  458. }
  459. }
  460. }
  461. /* use parity to test extra errors */
  462. if ((parity & 0xff) != 0)
  463. nb_errors = -1;
  464. the_end:
  465. free(Alpha_to);
  466. free(Index_of);
  467. return nb_errors;
  468. }