spd_sdram.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780
  1. /*
  2. * (C) Copyright 2001
  3. * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
  4. *
  5. * Based on code by:
  6. *
  7. * Kenneth Johansson ,Ericsson AB.
  8. * kenneth.johansson@etx.ericsson.se
  9. *
  10. * hacked up by bill hunter. fixed so we could run before
  11. * serial_init and console_init. previous version avoided this by
  12. * running out of cache memory during serial/console init, then running
  13. * this code later.
  14. *
  15. * (C) Copyright 2002
  16. * Jun Gu, Artesyn Technology, jung@artesyncp.com
  17. * Support for IBM 440 based on OpenBIOS draminit.c from IBM.
  18. *
  19. * (C) Copyright 2005
  20. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  21. *
  22. * See file CREDITS for list of people who contributed to this
  23. * project.
  24. *
  25. * This program is free software; you can redistribute it and/or
  26. * modify it under the terms of the GNU General Public License as
  27. * published by the Free Software Foundation; either version 2 of
  28. * the License, or (at your option) any later version.
  29. *
  30. * This program is distributed in the hope that it will be useful,
  31. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  32. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  33. * GNU General Public License for more details.
  34. *
  35. * You should have received a copy of the GNU General Public License
  36. * along with this program; if not, write to the Free Software
  37. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  38. * MA 02111-1307 USA
  39. */
  40. #include <common.h>
  41. #include <asm/processor.h>
  42. #include <i2c.h>
  43. #include <ppc4xx.h>
  44. #ifdef CONFIG_SPD_EEPROM
  45. /*
  46. * Set default values
  47. */
  48. #ifndef CFG_I2C_SPEED
  49. #define CFG_I2C_SPEED 50000
  50. #endif
  51. #ifndef CFG_I2C_SLAVE
  52. #define CFG_I2C_SLAVE 0xFE
  53. #endif
  54. #define ONE_BILLION 1000000000
  55. #ifndef CONFIG_440 /* for 405 WALNUT/SYCAMORE/BUBINGA boards */
  56. #define SDRAM0_CFG_DCE 0x80000000
  57. #define SDRAM0_CFG_SRE 0x40000000
  58. #define SDRAM0_CFG_PME 0x20000000
  59. #define SDRAM0_CFG_MEMCHK 0x10000000
  60. #define SDRAM0_CFG_REGEN 0x08000000
  61. #define SDRAM0_CFG_ECCDD 0x00400000
  62. #define SDRAM0_CFG_EMDULR 0x00200000
  63. #define SDRAM0_CFG_DRW_SHIFT (31-6)
  64. #define SDRAM0_CFG_BRPF_SHIFT (31-8)
  65. #define SDRAM0_TR_CASL_SHIFT (31-8)
  66. #define SDRAM0_TR_PTA_SHIFT (31-13)
  67. #define SDRAM0_TR_CTP_SHIFT (31-15)
  68. #define SDRAM0_TR_LDF_SHIFT (31-17)
  69. #define SDRAM0_TR_RFTA_SHIFT (31-29)
  70. #define SDRAM0_TR_RCD_SHIFT (31-31)
  71. #define SDRAM0_RTR_SHIFT (31-15)
  72. #define SDRAM0_ECCCFG_SHIFT (31-11)
  73. /* SDRAM0_CFG enable macro */
  74. #define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT )
  75. #define SDRAM0_BXCR_SZ_MASK 0x000e0000
  76. #define SDRAM0_BXCR_AM_MASK 0x0000e000
  77. #define SDRAM0_BXCR_SZ_SHIFT (31-14)
  78. #define SDRAM0_BXCR_AM_SHIFT (31-18)
  79. #define SDRAM0_BXCR_SZ(x) ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) )
  80. #define SDRAM0_BXCR_AM(x) ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) )
  81. #ifdef CONFIG_SPDDRAM_SILENT
  82. # define SPD_ERR(x) do { return 0; } while (0)
  83. #else
  84. # define SPD_ERR(x) do { printf(x); return(0); } while (0)
  85. #endif
  86. #define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
  87. /* function prototypes */
  88. int spd_read(uint addr);
  89. /*
  90. * This function is reading data from the DIMM module EEPROM over the SPD bus
  91. * and uses that to program the sdram controller.
  92. *
  93. * This works on boards that has the same schematics that the IBM walnut has.
  94. *
  95. * Input: null for default I2C spd functions or a pointer to a custom function
  96. * returning spd_data.
  97. */
  98. long int spd_sdram(int(read_spd)(uint addr))
  99. {
  100. int tmp,row,col;
  101. int total_size,bank_size,bank_code;
  102. int ecc_on;
  103. int mode;
  104. int bank_cnt;
  105. int sdram0_pmit=0x07c00000;
  106. #ifndef CONFIG_405EP /* not on PPC405EP */
  107. int sdram0_besr0=-1;
  108. int sdram0_besr1=-1;
  109. int sdram0_eccesr=-1;
  110. #endif
  111. int sdram0_ecccfg;
  112. int sdram0_rtr=0;
  113. int sdram0_tr=0;
  114. int sdram0_b0cr;
  115. int sdram0_b1cr;
  116. int sdram0_b2cr;
  117. int sdram0_b3cr;
  118. int sdram0_cfg=0;
  119. int t_rp;
  120. int t_rcd;
  121. int t_ras;
  122. int t_rc;
  123. int min_cas;
  124. PPC405_SYS_INFO sys_info;
  125. unsigned long bus_period_x_10;
  126. /*
  127. * get the board info
  128. */
  129. get_sys_info(&sys_info);
  130. bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
  131. if (read_spd == 0){
  132. read_spd=spd_read;
  133. /*
  134. * Make sure I2C controller is initialized
  135. * before continuing.
  136. */
  137. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  138. }
  139. /* Make shure we are using SDRAM */
  140. if (read_spd(2) != 0x04) {
  141. SPD_ERR("SDRAM - non SDRAM memory module found\n");
  142. }
  143. /* ------------------------------------------------------------------
  144. * configure memory timing register
  145. *
  146. * data from DIMM:
  147. * 27 IN Row Precharge Time ( t RP)
  148. * 29 MIN RAS to CAS Delay ( t RCD)
  149. * 127 Component and Clock Detail ,clk0-clk3, junction temp, CAS
  150. * -------------------------------------------------------------------*/
  151. /*
  152. * first figure out which cas latency mode to use
  153. * use the min supported mode
  154. */
  155. tmp = read_spd(127) & 0x6;
  156. if (tmp == 0x02){ /* only cas = 2 supported */
  157. min_cas = 2;
  158. /* t_ck = read_spd(9); */
  159. /* t_ac = read_spd(10); */
  160. } else if (tmp == 0x04) { /* only cas = 3 supported */
  161. min_cas = 3;
  162. /* t_ck = read_spd(9); */
  163. /* t_ac = read_spd(10); */
  164. } else if (tmp == 0x06) { /* 2,3 supported, so use 2 */
  165. min_cas = 2;
  166. /* t_ck = read_spd(23); */
  167. /* t_ac = read_spd(24); */
  168. } else {
  169. SPD_ERR("SDRAM - unsupported CAS latency \n");
  170. }
  171. /* get some timing values, t_rp,t_rcd,t_ras,t_rc
  172. */
  173. t_rp = read_spd(27);
  174. t_rcd = read_spd(29);
  175. t_ras = read_spd(30);
  176. t_rc = t_ras + t_rp;
  177. /* The following timing calcs subtract 1 before deviding.
  178. * this has effect of using ceiling instead of floor rounding,
  179. * and also subtracting 1 to convert number to reg value
  180. */
  181. /* set up CASL */
  182. sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT;
  183. /* set up PTA */
  184. sdram0_tr |= ((((t_rp - 1) * 10)/bus_period_x_10) & 0x3) << SDRAM0_TR_PTA_SHIFT;
  185. /* set up CTP */
  186. tmp = (((t_rc - t_rcd - t_rp -1) * 10) / bus_period_x_10) & 0x3;
  187. if (tmp < 1)
  188. tmp = 1;
  189. sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT;
  190. /* set LDF = 2 cycles, reg value = 1 */
  191. sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT;
  192. /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */
  193. tmp = (((t_rc - 1) * 10) / bus_period_x_10) - 3;
  194. if (tmp < 0)
  195. tmp = 0;
  196. if (tmp > 6)
  197. tmp = 6;
  198. sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT;
  199. /* set RCD = t_rcd/bus_period*/
  200. sdram0_tr |= ((((t_rcd - 1) * 10) / bus_period_x_10) &0x3) << SDRAM0_TR_RCD_SHIFT ;
  201. /*------------------------------------------------------------------
  202. * configure RTR register
  203. * -------------------------------------------------------------------*/
  204. row = read_spd(3);
  205. col = read_spd(4);
  206. tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */
  207. switch (tmp) {
  208. case 0x00:
  209. tmp = 15625;
  210. break;
  211. case 0x01:
  212. tmp = 15625 / 4;
  213. break;
  214. case 0x02:
  215. tmp = 15625 / 2;
  216. break;
  217. case 0x03:
  218. tmp = 15625 * 2;
  219. break;
  220. case 0x04:
  221. tmp = 15625 * 4;
  222. break;
  223. case 0x05:
  224. tmp = 15625 * 8;
  225. break;
  226. default:
  227. SPD_ERR("SDRAM - Bad refresh period \n");
  228. }
  229. /* convert from nsec to bus cycles */
  230. tmp = (tmp * 10) / bus_period_x_10;
  231. sdram0_rtr = (tmp & 0x3ff8) << SDRAM0_RTR_SHIFT;
  232. /*------------------------------------------------------------------
  233. * determine the number of banks used
  234. * -------------------------------------------------------------------*/
  235. /* byte 7:6 is module data width */
  236. if (read_spd(7) != 0)
  237. SPD_ERR("SDRAM - unsupported module width\n");
  238. tmp = read_spd(6);
  239. if (tmp < 32)
  240. SPD_ERR("SDRAM - unsupported module width\n");
  241. else if (tmp < 64)
  242. bank_cnt = 1; /* one bank per sdram side */
  243. else if (tmp < 73)
  244. bank_cnt = 2; /* need two banks per side */
  245. else if (tmp < 161)
  246. bank_cnt = 4; /* need four banks per side */
  247. else
  248. SPD_ERR("SDRAM - unsupported module width\n");
  249. /* byte 5 is the module row count (refered to as dimm "sides") */
  250. tmp = read_spd(5);
  251. if (tmp == 1)
  252. ;
  253. else if (tmp==2)
  254. bank_cnt *= 2;
  255. else if (tmp==4)
  256. bank_cnt *= 4;
  257. else
  258. bank_cnt = 8; /* 8 is an error code */
  259. if (bank_cnt > 4) /* we only have 4 banks to work with */
  260. SPD_ERR("SDRAM - unsupported module rows for this width\n");
  261. /* now check for ECC ability of module. We only support ECC
  262. * on 32 bit wide devices with 8 bit ECC.
  263. */
  264. if ((read_spd(11)==2) && (read_spd(6)==40) && (read_spd(14)==8)) {
  265. sdram0_ecccfg = 0xf << SDRAM0_ECCCFG_SHIFT;
  266. ecc_on = 1;
  267. } else {
  268. sdram0_ecccfg = 0;
  269. ecc_on = 0;
  270. }
  271. /*------------------------------------------------------------------
  272. * calculate total size
  273. * -------------------------------------------------------------------*/
  274. /* calculate total size and do sanity check */
  275. tmp = read_spd(31);
  276. total_size = 1 << 22; /* total_size = 4MB */
  277. /* now multiply 4M by the smallest device row density */
  278. /* note that we don't support asymetric rows */
  279. while (((tmp & 0x0001) == 0) && (tmp != 0)) {
  280. total_size = total_size << 1;
  281. tmp = tmp >> 1;
  282. }
  283. total_size *= read_spd(5); /* mult by module rows (dimm sides) */
  284. /*------------------------------------------------------------------
  285. * map rows * cols * banks to a mode
  286. * -------------------------------------------------------------------*/
  287. switch (row) {
  288. case 11:
  289. switch (col) {
  290. case 8:
  291. mode=4; /* mode 5 */
  292. break;
  293. case 9:
  294. case 10:
  295. mode=0; /* mode 1 */
  296. break;
  297. default:
  298. SPD_ERR("SDRAM - unsupported mode\n");
  299. }
  300. break;
  301. case 12:
  302. switch (col) {
  303. case 8:
  304. mode=3; /* mode 4 */
  305. break;
  306. case 9:
  307. case 10:
  308. mode=1; /* mode 2 */
  309. break;
  310. default:
  311. SPD_ERR("SDRAM - unsupported mode\n");
  312. }
  313. break;
  314. case 13:
  315. switch (col) {
  316. case 8:
  317. mode=5; /* mode 6 */
  318. break;
  319. case 9:
  320. case 10:
  321. if (read_spd(17) == 2)
  322. mode = 6; /* mode 7 */
  323. else
  324. mode = 2; /* mode 3 */
  325. break;
  326. case 11:
  327. mode = 2; /* mode 3 */
  328. break;
  329. default:
  330. SPD_ERR("SDRAM - unsupported mode\n");
  331. }
  332. break;
  333. default:
  334. SPD_ERR("SDRAM - unsupported mode\n");
  335. }
  336. /*------------------------------------------------------------------
  337. * using the calculated values, compute the bank
  338. * config register values.
  339. * -------------------------------------------------------------------*/
  340. sdram0_b1cr = 0;
  341. sdram0_b2cr = 0;
  342. sdram0_b3cr = 0;
  343. /* compute the size of each bank */
  344. bank_size = total_size / bank_cnt;
  345. /* convert bank size to bank size code for ppc4xx
  346. by takeing log2(bank_size) - 22 */
  347. tmp = bank_size; /* start with tmp = bank_size */
  348. bank_code = 0; /* and bank_code = 0 */
  349. while (tmp > 1) { /* this takes log2 of tmp */
  350. bank_code++; /* and stores result in bank_code */
  351. tmp = tmp >> 1;
  352. } /* bank_code is now log2(bank_size) */
  353. bank_code -= 22; /* subtract 22 to get the code */
  354. tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1;
  355. sdram0_b0cr = (bank_size * 0) | tmp;
  356. #ifndef CONFIG_405EP /* not on PPC405EP */
  357. if (bank_cnt > 1)
  358. sdram0_b2cr = (bank_size * 1) | tmp;
  359. if (bank_cnt > 2)
  360. sdram0_b1cr = (bank_size * 2) | tmp;
  361. if (bank_cnt > 3)
  362. sdram0_b3cr = (bank_size * 3) | tmp;
  363. #else
  364. /* PPC405EP chip only supports two SDRAM banks */
  365. if (bank_cnt > 1)
  366. sdram0_b1cr = (bank_size * 1) | tmp;
  367. if (bank_cnt > 2)
  368. total_size = 2 * bank_size;
  369. #endif
  370. /*
  371. * enable sdram controller DCE=1
  372. * enable burst read prefetch to 32 bytes BRPF=2
  373. * leave other functions off
  374. */
  375. /*------------------------------------------------------------------
  376. * now that we've done our calculations, we are ready to
  377. * program all the registers.
  378. * -------------------------------------------------------------------*/
  379. #define mtsdram0(reg, data) mtdcr(memcfga,reg);mtdcr(memcfgd,data)
  380. /* disable memcontroller so updates work */
  381. mtsdram0( mem_mcopt1, 0 );
  382. #ifndef CONFIG_405EP /* not on PPC405EP */
  383. mtsdram0( mem_besra , sdram0_besr0 );
  384. mtsdram0( mem_besrb , sdram0_besr1 );
  385. mtsdram0( mem_ecccf , sdram0_ecccfg );
  386. mtsdram0( mem_eccerr, sdram0_eccesr );
  387. #endif
  388. mtsdram0( mem_rtr , sdram0_rtr );
  389. mtsdram0( mem_pmit , sdram0_pmit );
  390. mtsdram0( mem_mb0cf , sdram0_b0cr );
  391. mtsdram0( mem_mb1cf , sdram0_b1cr );
  392. #ifndef CONFIG_405EP /* not on PPC405EP */
  393. mtsdram0( mem_mb2cf , sdram0_b2cr );
  394. mtsdram0( mem_mb3cf , sdram0_b3cr );
  395. #endif
  396. mtsdram0( mem_sdtr1 , sdram0_tr );
  397. /* SDRAM have a power on delay, 500 micro should do */
  398. udelay(500);
  399. sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR;
  400. if (ecc_on)
  401. sdram0_cfg |= SDRAM0_CFG_MEMCHK;
  402. mtsdram0(mem_mcopt1, sdram0_cfg);
  403. return (total_size);
  404. }
  405. int spd_read(uint addr)
  406. {
  407. char data[2];
  408. if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0)
  409. return (int)data[0];
  410. else
  411. return 0;
  412. }
  413. #else /* CONFIG_440 */
  414. /*-----------------------------------------------------------------------------
  415. | Memory Controller Options 0
  416. +-----------------------------------------------------------------------------*/
  417. #define SDRAM_CFG0_DCEN 0x80000000 /* SDRAM Controller Enable */
  418. #define SDRAM_CFG0_MCHK_MASK 0x30000000 /* Memory data errchecking mask */
  419. #define SDRAM_CFG0_MCHK_NON 0x00000000 /* No ECC generation */
  420. #define SDRAM_CFG0_MCHK_GEN 0x20000000 /* ECC generation */
  421. #define SDRAM_CFG0_MCHK_CHK 0x30000000 /* ECC generation and checking */
  422. #define SDRAM_CFG0_RDEN 0x08000000 /* Registered DIMM enable */
  423. #define SDRAM_CFG0_PMUD 0x04000000 /* Page management unit */
  424. #define SDRAM_CFG0_DMWD_MASK 0x02000000 /* DRAM width mask */
  425. #define SDRAM_CFG0_DMWD_32 0x00000000 /* 32 bits */
  426. #define SDRAM_CFG0_DMWD_64 0x02000000 /* 64 bits */
  427. #define SDRAM_CFG0_UIOS_MASK 0x00C00000 /* Unused IO State */
  428. #define SDRAM_CFG0_PDP 0x00200000 /* Page deallocation policy */
  429. /*-----------------------------------------------------------------------------
  430. | Memory Controller Options 1
  431. +-----------------------------------------------------------------------------*/
  432. #define SDRAM_CFG1_SRE 0x80000000 /* Self-Refresh Entry */
  433. #define SDRAM_CFG1_PMEN 0x40000000 /* Power Management Enable */
  434. /*-----------------------------------------------------------------------------+
  435. | SDRAM DEVPOT Options
  436. +-----------------------------------------------------------------------------*/
  437. #define SDRAM_DEVOPT_DLL 0x80000000
  438. #define SDRAM_DEVOPT_DS 0x40000000
  439. /*-----------------------------------------------------------------------------+
  440. | SDRAM MCSTS Options
  441. +-----------------------------------------------------------------------------*/
  442. #define SDRAM_MCSTS_MRSC 0x80000000
  443. #define SDRAM_MCSTS_SRMS 0x40000000
  444. #define SDRAM_MCSTS_CIS 0x20000000
  445. /*-----------------------------------------------------------------------------
  446. | SDRAM Refresh Timer Register
  447. +-----------------------------------------------------------------------------*/
  448. #define SDRAM_RTR_RINT_MASK 0xFFFF0000
  449. #define SDRAM_RTR_RINT_ENCODE(n) (((n) << 16) & SDRAM_RTR_RINT_MASK)
  450. #define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
  451. /*-----------------------------------------------------------------------------+
  452. | SDRAM UABus Base Address Reg
  453. +-----------------------------------------------------------------------------*/
  454. #define SDRAM_UABBA_UBBA_MASK 0x0000000F
  455. /*-----------------------------------------------------------------------------+
  456. | Memory Bank 0-7 configuration
  457. +-----------------------------------------------------------------------------*/
  458. #define SDRAM_BXCR_SDBA_MASK 0xff800000 /* Base address */
  459. #define SDRAM_BXCR_SDSZ_MASK 0x000e0000 /* Size */
  460. #define SDRAM_BXCR_SDSZ_8 0x00020000 /* 8M */
  461. #define SDRAM_BXCR_SDSZ_16 0x00040000 /* 16M */
  462. #define SDRAM_BXCR_SDSZ_32 0x00060000 /* 32M */
  463. #define SDRAM_BXCR_SDSZ_64 0x00080000 /* 64M */
  464. #define SDRAM_BXCR_SDSZ_128 0x000a0000 /* 128M */
  465. #define SDRAM_BXCR_SDSZ_256 0x000c0000 /* 256M */
  466. #define SDRAM_BXCR_SDSZ_512 0x000e0000 /* 512M */
  467. #define SDRAM_BXCR_SDAM_MASK 0x0000e000 /* Addressing mode */
  468. #define SDRAM_BXCR_SDAM_1 0x00000000 /* Mode 1 */
  469. #define SDRAM_BXCR_SDAM_2 0x00002000 /* Mode 2 */
  470. #define SDRAM_BXCR_SDAM_3 0x00004000 /* Mode 3 */
  471. #define SDRAM_BXCR_SDAM_4 0x00006000 /* Mode 4 */
  472. #define SDRAM_BXCR_SDBE 0x00000001 /* Memory Bank Enable */
  473. /*-----------------------------------------------------------------------------+
  474. | SDRAM TR0 Options
  475. +-----------------------------------------------------------------------------*/
  476. #define SDRAM_TR0_SDWR_MASK 0x80000000
  477. #define SDRAM_TR0_SDWR_2_CLK 0x00000000
  478. #define SDRAM_TR0_SDWR_3_CLK 0x80000000
  479. #define SDRAM_TR0_SDWD_MASK 0x40000000
  480. #define SDRAM_TR0_SDWD_0_CLK 0x00000000
  481. #define SDRAM_TR0_SDWD_1_CLK 0x40000000
  482. #define SDRAM_TR0_SDCL_MASK 0x01800000
  483. #define SDRAM_TR0_SDCL_2_0_CLK 0x00800000
  484. #define SDRAM_TR0_SDCL_2_5_CLK 0x01000000
  485. #define SDRAM_TR0_SDCL_3_0_CLK 0x01800000
  486. #define SDRAM_TR0_SDPA_MASK 0x000C0000
  487. #define SDRAM_TR0_SDPA_2_CLK 0x00040000
  488. #define SDRAM_TR0_SDPA_3_CLK 0x00080000
  489. #define SDRAM_TR0_SDPA_4_CLK 0x000C0000
  490. #define SDRAM_TR0_SDCP_MASK 0x00030000
  491. #define SDRAM_TR0_SDCP_2_CLK 0x00000000
  492. #define SDRAM_TR0_SDCP_3_CLK 0x00010000
  493. #define SDRAM_TR0_SDCP_4_CLK 0x00020000
  494. #define SDRAM_TR0_SDCP_5_CLK 0x00030000
  495. #define SDRAM_TR0_SDLD_MASK 0x0000C000
  496. #define SDRAM_TR0_SDLD_1_CLK 0x00000000
  497. #define SDRAM_TR0_SDLD_2_CLK 0x00004000
  498. #define SDRAM_TR0_SDRA_MASK 0x0000001C
  499. #define SDRAM_TR0_SDRA_6_CLK 0x00000000
  500. #define SDRAM_TR0_SDRA_7_CLK 0x00000004
  501. #define SDRAM_TR0_SDRA_8_CLK 0x00000008
  502. #define SDRAM_TR0_SDRA_9_CLK 0x0000000C
  503. #define SDRAM_TR0_SDRA_10_CLK 0x00000010
  504. #define SDRAM_TR0_SDRA_11_CLK 0x00000014
  505. #define SDRAM_TR0_SDRA_12_CLK 0x00000018
  506. #define SDRAM_TR0_SDRA_13_CLK 0x0000001C
  507. #define SDRAM_TR0_SDRD_MASK 0x00000003
  508. #define SDRAM_TR0_SDRD_2_CLK 0x00000001
  509. #define SDRAM_TR0_SDRD_3_CLK 0x00000002
  510. #define SDRAM_TR0_SDRD_4_CLK 0x00000003
  511. /*-----------------------------------------------------------------------------+
  512. | SDRAM TR1 Options
  513. +-----------------------------------------------------------------------------*/
  514. #define SDRAM_TR1_RDSS_MASK 0xC0000000
  515. #define SDRAM_TR1_RDSS_TR0 0x00000000
  516. #define SDRAM_TR1_RDSS_TR1 0x40000000
  517. #define SDRAM_TR1_RDSS_TR2 0x80000000
  518. #define SDRAM_TR1_RDSS_TR3 0xC0000000
  519. #define SDRAM_TR1_RDSL_MASK 0x00C00000
  520. #define SDRAM_TR1_RDSL_STAGE1 0x00000000
  521. #define SDRAM_TR1_RDSL_STAGE2 0x00400000
  522. #define SDRAM_TR1_RDSL_STAGE3 0x00800000
  523. #define SDRAM_TR1_RDCD_MASK 0x00000800
  524. #define SDRAM_TR1_RDCD_RCD_0_0 0x00000000
  525. #define SDRAM_TR1_RDCD_RCD_1_2 0x00000800
  526. #define SDRAM_TR1_RDCT_MASK 0x000001FF
  527. #define SDRAM_TR1_RDCT_ENCODE(x) (((x) << 0) & SDRAM_TR1_RDCT_MASK)
  528. #define SDRAM_TR1_RDCT_DECODE(x) (((x) & SDRAM_TR1_RDCT_MASK) >> 0)
  529. #define SDRAM_TR1_RDCT_MIN 0x00000000
  530. #define SDRAM_TR1_RDCT_MAX 0x000001FF
  531. /*-----------------------------------------------------------------------------+
  532. | SDRAM WDDCTR Options
  533. +-----------------------------------------------------------------------------*/
  534. #define SDRAM_WDDCTR_WRCP_MASK 0xC0000000
  535. #define SDRAM_WDDCTR_WRCP_0DEG 0x00000000
  536. #define SDRAM_WDDCTR_WRCP_90DEG 0x40000000
  537. #define SDRAM_WDDCTR_WRCP_180DEG 0x80000000
  538. #define SDRAM_WDDCTR_DCD_MASK 0x000001FF
  539. /*-----------------------------------------------------------------------------+
  540. | SDRAM CLKTR Options
  541. +-----------------------------------------------------------------------------*/
  542. #define SDRAM_CLKTR_CLKP_MASK 0xC0000000
  543. #define SDRAM_CLKTR_CLKP_0DEG 0x00000000
  544. #define SDRAM_CLKTR_CLKP_90DEG 0x40000000
  545. #define SDRAM_CLKTR_CLKP_180DEG 0x80000000
  546. #define SDRAM_CLKTR_DCDT_MASK 0x000001FF
  547. /*-----------------------------------------------------------------------------+
  548. | SDRAM DLYCAL Options
  549. +-----------------------------------------------------------------------------*/
  550. #define SDRAM_DLYCAL_DLCV_MASK 0x000003FC
  551. #define SDRAM_DLYCAL_DLCV_ENCODE(x) (((x)<<2) & SDRAM_DLYCAL_DLCV_MASK)
  552. #define SDRAM_DLYCAL_DLCV_DECODE(x) (((x) & SDRAM_DLYCAL_DLCV_MASK)>>2)
  553. /*-----------------------------------------------------------------------------+
  554. | General Definition
  555. +-----------------------------------------------------------------------------*/
  556. #define DEFAULT_SPD_ADDR1 0x53
  557. #define DEFAULT_SPD_ADDR2 0x52
  558. #define MAXBANKS 4 /* at most 4 dimm banks */
  559. #define MAX_SPD_BYTES 256
  560. #define NUMHALFCYCLES 4
  561. #define NUMMEMTESTS 8
  562. #define NUMMEMWORDS 8
  563. #define MAXBXCR 4
  564. #define TRUE 1
  565. #define FALSE 0
  566. const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  567. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  568. 0xFFFFFFFF, 0xFFFFFFFF},
  569. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  570. 0x00000000, 0x00000000},
  571. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  572. 0x55555555, 0x55555555},
  573. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  574. 0xAAAAAAAA, 0xAAAAAAAA},
  575. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  576. 0x5A5A5A5A, 0x5A5A5A5A},
  577. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  578. 0xA5A5A5A5, 0xA5A5A5A5},
  579. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  580. 0x55AA55AA, 0x55AA55AA},
  581. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  582. 0xAA55AA55, 0xAA55AA55}
  583. };
  584. unsigned char spd_read(uchar chip, uint addr);
  585. void get_spd_info(unsigned long* dimm_populated,
  586. unsigned char* iic0_dimm_addr,
  587. unsigned long num_dimm_banks);
  588. void check_mem_type
  589. (unsigned long* dimm_populated,
  590. unsigned char* iic0_dimm_addr,
  591. unsigned long num_dimm_banks);
  592. void check_volt_type
  593. (unsigned long* dimm_populated,
  594. unsigned char* iic0_dimm_addr,
  595. unsigned long num_dimm_banks);
  596. void program_cfg0(unsigned long* dimm_populated,
  597. unsigned char* iic0_dimm_addr,
  598. unsigned long num_dimm_banks);
  599. void program_cfg1(unsigned long* dimm_populated,
  600. unsigned char* iic0_dimm_addr,
  601. unsigned long num_dimm_banks);
  602. void program_rtr (unsigned long* dimm_populated,
  603. unsigned char* iic0_dimm_addr,
  604. unsigned long num_dimm_banks);
  605. void program_tr0 (unsigned long* dimm_populated,
  606. unsigned char* iic0_dimm_addr,
  607. unsigned long num_dimm_banks);
  608. void program_tr1 (void);
  609. void program_ecc (unsigned long num_bytes);
  610. unsigned
  611. long program_bxcr(unsigned long* dimm_populated,
  612. unsigned char* iic0_dimm_addr,
  613. unsigned long num_dimm_banks);
  614. /*
  615. * This function is reading data from the DIMM module EEPROM over the SPD bus
  616. * and uses that to program the sdram controller.
  617. *
  618. * This works on boards that has the same schematics that the IBM walnut has.
  619. *
  620. * BUG: Don't handle ECC memory
  621. * BUG: A few values in the TR register is currently hardcoded
  622. */
  623. long int spd_sdram(void) {
  624. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  625. unsigned long dimm_populated[sizeof(iic0_dimm_addr)];
  626. unsigned long total_size;
  627. unsigned long cfg0;
  628. unsigned long mcsts;
  629. unsigned long num_dimm_banks; /* on board dimm banks */
  630. num_dimm_banks = sizeof(iic0_dimm_addr);
  631. /*
  632. * Make sure I2C controller is initialized
  633. * before continuing.
  634. */
  635. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  636. /*
  637. * Read the SPD information using I2C interface. Check to see if the
  638. * DIMM slots are populated.
  639. */
  640. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  641. /*
  642. * Check the memory type for the dimms plugged.
  643. */
  644. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  645. /*
  646. * Check the voltage type for the dimms plugged.
  647. */
  648. check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  649. #if defined(CONFIG_440GX)
  650. /*
  651. * Soft-reset SDRAM controller.
  652. */
  653. mtsdr(sdr_srst, SDR0_SRST_DMC);
  654. mtsdr(sdr_srst, 0x00000000);
  655. #endif
  656. /*
  657. * program 440GP SDRAM controller options (SDRAM0_CFG0)
  658. */
  659. program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  660. /*
  661. * program 440GP SDRAM controller options (SDRAM0_CFG1)
  662. */
  663. program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  664. /*
  665. * program SDRAM refresh register (SDRAM0_RTR)
  666. */
  667. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  668. /*
  669. * program SDRAM Timing Register 0 (SDRAM0_TR0)
  670. */
  671. program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  672. /*
  673. * program the BxCR registers to find out total sdram installed
  674. */
  675. total_size = program_bxcr(dimm_populated, iic0_dimm_addr,
  676. num_dimm_banks);
  677. /*
  678. * program SDRAM Clock Timing Register (SDRAM0_CLKTR)
  679. */
  680. mtsdram(mem_clktr, 0x40000000);
  681. /*
  682. * delay to ensure 200 usec has elapsed
  683. */
  684. udelay(400);
  685. /*
  686. * enable the memory controller
  687. */
  688. mfsdram(mem_cfg0, cfg0);
  689. mtsdram(mem_cfg0, cfg0 | SDRAM_CFG0_DCEN);
  690. /*
  691. * wait for SDRAM_CFG0_DC_EN to complete
  692. */
  693. while (1) {
  694. mfsdram(mem_mcsts, mcsts);
  695. if ((mcsts & SDRAM_MCSTS_MRSC) != 0) {
  696. break;
  697. }
  698. }
  699. /*
  700. * program SDRAM Timing Register 1, adding some delays
  701. */
  702. program_tr1();
  703. /*
  704. * if ECC is enabled, initialize parity bits
  705. */
  706. return total_size;
  707. }
  708. unsigned char spd_read(uchar chip, uint addr) {
  709. unsigned char data[2];
  710. if (i2c_probe(chip) == 0) {
  711. if (i2c_read(chip, addr, 1, data, 1) == 0) {
  712. return data[0];
  713. }
  714. }
  715. return 0;
  716. }
  717. void get_spd_info(unsigned long* dimm_populated,
  718. unsigned char* iic0_dimm_addr,
  719. unsigned long num_dimm_banks)
  720. {
  721. unsigned long dimm_num;
  722. unsigned long dimm_found;
  723. unsigned char num_of_bytes;
  724. unsigned char total_size;
  725. dimm_found = FALSE;
  726. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  727. num_of_bytes = 0;
  728. total_size = 0;
  729. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  730. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  731. if ((num_of_bytes != 0) && (total_size != 0)) {
  732. dimm_populated[dimm_num] = TRUE;
  733. dimm_found = TRUE;
  734. #if 0
  735. printf("DIMM slot %lu: populated\n", dimm_num);
  736. #endif
  737. } else {
  738. dimm_populated[dimm_num] = FALSE;
  739. #if 0
  740. printf("DIMM slot %lu: Not populated\n", dimm_num);
  741. #endif
  742. }
  743. }
  744. if (dimm_found == FALSE) {
  745. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  746. hang();
  747. }
  748. }
  749. void check_mem_type(unsigned long* dimm_populated,
  750. unsigned char* iic0_dimm_addr,
  751. unsigned long num_dimm_banks)
  752. {
  753. unsigned long dimm_num;
  754. unsigned char dimm_type;
  755. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  756. if (dimm_populated[dimm_num] == TRUE) {
  757. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  758. switch (dimm_type) {
  759. case 7:
  760. #if 0
  761. printf("DIMM slot %lu: DDR SDRAM detected\n", dimm_num);
  762. #endif
  763. break;
  764. default:
  765. printf("ERROR: Unsupported DIMM detected in slot %lu.\n",
  766. dimm_num);
  767. printf("Only DDR SDRAM DIMMs are supported.\n");
  768. printf("Replace the DIMM module with a supported DIMM.\n\n");
  769. hang();
  770. break;
  771. }
  772. }
  773. }
  774. }
  775. void check_volt_type(unsigned long* dimm_populated,
  776. unsigned char* iic0_dimm_addr,
  777. unsigned long num_dimm_banks)
  778. {
  779. unsigned long dimm_num;
  780. unsigned long voltage_type;
  781. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  782. if (dimm_populated[dimm_num] == TRUE) {
  783. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  784. if (voltage_type != 0x04) {
  785. printf("ERROR: DIMM %lu with unsupported voltage level.\n",
  786. dimm_num);
  787. hang();
  788. } else {
  789. #if 0
  790. printf("DIMM %lu voltage level supported.\n", dimm_num);
  791. #endif
  792. }
  793. break;
  794. }
  795. }
  796. }
  797. void program_cfg0(unsigned long* dimm_populated,
  798. unsigned char* iic0_dimm_addr,
  799. unsigned long num_dimm_banks)
  800. {
  801. unsigned long dimm_num;
  802. unsigned long cfg0;
  803. unsigned long ecc_enabled;
  804. unsigned char ecc;
  805. unsigned char attributes;
  806. unsigned long data_width;
  807. unsigned long dimm_32bit;
  808. unsigned long dimm_64bit;
  809. /*
  810. * get Memory Controller Options 0 data
  811. */
  812. mfsdram(mem_cfg0, cfg0);
  813. /*
  814. * clear bits
  815. */
  816. cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK |
  817. SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD |
  818. SDRAM_CFG0_DMWD_MASK |
  819. SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP);
  820. /*
  821. * FIXME: assume the DDR SDRAMs in both banks are the same
  822. */
  823. ecc_enabled = TRUE;
  824. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  825. if (dimm_populated[dimm_num] == TRUE) {
  826. ecc = spd_read(iic0_dimm_addr[dimm_num], 11);
  827. if (ecc != 0x02) {
  828. ecc_enabled = FALSE;
  829. }
  830. /*
  831. * program Registered DIMM Enable
  832. */
  833. attributes = spd_read(iic0_dimm_addr[dimm_num], 21);
  834. if ((attributes & 0x02) != 0x00) {
  835. cfg0 |= SDRAM_CFG0_RDEN;
  836. }
  837. /*
  838. * program DDR SDRAM Data Width
  839. */
  840. data_width =
  841. (unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) +
  842. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8);
  843. if (data_width == 64 || data_width == 72) {
  844. dimm_64bit = TRUE;
  845. cfg0 |= SDRAM_CFG0_DMWD_64;
  846. } else if (data_width == 32 || data_width == 40) {
  847. dimm_32bit = TRUE;
  848. cfg0 |= SDRAM_CFG0_DMWD_32;
  849. } else {
  850. printf("WARNING: DIMM with datawidth of %lu bits.\n",
  851. data_width);
  852. printf("Only DIMMs with 32 or 64 bit datawidths supported.\n");
  853. hang();
  854. }
  855. break;
  856. }
  857. }
  858. /*
  859. * program Memory Data Error Checking
  860. */
  861. if (ecc_enabled == TRUE) {
  862. cfg0 |= SDRAM_CFG0_MCHK_GEN;
  863. } else {
  864. cfg0 |= SDRAM_CFG0_MCHK_NON;
  865. }
  866. /*
  867. * program Page Management Unit
  868. */
  869. cfg0 |= SDRAM_CFG0_PMUD;
  870. /*
  871. * program Memory Controller Options 0
  872. * Note: DCEN must be enabled after all DDR SDRAM controller
  873. * configuration registers get initialized.
  874. */
  875. mtsdram(mem_cfg0, cfg0);
  876. }
  877. void program_cfg1(unsigned long* dimm_populated,
  878. unsigned char* iic0_dimm_addr,
  879. unsigned long num_dimm_banks)
  880. {
  881. unsigned long cfg1;
  882. mfsdram(mem_cfg1, cfg1);
  883. /*
  884. * Self-refresh exit, disable PM
  885. */
  886. cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN);
  887. /*
  888. * program Memory Controller Options 1
  889. */
  890. mtsdram(mem_cfg1, cfg1);
  891. }
  892. void program_rtr (unsigned long* dimm_populated,
  893. unsigned char* iic0_dimm_addr,
  894. unsigned long num_dimm_banks)
  895. {
  896. unsigned long dimm_num;
  897. unsigned long bus_period_x_10;
  898. unsigned long refresh_rate = 0;
  899. unsigned char refresh_rate_type;
  900. unsigned long refresh_interval;
  901. unsigned long sdram_rtr;
  902. PPC440_SYS_INFO sys_info;
  903. /*
  904. * get the board info
  905. */
  906. get_sys_info(&sys_info);
  907. bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
  908. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  909. if (dimm_populated[dimm_num] == TRUE) {
  910. refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12);
  911. switch (refresh_rate_type) {
  912. case 0x00:
  913. refresh_rate = 15625;
  914. break;
  915. case 0x01:
  916. refresh_rate = 15625/4;
  917. break;
  918. case 0x02:
  919. refresh_rate = 15625/2;
  920. break;
  921. case 0x03:
  922. refresh_rate = 15626*2;
  923. break;
  924. case 0x04:
  925. refresh_rate = 15625*4;
  926. break;
  927. case 0x05:
  928. refresh_rate = 15625*8;
  929. break;
  930. default:
  931. printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n",
  932. dimm_num);
  933. printf("Replace the DIMM module with a supported DIMM.\n");
  934. break;
  935. }
  936. break;
  937. }
  938. }
  939. refresh_interval = refresh_rate * 10 / bus_period_x_10;
  940. sdram_rtr = (refresh_interval & 0x3ff8) << 16;
  941. /*
  942. * program Refresh Timer Register (SDRAM0_RTR)
  943. */
  944. mtsdram(mem_rtr, sdram_rtr);
  945. }
  946. void program_tr0 (unsigned long* dimm_populated,
  947. unsigned char* iic0_dimm_addr,
  948. unsigned long num_dimm_banks)
  949. {
  950. unsigned long dimm_num;
  951. unsigned long tr0;
  952. unsigned char wcsbc;
  953. unsigned char t_rp_ns;
  954. unsigned char t_rcd_ns;
  955. unsigned char t_ras_ns;
  956. unsigned long t_rp_clk;
  957. unsigned long t_ras_rcd_clk;
  958. unsigned long t_rcd_clk;
  959. unsigned long t_rfc_clk;
  960. unsigned long plb_check;
  961. unsigned char cas_bit;
  962. unsigned long cas_index;
  963. unsigned char cas_2_0_available;
  964. unsigned char cas_2_5_available;
  965. unsigned char cas_3_0_available;
  966. unsigned long cycle_time_ns_x_10[3];
  967. unsigned long tcyc_3_0_ns_x_10;
  968. unsigned long tcyc_2_5_ns_x_10;
  969. unsigned long tcyc_2_0_ns_x_10;
  970. unsigned long tcyc_reg;
  971. unsigned long bus_period_x_10;
  972. PPC440_SYS_INFO sys_info;
  973. unsigned long residue;
  974. /*
  975. * get the board info
  976. */
  977. get_sys_info(&sys_info);
  978. bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
  979. /*
  980. * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
  981. */
  982. mfsdram(mem_tr0, tr0);
  983. tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK |
  984. SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK |
  985. SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK |
  986. SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK);
  987. /*
  988. * initialization
  989. */
  990. wcsbc = 0;
  991. t_rp_ns = 0;
  992. t_rcd_ns = 0;
  993. t_ras_ns = 0;
  994. cas_2_0_available = TRUE;
  995. cas_2_5_available = TRUE;
  996. cas_3_0_available = TRUE;
  997. tcyc_2_0_ns_x_10 = 0;
  998. tcyc_2_5_ns_x_10 = 0;
  999. tcyc_3_0_ns_x_10 = 0;
  1000. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1001. if (dimm_populated[dimm_num] == TRUE) {
  1002. wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15);
  1003. t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2;
  1004. t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2;
  1005. t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30);
  1006. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1007. for (cas_index = 0; cas_index < 3; cas_index++) {
  1008. switch (cas_index) {
  1009. case 0:
  1010. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1011. break;
  1012. case 1:
  1013. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1014. break;
  1015. default:
  1016. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1017. break;
  1018. }
  1019. if ((tcyc_reg & 0x0F) >= 10) {
  1020. printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n",
  1021. dimm_num);
  1022. hang();
  1023. }
  1024. cycle_time_ns_x_10[cas_index] =
  1025. (((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F);
  1026. }
  1027. cas_index = 0;
  1028. if ((cas_bit & 0x80) != 0) {
  1029. cas_index += 3;
  1030. } else if ((cas_bit & 0x40) != 0) {
  1031. cas_index += 2;
  1032. } else if ((cas_bit & 0x20) != 0) {
  1033. cas_index += 1;
  1034. }
  1035. if (((cas_bit & 0x10) != 0) && (cas_index < 3)) {
  1036. tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
  1037. cas_index++;
  1038. } else {
  1039. if (cas_index != 0) {
  1040. cas_index++;
  1041. }
  1042. cas_3_0_available = FALSE;
  1043. }
  1044. if (((cas_bit & 0x08) != 0) || (cas_index < 3)) {
  1045. tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index];
  1046. cas_index++;
  1047. } else {
  1048. if (cas_index != 0) {
  1049. cas_index++;
  1050. }
  1051. cas_2_5_available = FALSE;
  1052. }
  1053. if (((cas_bit & 0x04) != 0) || (cas_index < 3)) {
  1054. tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
  1055. cas_index++;
  1056. } else {
  1057. if (cas_index != 0) {
  1058. cas_index++;
  1059. }
  1060. cas_2_0_available = FALSE;
  1061. }
  1062. break;
  1063. }
  1064. }
  1065. /*
  1066. * Program SD_WR and SD_WCSBC fields
  1067. */
  1068. tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */
  1069. switch (wcsbc) {
  1070. case 0:
  1071. tr0 |= SDRAM_TR0_SDWD_0_CLK;
  1072. break;
  1073. default:
  1074. tr0 |= SDRAM_TR0_SDWD_1_CLK;
  1075. break;
  1076. }
  1077. /*
  1078. * Program SD_CASL field
  1079. */
  1080. if ((cas_2_0_available == TRUE) &&
  1081. (bus_period_x_10 >= tcyc_2_0_ns_x_10)) {
  1082. tr0 |= SDRAM_TR0_SDCL_2_0_CLK;
  1083. } else if ((cas_2_5_available == TRUE) &&
  1084. (bus_period_x_10 >= tcyc_2_5_ns_x_10)) {
  1085. tr0 |= SDRAM_TR0_SDCL_2_5_CLK;
  1086. } else if ((cas_3_0_available == TRUE) &&
  1087. (bus_period_x_10 >= tcyc_3_0_ns_x_10)) {
  1088. tr0 |= SDRAM_TR0_SDCL_3_0_CLK;
  1089. } else {
  1090. printf("ERROR: No supported CAS latency with the installed DIMMs.\n");
  1091. printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1092. printf("Make sure the PLB speed is within the supported range.\n");
  1093. hang();
  1094. }
  1095. /*
  1096. * Calculate Trp in clock cycles and round up if necessary
  1097. * Program SD_PTA field
  1098. */
  1099. t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION;
  1100. plb_check = ONE_BILLION * t_rp_clk / t_rp_ns;
  1101. if (sys_info.freqPLB != plb_check) {
  1102. t_rp_clk++;
  1103. }
  1104. switch ((unsigned long)t_rp_clk) {
  1105. case 0:
  1106. case 1:
  1107. case 2:
  1108. tr0 |= SDRAM_TR0_SDPA_2_CLK;
  1109. break;
  1110. case 3:
  1111. tr0 |= SDRAM_TR0_SDPA_3_CLK;
  1112. break;
  1113. default:
  1114. tr0 |= SDRAM_TR0_SDPA_4_CLK;
  1115. break;
  1116. }
  1117. /*
  1118. * Program SD_CTP field
  1119. */
  1120. t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION;
  1121. plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns);
  1122. if (sys_info.freqPLB != plb_check) {
  1123. t_ras_rcd_clk++;
  1124. }
  1125. switch (t_ras_rcd_clk) {
  1126. case 0:
  1127. case 1:
  1128. case 2:
  1129. tr0 |= SDRAM_TR0_SDCP_2_CLK;
  1130. break;
  1131. case 3:
  1132. tr0 |= SDRAM_TR0_SDCP_3_CLK;
  1133. break;
  1134. case 4:
  1135. tr0 |= SDRAM_TR0_SDCP_4_CLK;
  1136. break;
  1137. default:
  1138. tr0 |= SDRAM_TR0_SDCP_5_CLK;
  1139. break;
  1140. }
  1141. /*
  1142. * Program SD_LDF field
  1143. */
  1144. tr0 |= SDRAM_TR0_SDLD_2_CLK;
  1145. /*
  1146. * Program SD_RFTA field
  1147. * FIXME tRFC hardcoded as 75 nanoseconds
  1148. */
  1149. t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75);
  1150. residue = sys_info.freqPLB % (ONE_BILLION / 75);
  1151. if (residue >= (ONE_BILLION / 150)) {
  1152. t_rfc_clk++;
  1153. }
  1154. switch (t_rfc_clk) {
  1155. case 0:
  1156. case 1:
  1157. case 2:
  1158. case 3:
  1159. case 4:
  1160. case 5:
  1161. case 6:
  1162. tr0 |= SDRAM_TR0_SDRA_6_CLK;
  1163. break;
  1164. case 7:
  1165. tr0 |= SDRAM_TR0_SDRA_7_CLK;
  1166. break;
  1167. case 8:
  1168. tr0 |= SDRAM_TR0_SDRA_8_CLK;
  1169. break;
  1170. case 9:
  1171. tr0 |= SDRAM_TR0_SDRA_9_CLK;
  1172. break;
  1173. case 10:
  1174. tr0 |= SDRAM_TR0_SDRA_10_CLK;
  1175. break;
  1176. case 11:
  1177. tr0 |= SDRAM_TR0_SDRA_11_CLK;
  1178. break;
  1179. case 12:
  1180. tr0 |= SDRAM_TR0_SDRA_12_CLK;
  1181. break;
  1182. default:
  1183. tr0 |= SDRAM_TR0_SDRA_13_CLK;
  1184. break;
  1185. }
  1186. /*
  1187. * Program SD_RCD field
  1188. */
  1189. t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION;
  1190. plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns;
  1191. if (sys_info.freqPLB != plb_check) {
  1192. t_rcd_clk++;
  1193. }
  1194. switch (t_rcd_clk) {
  1195. case 0:
  1196. case 1:
  1197. case 2:
  1198. tr0 |= SDRAM_TR0_SDRD_2_CLK;
  1199. break;
  1200. case 3:
  1201. tr0 |= SDRAM_TR0_SDRD_3_CLK;
  1202. break;
  1203. default:
  1204. tr0 |= SDRAM_TR0_SDRD_4_CLK;
  1205. break;
  1206. }
  1207. #if 0
  1208. printf("tr0: %x\n", tr0);
  1209. #endif
  1210. mtsdram(mem_tr0, tr0);
  1211. }
  1212. void program_tr1 (void)
  1213. {
  1214. unsigned long tr0;
  1215. unsigned long tr1;
  1216. unsigned long cfg0;
  1217. unsigned long ecc_temp;
  1218. unsigned long dlycal;
  1219. unsigned long dly_val;
  1220. unsigned long i, j, k;
  1221. unsigned long bxcr_num;
  1222. unsigned long max_pass_length;
  1223. unsigned long current_pass_length;
  1224. unsigned long current_fail_length;
  1225. unsigned long current_start;
  1226. unsigned long rdclt;
  1227. unsigned long rdclt_offset;
  1228. long max_start;
  1229. long max_end;
  1230. long rdclt_average;
  1231. unsigned char window_found;
  1232. unsigned char fail_found;
  1233. unsigned char pass_found;
  1234. unsigned long * membase;
  1235. PPC440_SYS_INFO sys_info;
  1236. /*
  1237. * get the board info
  1238. */
  1239. get_sys_info(&sys_info);
  1240. /*
  1241. * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
  1242. */
  1243. mfsdram(mem_tr1, tr1);
  1244. tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK |
  1245. SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK);
  1246. mfsdram(mem_tr0, tr0);
  1247. if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) &&
  1248. (sys_info.freqPLB > 100000000)) {
  1249. tr1 |= SDRAM_TR1_RDSS_TR2;
  1250. tr1 |= SDRAM_TR1_RDSL_STAGE3;
  1251. tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
  1252. } else {
  1253. tr1 |= SDRAM_TR1_RDSS_TR1;
  1254. tr1 |= SDRAM_TR1_RDSL_STAGE2;
  1255. tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
  1256. }
  1257. /*
  1258. * save CFG0 ECC setting to a temporary variable and turn ECC off
  1259. */
  1260. mfsdram(mem_cfg0, cfg0);
  1261. ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK;
  1262. mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON);
  1263. /*
  1264. * get the delay line calibration register value
  1265. */
  1266. mfsdram(mem_dlycal, dlycal);
  1267. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  1268. max_pass_length = 0;
  1269. max_start = 0;
  1270. max_end = 0;
  1271. current_pass_length = 0;
  1272. current_fail_length = 0;
  1273. current_start = 0;
  1274. rdclt_offset = 0;
  1275. window_found = FALSE;
  1276. fail_found = FALSE;
  1277. pass_found = FALSE;
  1278. #ifdef DEBUG
  1279. printf("Starting memory test ");
  1280. #endif
  1281. for (k = 0; k < NUMHALFCYCLES; k++) {
  1282. for (rdclt = 0; rdclt < dly_val; rdclt++) {
  1283. /*
  1284. * Set the timing reg for the test.
  1285. */
  1286. mtsdram(mem_tr1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt)));
  1287. for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
  1288. mtdcr(memcfga, mem_b0cr + (bxcr_num<<2));
  1289. if ((mfdcr(memcfgd) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) {
  1290. /* Bank is enabled */
  1291. membase = (unsigned long*)
  1292. (mfdcr(memcfgd) & SDRAM_BXCR_SDBA_MASK);
  1293. /*
  1294. * Run the short memory test
  1295. */
  1296. for (i = 0; i < NUMMEMTESTS; i++) {
  1297. for (j = 0; j < NUMMEMWORDS; j++) {
  1298. membase[j] = test[i][j];
  1299. ppcDcbf((unsigned long)&(membase[j]));
  1300. }
  1301. for (j = 0; j < NUMMEMWORDS; j++) {
  1302. if (membase[j] != test[i][j]) {
  1303. ppcDcbf((unsigned long)&(membase[j]));
  1304. break;
  1305. }
  1306. ppcDcbf((unsigned long)&(membase[j]));
  1307. }
  1308. if (j < NUMMEMWORDS) {
  1309. break;
  1310. }
  1311. }
  1312. /*
  1313. * see if the rdclt value passed
  1314. */
  1315. if (i < NUMMEMTESTS) {
  1316. break;
  1317. }
  1318. }
  1319. }
  1320. if (bxcr_num == MAXBXCR) {
  1321. if (fail_found == TRUE) {
  1322. pass_found = TRUE;
  1323. if (current_pass_length == 0) {
  1324. current_start = rdclt_offset + rdclt;
  1325. }
  1326. current_fail_length = 0;
  1327. current_pass_length++;
  1328. if (current_pass_length > max_pass_length) {
  1329. max_pass_length = current_pass_length;
  1330. max_start = current_start;
  1331. max_end = rdclt_offset + rdclt;
  1332. }
  1333. }
  1334. } else {
  1335. current_pass_length = 0;
  1336. current_fail_length++;
  1337. if (current_fail_length >= (dly_val>>2)) {
  1338. if (fail_found == FALSE) {
  1339. fail_found = TRUE;
  1340. } else if (pass_found == TRUE) {
  1341. window_found = TRUE;
  1342. break;
  1343. }
  1344. }
  1345. }
  1346. }
  1347. #ifdef DEBUG
  1348. printf(".");
  1349. #endif
  1350. if (window_found == TRUE) {
  1351. break;
  1352. }
  1353. tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
  1354. rdclt_offset += dly_val;
  1355. }
  1356. #ifdef DEBUG
  1357. printf("\n");
  1358. #endif
  1359. /*
  1360. * make sure we find the window
  1361. */
  1362. if (window_found == FALSE) {
  1363. printf("ERROR: Cannot determine a common read delay.\n");
  1364. hang();
  1365. }
  1366. /*
  1367. * restore the orignal ECC setting
  1368. */
  1369. mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp);
  1370. /*
  1371. * set the SDRAM TR1 RDCD value
  1372. */
  1373. tr1 &= ~SDRAM_TR1_RDCD_MASK;
  1374. if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) {
  1375. tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
  1376. } else {
  1377. tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
  1378. }
  1379. /*
  1380. * set the SDRAM TR1 RDCLT value
  1381. */
  1382. tr1 &= ~SDRAM_TR1_RDCT_MASK;
  1383. while (max_end >= (dly_val << 1)) {
  1384. max_end -= (dly_val << 1);
  1385. max_start -= (dly_val << 1);
  1386. }
  1387. rdclt_average = ((max_start + max_end) >> 1);
  1388. if (rdclt_average >= 0x60)
  1389. while (1)
  1390. ;
  1391. if (rdclt_average < 0) {
  1392. rdclt_average = 0;
  1393. }
  1394. if (rdclt_average >= dly_val) {
  1395. rdclt_average -= dly_val;
  1396. tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
  1397. }
  1398. tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average);
  1399. #if 0
  1400. printf("tr1: %x\n", tr1);
  1401. #endif
  1402. /*
  1403. * program SDRAM Timing Register 1 TR1
  1404. */
  1405. mtsdram(mem_tr1, tr1);
  1406. }
  1407. unsigned long program_bxcr(unsigned long* dimm_populated,
  1408. unsigned char* iic0_dimm_addr,
  1409. unsigned long num_dimm_banks)
  1410. {
  1411. unsigned long dimm_num;
  1412. unsigned long bank_base_addr;
  1413. unsigned long bank_size_bytes;
  1414. unsigned long cr;
  1415. unsigned long i;
  1416. unsigned long temp;
  1417. unsigned char num_row_addr;
  1418. unsigned char num_col_addr;
  1419. unsigned char num_banks;
  1420. unsigned char bank_size_id;
  1421. #ifndef CONFIG_BAMBOO
  1422. unsigned long bxcr_num;
  1423. /*
  1424. * Set the BxCR regs. First, wipe out the bank config registers.
  1425. */
  1426. for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
  1427. mtdcr(memcfga, mem_b0cr + (bxcr_num << 2));
  1428. mtdcr(memcfgd, 0x00000000);
  1429. }
  1430. #endif
  1431. /*
  1432. * reset the bank_base address
  1433. */
  1434. #ifndef CONFIG_BAMBOO
  1435. bank_base_addr = CFG_SDRAM_BASE;
  1436. #else
  1437. bank_base_addr = CFG_SDRAM_ONBOARD_SIZE;
  1438. #endif
  1439. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1440. if (dimm_populated[dimm_num] == TRUE) {
  1441. num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3);
  1442. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1443. num_banks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1444. bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1445. /*
  1446. * Set the SDRAM0_BxCR regs
  1447. */
  1448. cr = 0;
  1449. bank_size_bytes = 4 * 1024 * 1024 * bank_size_id;
  1450. switch (bank_size_id) {
  1451. case 0x02:
  1452. cr |= SDRAM_BXCR_SDSZ_8;
  1453. break;
  1454. case 0x04:
  1455. cr |= SDRAM_BXCR_SDSZ_16;
  1456. break;
  1457. case 0x08:
  1458. cr |= SDRAM_BXCR_SDSZ_32;
  1459. break;
  1460. case 0x10:
  1461. cr |= SDRAM_BXCR_SDSZ_64;
  1462. break;
  1463. case 0x20:
  1464. cr |= SDRAM_BXCR_SDSZ_128;
  1465. break;
  1466. case 0x40:
  1467. cr |= SDRAM_BXCR_SDSZ_256;
  1468. break;
  1469. case 0x80:
  1470. cr |= SDRAM_BXCR_SDSZ_512;
  1471. break;
  1472. default:
  1473. printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
  1474. dimm_num);
  1475. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1476. bank_size_id);
  1477. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1478. hang();
  1479. }
  1480. switch (num_col_addr) {
  1481. case 0x08:
  1482. cr |= SDRAM_BXCR_SDAM_1;
  1483. break;
  1484. case 0x09:
  1485. cr |= SDRAM_BXCR_SDAM_2;
  1486. break;
  1487. case 0x0A:
  1488. cr |= SDRAM_BXCR_SDAM_3;
  1489. break;
  1490. case 0x0B:
  1491. cr |= SDRAM_BXCR_SDAM_4;
  1492. break;
  1493. default:
  1494. printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
  1495. dimm_num);
  1496. printf("ERROR: Unsupported value for number of "
  1497. "column addresses: %d.\n", num_col_addr);
  1498. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1499. hang();
  1500. }
  1501. /*
  1502. * enable the bank
  1503. */
  1504. cr |= SDRAM_BXCR_SDBE;
  1505. /*------------------------------------------------------------------
  1506. | This next section is hardware dependent and must be programmed
  1507. | to match the hardware.
  1508. +-----------------------------------------------------------------*/
  1509. if (dimm_num == 0) {
  1510. for (i = 0; i < num_banks; i++) {
  1511. #ifndef CONFIG_BAMBOO
  1512. mtdcr(memcfga, mem_b0cr + (i << 2));
  1513. #else
  1514. mtdcr(memcfga, mem_b1cr + (i << 2));
  1515. #endif
  1516. temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
  1517. SDRAM_BXCR_SDSZ_MASK |
  1518. SDRAM_BXCR_SDAM_MASK |
  1519. SDRAM_BXCR_SDBE);
  1520. cr |= temp;
  1521. cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
  1522. mtdcr(memcfgd, cr);
  1523. bank_base_addr += bank_size_bytes;
  1524. }
  1525. } else {
  1526. for (i = 0; i < num_banks; i++) {
  1527. #ifndef CONFIG_BAMBOO
  1528. mtdcr(memcfga, mem_b2cr + (i << 2));
  1529. #else
  1530. mtdcr(memcfga, mem_b3cr + (i << 2));
  1531. #endif
  1532. temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
  1533. SDRAM_BXCR_SDSZ_MASK |
  1534. SDRAM_BXCR_SDAM_MASK |
  1535. SDRAM_BXCR_SDBE);
  1536. cr |= temp;
  1537. cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
  1538. mtdcr(memcfgd, cr);
  1539. bank_base_addr += bank_size_bytes;
  1540. }
  1541. }
  1542. }
  1543. }
  1544. return(bank_base_addr);
  1545. }
  1546. void program_ecc (unsigned long num_bytes)
  1547. {
  1548. unsigned long bank_base_addr;
  1549. unsigned long current_address;
  1550. unsigned long end_address;
  1551. unsigned long address_increment;
  1552. unsigned long cfg0;
  1553. /*
  1554. * get Memory Controller Options 0 data
  1555. */
  1556. mfsdram(mem_cfg0, cfg0);
  1557. /*
  1558. * reset the bank_base address
  1559. */
  1560. bank_base_addr = CFG_SDRAM_BASE;
  1561. if ((cfg0 & SDRAM_CFG0_MCHK_MASK) != SDRAM_CFG0_MCHK_NON) {
  1562. mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
  1563. SDRAM_CFG0_MCHK_GEN);
  1564. if ((cfg0 & SDRAM_CFG0_DMWD_MASK) == SDRAM_CFG0_DMWD_32) {
  1565. address_increment = 4;
  1566. } else {
  1567. address_increment = 8;
  1568. }
  1569. current_address = (unsigned long)(bank_base_addr);
  1570. end_address = (unsigned long)(bank_base_addr) + num_bytes;
  1571. while (current_address < end_address) {
  1572. *((unsigned long*)current_address) = 0x00000000;
  1573. current_address += address_increment;
  1574. }
  1575. mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
  1576. SDRAM_CFG0_MCHK_CHK);
  1577. }
  1578. }
  1579. #endif /* CONFIG_440 */
  1580. #endif /* CONFIG_SPD_EEPROM */