123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 |
- /*
- * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
- * Rohit Choraria <rohitkc@ti.com>
- *
- * See file CREDITS for list of people who contributed to this
- * project.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2 of
- * the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
- * MA 02111-1307 USA
- */
- #include <common.h>
- #include <asm/io.h>
- #include <asm/errno.h>
- #include <asm/arch/mem.h>
- #include <asm/arch/omap_gpmc.h>
- #include <linux/mtd/nand_ecc.h>
- #include <nand.h>
- static uint8_t cs;
- static gpmc_t *gpmc_base = (gpmc_t *)GPMC_BASE;
- static gpmc_csx_t *gpmc_cs_base;
- static struct nand_ecclayout hw_nand_oob = GPMC_NAND_HW_ECC_LAYOUT;
- /*
- * omap_nand_hwcontrol - Set the address pointers corretly for the
- * following address/data/command operation
- */
- static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
- uint32_t ctrl)
- {
- register struct nand_chip *this = mtd->priv;
- /*
- * Point the IO_ADDR to DATA and ADDRESS registers instead
- * of chip address
- */
- switch (ctrl) {
- case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
- this->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_cmd;
- break;
- case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
- this->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_adr;
- break;
- case NAND_CTRL_CHANGE | NAND_NCE:
- this->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_dat;
- break;
- }
- if (cmd != NAND_CMD_NONE)
- writeb(cmd, this->IO_ADDR_W);
- }
- /*
- * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
- * GPMC controller
- * @mtd: MTD device structure
- *
- */
- static void omap_hwecc_init(struct nand_chip *chip)
- {
- /*
- * Init ECC Control Register
- * Clear all ECC | Enable Reg1
- */
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_base->ecc_control);
- writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_base->ecc_size_config);
- }
- /*
- * gen_true_ecc - This function will generate true ECC value, which
- * can be used when correcting data read from NAND flash memory core
- *
- * @ecc_buf: buffer to store ecc code
- *
- * @return: re-formatted ECC value
- */
- static uint32_t gen_true_ecc(uint8_t *ecc_buf)
- {
- return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
- ((ecc_buf[2] & 0x0F) << 8);
- }
- /*
- * omap_correct_data - Compares the ecc read from nand spare area with ECC
- * registers values and corrects one bit error if it has occured
- * Further details can be had from OMAP TRM and the following selected links:
- * http://en.wikipedia.org/wiki/Hamming_code
- * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
- *
- * @mtd: MTD device structure
- * @dat: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from ECC registers
- *
- * @return 0 if data is OK or corrected, else returns -1
- */
- static int omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
- uint8_t *read_ecc, uint8_t *calc_ecc)
- {
- uint32_t orig_ecc, new_ecc, res, hm;
- uint16_t parity_bits, byte;
- uint8_t bit;
- /* Regenerate the orginal ECC */
- orig_ecc = gen_true_ecc(read_ecc);
- new_ecc = gen_true_ecc(calc_ecc);
- /* Get the XOR of real ecc */
- res = orig_ecc ^ new_ecc;
- if (res) {
- /* Get the hamming width */
- hm = hweight32(res);
- /* Single bit errors can be corrected! */
- if (hm == 12) {
- /* Correctable data! */
- parity_bits = res >> 16;
- bit = (parity_bits & 0x7);
- byte = (parity_bits >> 3) & 0x1FF;
- /* Flip the bit to correct */
- dat[byte] ^= (0x1 << bit);
- } else if (hm == 1) {
- printf("Error: Ecc is wrong\n");
- /* ECC itself is corrupted */
- return 2;
- } else {
- /*
- * hm distance != parity pairs OR one, could mean 2 bit
- * error OR potentially be on a blank page..
- * orig_ecc: contains spare area data from nand flash.
- * new_ecc: generated ecc while reading data area.
- * Note: if the ecc = 0, all data bits from which it was
- * generated are 0xFF.
- * The 3 byte(24 bits) ecc is generated per 512byte
- * chunk of a page. If orig_ecc(from spare area)
- * is 0xFF && new_ecc(computed now from data area)=0x0,
- * this means that data area is 0xFF and spare area is
- * 0xFF. A sure sign of a erased page!
- */
- if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
- return 0;
- printf("Error: Bad compare! failed\n");
- /* detected 2 bit error */
- return -1;
- }
- }
- return 0;
- }
- /*
- * omap_calculate_ecc - Generate non-inverted ECC bytes.
- *
- * Using noninverted ECC can be considered ugly since writing a blank
- * page ie. padding will clear the ECC bytes. This is no problem as
- * long nobody is trying to write data on the seemingly unused page.
- * Reading an erased page will produce an ECC mismatch between
- * generated and read ECC bytes that has to be dealt with separately.
- * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
- * is used, the result of read will be 0x0 while the ECC offsets of the
- * spare area will be 0xFF which will result in an ECC mismatch.
- * @mtd: MTD structure
- * @dat: unused
- * @ecc_code: ecc_code buffer
- */
- static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
- uint8_t *ecc_code)
- {
- u_int32_t val;
- /* Start Reading from HW ECC1_Result = 0x200 */
- val = readl(&gpmc_base->ecc1_result);
- ecc_code[0] = val & 0xFF;
- ecc_code[1] = (val >> 16) & 0xFF;
- ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
- /*
- * Stop reading anymore ECC vals and clear old results
- * enable will be called if more reads are required
- */
- writel(0x000, &gpmc_base->ecc_config);
- return 0;
- }
- /*
- * omap_enable_ecc - This function enables the hardware ecc functionality
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- */
- static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
- {
- struct nand_chip *chip = mtd->priv;
- uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
- switch (mode) {
- case NAND_ECC_READ:
- case NAND_ECC_WRITE:
- /* Clear the ecc result registers, select ecc reg as 1 */
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_base->ecc_control);
- /*
- * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
- * tell all regs to generate size0 sized regs
- * we just have a single ECC engine for all CS
- */
- writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
- &gpmc_base->ecc_size_config);
- val = (dev_width << 7) | (cs << 1) | (0x1);
- writel(val, &gpmc_base->ecc_config);
- break;
- default:
- printf("Error: Unrecognized Mode[%d]!\n", mode);
- break;
- }
- }
- /*
- * omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc.
- * The default is to come up on s/w ecc
- *
- * @hardware - 1 -switch to h/w ecc, 0 - s/w ecc
- *
- */
- void omap_nand_switch_ecc(int32_t hardware)
- {
- struct nand_chip *nand;
- struct mtd_info *mtd;
- if (nand_curr_device < 0 ||
- nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
- !nand_info[nand_curr_device].name) {
- printf("Error: Can't switch ecc, no devices available\n");
- return;
- }
- mtd = &nand_info[nand_curr_device];
- nand = mtd->priv;
- nand->options |= NAND_OWN_BUFFERS;
- /* Reset ecc interface */
- nand->ecc.read_page = NULL;
- nand->ecc.write_page = NULL;
- nand->ecc.read_oob = NULL;
- nand->ecc.write_oob = NULL;
- nand->ecc.hwctl = NULL;
- nand->ecc.correct = NULL;
- nand->ecc.calculate = NULL;
- /* Setup the ecc configurations again */
- if (hardware) {
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.layout = &hw_nand_oob;
- nand->ecc.size = 512;
- nand->ecc.bytes = 3;
- nand->ecc.hwctl = omap_enable_hwecc;
- nand->ecc.correct = omap_correct_data;
- nand->ecc.calculate = omap_calculate_ecc;
- omap_hwecc_init(nand);
- printf("HW ECC selected\n");
- } else {
- nand->ecc.mode = NAND_ECC_SOFT;
- /* Use mtd default settings */
- nand->ecc.layout = NULL;
- printf("SW ECC selected\n");
- }
- /* Update NAND handling after ECC mode switch */
- nand_scan_tail(mtd);
- nand->options &= ~NAND_OWN_BUFFERS;
- }
- /*
- * Board-specific NAND initialization. The following members of the
- * argument are board-specific:
- * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
- * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
- * - cmd_ctrl: hardwarespecific function for accesing control-lines
- * - waitfunc: hardwarespecific function for accesing device ready/busy line
- * - ecc.hwctl: function to enable (reset) hardware ecc generator
- * - ecc.mode: mode of ecc, see defines
- * - chip_delay: chip dependent delay for transfering data from array to
- * read regs (tR)
- * - options: various chip options. They can partly be set to inform
- * nand_scan about special functionality. See the defines for further
- * explanation
- */
- int board_nand_init(struct nand_chip *nand)
- {
- int32_t gpmc_config = 0;
- cs = 0;
- /*
- * xloader/Uboot's gpmc configuration would have configured GPMC for
- * nand type of memory. The following logic scans and latches on to the
- * first CS with NAND type memory.
- * TBD: need to make this logic generic to handle multiple CS NAND
- * devices.
- */
- while (cs < GPMC_MAX_CS) {
- /*
- * Each GPMC set for a single CS is at offset 0x30
- * - already remapped for us
- */
- gpmc_cs_base = (gpmc_csx_t *)(GPMC_CONFIG_CS0_BASE +
- (cs * GPMC_CONFIG_WIDTH));
- /* Check if NAND type is set */
- if ((readl(&gpmc_cs_base->config1) & 0xC00) ==
- 0x800) {
- /* Found it!! */
- break;
- }
- cs++;
- }
- if (cs >= GPMC_MAX_CS) {
- printf("NAND: Unable to find NAND settings in "
- "GPMC Configuration - quitting\n");
- return -ENODEV;
- }
- gpmc_config = readl(&gpmc_base->config);
- /* Disable Write protect */
- gpmc_config |= 0x10;
- writel(gpmc_config, &gpmc_base->config);
- nand->IO_ADDR_R = (void __iomem *)&gpmc_cs_base->nand_dat;
- nand->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_cmd;
- nand->cmd_ctrl = omap_nand_hwcontrol;
- nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR;
- /* If we are 16 bit dev, our gpmc config tells us that */
- if ((readl(gpmc_cs_base) & 0x3000) == 0x1000)
- nand->options |= NAND_BUSWIDTH_16;
- nand->chip_delay = 100;
- /* Default ECC mode */
- nand->ecc.mode = NAND_ECC_SOFT;
- return 0;
- }
|