44x_spd_ddr2.c 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  43. /*-----------------------------------------------------------------------------+
  44. * Defines
  45. *-----------------------------------------------------------------------------*/
  46. #ifndef TRUE
  47. #define TRUE 1
  48. #endif
  49. #ifndef FALSE
  50. #define FALSE 0
  51. #endif
  52. #define SDRAM_DDR1 1
  53. #define SDRAM_DDR2 2
  54. #define SDRAM_NONE 0
  55. #define MAXDIMMS 2
  56. #define MAXRANKS 4
  57. #define MAXBXCF 4
  58. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  59. #define ONE_BILLION 1000000000
  60. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  61. #define CMD_NOP (7 << 19)
  62. #define CMD_PRECHARGE (2 << 19)
  63. #define CMD_REFRESH (1 << 19)
  64. #define CMD_EMR (0 << 19)
  65. #define CMD_READ (5 << 19)
  66. #define CMD_WRITE (4 << 19)
  67. #define SELECT_MR (0 << 16)
  68. #define SELECT_EMR (1 << 16)
  69. #define SELECT_EMR2 (2 << 16)
  70. #define SELECT_EMR3 (3 << 16)
  71. /* MR */
  72. #define DLL_RESET 0x00000100
  73. #define WRITE_RECOV_2 (1 << 9)
  74. #define WRITE_RECOV_3 (2 << 9)
  75. #define WRITE_RECOV_4 (3 << 9)
  76. #define WRITE_RECOV_5 (4 << 9)
  77. #define WRITE_RECOV_6 (5 << 9)
  78. #define BURST_LEN_4 0x00000002
  79. /* EMR */
  80. #define ODT_0_OHM 0x00000000
  81. #define ODT_50_OHM 0x00000044
  82. #define ODT_75_OHM 0x00000004
  83. #define ODT_150_OHM 0x00000040
  84. #define ODS_FULL 0x00000000
  85. #define ODS_REDUCED 0x00000002
  86. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  87. #define ODT_EB0R (0x80000000 >> 8)
  88. #define ODT_EB0W (0x80000000 >> 7)
  89. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  90. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  91. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  92. /* Defines for the Read Cycle Delay test */
  93. #define NUMMEMTESTS 8
  94. #define NUMMEMWORDS 8
  95. #define CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
  96. /*
  97. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  98. * region. Right now the cache should still be disabled in U-Boot because of the
  99. * EMAC driver, that need it's buffer descriptor to be located in non cached
  100. * memory.
  101. *
  102. * If at some time this restriction doesn't apply anymore, just define
  103. * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
  104. * everything correctly.
  105. */
  106. #ifdef CFG_ENABLE_SDRAM_CACHE
  107. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  108. #else
  109. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  110. #endif
  111. /* Private Structure Definitions */
  112. /* enum only to ease code for cas latency setting */
  113. typedef enum ddr_cas_id {
  114. DDR_CAS_2 = 20,
  115. DDR_CAS_2_5 = 25,
  116. DDR_CAS_3 = 30,
  117. DDR_CAS_4 = 40,
  118. DDR_CAS_5 = 50
  119. } ddr_cas_id_t;
  120. /*-----------------------------------------------------------------------------+
  121. * Prototypes
  122. *-----------------------------------------------------------------------------*/
  123. static unsigned long sdram_memsize(void);
  124. void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
  125. static void get_spd_info(unsigned long *dimm_populated,
  126. unsigned char *iic0_dimm_addr,
  127. unsigned long num_dimm_banks);
  128. static void check_mem_type(unsigned long *dimm_populated,
  129. unsigned char *iic0_dimm_addr,
  130. unsigned long num_dimm_banks);
  131. static void check_frequency(unsigned long *dimm_populated,
  132. unsigned char *iic0_dimm_addr,
  133. unsigned long num_dimm_banks);
  134. static void check_rank_number(unsigned long *dimm_populated,
  135. unsigned char *iic0_dimm_addr,
  136. unsigned long num_dimm_banks);
  137. static void check_voltage_type(unsigned long *dimm_populated,
  138. unsigned char *iic0_dimm_addr,
  139. unsigned long num_dimm_banks);
  140. static void program_memory_queue(unsigned long *dimm_populated,
  141. unsigned char *iic0_dimm_addr,
  142. unsigned long num_dimm_banks);
  143. static void program_codt(unsigned long *dimm_populated,
  144. unsigned char *iic0_dimm_addr,
  145. unsigned long num_dimm_banks);
  146. static void program_mode(unsigned long *dimm_populated,
  147. unsigned char *iic0_dimm_addr,
  148. unsigned long num_dimm_banks,
  149. ddr_cas_id_t *selected_cas,
  150. int *write_recovery);
  151. static void program_tr(unsigned long *dimm_populated,
  152. unsigned char *iic0_dimm_addr,
  153. unsigned long num_dimm_banks);
  154. static void program_rtr(unsigned long *dimm_populated,
  155. unsigned char *iic0_dimm_addr,
  156. unsigned long num_dimm_banks);
  157. static void program_bxcf(unsigned long *dimm_populated,
  158. unsigned char *iic0_dimm_addr,
  159. unsigned long num_dimm_banks);
  160. static void program_copt1(unsigned long *dimm_populated,
  161. unsigned char *iic0_dimm_addr,
  162. unsigned long num_dimm_banks);
  163. static void program_initplr(unsigned long *dimm_populated,
  164. unsigned char *iic0_dimm_addr,
  165. unsigned long num_dimm_banks,
  166. ddr_cas_id_t selected_cas,
  167. int write_recovery);
  168. static unsigned long is_ecc_enabled(void);
  169. static void program_ecc(unsigned long *dimm_populated,
  170. unsigned char *iic0_dimm_addr,
  171. unsigned long num_dimm_banks,
  172. unsigned long tlb_word2_i_value);
  173. static void program_ecc_addr(unsigned long start_address,
  174. unsigned long num_bytes,
  175. unsigned long tlb_word2_i_value);
  176. static void program_DQS_calibration(unsigned long *dimm_populated,
  177. unsigned char *iic0_dimm_addr,
  178. unsigned long num_dimm_banks);
  179. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  180. static void test(void);
  181. #else
  182. static void DQS_calibration_process(void);
  183. #endif
  184. #if defined(DEBUG)
  185. static void ppc440sp_sdram_register_dump(void);
  186. #endif
  187. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  188. void dcbz_area(u32 start_address, u32 num_bytes);
  189. void dflush(void);
  190. static u32 mfdcr_any(u32 dcr)
  191. {
  192. u32 val;
  193. switch (dcr) {
  194. case SDRAM_R0BAS + 0:
  195. val = mfdcr(SDRAM_R0BAS + 0);
  196. break;
  197. case SDRAM_R0BAS + 1:
  198. val = mfdcr(SDRAM_R0BAS + 1);
  199. break;
  200. case SDRAM_R0BAS + 2:
  201. val = mfdcr(SDRAM_R0BAS + 2);
  202. break;
  203. case SDRAM_R0BAS + 3:
  204. val = mfdcr(SDRAM_R0BAS + 3);
  205. break;
  206. default:
  207. printf("DCR %d not defined in case statement!!!\n", dcr);
  208. val = 0; /* just to satisfy the compiler */
  209. }
  210. return val;
  211. }
  212. static void mtdcr_any(u32 dcr, u32 val)
  213. {
  214. switch (dcr) {
  215. case SDRAM_R0BAS + 0:
  216. mtdcr(SDRAM_R0BAS + 0, val);
  217. break;
  218. case SDRAM_R0BAS + 1:
  219. mtdcr(SDRAM_R0BAS + 1, val);
  220. break;
  221. case SDRAM_R0BAS + 2:
  222. mtdcr(SDRAM_R0BAS + 2, val);
  223. break;
  224. case SDRAM_R0BAS + 3:
  225. mtdcr(SDRAM_R0BAS + 3, val);
  226. break;
  227. default:
  228. printf("DCR %d not defined in case statement!!!\n", dcr);
  229. }
  230. }
  231. static void wait_ddr_idle(void)
  232. {
  233. u32 val;
  234. do {
  235. mfsdram(SDRAM_MCSTAT, val);
  236. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  237. }
  238. static unsigned char spd_read(uchar chip, uint addr)
  239. {
  240. unsigned char data[2];
  241. if (i2c_probe(chip) == 0)
  242. if (i2c_read(chip, addr, 1, data, 1) == 0)
  243. return data[0];
  244. return 0;
  245. }
  246. /*-----------------------------------------------------------------------------+
  247. * sdram_memsize
  248. *-----------------------------------------------------------------------------*/
  249. static unsigned long sdram_memsize(void)
  250. {
  251. unsigned long mem_size;
  252. unsigned long mcopt2;
  253. unsigned long mcstat;
  254. unsigned long mb0cf;
  255. unsigned long sdsz;
  256. unsigned long i;
  257. mem_size = 0;
  258. mfsdram(SDRAM_MCOPT2, mcopt2);
  259. mfsdram(SDRAM_MCSTAT, mcstat);
  260. /* DDR controller must be enabled and not in self-refresh. */
  261. /* Otherwise memsize is zero. */
  262. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  263. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  264. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  265. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  266. for (i = 0; i < MAXBXCF; i++) {
  267. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  268. /* Banks enabled */
  269. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  270. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  271. switch(sdsz) {
  272. case SDRAM_RXBAS_SDSZ_8:
  273. mem_size+=8;
  274. break;
  275. case SDRAM_RXBAS_SDSZ_16:
  276. mem_size+=16;
  277. break;
  278. case SDRAM_RXBAS_SDSZ_32:
  279. mem_size+=32;
  280. break;
  281. case SDRAM_RXBAS_SDSZ_64:
  282. mem_size+=64;
  283. break;
  284. case SDRAM_RXBAS_SDSZ_128:
  285. mem_size+=128;
  286. break;
  287. case SDRAM_RXBAS_SDSZ_256:
  288. mem_size+=256;
  289. break;
  290. case SDRAM_RXBAS_SDSZ_512:
  291. mem_size+=512;
  292. break;
  293. case SDRAM_RXBAS_SDSZ_1024:
  294. mem_size+=1024;
  295. break;
  296. case SDRAM_RXBAS_SDSZ_2048:
  297. mem_size+=2048;
  298. break;
  299. case SDRAM_RXBAS_SDSZ_4096:
  300. mem_size+=4096;
  301. break;
  302. default:
  303. mem_size=0;
  304. break;
  305. }
  306. }
  307. }
  308. }
  309. mem_size *= 1024 * 1024;
  310. return(mem_size);
  311. }
  312. /*-----------------------------------------------------------------------------+
  313. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  314. * Note: This routine runs from flash with a stack set up in the chip's
  315. * sram space. It is important that the routine does not require .sbss, .bss or
  316. * .data sections. It also cannot call routines that require these sections.
  317. *-----------------------------------------------------------------------------*/
  318. /*-----------------------------------------------------------------------------
  319. * Function: initdram
  320. * Description: Configures SDRAM memory banks for DDR operation.
  321. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  322. * via the IIC bus and then configures the DDR SDRAM memory
  323. * banks appropriately. If Auto Memory Configuration is
  324. * not used, it is assumed that no DIMM is plugged
  325. *-----------------------------------------------------------------------------*/
  326. long int initdram(int board_type)
  327. {
  328. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  329. unsigned char spd0[MAX_SPD_BYTES];
  330. unsigned char spd1[MAX_SPD_BYTES];
  331. unsigned char *dimm_spd[MAXDIMMS];
  332. unsigned long dimm_populated[MAXDIMMS];
  333. unsigned long num_dimm_banks; /* on board dimm banks */
  334. unsigned long val;
  335. ddr_cas_id_t selected_cas;
  336. int write_recovery;
  337. unsigned long dram_size = 0;
  338. num_dimm_banks = sizeof(iic0_dimm_addr);
  339. /*------------------------------------------------------------------
  340. * Set up an array of SPD matrixes.
  341. *-----------------------------------------------------------------*/
  342. dimm_spd[0] = spd0;
  343. dimm_spd[1] = spd1;
  344. /*------------------------------------------------------------------
  345. * Reset the DDR-SDRAM controller.
  346. *-----------------------------------------------------------------*/
  347. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  348. mtsdr(SDR0_SRST, 0x00000000);
  349. /*
  350. * Make sure I2C controller is initialized
  351. * before continuing.
  352. */
  353. /* switch to correct I2C bus */
  354. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  355. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  356. /*------------------------------------------------------------------
  357. * Clear out the serial presence detect buffers.
  358. * Perform IIC reads from the dimm. Fill in the spds.
  359. * Check to see if the dimm slots are populated
  360. *-----------------------------------------------------------------*/
  361. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  362. /*------------------------------------------------------------------
  363. * Check the memory type for the dimms plugged.
  364. *-----------------------------------------------------------------*/
  365. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  366. /*------------------------------------------------------------------
  367. * Check the frequency supported for the dimms plugged.
  368. *-----------------------------------------------------------------*/
  369. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  370. /*------------------------------------------------------------------
  371. * Check the total rank number.
  372. *-----------------------------------------------------------------*/
  373. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  374. /*------------------------------------------------------------------
  375. * Check the voltage type for the dimms plugged.
  376. *-----------------------------------------------------------------*/
  377. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  378. /*------------------------------------------------------------------
  379. * Program SDRAM controller options 2 register
  380. * Except Enabling of the memory controller.
  381. *-----------------------------------------------------------------*/
  382. mfsdram(SDRAM_MCOPT2, val);
  383. mtsdram(SDRAM_MCOPT2,
  384. (val &
  385. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  386. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  387. SDRAM_MCOPT2_ISIE_MASK))
  388. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  389. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  390. SDRAM_MCOPT2_ISIE_ENABLE));
  391. /*------------------------------------------------------------------
  392. * Program SDRAM controller options 1 register
  393. * Note: Does not enable the memory controller.
  394. *-----------------------------------------------------------------*/
  395. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  396. /*------------------------------------------------------------------
  397. * Set the SDRAM Controller On Die Termination Register
  398. *-----------------------------------------------------------------*/
  399. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  400. /*------------------------------------------------------------------
  401. * Program SDRAM refresh register.
  402. *-----------------------------------------------------------------*/
  403. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  404. /*------------------------------------------------------------------
  405. * Program SDRAM mode register.
  406. *-----------------------------------------------------------------*/
  407. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  408. &selected_cas, &write_recovery);
  409. /*------------------------------------------------------------------
  410. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  411. *-----------------------------------------------------------------*/
  412. mfsdram(SDRAM_WRDTR, val);
  413. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  414. (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  415. /*------------------------------------------------------------------
  416. * Set the SDRAM Clock Timing Register
  417. *-----------------------------------------------------------------*/
  418. mfsdram(SDRAM_CLKTR, val);
  419. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
  420. /*------------------------------------------------------------------
  421. * Program the BxCF registers.
  422. *-----------------------------------------------------------------*/
  423. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  424. /*------------------------------------------------------------------
  425. * Program SDRAM timing registers.
  426. *-----------------------------------------------------------------*/
  427. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  428. /*------------------------------------------------------------------
  429. * Set the Extended Mode register
  430. *-----------------------------------------------------------------*/
  431. mfsdram(SDRAM_MEMODE, val);
  432. mtsdram(SDRAM_MEMODE,
  433. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  434. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  435. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  436. | SDRAM_MEMODE_RTT_75OHM | SDRAM_MEMODE_DQS_ENABLE));
  437. /*------------------------------------------------------------------
  438. * Program Initialization preload registers.
  439. *-----------------------------------------------------------------*/
  440. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  441. selected_cas, write_recovery);
  442. /*------------------------------------------------------------------
  443. * Delay to ensure 200usec have elapsed since reset.
  444. *-----------------------------------------------------------------*/
  445. udelay(400);
  446. /*------------------------------------------------------------------
  447. * Set the memory queue core base addr.
  448. *-----------------------------------------------------------------*/
  449. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  450. /*------------------------------------------------------------------
  451. * Program SDRAM controller options 2 register
  452. * Enable the memory controller.
  453. *-----------------------------------------------------------------*/
  454. mfsdram(SDRAM_MCOPT2, val);
  455. mtsdram(SDRAM_MCOPT2,
  456. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  457. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  458. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  459. /*------------------------------------------------------------------
  460. * Wait for SDRAM_CFG0_DC_EN to complete.
  461. *-----------------------------------------------------------------*/
  462. do {
  463. mfsdram(SDRAM_MCSTAT, val);
  464. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  465. /* get installed memory size */
  466. dram_size = sdram_memsize();
  467. /* and program tlb entries for this size (dynamic) */
  468. program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
  469. /*------------------------------------------------------------------
  470. * DQS calibration.
  471. *-----------------------------------------------------------------*/
  472. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  473. /*------------------------------------------------------------------
  474. * If ecc is enabled, initialize the parity bits.
  475. *-----------------------------------------------------------------*/
  476. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
  477. #ifdef DEBUG
  478. ppc440sp_sdram_register_dump();
  479. #endif
  480. return dram_size;
  481. }
  482. static void get_spd_info(unsigned long *dimm_populated,
  483. unsigned char *iic0_dimm_addr,
  484. unsigned long num_dimm_banks)
  485. {
  486. unsigned long dimm_num;
  487. unsigned long dimm_found;
  488. unsigned char num_of_bytes;
  489. unsigned char total_size;
  490. dimm_found = FALSE;
  491. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  492. num_of_bytes = 0;
  493. total_size = 0;
  494. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  495. debug("\nspd_read(0x%x) returned %d\n",
  496. iic0_dimm_addr[dimm_num], num_of_bytes);
  497. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  498. debug("spd_read(0x%x) returned %d\n",
  499. iic0_dimm_addr[dimm_num], total_size);
  500. if ((num_of_bytes != 0) && (total_size != 0)) {
  501. dimm_populated[dimm_num] = TRUE;
  502. dimm_found = TRUE;
  503. debug("DIMM slot %lu: populated\n", dimm_num);
  504. } else {
  505. dimm_populated[dimm_num] = FALSE;
  506. debug("DIMM slot %lu: Not populated\n", dimm_num);
  507. }
  508. }
  509. if (dimm_found == FALSE) {
  510. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  511. hang();
  512. }
  513. }
  514. #ifdef CONFIG_ADD_RAM_INFO
  515. void board_add_ram_info(int use_default)
  516. {
  517. if (is_ecc_enabled())
  518. puts(" (ECC enabled)");
  519. else
  520. puts(" (ECC not enabled)");
  521. }
  522. #endif
  523. /*------------------------------------------------------------------
  524. * For the memory DIMMs installed, this routine verifies that they
  525. * really are DDR specific DIMMs.
  526. *-----------------------------------------------------------------*/
  527. static void check_mem_type(unsigned long *dimm_populated,
  528. unsigned char *iic0_dimm_addr,
  529. unsigned long num_dimm_banks)
  530. {
  531. unsigned long dimm_num;
  532. unsigned long dimm_type;
  533. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  534. if (dimm_populated[dimm_num] == TRUE) {
  535. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  536. switch (dimm_type) {
  537. case 1:
  538. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  539. "slot %d.\n", (unsigned int)dimm_num);
  540. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  541. printf("Replace the DIMM module with a supported DIMM.\n\n");
  542. hang();
  543. break;
  544. case 2:
  545. printf("ERROR: EDO DIMM detected in slot %d.\n",
  546. (unsigned int)dimm_num);
  547. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  548. printf("Replace the DIMM module with a supported DIMM.\n\n");
  549. hang();
  550. break;
  551. case 3:
  552. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  553. (unsigned int)dimm_num);
  554. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  555. printf("Replace the DIMM module with a supported DIMM.\n\n");
  556. hang();
  557. break;
  558. case 4:
  559. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  560. (unsigned int)dimm_num);
  561. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  562. printf("Replace the DIMM module with a supported DIMM.\n\n");
  563. hang();
  564. break;
  565. case 5:
  566. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  567. (unsigned int)dimm_num);
  568. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  569. printf("Replace the DIMM module with a supported DIMM.\n\n");
  570. hang();
  571. break;
  572. case 6:
  573. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  574. (unsigned int)dimm_num);
  575. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  576. printf("Replace the DIMM module with a supported DIMM.\n\n");
  577. hang();
  578. break;
  579. case 7:
  580. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  581. dimm_populated[dimm_num] = SDRAM_DDR1;
  582. break;
  583. case 8:
  584. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  585. dimm_populated[dimm_num] = SDRAM_DDR2;
  586. break;
  587. default:
  588. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  589. (unsigned int)dimm_num);
  590. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  591. printf("Replace the DIMM module with a supported DIMM.\n\n");
  592. hang();
  593. break;
  594. }
  595. }
  596. }
  597. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  598. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  599. && (dimm_populated[dimm_num] != SDRAM_NONE)
  600. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  601. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  602. hang();
  603. }
  604. }
  605. }
  606. /*------------------------------------------------------------------
  607. * For the memory DIMMs installed, this routine verifies that
  608. * frequency previously calculated is supported.
  609. *-----------------------------------------------------------------*/
  610. static void check_frequency(unsigned long *dimm_populated,
  611. unsigned char *iic0_dimm_addr,
  612. unsigned long num_dimm_banks)
  613. {
  614. unsigned long dimm_num;
  615. unsigned long tcyc_reg;
  616. unsigned long cycle_time;
  617. unsigned long calc_cycle_time;
  618. unsigned long sdram_freq;
  619. unsigned long sdr_ddrpll;
  620. PPC440_SYS_INFO board_cfg;
  621. /*------------------------------------------------------------------
  622. * Get the board configuration info.
  623. *-----------------------------------------------------------------*/
  624. get_sys_info(&board_cfg);
  625. mfsdr(sdr_ddr0, sdr_ddrpll);
  626. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  627. /*
  628. * calc_cycle_time is calculated from DDR frequency set by board/chip
  629. * and is expressed in multiple of 10 picoseconds
  630. * to match the way DIMM cycle time is calculated below.
  631. */
  632. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  633. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  634. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  635. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  636. /*
  637. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  638. * the higher order nibble (bits 4-7) designates the cycle time
  639. * to a granularity of 1ns;
  640. * the value presented by the lower order nibble (bits 0-3)
  641. * has a granularity of .1ns and is added to the value designated
  642. * by the higher nibble. In addition, four lines of the lower order
  643. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  644. */
  645. /* Convert from hex to decimal */
  646. if ((tcyc_reg & 0x0F) == 0x0D)
  647. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  648. else if ((tcyc_reg & 0x0F) == 0x0C)
  649. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  650. else if ((tcyc_reg & 0x0F) == 0x0B)
  651. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  652. else if ((tcyc_reg & 0x0F) == 0x0A)
  653. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  654. else
  655. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  656. ((tcyc_reg & 0x0F)*10);
  657. if (cycle_time > (calc_cycle_time + 10)) {
  658. /*
  659. * the provided sdram cycle_time is too small
  660. * for the available DIMM cycle_time.
  661. * The additionnal 100ps is here to accept a small incertainty.
  662. */
  663. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  664. "slot %d \n while calculated cycle time is %d ps.\n",
  665. (unsigned int)(cycle_time*10),
  666. (unsigned int)dimm_num,
  667. (unsigned int)(calc_cycle_time*10));
  668. printf("Replace the DIMM, or change DDR frequency via "
  669. "strapping bits.\n\n");
  670. hang();
  671. }
  672. }
  673. }
  674. }
  675. /*------------------------------------------------------------------
  676. * For the memory DIMMs installed, this routine verifies two
  677. * ranks/banks maximum are availables.
  678. *-----------------------------------------------------------------*/
  679. static void check_rank_number(unsigned long *dimm_populated,
  680. unsigned char *iic0_dimm_addr,
  681. unsigned long num_dimm_banks)
  682. {
  683. unsigned long dimm_num;
  684. unsigned long dimm_rank;
  685. unsigned long total_rank = 0;
  686. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  687. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  688. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  689. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  690. dimm_rank = (dimm_rank & 0x0F) +1;
  691. else
  692. dimm_rank = dimm_rank & 0x0F;
  693. if (dimm_rank > MAXRANKS) {
  694. printf("ERROR: DRAM DIMM detected with %d ranks in "
  695. "slot %d is not supported.\n", dimm_rank, dimm_num);
  696. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  697. printf("Replace the DIMM module with a supported DIMM.\n\n");
  698. hang();
  699. } else
  700. total_rank += dimm_rank;
  701. }
  702. if (total_rank > MAXRANKS) {
  703. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  704. "for all slots.\n", (unsigned int)total_rank);
  705. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  706. printf("Remove one of the DIMM modules.\n\n");
  707. hang();
  708. }
  709. }
  710. }
  711. /*------------------------------------------------------------------
  712. * only support 2.5V modules.
  713. * This routine verifies this.
  714. *-----------------------------------------------------------------*/
  715. static void check_voltage_type(unsigned long *dimm_populated,
  716. unsigned char *iic0_dimm_addr,
  717. unsigned long num_dimm_banks)
  718. {
  719. unsigned long dimm_num;
  720. unsigned long voltage_type;
  721. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  722. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  723. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  724. switch (voltage_type) {
  725. case 0x00:
  726. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  727. printf("This DIMM is 5.0 Volt/TTL.\n");
  728. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  729. (unsigned int)dimm_num);
  730. hang();
  731. break;
  732. case 0x01:
  733. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  734. printf("This DIMM is LVTTL.\n");
  735. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  736. (unsigned int)dimm_num);
  737. hang();
  738. break;
  739. case 0x02:
  740. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  741. printf("This DIMM is 1.5 Volt.\n");
  742. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  743. (unsigned int)dimm_num);
  744. hang();
  745. break;
  746. case 0x03:
  747. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  748. printf("This DIMM is 3.3 Volt/TTL.\n");
  749. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  750. (unsigned int)dimm_num);
  751. hang();
  752. break;
  753. case 0x04:
  754. /* 2.5 Voltage only for DDR1 */
  755. break;
  756. case 0x05:
  757. /* 1.8 Voltage only for DDR2 */
  758. break;
  759. default:
  760. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  761. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  762. (unsigned int)dimm_num);
  763. hang();
  764. break;
  765. }
  766. }
  767. }
  768. }
  769. /*-----------------------------------------------------------------------------+
  770. * program_copt1.
  771. *-----------------------------------------------------------------------------*/
  772. static void program_copt1(unsigned long *dimm_populated,
  773. unsigned char *iic0_dimm_addr,
  774. unsigned long num_dimm_banks)
  775. {
  776. unsigned long dimm_num;
  777. unsigned long mcopt1;
  778. unsigned long ecc_enabled;
  779. unsigned long ecc = 0;
  780. unsigned long data_width = 0;
  781. unsigned long dimm_32bit;
  782. unsigned long dimm_64bit;
  783. unsigned long registered = 0;
  784. unsigned long attribute = 0;
  785. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  786. unsigned long bankcount;
  787. unsigned long ddrtype;
  788. unsigned long val;
  789. ecc_enabled = TRUE;
  790. dimm_32bit = FALSE;
  791. dimm_64bit = FALSE;
  792. buf0 = FALSE;
  793. buf1 = FALSE;
  794. /*------------------------------------------------------------------
  795. * Set memory controller options reg 1, SDRAM_MCOPT1.
  796. *-----------------------------------------------------------------*/
  797. mfsdram(SDRAM_MCOPT1, val);
  798. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  799. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  800. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  801. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  802. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  803. SDRAM_MCOPT1_DREF_MASK);
  804. mcopt1 |= SDRAM_MCOPT1_QDEP;
  805. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  806. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  807. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  808. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  809. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  810. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  811. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  812. /* test ecc support */
  813. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  814. if (ecc != 0x02) /* ecc not supported */
  815. ecc_enabled = FALSE;
  816. /* test bank count */
  817. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  818. if (bankcount == 0x04) /* bank count = 4 */
  819. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  820. else /* bank count = 8 */
  821. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  822. /* test DDR type */
  823. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  824. /* test for buffered/unbuffered, registered, differential clocks */
  825. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  826. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  827. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  828. if (dimm_num == 0) {
  829. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  830. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  831. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  832. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  833. if (registered == 1) { /* DDR2 always buffered */
  834. /* TODO: what about above comments ? */
  835. mcopt1 |= SDRAM_MCOPT1_RDEN;
  836. buf0 = TRUE;
  837. } else {
  838. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  839. if ((attribute & 0x02) == 0x00) {
  840. /* buffered not supported */
  841. buf0 = FALSE;
  842. } else {
  843. mcopt1 |= SDRAM_MCOPT1_RDEN;
  844. buf0 = TRUE;
  845. }
  846. }
  847. }
  848. else if (dimm_num == 1) {
  849. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  850. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  851. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  852. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  853. if (registered == 1) {
  854. /* DDR2 always buffered */
  855. mcopt1 |= SDRAM_MCOPT1_RDEN;
  856. buf1 = TRUE;
  857. } else {
  858. if ((attribute & 0x02) == 0x00) {
  859. /* buffered not supported */
  860. buf1 = FALSE;
  861. } else {
  862. mcopt1 |= SDRAM_MCOPT1_RDEN;
  863. buf1 = TRUE;
  864. }
  865. }
  866. }
  867. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  868. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  869. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  870. switch (data_width) {
  871. case 72:
  872. case 64:
  873. dimm_64bit = TRUE;
  874. break;
  875. case 40:
  876. case 32:
  877. dimm_32bit = TRUE;
  878. break;
  879. default:
  880. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  881. data_width);
  882. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  883. break;
  884. }
  885. }
  886. }
  887. /* verify matching properties */
  888. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  889. if (buf0 != buf1) {
  890. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  891. hang();
  892. }
  893. }
  894. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  895. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  896. hang();
  897. }
  898. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  899. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  900. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  901. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  902. } else {
  903. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  904. hang();
  905. }
  906. if (ecc_enabled == TRUE)
  907. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  908. else
  909. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  910. mtsdram(SDRAM_MCOPT1, mcopt1);
  911. }
  912. /*-----------------------------------------------------------------------------+
  913. * program_codt.
  914. *-----------------------------------------------------------------------------*/
  915. static void program_codt(unsigned long *dimm_populated,
  916. unsigned char *iic0_dimm_addr,
  917. unsigned long num_dimm_banks)
  918. {
  919. unsigned long codt;
  920. unsigned long modt0 = 0;
  921. unsigned long modt1 = 0;
  922. unsigned long modt2 = 0;
  923. unsigned long modt3 = 0;
  924. unsigned char dimm_num;
  925. unsigned char dimm_rank;
  926. unsigned char total_rank = 0;
  927. unsigned char total_dimm = 0;
  928. unsigned char dimm_type = 0;
  929. unsigned char firstSlot = 0;
  930. /*------------------------------------------------------------------
  931. * Set the SDRAM Controller On Die Termination Register
  932. *-----------------------------------------------------------------*/
  933. mfsdram(SDRAM_CODT, codt);
  934. codt |= (SDRAM_CODT_IO_NMODE
  935. & (~SDRAM_CODT_DQS_SINGLE_END
  936. & ~SDRAM_CODT_CKSE_SINGLE_END
  937. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  938. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  939. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  940. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  941. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  942. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  943. dimm_rank = (dimm_rank & 0x0F) + 1;
  944. dimm_type = SDRAM_DDR2;
  945. } else {
  946. dimm_rank = dimm_rank & 0x0F;
  947. dimm_type = SDRAM_DDR1;
  948. }
  949. total_rank += dimm_rank;
  950. total_dimm++;
  951. if ((dimm_num == 0) && (total_dimm == 1))
  952. firstSlot = TRUE;
  953. else
  954. firstSlot = FALSE;
  955. }
  956. }
  957. if (dimm_type == SDRAM_DDR2) {
  958. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  959. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  960. if (total_rank == 1) {
  961. codt |= CALC_ODT_R(0);
  962. modt0 = CALC_ODT_W(0);
  963. modt1 = 0x00000000;
  964. modt2 = 0x00000000;
  965. modt3 = 0x00000000;
  966. }
  967. if (total_rank == 2) {
  968. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  969. modt0 = CALC_ODT_W(0);
  970. modt1 = CALC_ODT_W(0);
  971. modt2 = 0x00000000;
  972. modt3 = 0x00000000;
  973. }
  974. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  975. if (total_rank == 1) {
  976. codt |= CALC_ODT_R(2);
  977. modt0 = 0x00000000;
  978. modt1 = 0x00000000;
  979. modt2 = CALC_ODT_W(2);
  980. modt3 = 0x00000000;
  981. }
  982. if (total_rank == 2) {
  983. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  984. modt0 = 0x00000000;
  985. modt1 = 0x00000000;
  986. modt2 = CALC_ODT_W(2);
  987. modt3 = CALC_ODT_W(2);
  988. }
  989. }
  990. if (total_dimm == 2) {
  991. if (total_rank == 2) {
  992. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  993. modt0 = CALC_ODT_RW(2);
  994. modt1 = 0x00000000;
  995. modt2 = CALC_ODT_RW(0);
  996. modt3 = 0x00000000;
  997. }
  998. if (total_rank == 4) {
  999. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | CALC_ODT_R(2) | CALC_ODT_R(3);
  1000. modt0 = CALC_ODT_RW(2);
  1001. modt1 = 0x00000000;
  1002. modt2 = CALC_ODT_RW(0);
  1003. modt3 = 0x00000000;
  1004. }
  1005. }
  1006. } else {
  1007. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1008. modt0 = 0x00000000;
  1009. modt1 = 0x00000000;
  1010. modt2 = 0x00000000;
  1011. modt3 = 0x00000000;
  1012. if (total_dimm == 1) {
  1013. if (total_rank == 1)
  1014. codt |= 0x00800000;
  1015. if (total_rank == 2)
  1016. codt |= 0x02800000;
  1017. }
  1018. if (total_dimm == 2) {
  1019. if (total_rank == 2)
  1020. codt |= 0x08800000;
  1021. if (total_rank == 4)
  1022. codt |= 0x2a800000;
  1023. }
  1024. }
  1025. debug("nb of dimm %d\n", total_dimm);
  1026. debug("nb of rank %d\n", total_rank);
  1027. if (total_dimm == 1)
  1028. debug("dimm in slot %d\n", firstSlot);
  1029. mtsdram(SDRAM_CODT, codt);
  1030. mtsdram(SDRAM_MODT0, modt0);
  1031. mtsdram(SDRAM_MODT1, modt1);
  1032. mtsdram(SDRAM_MODT2, modt2);
  1033. mtsdram(SDRAM_MODT3, modt3);
  1034. }
  1035. /*-----------------------------------------------------------------------------+
  1036. * program_initplr.
  1037. *-----------------------------------------------------------------------------*/
  1038. static void program_initplr(unsigned long *dimm_populated,
  1039. unsigned char *iic0_dimm_addr,
  1040. unsigned long num_dimm_banks,
  1041. ddr_cas_id_t selected_cas,
  1042. int write_recovery)
  1043. {
  1044. u32 cas = 0;
  1045. u32 odt = 0;
  1046. u32 ods = 0;
  1047. u32 mr;
  1048. u32 wr;
  1049. u32 emr;
  1050. u32 emr2;
  1051. u32 emr3;
  1052. int dimm_num;
  1053. int total_dimm = 0;
  1054. /******************************************************
  1055. ** Assumption: if more than one DIMM, all DIMMs are the same
  1056. ** as already checked in check_memory_type
  1057. ******************************************************/
  1058. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1059. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1060. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1061. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1062. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1063. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1064. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1065. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1066. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1067. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1068. switch (selected_cas) {
  1069. case DDR_CAS_3:
  1070. cas = 3 << 4;
  1071. break;
  1072. case DDR_CAS_4:
  1073. cas = 4 << 4;
  1074. break;
  1075. case DDR_CAS_5:
  1076. cas = 5 << 4;
  1077. break;
  1078. default:
  1079. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1080. hang();
  1081. break;
  1082. }
  1083. #if 0
  1084. /*
  1085. * ToDo - Still a problem with the write recovery:
  1086. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1087. * in the INITPLR reg to the value calculated in program_mode()
  1088. * results in not correctly working DDR2 memory (crash after
  1089. * relocation).
  1090. *
  1091. * So for now, set the write recovery to 3. This seems to work
  1092. * on the Corair module too.
  1093. *
  1094. * 2007-03-01, sr
  1095. */
  1096. switch (write_recovery) {
  1097. case 3:
  1098. wr = WRITE_RECOV_3;
  1099. break;
  1100. case 4:
  1101. wr = WRITE_RECOV_4;
  1102. break;
  1103. case 5:
  1104. wr = WRITE_RECOV_5;
  1105. break;
  1106. case 6:
  1107. wr = WRITE_RECOV_6;
  1108. break;
  1109. default:
  1110. printf("ERROR: write recovery not support (%d)", write_recovery);
  1111. hang();
  1112. break;
  1113. }
  1114. #else
  1115. wr = WRITE_RECOV_3; /* test-only, see description above */
  1116. #endif
  1117. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1118. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1119. total_dimm++;
  1120. if (total_dimm == 1) {
  1121. odt = ODT_150_OHM;
  1122. ods = ODS_FULL;
  1123. } else if (total_dimm == 2) {
  1124. odt = ODT_75_OHM;
  1125. ods = ODS_REDUCED;
  1126. } else {
  1127. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1128. hang();
  1129. }
  1130. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1131. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1132. emr2 = CMD_EMR | SELECT_EMR2;
  1133. emr3 = CMD_EMR | SELECT_EMR3;
  1134. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1135. udelay(1000);
  1136. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1137. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1138. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1139. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1140. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1141. udelay(1000);
  1142. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1143. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1144. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1145. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1146. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1147. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1148. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1149. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1150. } else {
  1151. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1152. hang();
  1153. }
  1154. }
  1155. /*------------------------------------------------------------------
  1156. * This routine programs the SDRAM_MMODE register.
  1157. * the selected_cas is an output parameter, that will be passed
  1158. * by caller to call the above program_initplr( )
  1159. *-----------------------------------------------------------------*/
  1160. static void program_mode(unsigned long *dimm_populated,
  1161. unsigned char *iic0_dimm_addr,
  1162. unsigned long num_dimm_banks,
  1163. ddr_cas_id_t *selected_cas,
  1164. int *write_recovery)
  1165. {
  1166. unsigned long dimm_num;
  1167. unsigned long sdram_ddr1;
  1168. unsigned long t_wr_ns;
  1169. unsigned long t_wr_clk;
  1170. unsigned long cas_bit;
  1171. unsigned long cas_index;
  1172. unsigned long sdram_freq;
  1173. unsigned long ddr_check;
  1174. unsigned long mmode;
  1175. unsigned long tcyc_reg;
  1176. unsigned long cycle_2_0_clk;
  1177. unsigned long cycle_2_5_clk;
  1178. unsigned long cycle_3_0_clk;
  1179. unsigned long cycle_4_0_clk;
  1180. unsigned long cycle_5_0_clk;
  1181. unsigned long max_2_0_tcyc_ns_x_100;
  1182. unsigned long max_2_5_tcyc_ns_x_100;
  1183. unsigned long max_3_0_tcyc_ns_x_100;
  1184. unsigned long max_4_0_tcyc_ns_x_100;
  1185. unsigned long max_5_0_tcyc_ns_x_100;
  1186. unsigned long cycle_time_ns_x_100[3];
  1187. PPC440_SYS_INFO board_cfg;
  1188. unsigned char cas_2_0_available;
  1189. unsigned char cas_2_5_available;
  1190. unsigned char cas_3_0_available;
  1191. unsigned char cas_4_0_available;
  1192. unsigned char cas_5_0_available;
  1193. unsigned long sdr_ddrpll;
  1194. /*------------------------------------------------------------------
  1195. * Get the board configuration info.
  1196. *-----------------------------------------------------------------*/
  1197. get_sys_info(&board_cfg);
  1198. mfsdr(sdr_ddr0, sdr_ddrpll);
  1199. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1200. /*------------------------------------------------------------------
  1201. * Handle the timing. We need to find the worst case timing of all
  1202. * the dimm modules installed.
  1203. *-----------------------------------------------------------------*/
  1204. t_wr_ns = 0;
  1205. cas_2_0_available = TRUE;
  1206. cas_2_5_available = TRUE;
  1207. cas_3_0_available = TRUE;
  1208. cas_4_0_available = TRUE;
  1209. cas_5_0_available = TRUE;
  1210. max_2_0_tcyc_ns_x_100 = 10;
  1211. max_2_5_tcyc_ns_x_100 = 10;
  1212. max_3_0_tcyc_ns_x_100 = 10;
  1213. max_4_0_tcyc_ns_x_100 = 10;
  1214. max_5_0_tcyc_ns_x_100 = 10;
  1215. sdram_ddr1 = TRUE;
  1216. /* loop through all the DIMM slots on the board */
  1217. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1218. /* If a dimm is installed in a particular slot ... */
  1219. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1220. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1221. sdram_ddr1 = TRUE;
  1222. else
  1223. sdram_ddr1 = FALSE;
  1224. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1225. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1226. /* For a particular DIMM, grab the three CAS values it supports */
  1227. for (cas_index = 0; cas_index < 3; cas_index++) {
  1228. switch (cas_index) {
  1229. case 0:
  1230. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1231. break;
  1232. case 1:
  1233. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1234. break;
  1235. default:
  1236. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1237. break;
  1238. }
  1239. if ((tcyc_reg & 0x0F) >= 10) {
  1240. if ((tcyc_reg & 0x0F) == 0x0D) {
  1241. /* Convert from hex to decimal */
  1242. cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1243. } else {
  1244. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1245. "in slot %d\n", (unsigned int)dimm_num);
  1246. hang();
  1247. }
  1248. } else {
  1249. /* Convert from hex to decimal */
  1250. cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) +
  1251. ((tcyc_reg & 0x0F)*10);
  1252. }
  1253. }
  1254. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1255. /* supported for a particular DIMM. */
  1256. cas_index = 0;
  1257. if (sdram_ddr1) {
  1258. /*
  1259. * DDR devices use the following bitmask for CAS latency:
  1260. * Bit 7 6 5 4 3 2 1 0
  1261. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1262. */
  1263. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1264. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1265. cas_index++;
  1266. } else {
  1267. if (cas_index != 0)
  1268. cas_index++;
  1269. cas_4_0_available = FALSE;
  1270. }
  1271. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1272. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1273. cas_index++;
  1274. } else {
  1275. if (cas_index != 0)
  1276. cas_index++;
  1277. cas_3_0_available = FALSE;
  1278. }
  1279. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1280. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1281. cas_index++;
  1282. } else {
  1283. if (cas_index != 0)
  1284. cas_index++;
  1285. cas_2_5_available = FALSE;
  1286. }
  1287. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1288. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1289. cas_index++;
  1290. } else {
  1291. if (cas_index != 0)
  1292. cas_index++;
  1293. cas_2_0_available = FALSE;
  1294. }
  1295. } else {
  1296. /*
  1297. * DDR2 devices use the following bitmask for CAS latency:
  1298. * Bit 7 6 5 4 3 2 1 0
  1299. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1300. */
  1301. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1302. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1303. cas_index++;
  1304. } else {
  1305. if (cas_index != 0)
  1306. cas_index++;
  1307. cas_5_0_available = FALSE;
  1308. }
  1309. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1310. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1311. cas_index++;
  1312. } else {
  1313. if (cas_index != 0)
  1314. cas_index++;
  1315. cas_4_0_available = FALSE;
  1316. }
  1317. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1318. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1319. cas_index++;
  1320. } else {
  1321. if (cas_index != 0)
  1322. cas_index++;
  1323. cas_3_0_available = FALSE;
  1324. }
  1325. }
  1326. }
  1327. }
  1328. /*------------------------------------------------------------------
  1329. * Set the SDRAM mode, SDRAM_MMODE
  1330. *-----------------------------------------------------------------*/
  1331. mfsdram(SDRAM_MMODE, mmode);
  1332. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1333. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100);
  1334. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100);
  1335. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100);
  1336. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100);
  1337. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100);
  1338. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1339. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1340. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1341. *selected_cas = DDR_CAS_2;
  1342. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1343. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1344. *selected_cas = DDR_CAS_2_5;
  1345. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1346. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1347. *selected_cas = DDR_CAS_3;
  1348. } else {
  1349. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1350. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1351. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1352. hang();
  1353. }
  1354. } else { /* DDR2 */
  1355. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1356. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1357. *selected_cas = DDR_CAS_3;
  1358. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1359. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1360. *selected_cas = DDR_CAS_4;
  1361. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1362. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1363. *selected_cas = DDR_CAS_5;
  1364. } else {
  1365. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1366. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1367. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1368. hang();
  1369. }
  1370. }
  1371. if (sdram_ddr1 == TRUE)
  1372. mmode |= SDRAM_MMODE_WR_DDR1;
  1373. else {
  1374. /* loop through all the DIMM slots on the board */
  1375. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1376. /* If a dimm is installed in a particular slot ... */
  1377. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1378. t_wr_ns = max(t_wr_ns,
  1379. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1380. }
  1381. /*
  1382. * convert from nanoseconds to ddr clocks
  1383. * round up if necessary
  1384. */
  1385. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1386. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1387. if (sdram_freq != ddr_check)
  1388. t_wr_clk++;
  1389. switch (t_wr_clk) {
  1390. case 0:
  1391. case 1:
  1392. case 2:
  1393. case 3:
  1394. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1395. break;
  1396. case 4:
  1397. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1398. break;
  1399. case 5:
  1400. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1401. break;
  1402. default:
  1403. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1404. break;
  1405. }
  1406. *write_recovery = t_wr_clk;
  1407. }
  1408. debug("CAS latency = %d\n", *selected_cas);
  1409. debug("Write recovery = %d\n", *write_recovery);
  1410. mtsdram(SDRAM_MMODE, mmode);
  1411. }
  1412. /*-----------------------------------------------------------------------------+
  1413. * program_rtr.
  1414. *-----------------------------------------------------------------------------*/
  1415. static void program_rtr(unsigned long *dimm_populated,
  1416. unsigned char *iic0_dimm_addr,
  1417. unsigned long num_dimm_banks)
  1418. {
  1419. PPC440_SYS_INFO board_cfg;
  1420. unsigned long max_refresh_rate;
  1421. unsigned long dimm_num;
  1422. unsigned long refresh_rate_type;
  1423. unsigned long refresh_rate;
  1424. unsigned long rint;
  1425. unsigned long sdram_freq;
  1426. unsigned long sdr_ddrpll;
  1427. unsigned long val;
  1428. /*------------------------------------------------------------------
  1429. * Get the board configuration info.
  1430. *-----------------------------------------------------------------*/
  1431. get_sys_info(&board_cfg);
  1432. /*------------------------------------------------------------------
  1433. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1434. *-----------------------------------------------------------------*/
  1435. mfsdr(sdr_ddr0, sdr_ddrpll);
  1436. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1437. max_refresh_rate = 0;
  1438. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1439. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1440. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1441. refresh_rate_type &= 0x7F;
  1442. switch (refresh_rate_type) {
  1443. case 0:
  1444. refresh_rate = 15625;
  1445. break;
  1446. case 1:
  1447. refresh_rate = 3906;
  1448. break;
  1449. case 2:
  1450. refresh_rate = 7812;
  1451. break;
  1452. case 3:
  1453. refresh_rate = 31250;
  1454. break;
  1455. case 4:
  1456. refresh_rate = 62500;
  1457. break;
  1458. case 5:
  1459. refresh_rate = 125000;
  1460. break;
  1461. default:
  1462. refresh_rate = 0;
  1463. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1464. (unsigned int)dimm_num);
  1465. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1466. hang();
  1467. break;
  1468. }
  1469. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1470. }
  1471. }
  1472. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1473. mfsdram(SDRAM_RTR, val);
  1474. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1475. (SDRAM_RTR_RINT_ENCODE(rint)));
  1476. }
  1477. /*------------------------------------------------------------------
  1478. * This routine programs the SDRAM_TRx registers.
  1479. *-----------------------------------------------------------------*/
  1480. static void program_tr(unsigned long *dimm_populated,
  1481. unsigned char *iic0_dimm_addr,
  1482. unsigned long num_dimm_banks)
  1483. {
  1484. unsigned long dimm_num;
  1485. unsigned long sdram_ddr1;
  1486. unsigned long t_rp_ns;
  1487. unsigned long t_rcd_ns;
  1488. unsigned long t_rrd_ns;
  1489. unsigned long t_ras_ns;
  1490. unsigned long t_rc_ns;
  1491. unsigned long t_rfc_ns;
  1492. unsigned long t_wpc_ns;
  1493. unsigned long t_wtr_ns;
  1494. unsigned long t_rpc_ns;
  1495. unsigned long t_rp_clk;
  1496. unsigned long t_rcd_clk;
  1497. unsigned long t_rrd_clk;
  1498. unsigned long t_ras_clk;
  1499. unsigned long t_rc_clk;
  1500. unsigned long t_rfc_clk;
  1501. unsigned long t_wpc_clk;
  1502. unsigned long t_wtr_clk;
  1503. unsigned long t_rpc_clk;
  1504. unsigned long sdtr1, sdtr2, sdtr3;
  1505. unsigned long ddr_check;
  1506. unsigned long sdram_freq;
  1507. unsigned long sdr_ddrpll;
  1508. PPC440_SYS_INFO board_cfg;
  1509. /*------------------------------------------------------------------
  1510. * Get the board configuration info.
  1511. *-----------------------------------------------------------------*/
  1512. get_sys_info(&board_cfg);
  1513. mfsdr(sdr_ddr0, sdr_ddrpll);
  1514. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1515. /*------------------------------------------------------------------
  1516. * Handle the timing. We need to find the worst case timing of all
  1517. * the dimm modules installed.
  1518. *-----------------------------------------------------------------*/
  1519. t_rp_ns = 0;
  1520. t_rrd_ns = 0;
  1521. t_rcd_ns = 0;
  1522. t_ras_ns = 0;
  1523. t_rc_ns = 0;
  1524. t_rfc_ns = 0;
  1525. t_wpc_ns = 0;
  1526. t_wtr_ns = 0;
  1527. t_rpc_ns = 0;
  1528. sdram_ddr1 = TRUE;
  1529. /* loop through all the DIMM slots on the board */
  1530. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1531. /* If a dimm is installed in a particular slot ... */
  1532. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1533. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1534. sdram_ddr1 = TRUE;
  1535. else
  1536. sdram_ddr1 = FALSE;
  1537. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1538. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1539. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1540. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1541. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1542. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1543. }
  1544. }
  1545. /*------------------------------------------------------------------
  1546. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1547. *-----------------------------------------------------------------*/
  1548. mfsdram(SDRAM_SDTR1, sdtr1);
  1549. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1550. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1551. /* default values */
  1552. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1553. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1554. /* normal operations */
  1555. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1556. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1557. mtsdram(SDRAM_SDTR1, sdtr1);
  1558. /*------------------------------------------------------------------
  1559. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1560. *-----------------------------------------------------------------*/
  1561. mfsdram(SDRAM_SDTR2, sdtr2);
  1562. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1563. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1564. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1565. SDRAM_SDTR2_RRD_MASK);
  1566. /*
  1567. * convert t_rcd from nanoseconds to ddr clocks
  1568. * round up if necessary
  1569. */
  1570. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1571. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1572. if (sdram_freq != ddr_check)
  1573. t_rcd_clk++;
  1574. switch (t_rcd_clk) {
  1575. case 0:
  1576. case 1:
  1577. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1578. break;
  1579. case 2:
  1580. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1581. break;
  1582. case 3:
  1583. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1584. break;
  1585. case 4:
  1586. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1587. break;
  1588. default:
  1589. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1590. break;
  1591. }
  1592. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1593. if (sdram_freq < 200000000) {
  1594. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1595. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1596. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1597. } else {
  1598. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1599. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1600. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1601. }
  1602. } else { /* DDR2 */
  1603. /* loop through all the DIMM slots on the board */
  1604. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1605. /* If a dimm is installed in a particular slot ... */
  1606. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1607. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1608. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1609. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1610. }
  1611. }
  1612. /*
  1613. * convert from nanoseconds to ddr clocks
  1614. * round up if necessary
  1615. */
  1616. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1617. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1618. if (sdram_freq != ddr_check)
  1619. t_wpc_clk++;
  1620. switch (t_wpc_clk) {
  1621. case 0:
  1622. case 1:
  1623. case 2:
  1624. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1625. break;
  1626. case 3:
  1627. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1628. break;
  1629. case 4:
  1630. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1631. break;
  1632. case 5:
  1633. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1634. break;
  1635. default:
  1636. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1637. break;
  1638. }
  1639. /*
  1640. * convert from nanoseconds to ddr clocks
  1641. * round up if necessary
  1642. */
  1643. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1644. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1645. if (sdram_freq != ddr_check)
  1646. t_wtr_clk++;
  1647. switch (t_wtr_clk) {
  1648. case 0:
  1649. case 1:
  1650. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1651. break;
  1652. case 2:
  1653. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1654. break;
  1655. case 3:
  1656. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1657. break;
  1658. default:
  1659. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1660. break;
  1661. }
  1662. /*
  1663. * convert from nanoseconds to ddr clocks
  1664. * round up if necessary
  1665. */
  1666. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1667. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1668. if (sdram_freq != ddr_check)
  1669. t_rpc_clk++;
  1670. switch (t_rpc_clk) {
  1671. case 0:
  1672. case 1:
  1673. case 2:
  1674. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1675. break;
  1676. case 3:
  1677. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1678. break;
  1679. default:
  1680. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1681. break;
  1682. }
  1683. }
  1684. /* default value */
  1685. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1686. /*
  1687. * convert t_rrd from nanoseconds to ddr clocks
  1688. * round up if necessary
  1689. */
  1690. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1691. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1692. if (sdram_freq != ddr_check)
  1693. t_rrd_clk++;
  1694. if (t_rrd_clk == 3)
  1695. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1696. else
  1697. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1698. /*
  1699. * convert t_rp from nanoseconds to ddr clocks
  1700. * round up if necessary
  1701. */
  1702. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1703. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1704. if (sdram_freq != ddr_check)
  1705. t_rp_clk++;
  1706. switch (t_rp_clk) {
  1707. case 0:
  1708. case 1:
  1709. case 2:
  1710. case 3:
  1711. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1712. break;
  1713. case 4:
  1714. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1715. break;
  1716. case 5:
  1717. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1718. break;
  1719. case 6:
  1720. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1721. break;
  1722. default:
  1723. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1724. break;
  1725. }
  1726. mtsdram(SDRAM_SDTR2, sdtr2);
  1727. /*------------------------------------------------------------------
  1728. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1729. *-----------------------------------------------------------------*/
  1730. mfsdram(SDRAM_SDTR3, sdtr3);
  1731. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1732. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1733. /*
  1734. * convert t_ras from nanoseconds to ddr clocks
  1735. * round up if necessary
  1736. */
  1737. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1738. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1739. if (sdram_freq != ddr_check)
  1740. t_ras_clk++;
  1741. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1742. /*
  1743. * convert t_rc from nanoseconds to ddr clocks
  1744. * round up if necessary
  1745. */
  1746. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1747. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1748. if (sdram_freq != ddr_check)
  1749. t_rc_clk++;
  1750. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1751. /* default xcs value */
  1752. sdtr3 |= SDRAM_SDTR3_XCS;
  1753. /*
  1754. * convert t_rfc from nanoseconds to ddr clocks
  1755. * round up if necessary
  1756. */
  1757. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1758. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1759. if (sdram_freq != ddr_check)
  1760. t_rfc_clk++;
  1761. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1762. mtsdram(SDRAM_SDTR3, sdtr3);
  1763. }
  1764. /*-----------------------------------------------------------------------------+
  1765. * program_bxcf.
  1766. *-----------------------------------------------------------------------------*/
  1767. static void program_bxcf(unsigned long *dimm_populated,
  1768. unsigned char *iic0_dimm_addr,
  1769. unsigned long num_dimm_banks)
  1770. {
  1771. unsigned long dimm_num;
  1772. unsigned long num_col_addr;
  1773. unsigned long num_ranks;
  1774. unsigned long num_banks;
  1775. unsigned long mode;
  1776. unsigned long ind_rank;
  1777. unsigned long ind;
  1778. unsigned long ind_bank;
  1779. unsigned long bank_0_populated;
  1780. /*------------------------------------------------------------------
  1781. * Set the BxCF regs. First, wipe out the bank config registers.
  1782. *-----------------------------------------------------------------*/
  1783. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
  1784. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1785. mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
  1786. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1787. mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
  1788. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1789. mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
  1790. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1791. mode = SDRAM_BXCF_M_BE_ENABLE;
  1792. bank_0_populated = 0;
  1793. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1794. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1795. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1796. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1797. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1798. num_ranks = (num_ranks & 0x0F) +1;
  1799. else
  1800. num_ranks = num_ranks & 0x0F;
  1801. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1802. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1803. if (num_banks == 4)
  1804. ind = 0;
  1805. else
  1806. ind = 5;
  1807. switch (num_col_addr) {
  1808. case 0x08:
  1809. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1810. break;
  1811. case 0x09:
  1812. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1813. break;
  1814. case 0x0A:
  1815. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1816. break;
  1817. case 0x0B:
  1818. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1819. break;
  1820. case 0x0C:
  1821. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1822. break;
  1823. default:
  1824. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1825. (unsigned int)dimm_num);
  1826. printf("ERROR: Unsupported value for number of "
  1827. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1828. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1829. hang();
  1830. }
  1831. }
  1832. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1833. bank_0_populated = 1;
  1834. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1835. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
  1836. mtdcr(SDRAMC_CFGDATA, mode);
  1837. }
  1838. }
  1839. }
  1840. }
  1841. /*------------------------------------------------------------------
  1842. * program memory queue.
  1843. *-----------------------------------------------------------------*/
  1844. static void program_memory_queue(unsigned long *dimm_populated,
  1845. unsigned char *iic0_dimm_addr,
  1846. unsigned long num_dimm_banks)
  1847. {
  1848. unsigned long dimm_num;
  1849. unsigned long rank_base_addr;
  1850. unsigned long rank_reg;
  1851. unsigned long rank_size_bytes;
  1852. unsigned long rank_size_id;
  1853. unsigned long num_ranks;
  1854. unsigned long baseadd_size;
  1855. unsigned long i;
  1856. unsigned long bank_0_populated = 0;
  1857. /*------------------------------------------------------------------
  1858. * Reset the rank_base_address.
  1859. *-----------------------------------------------------------------*/
  1860. rank_reg = SDRAM_R0BAS;
  1861. rank_base_addr = 0x00000000;
  1862. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1863. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1864. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1865. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1866. num_ranks = (num_ranks & 0x0F) + 1;
  1867. else
  1868. num_ranks = num_ranks & 0x0F;
  1869. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1870. /*------------------------------------------------------------------
  1871. * Set the sizes
  1872. *-----------------------------------------------------------------*/
  1873. baseadd_size = 0;
  1874. rank_size_bytes = 1024 * 1024 * rank_size_id;
  1875. switch (rank_size_id) {
  1876. case 0x02:
  1877. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1878. break;
  1879. case 0x04:
  1880. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1881. break;
  1882. case 0x08:
  1883. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1884. break;
  1885. case 0x10:
  1886. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1887. break;
  1888. case 0x20:
  1889. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1890. break;
  1891. case 0x40:
  1892. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1893. break;
  1894. case 0x80:
  1895. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1896. break;
  1897. default:
  1898. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1899. (unsigned int)dimm_num);
  1900. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1901. (unsigned int)rank_size_id);
  1902. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1903. hang();
  1904. }
  1905. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1906. bank_0_populated = 1;
  1907. for (i = 0; i < num_ranks; i++) {
  1908. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1909. (rank_base_addr & SDRAM_RXBAS_SDBA_MASK) |
  1910. baseadd_size);
  1911. rank_base_addr += rank_size_bytes;
  1912. }
  1913. }
  1914. }
  1915. }
  1916. /*-----------------------------------------------------------------------------+
  1917. * is_ecc_enabled.
  1918. *-----------------------------------------------------------------------------*/
  1919. static unsigned long is_ecc_enabled(void)
  1920. {
  1921. unsigned long dimm_num;
  1922. unsigned long ecc;
  1923. unsigned long val;
  1924. ecc = 0;
  1925. /* loop through all the DIMM slots on the board */
  1926. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1927. mfsdram(SDRAM_MCOPT1, val);
  1928. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  1929. }
  1930. return(ecc);
  1931. }
  1932. /*-----------------------------------------------------------------------------+
  1933. * program_ecc.
  1934. *-----------------------------------------------------------------------------*/
  1935. static void program_ecc(unsigned long *dimm_populated,
  1936. unsigned char *iic0_dimm_addr,
  1937. unsigned long num_dimm_banks,
  1938. unsigned long tlb_word2_i_value)
  1939. {
  1940. unsigned long mcopt1;
  1941. unsigned long mcopt2;
  1942. unsigned long mcstat;
  1943. unsigned long dimm_num;
  1944. unsigned long ecc;
  1945. ecc = 0;
  1946. /* loop through all the DIMM slots on the board */
  1947. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1948. /* If a dimm is installed in a particular slot ... */
  1949. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1950. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  1951. }
  1952. if (ecc == 0)
  1953. return;
  1954. mfsdram(SDRAM_MCOPT1, mcopt1);
  1955. mfsdram(SDRAM_MCOPT2, mcopt2);
  1956. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  1957. /* DDR controller must be enabled and not in self-refresh. */
  1958. mfsdram(SDRAM_MCSTAT, mcstat);
  1959. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  1960. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  1961. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  1962. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  1963. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  1964. }
  1965. }
  1966. return;
  1967. }
  1968. #ifdef CONFIG_ECC_ERROR_RESET
  1969. /*
  1970. * Check for ECC errors and reset board upon any error here
  1971. *
  1972. * On the Katmai 440SPe eval board, from time to time, the first
  1973. * lword write access after DDR2 initializazion with ECC checking
  1974. * enabled, leads to an ECC error. I couldn't find a configuration
  1975. * without this happening. On my board with the current setup it
  1976. * happens about 1 from 10 times.
  1977. *
  1978. * The ECC modules used for testing are:
  1979. * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
  1980. *
  1981. * This has to get fixed for the Katmai and tested for the other
  1982. * board (440SP/440SPe) that will eventually use this code in the
  1983. * future.
  1984. *
  1985. * 2007-03-01, sr
  1986. */
  1987. static void check_ecc(void)
  1988. {
  1989. u32 val;
  1990. mfsdram(SDRAM_ECCCR, val);
  1991. if (val != 0) {
  1992. printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
  1993. val, mfdcr(0x4c), mfdcr(0x4e));
  1994. printf("ECC error occured, resetting board...\n");
  1995. do_reset(NULL, 0, 0, NULL);
  1996. }
  1997. }
  1998. #endif
  1999. /*-----------------------------------------------------------------------------+
  2000. * program_ecc_addr.
  2001. *-----------------------------------------------------------------------------*/
  2002. static void program_ecc_addr(unsigned long start_address,
  2003. unsigned long num_bytes,
  2004. unsigned long tlb_word2_i_value)
  2005. {
  2006. unsigned long current_address;
  2007. unsigned long end_address;
  2008. unsigned long address_increment;
  2009. unsigned long mcopt1;
  2010. char str[] = "ECC generation...";
  2011. int i;
  2012. current_address = start_address;
  2013. mfsdram(SDRAM_MCOPT1, mcopt1);
  2014. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2015. mtsdram(SDRAM_MCOPT1,
  2016. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2017. sync();
  2018. eieio();
  2019. wait_ddr_idle();
  2020. puts(str);
  2021. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2022. /* ECC bit set method for non-cached memory */
  2023. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2024. address_increment = 4;
  2025. else
  2026. address_increment = 8;
  2027. end_address = current_address + num_bytes;
  2028. while (current_address < end_address) {
  2029. *((unsigned long *)current_address) = 0x00000000;
  2030. current_address += address_increment;
  2031. }
  2032. } else {
  2033. /* ECC bit set method for cached memory */
  2034. dcbz_area(start_address, num_bytes);
  2035. dflush();
  2036. }
  2037. for (i=0; i<strlen(str); i++)
  2038. putc('\b');
  2039. sync();
  2040. eieio();
  2041. wait_ddr_idle();
  2042. /* clear ECC error repoting registers */
  2043. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2044. mtdcr(0x4c, 0xffffffff);
  2045. mtsdram(SDRAM_MCOPT1,
  2046. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2047. sync();
  2048. eieio();
  2049. wait_ddr_idle();
  2050. #ifdef CONFIG_ECC_ERROR_RESET
  2051. /*
  2052. * One write to 0 is enough to trigger this ECC error
  2053. * (see description above)
  2054. */
  2055. out_be32(0, 0x12345678);
  2056. check_ecc();
  2057. #endif
  2058. }
  2059. }
  2060. /*-----------------------------------------------------------------------------+
  2061. * program_DQS_calibration.
  2062. *-----------------------------------------------------------------------------*/
  2063. static void program_DQS_calibration(unsigned long *dimm_populated,
  2064. unsigned char *iic0_dimm_addr,
  2065. unsigned long num_dimm_banks)
  2066. {
  2067. unsigned long val;
  2068. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2069. mtsdram(SDRAM_RQDC, 0x80000037);
  2070. mtsdram(SDRAM_RDCC, 0x40000000);
  2071. mtsdram(SDRAM_RFDC, 0x000001DF);
  2072. test();
  2073. #else
  2074. /*------------------------------------------------------------------
  2075. * Program RDCC register
  2076. * Read sample cycle auto-update enable
  2077. *-----------------------------------------------------------------*/
  2078. /*
  2079. * Modified for the Katmai platform: with some DIMMs, the DDR2
  2080. * controller automatically selects the T2 read cycle, but this
  2081. * proves unreliable. Go ahead and force the DDR2 controller
  2082. * to use the T4 sample and disable the automatic update of the
  2083. * RDSS field.
  2084. */
  2085. mfsdram(SDRAM_RDCC, val);
  2086. mtsdram(SDRAM_RDCC,
  2087. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2088. | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
  2089. /*------------------------------------------------------------------
  2090. * Program RQDC register
  2091. * Internal DQS delay mechanism enable
  2092. *-----------------------------------------------------------------*/
  2093. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2094. /*------------------------------------------------------------------
  2095. * Program RFDC register
  2096. * Set Feedback Fractional Oversample
  2097. * Auto-detect read sample cycle enable
  2098. *-----------------------------------------------------------------*/
  2099. mfsdram(SDRAM_RFDC, val);
  2100. mtsdram(SDRAM_RFDC,
  2101. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2102. SDRAM_RFDC_RFFD_MASK))
  2103. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2104. SDRAM_RFDC_RFFD_ENCODE(0)));
  2105. DQS_calibration_process();
  2106. #endif
  2107. }
  2108. static u32 short_mem_test(void)
  2109. {
  2110. u32 *membase;
  2111. u32 bxcr_num;
  2112. u32 bxcf;
  2113. int i;
  2114. int j;
  2115. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2116. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2117. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2118. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2119. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2120. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2121. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2122. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2123. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2124. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2125. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2126. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2127. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2128. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2129. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2130. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2131. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2132. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2133. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2134. /* Banks enabled */
  2135. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2136. /* Bank is enabled */
  2137. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2138. /*------------------------------------------------------------------
  2139. * Run the short memory test.
  2140. *-----------------------------------------------------------------*/
  2141. for (i = 0; i < NUMMEMTESTS; i++) {
  2142. for (j = 0; j < NUMMEMWORDS; j++) {
  2143. membase[j] = test[i][j];
  2144. ppcDcbf((u32)&(membase[j]));
  2145. }
  2146. sync();
  2147. for (j = 0; j < NUMMEMWORDS; j++) {
  2148. if (membase[j] != test[i][j]) {
  2149. ppcDcbf((u32)&(membase[j]));
  2150. break;
  2151. }
  2152. ppcDcbf((u32)&(membase[j]));
  2153. }
  2154. sync();
  2155. if (j < NUMMEMWORDS)
  2156. break;
  2157. }
  2158. if (i < NUMMEMTESTS)
  2159. break;
  2160. } /* if bank enabled */
  2161. } /* for bxcf_num */
  2162. return bxcr_num;
  2163. }
  2164. #ifndef HARD_CODED_DQS
  2165. /*-----------------------------------------------------------------------------+
  2166. * DQS_calibration_process.
  2167. *-----------------------------------------------------------------------------*/
  2168. static void DQS_calibration_process(void)
  2169. {
  2170. unsigned long ecc_temp;
  2171. unsigned long rfdc_reg;
  2172. unsigned long rffd;
  2173. unsigned long rqdc_reg;
  2174. unsigned long rqfd;
  2175. unsigned long bxcr_num;
  2176. unsigned long val;
  2177. long rqfd_average;
  2178. long rffd_average;
  2179. long max_start;
  2180. long min_end;
  2181. unsigned long begin_rqfd[MAXRANKS];
  2182. unsigned long begin_rffd[MAXRANKS];
  2183. unsigned long end_rqfd[MAXRANKS];
  2184. unsigned long end_rffd[MAXRANKS];
  2185. char window_found;
  2186. unsigned long dlycal;
  2187. unsigned long dly_val;
  2188. unsigned long max_pass_length;
  2189. unsigned long current_pass_length;
  2190. unsigned long current_fail_length;
  2191. unsigned long current_start;
  2192. long max_end;
  2193. unsigned char fail_found;
  2194. unsigned char pass_found;
  2195. /*------------------------------------------------------------------
  2196. * Test to determine the best read clock delay tuning bits.
  2197. *
  2198. * Before the DDR controller can be used, the read clock delay needs to be
  2199. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2200. * This value cannot be hardcoded into the program because it changes
  2201. * depending on the board's setup and environment.
  2202. * To do this, all delay values are tested to see if they
  2203. * work or not. By doing this, you get groups of fails with groups of
  2204. * passing values. The idea is to find the start and end of a passing
  2205. * window and take the center of it to use as the read clock delay.
  2206. *
  2207. * A failure has to be seen first so that when we hit a pass, we know
  2208. * that it is truely the start of the window. If we get passing values
  2209. * to start off with, we don't know if we are at the start of the window.
  2210. *
  2211. * The code assumes that a failure will always be found.
  2212. * If a failure is not found, there is no easy way to get the middle
  2213. * of the passing window. I guess we can pretty much pick any value
  2214. * but some values will be better than others. Since the lowest speed
  2215. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2216. * from experimentation it is safe to say you will always have a failure.
  2217. *-----------------------------------------------------------------*/
  2218. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2219. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2220. mfsdram(SDRAM_MCOPT1, val);
  2221. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2222. SDRAM_MCOPT1_MCHK_NON);
  2223. max_start = 0;
  2224. min_end = 0;
  2225. begin_rqfd[0] = 0;
  2226. begin_rffd[0] = 0;
  2227. begin_rqfd[1] = 0;
  2228. begin_rffd[1] = 0;
  2229. end_rqfd[0] = 0;
  2230. end_rffd[0] = 0;
  2231. end_rqfd[1] = 0;
  2232. end_rffd[1] = 0;
  2233. window_found = FALSE;
  2234. max_pass_length = 0;
  2235. max_start = 0;
  2236. max_end = 0;
  2237. current_pass_length = 0;
  2238. current_fail_length = 0;
  2239. current_start = 0;
  2240. window_found = FALSE;
  2241. fail_found = FALSE;
  2242. pass_found = FALSE;
  2243. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2244. /* rqdc_reg = mfsdram(SDRAM_RQDC) & ~(SDRAM_RQDC_RQFD_MASK); */
  2245. /*
  2246. * get the delay line calibration register value
  2247. */
  2248. mfsdram(SDRAM_DLCR, dlycal);
  2249. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2250. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2251. mfsdram(SDRAM_RFDC, rfdc_reg);
  2252. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2253. /*------------------------------------------------------------------
  2254. * Set the timing reg for the test.
  2255. *-----------------------------------------------------------------*/
  2256. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2257. /* do the small memory test */
  2258. bxcr_num = short_mem_test();
  2259. /*------------------------------------------------------------------
  2260. * See if the rffd value passed.
  2261. *-----------------------------------------------------------------*/
  2262. if (bxcr_num == MAXBXCF) {
  2263. if (fail_found == TRUE) {
  2264. pass_found = TRUE;
  2265. if (current_pass_length == 0)
  2266. current_start = rffd;
  2267. current_fail_length = 0;
  2268. current_pass_length++;
  2269. if (current_pass_length > max_pass_length) {
  2270. max_pass_length = current_pass_length;
  2271. max_start = current_start;
  2272. max_end = rffd;
  2273. }
  2274. }
  2275. } else {
  2276. current_pass_length = 0;
  2277. current_fail_length++;
  2278. if (current_fail_length >= (dly_val >> 2)) {
  2279. if (fail_found == FALSE) {
  2280. fail_found = TRUE;
  2281. } else if (pass_found == TRUE) {
  2282. window_found = TRUE;
  2283. break;
  2284. }
  2285. }
  2286. }
  2287. } /* for rffd */
  2288. /*------------------------------------------------------------------
  2289. * Set the average RFFD value
  2290. *-----------------------------------------------------------------*/
  2291. rffd_average = ((max_start + max_end) >> 1);
  2292. if (rffd_average < 0)
  2293. rffd_average = 0;
  2294. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2295. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2296. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2297. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2298. max_pass_length = 0;
  2299. max_start = 0;
  2300. max_end = 0;
  2301. current_pass_length = 0;
  2302. current_fail_length = 0;
  2303. current_start = 0;
  2304. window_found = FALSE;
  2305. fail_found = FALSE;
  2306. pass_found = FALSE;
  2307. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2308. mfsdram(SDRAM_RQDC, rqdc_reg);
  2309. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2310. /*------------------------------------------------------------------
  2311. * Set the timing reg for the test.
  2312. *-----------------------------------------------------------------*/
  2313. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2314. /* do the small memory test */
  2315. bxcr_num = short_mem_test();
  2316. /*------------------------------------------------------------------
  2317. * See if the rffd value passed.
  2318. *-----------------------------------------------------------------*/
  2319. if (bxcr_num == MAXBXCF) {
  2320. if (fail_found == TRUE) {
  2321. pass_found = TRUE;
  2322. if (current_pass_length == 0)
  2323. current_start = rqfd;
  2324. current_fail_length = 0;
  2325. current_pass_length++;
  2326. if (current_pass_length > max_pass_length) {
  2327. max_pass_length = current_pass_length;
  2328. max_start = current_start;
  2329. max_end = rqfd;
  2330. }
  2331. }
  2332. } else {
  2333. current_pass_length = 0;
  2334. current_fail_length++;
  2335. if (fail_found == FALSE) {
  2336. fail_found = TRUE;
  2337. } else if (pass_found == TRUE) {
  2338. window_found = TRUE;
  2339. break;
  2340. }
  2341. }
  2342. }
  2343. /*------------------------------------------------------------------
  2344. * Make sure we found the valid read passing window. Halt if not
  2345. *-----------------------------------------------------------------*/
  2346. if (window_found == FALSE) {
  2347. printf("ERROR: Cannot determine a common read delay for the "
  2348. "DIMM(s) installed.\n");
  2349. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2350. hang();
  2351. }
  2352. rqfd_average = ((max_start + max_end) >> 1);
  2353. if (rqfd_average < 0)
  2354. rqfd_average = 0;
  2355. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2356. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2357. /*------------------------------------------------------------------
  2358. * Restore the ECC variable to what it originally was
  2359. *-----------------------------------------------------------------*/
  2360. mfsdram(SDRAM_MCOPT1, val);
  2361. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | ecc_temp);
  2362. mtsdram(SDRAM_RQDC,
  2363. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2364. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2365. mfsdram(SDRAM_DLCR, val);
  2366. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2367. mfsdram(SDRAM_RQDC, val);
  2368. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2369. mfsdram(SDRAM_RFDC, val);
  2370. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2371. }
  2372. #else /* calibration test with hardvalues */
  2373. /*-----------------------------------------------------------------------------+
  2374. * DQS_calibration_process.
  2375. *-----------------------------------------------------------------------------*/
  2376. static void test(void)
  2377. {
  2378. unsigned long dimm_num;
  2379. unsigned long ecc_temp;
  2380. unsigned long i, j;
  2381. unsigned long *membase;
  2382. unsigned long bxcf[MAXRANKS];
  2383. unsigned long val;
  2384. char window_found;
  2385. char begin_found[MAXDIMMS];
  2386. char end_found[MAXDIMMS];
  2387. char search_end[MAXDIMMS];
  2388. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2389. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2390. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2391. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2392. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2393. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2394. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2395. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2396. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2397. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2398. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2399. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2400. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2401. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2402. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2403. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2404. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2405. /*------------------------------------------------------------------
  2406. * Test to determine the best read clock delay tuning bits.
  2407. *
  2408. * Before the DDR controller can be used, the read clock delay needs to be
  2409. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2410. * This value cannot be hardcoded into the program because it changes
  2411. * depending on the board's setup and environment.
  2412. * To do this, all delay values are tested to see if they
  2413. * work or not. By doing this, you get groups of fails with groups of
  2414. * passing values. The idea is to find the start and end of a passing
  2415. * window and take the center of it to use as the read clock delay.
  2416. *
  2417. * A failure has to be seen first so that when we hit a pass, we know
  2418. * that it is truely the start of the window. If we get passing values
  2419. * to start off with, we don't know if we are at the start of the window.
  2420. *
  2421. * The code assumes that a failure will always be found.
  2422. * If a failure is not found, there is no easy way to get the middle
  2423. * of the passing window. I guess we can pretty much pick any value
  2424. * but some values will be better than others. Since the lowest speed
  2425. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2426. * from experimentation it is safe to say you will always have a failure.
  2427. *-----------------------------------------------------------------*/
  2428. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2429. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2430. mfsdram(SDRAM_MCOPT1, val);
  2431. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2432. SDRAM_MCOPT1_MCHK_NON);
  2433. window_found = FALSE;
  2434. begin_found[0] = FALSE;
  2435. end_found[0] = FALSE;
  2436. search_end[0] = FALSE;
  2437. begin_found[1] = FALSE;
  2438. end_found[1] = FALSE;
  2439. search_end[1] = FALSE;
  2440. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2441. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2442. /* Banks enabled */
  2443. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2444. /* Bank is enabled */
  2445. membase =
  2446. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2447. /*------------------------------------------------------------------
  2448. * Run the short memory test.
  2449. *-----------------------------------------------------------------*/
  2450. for (i = 0; i < NUMMEMTESTS; i++) {
  2451. for (j = 0; j < NUMMEMWORDS; j++) {
  2452. membase[j] = test[i][j];
  2453. ppcDcbf((u32)&(membase[j]));
  2454. }
  2455. sync();
  2456. for (j = 0; j < NUMMEMWORDS; j++) {
  2457. if (membase[j] != test[i][j]) {
  2458. ppcDcbf((u32)&(membase[j]));
  2459. break;
  2460. }
  2461. ppcDcbf((u32)&(membase[j]));
  2462. }
  2463. sync();
  2464. if (j < NUMMEMWORDS)
  2465. break;
  2466. }
  2467. /*------------------------------------------------------------------
  2468. * See if the rffd value passed.
  2469. *-----------------------------------------------------------------*/
  2470. if (i < NUMMEMTESTS) {
  2471. if ((end_found[dimm_num] == FALSE) &&
  2472. (search_end[dimm_num] == TRUE)) {
  2473. end_found[dimm_num] = TRUE;
  2474. }
  2475. if ((end_found[0] == TRUE) &&
  2476. (end_found[1] == TRUE))
  2477. break;
  2478. } else {
  2479. if (begin_found[dimm_num] == FALSE) {
  2480. begin_found[dimm_num] = TRUE;
  2481. search_end[dimm_num] = TRUE;
  2482. }
  2483. }
  2484. } else {
  2485. begin_found[dimm_num] = TRUE;
  2486. end_found[dimm_num] = TRUE;
  2487. }
  2488. }
  2489. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2490. window_found = TRUE;
  2491. /*------------------------------------------------------------------
  2492. * Make sure we found the valid read passing window. Halt if not
  2493. *-----------------------------------------------------------------*/
  2494. if (window_found == FALSE) {
  2495. printf("ERROR: Cannot determine a common read delay for the "
  2496. "DIMM(s) installed.\n");
  2497. hang();
  2498. }
  2499. /*------------------------------------------------------------------
  2500. * Restore the ECC variable to what it originally was
  2501. *-----------------------------------------------------------------*/
  2502. mtsdram(SDRAM_MCOPT1,
  2503. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2504. | ecc_temp);
  2505. }
  2506. #endif
  2507. #if defined(DEBUG)
  2508. static void ppc440sp_sdram_register_dump(void)
  2509. {
  2510. unsigned int sdram_reg;
  2511. unsigned int sdram_data;
  2512. unsigned int dcr_data;
  2513. printf("\n Register Dump:\n");
  2514. sdram_reg = SDRAM_MCSTAT;
  2515. mfsdram(sdram_reg, sdram_data);
  2516. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2517. sdram_reg = SDRAM_MCOPT1;
  2518. mfsdram(sdram_reg, sdram_data);
  2519. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2520. sdram_reg = SDRAM_MCOPT2;
  2521. mfsdram(sdram_reg, sdram_data);
  2522. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2523. sdram_reg = SDRAM_MODT0;
  2524. mfsdram(sdram_reg, sdram_data);
  2525. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2526. sdram_reg = SDRAM_MODT1;
  2527. mfsdram(sdram_reg, sdram_data);
  2528. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2529. sdram_reg = SDRAM_MODT2;
  2530. mfsdram(sdram_reg, sdram_data);
  2531. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2532. sdram_reg = SDRAM_MODT3;
  2533. mfsdram(sdram_reg, sdram_data);
  2534. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2535. sdram_reg = SDRAM_CODT;
  2536. mfsdram(sdram_reg, sdram_data);
  2537. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2538. sdram_reg = SDRAM_VVPR;
  2539. mfsdram(sdram_reg, sdram_data);
  2540. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2541. sdram_reg = SDRAM_OPARS;
  2542. mfsdram(sdram_reg, sdram_data);
  2543. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2544. /*
  2545. * OPAR2 is only used as a trigger register.
  2546. * No data is contained in this register, and reading or writing
  2547. * to is can cause bad things to happen (hangs). Just skip it
  2548. * and report NA
  2549. * sdram_reg = SDRAM_OPAR2;
  2550. * mfsdram(sdram_reg, sdram_data);
  2551. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2552. */
  2553. printf(" SDRAM_OPART = N/A ");
  2554. sdram_reg = SDRAM_RTR;
  2555. mfsdram(sdram_reg, sdram_data);
  2556. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2557. sdram_reg = SDRAM_MB0CF;
  2558. mfsdram(sdram_reg, sdram_data);
  2559. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2560. sdram_reg = SDRAM_MB1CF;
  2561. mfsdram(sdram_reg, sdram_data);
  2562. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2563. sdram_reg = SDRAM_MB2CF;
  2564. mfsdram(sdram_reg, sdram_data);
  2565. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2566. sdram_reg = SDRAM_MB3CF;
  2567. mfsdram(sdram_reg, sdram_data);
  2568. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2569. sdram_reg = SDRAM_INITPLR0;
  2570. mfsdram(sdram_reg, sdram_data);
  2571. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2572. sdram_reg = SDRAM_INITPLR1;
  2573. mfsdram(sdram_reg, sdram_data);
  2574. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2575. sdram_reg = SDRAM_INITPLR2;
  2576. mfsdram(sdram_reg, sdram_data);
  2577. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2578. sdram_reg = SDRAM_INITPLR3;
  2579. mfsdram(sdram_reg, sdram_data);
  2580. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2581. sdram_reg = SDRAM_INITPLR4;
  2582. mfsdram(sdram_reg, sdram_data);
  2583. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2584. sdram_reg = SDRAM_INITPLR5;
  2585. mfsdram(sdram_reg, sdram_data);
  2586. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2587. sdram_reg = SDRAM_INITPLR6;
  2588. mfsdram(sdram_reg, sdram_data);
  2589. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2590. sdram_reg = SDRAM_INITPLR7;
  2591. mfsdram(sdram_reg, sdram_data);
  2592. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2593. sdram_reg = SDRAM_INITPLR8;
  2594. mfsdram(sdram_reg, sdram_data);
  2595. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2596. sdram_reg = SDRAM_INITPLR9;
  2597. mfsdram(sdram_reg, sdram_data);
  2598. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2599. sdram_reg = SDRAM_INITPLR10;
  2600. mfsdram(sdram_reg, sdram_data);
  2601. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2602. sdram_reg = SDRAM_INITPLR11;
  2603. mfsdram(sdram_reg, sdram_data);
  2604. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2605. sdram_reg = SDRAM_INITPLR12;
  2606. mfsdram(sdram_reg, sdram_data);
  2607. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2608. sdram_reg = SDRAM_INITPLR13;
  2609. mfsdram(sdram_reg, sdram_data);
  2610. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2611. sdram_reg = SDRAM_INITPLR14;
  2612. mfsdram(sdram_reg, sdram_data);
  2613. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2614. sdram_reg = SDRAM_INITPLR15;
  2615. mfsdram(sdram_reg, sdram_data);
  2616. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2617. sdram_reg = SDRAM_RQDC;
  2618. mfsdram(sdram_reg, sdram_data);
  2619. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2620. sdram_reg = SDRAM_RFDC;
  2621. mfsdram(sdram_reg, sdram_data);
  2622. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2623. sdram_reg = SDRAM_RDCC;
  2624. mfsdram(sdram_reg, sdram_data);
  2625. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2626. sdram_reg = SDRAM_DLCR;
  2627. mfsdram(sdram_reg, sdram_data);
  2628. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2629. sdram_reg = SDRAM_CLKTR;
  2630. mfsdram(sdram_reg, sdram_data);
  2631. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2632. sdram_reg = SDRAM_WRDTR;
  2633. mfsdram(sdram_reg, sdram_data);
  2634. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2635. sdram_reg = SDRAM_SDTR1;
  2636. mfsdram(sdram_reg, sdram_data);
  2637. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2638. sdram_reg = SDRAM_SDTR2;
  2639. mfsdram(sdram_reg, sdram_data);
  2640. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2641. sdram_reg = SDRAM_SDTR3;
  2642. mfsdram(sdram_reg, sdram_data);
  2643. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2644. sdram_reg = SDRAM_MMODE;
  2645. mfsdram(sdram_reg, sdram_data);
  2646. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2647. sdram_reg = SDRAM_MEMODE;
  2648. mfsdram(sdram_reg, sdram_data);
  2649. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2650. sdram_reg = SDRAM_ECCCR;
  2651. mfsdram(sdram_reg, sdram_data);
  2652. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2653. dcr_data = mfdcr(SDRAM_R0BAS);
  2654. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2655. dcr_data = mfdcr(SDRAM_R1BAS);
  2656. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2657. dcr_data = mfdcr(SDRAM_R2BAS);
  2658. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2659. dcr_data = mfdcr(SDRAM_R3BAS);
  2660. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2661. }
  2662. #endif
  2663. #endif /* CONFIG_SPD_EEPROM */