44x_spd_ddr2.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those currently are:
  5. *
  6. * 405: 405EX(r)
  7. * 440/460: 440SP/440SPe/460EX/460GT
  8. *
  9. * Copyright (c) 2008 Nuovation System Designs, LLC
  10. * Grant Erickson <gerickson@nuovations.com>
  11. * (C) Copyright 2007-2008
  12. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  13. *
  14. * COPYRIGHT AMCC CORPORATION 2004
  15. *
  16. * See file CREDITS for list of people who contributed to this
  17. * project.
  18. *
  19. * This program is free software; you can redistribute it and/or
  20. * modify it under the terms of the GNU General Public License as
  21. * published by the Free Software Foundation; either version 2 of
  22. * the License, or (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  32. * MA 02111-1307 USA
  33. *
  34. */
  35. /* define DEBUG for debugging output (obviously ;-)) */
  36. #if 0
  37. #define DEBUG
  38. #endif
  39. #include <common.h>
  40. #include <command.h>
  41. #include <ppc4xx.h>
  42. #include <i2c.h>
  43. #include <asm/io.h>
  44. #include <asm/processor.h>
  45. #include <asm/mmu.h>
  46. #include <asm/cache.h>
  47. #include "ecc.h"
  48. #if defined(CONFIG_SPD_EEPROM) && \
  49. (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  50. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  51. /*-----------------------------------------------------------------------------+
  52. * Defines
  53. *-----------------------------------------------------------------------------*/
  54. #ifndef TRUE
  55. #define TRUE 1
  56. #endif
  57. #ifndef FALSE
  58. #define FALSE 0
  59. #endif
  60. #define SDRAM_DDR1 1
  61. #define SDRAM_DDR2 2
  62. #define SDRAM_NONE 0
  63. #define MAXDIMMS 2
  64. #define MAXRANKS 4
  65. #define MAXBXCF 4
  66. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  67. #define ONE_BILLION 1000000000
  68. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  69. #define CMD_NOP (7 << 19)
  70. #define CMD_PRECHARGE (2 << 19)
  71. #define CMD_REFRESH (1 << 19)
  72. #define CMD_EMR (0 << 19)
  73. #define CMD_READ (5 << 19)
  74. #define CMD_WRITE (4 << 19)
  75. #define SELECT_MR (0 << 16)
  76. #define SELECT_EMR (1 << 16)
  77. #define SELECT_EMR2 (2 << 16)
  78. #define SELECT_EMR3 (3 << 16)
  79. /* MR */
  80. #define DLL_RESET 0x00000100
  81. #define WRITE_RECOV_2 (1 << 9)
  82. #define WRITE_RECOV_3 (2 << 9)
  83. #define WRITE_RECOV_4 (3 << 9)
  84. #define WRITE_RECOV_5 (4 << 9)
  85. #define WRITE_RECOV_6 (5 << 9)
  86. #define BURST_LEN_4 0x00000002
  87. /* EMR */
  88. #define ODT_0_OHM 0x00000000
  89. #define ODT_50_OHM 0x00000044
  90. #define ODT_75_OHM 0x00000004
  91. #define ODT_150_OHM 0x00000040
  92. #define ODS_FULL 0x00000000
  93. #define ODS_REDUCED 0x00000002
  94. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  95. #define ODT_EB0R (0x80000000 >> 8)
  96. #define ODT_EB0W (0x80000000 >> 7)
  97. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  98. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  99. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  100. /* Defines for the Read Cycle Delay test */
  101. #define NUMMEMTESTS 8
  102. #define NUMMEMWORDS 8
  103. #define NUMLOOPS 64 /* memory test loops */
  104. /*
  105. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  106. * region. Right now the cache should still be disabled in U-Boot because of the
  107. * EMAC driver, that need it's buffer descriptor to be located in non cached
  108. * memory.
  109. *
  110. * If at some time this restriction doesn't apply anymore, just define
  111. * CONFIG_4xx_DCACHE in the board config file and this code should setup
  112. * everything correctly.
  113. */
  114. #ifdef CONFIG_4xx_DCACHE
  115. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  116. #else
  117. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  118. #endif
  119. /*
  120. * Newer PPC's like 440SPe, 460EX/GT can be equipped with more than 2GB of SDRAM.
  121. * To support such configurations, we "only" map the first 2GB via the TLB's. We
  122. * need some free virtual address space for the remaining peripherals like, SoC
  123. * devices, FLASH etc.
  124. *
  125. * Note that ECC is currently not supported on configurations with more than 2GB
  126. * SDRAM. This is because we only map the first 2GB on such systems, and therefore
  127. * the ECC parity byte of the remaining area can't be written.
  128. */
  129. #ifndef CONFIG_MAX_MEM_MAPPED
  130. #define CONFIG_MAX_MEM_MAPPED ((phys_size_t)2 << 30)
  131. #endif
  132. /*
  133. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  134. */
  135. void __spd_ddr_init_hang (void)
  136. {
  137. hang ();
  138. }
  139. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  140. /*
  141. * To provide an interface for board specific config values in this common
  142. * DDR setup code, we implement he "weak" default functions here. They return
  143. * the default value back to the caller.
  144. *
  145. * Please see include/configs/yucca.h for an example fora board specific
  146. * implementation.
  147. */
  148. u32 __ddr_wrdtr(u32 default_val)
  149. {
  150. return default_val;
  151. }
  152. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  153. u32 __ddr_clktr(u32 default_val)
  154. {
  155. return default_val;
  156. }
  157. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  158. /* Private Structure Definitions */
  159. /* enum only to ease code for cas latency setting */
  160. typedef enum ddr_cas_id {
  161. DDR_CAS_2 = 20,
  162. DDR_CAS_2_5 = 25,
  163. DDR_CAS_3 = 30,
  164. DDR_CAS_4 = 40,
  165. DDR_CAS_5 = 50
  166. } ddr_cas_id_t;
  167. /*-----------------------------------------------------------------------------+
  168. * Prototypes
  169. *-----------------------------------------------------------------------------*/
  170. static phys_size_t sdram_memsize(void);
  171. static void get_spd_info(unsigned long *dimm_populated,
  172. unsigned char *iic0_dimm_addr,
  173. unsigned long num_dimm_banks);
  174. static void check_mem_type(unsigned long *dimm_populated,
  175. unsigned char *iic0_dimm_addr,
  176. unsigned long num_dimm_banks);
  177. static void check_frequency(unsigned long *dimm_populated,
  178. unsigned char *iic0_dimm_addr,
  179. unsigned long num_dimm_banks);
  180. static void check_rank_number(unsigned long *dimm_populated,
  181. unsigned char *iic0_dimm_addr,
  182. unsigned long num_dimm_banks);
  183. static void check_voltage_type(unsigned long *dimm_populated,
  184. unsigned char *iic0_dimm_addr,
  185. unsigned long num_dimm_banks);
  186. static void program_memory_queue(unsigned long *dimm_populated,
  187. unsigned char *iic0_dimm_addr,
  188. unsigned long num_dimm_banks);
  189. static void program_codt(unsigned long *dimm_populated,
  190. unsigned char *iic0_dimm_addr,
  191. unsigned long num_dimm_banks);
  192. static void program_mode(unsigned long *dimm_populated,
  193. unsigned char *iic0_dimm_addr,
  194. unsigned long num_dimm_banks,
  195. ddr_cas_id_t *selected_cas,
  196. int *write_recovery);
  197. static void program_tr(unsigned long *dimm_populated,
  198. unsigned char *iic0_dimm_addr,
  199. unsigned long num_dimm_banks);
  200. static void program_rtr(unsigned long *dimm_populated,
  201. unsigned char *iic0_dimm_addr,
  202. unsigned long num_dimm_banks);
  203. static void program_bxcf(unsigned long *dimm_populated,
  204. unsigned char *iic0_dimm_addr,
  205. unsigned long num_dimm_banks);
  206. static void program_copt1(unsigned long *dimm_populated,
  207. unsigned char *iic0_dimm_addr,
  208. unsigned long num_dimm_banks);
  209. static void program_initplr(unsigned long *dimm_populated,
  210. unsigned char *iic0_dimm_addr,
  211. unsigned long num_dimm_banks,
  212. ddr_cas_id_t selected_cas,
  213. int write_recovery);
  214. static unsigned long is_ecc_enabled(void);
  215. #ifdef CONFIG_DDR_ECC
  216. static void program_ecc(unsigned long *dimm_populated,
  217. unsigned char *iic0_dimm_addr,
  218. unsigned long num_dimm_banks,
  219. unsigned long tlb_word2_i_value);
  220. static void program_ecc_addr(unsigned long start_address,
  221. unsigned long num_bytes,
  222. unsigned long tlb_word2_i_value);
  223. #endif
  224. static void program_DQS_calibration(unsigned long *dimm_populated,
  225. unsigned char *iic0_dimm_addr,
  226. unsigned long num_dimm_banks);
  227. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  228. static void test(void);
  229. #else
  230. static void DQS_calibration_process(void);
  231. #endif
  232. static void ppc440sp_sdram_register_dump(void);
  233. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  234. void dcbz_area(u32 start_address, u32 num_bytes);
  235. static u32 mfdcr_any(u32 dcr)
  236. {
  237. u32 val;
  238. switch (dcr) {
  239. case SDRAM_R0BAS + 0:
  240. val = mfdcr(SDRAM_R0BAS + 0);
  241. break;
  242. case SDRAM_R0BAS + 1:
  243. val = mfdcr(SDRAM_R0BAS + 1);
  244. break;
  245. case SDRAM_R0BAS + 2:
  246. val = mfdcr(SDRAM_R0BAS + 2);
  247. break;
  248. case SDRAM_R0BAS + 3:
  249. val = mfdcr(SDRAM_R0BAS + 3);
  250. break;
  251. default:
  252. printf("DCR %d not defined in case statement!!!\n", dcr);
  253. val = 0; /* just to satisfy the compiler */
  254. }
  255. return val;
  256. }
  257. static void mtdcr_any(u32 dcr, u32 val)
  258. {
  259. switch (dcr) {
  260. case SDRAM_R0BAS + 0:
  261. mtdcr(SDRAM_R0BAS + 0, val);
  262. break;
  263. case SDRAM_R0BAS + 1:
  264. mtdcr(SDRAM_R0BAS + 1, val);
  265. break;
  266. case SDRAM_R0BAS + 2:
  267. mtdcr(SDRAM_R0BAS + 2, val);
  268. break;
  269. case SDRAM_R0BAS + 3:
  270. mtdcr(SDRAM_R0BAS + 3, val);
  271. break;
  272. default:
  273. printf("DCR %d not defined in case statement!!!\n", dcr);
  274. }
  275. }
  276. static unsigned char spd_read(uchar chip, uint addr)
  277. {
  278. unsigned char data[2];
  279. if (i2c_probe(chip) == 0)
  280. if (i2c_read(chip, addr, 1, data, 1) == 0)
  281. return data[0];
  282. return 0;
  283. }
  284. /*-----------------------------------------------------------------------------+
  285. * sdram_memsize
  286. *-----------------------------------------------------------------------------*/
  287. static phys_size_t sdram_memsize(void)
  288. {
  289. phys_size_t mem_size;
  290. unsigned long mcopt2;
  291. unsigned long mcstat;
  292. unsigned long mb0cf;
  293. unsigned long sdsz;
  294. unsigned long i;
  295. mem_size = 0;
  296. mfsdram(SDRAM_MCOPT2, mcopt2);
  297. mfsdram(SDRAM_MCSTAT, mcstat);
  298. /* DDR controller must be enabled and not in self-refresh. */
  299. /* Otherwise memsize is zero. */
  300. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  301. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  302. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  303. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  304. for (i = 0; i < MAXBXCF; i++) {
  305. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  306. /* Banks enabled */
  307. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  308. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  309. switch(sdsz) {
  310. case SDRAM_RXBAS_SDSZ_8:
  311. mem_size+=8;
  312. break;
  313. case SDRAM_RXBAS_SDSZ_16:
  314. mem_size+=16;
  315. break;
  316. case SDRAM_RXBAS_SDSZ_32:
  317. mem_size+=32;
  318. break;
  319. case SDRAM_RXBAS_SDSZ_64:
  320. mem_size+=64;
  321. break;
  322. case SDRAM_RXBAS_SDSZ_128:
  323. mem_size+=128;
  324. break;
  325. case SDRAM_RXBAS_SDSZ_256:
  326. mem_size+=256;
  327. break;
  328. case SDRAM_RXBAS_SDSZ_512:
  329. mem_size+=512;
  330. break;
  331. case SDRAM_RXBAS_SDSZ_1024:
  332. mem_size+=1024;
  333. break;
  334. case SDRAM_RXBAS_SDSZ_2048:
  335. mem_size+=2048;
  336. break;
  337. case SDRAM_RXBAS_SDSZ_4096:
  338. mem_size+=4096;
  339. break;
  340. default:
  341. printf("WARNING: Unsupported bank size (SDSZ=0x%x)!\n"
  342. , sdsz);
  343. mem_size=0;
  344. break;
  345. }
  346. }
  347. }
  348. }
  349. return mem_size << 20;
  350. }
  351. /*-----------------------------------------------------------------------------+
  352. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  353. * Note: This routine runs from flash with a stack set up in the chip's
  354. * sram space. It is important that the routine does not require .sbss, .bss or
  355. * .data sections. It also cannot call routines that require these sections.
  356. *-----------------------------------------------------------------------------*/
  357. /*-----------------------------------------------------------------------------
  358. * Function: initdram
  359. * Description: Configures SDRAM memory banks for DDR operation.
  360. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  361. * via the IIC bus and then configures the DDR SDRAM memory
  362. * banks appropriately. If Auto Memory Configuration is
  363. * not used, it is assumed that no DIMM is plugged
  364. *-----------------------------------------------------------------------------*/
  365. phys_size_t initdram(int board_type)
  366. {
  367. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  368. unsigned char spd0[MAX_SPD_BYTES];
  369. unsigned char spd1[MAX_SPD_BYTES];
  370. unsigned char *dimm_spd[MAXDIMMS];
  371. unsigned long dimm_populated[MAXDIMMS];
  372. unsigned long num_dimm_banks; /* on board dimm banks */
  373. unsigned long val;
  374. ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */
  375. int write_recovery;
  376. phys_size_t dram_size = 0;
  377. num_dimm_banks = sizeof(iic0_dimm_addr);
  378. /*------------------------------------------------------------------
  379. * Set up an array of SPD matrixes.
  380. *-----------------------------------------------------------------*/
  381. dimm_spd[0] = spd0;
  382. dimm_spd[1] = spd1;
  383. /*------------------------------------------------------------------
  384. * Reset the DDR-SDRAM controller.
  385. *-----------------------------------------------------------------*/
  386. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  387. mtsdr(SDR0_SRST, 0x00000000);
  388. /*
  389. * Make sure I2C controller is initialized
  390. * before continuing.
  391. */
  392. /* switch to correct I2C bus */
  393. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  394. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  395. /*------------------------------------------------------------------
  396. * Clear out the serial presence detect buffers.
  397. * Perform IIC reads from the dimm. Fill in the spds.
  398. * Check to see if the dimm slots are populated
  399. *-----------------------------------------------------------------*/
  400. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  401. /*------------------------------------------------------------------
  402. * Check the memory type for the dimms plugged.
  403. *-----------------------------------------------------------------*/
  404. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  405. /*------------------------------------------------------------------
  406. * Check the frequency supported for the dimms plugged.
  407. *-----------------------------------------------------------------*/
  408. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  409. /*------------------------------------------------------------------
  410. * Check the total rank number.
  411. *-----------------------------------------------------------------*/
  412. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  413. /*------------------------------------------------------------------
  414. * Check the voltage type for the dimms plugged.
  415. *-----------------------------------------------------------------*/
  416. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  417. /*------------------------------------------------------------------
  418. * Program SDRAM controller options 2 register
  419. * Except Enabling of the memory controller.
  420. *-----------------------------------------------------------------*/
  421. mfsdram(SDRAM_MCOPT2, val);
  422. mtsdram(SDRAM_MCOPT2,
  423. (val &
  424. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  425. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  426. SDRAM_MCOPT2_ISIE_MASK))
  427. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  428. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  429. SDRAM_MCOPT2_ISIE_ENABLE));
  430. /*------------------------------------------------------------------
  431. * Program SDRAM controller options 1 register
  432. * Note: Does not enable the memory controller.
  433. *-----------------------------------------------------------------*/
  434. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  435. /*------------------------------------------------------------------
  436. * Set the SDRAM Controller On Die Termination Register
  437. *-----------------------------------------------------------------*/
  438. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  439. /*------------------------------------------------------------------
  440. * Program SDRAM refresh register.
  441. *-----------------------------------------------------------------*/
  442. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  443. /*------------------------------------------------------------------
  444. * Program SDRAM mode register.
  445. *-----------------------------------------------------------------*/
  446. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  447. &selected_cas, &write_recovery);
  448. /*------------------------------------------------------------------
  449. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  450. *-----------------------------------------------------------------*/
  451. mfsdram(SDRAM_WRDTR, val);
  452. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  453. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  454. /*------------------------------------------------------------------
  455. * Set the SDRAM Clock Timing Register
  456. *-----------------------------------------------------------------*/
  457. mfsdram(SDRAM_CLKTR, val);
  458. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  459. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  460. /*------------------------------------------------------------------
  461. * Program the BxCF registers.
  462. *-----------------------------------------------------------------*/
  463. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  464. /*------------------------------------------------------------------
  465. * Program SDRAM timing registers.
  466. *-----------------------------------------------------------------*/
  467. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  468. /*------------------------------------------------------------------
  469. * Set the Extended Mode register
  470. *-----------------------------------------------------------------*/
  471. mfsdram(SDRAM_MEMODE, val);
  472. mtsdram(SDRAM_MEMODE,
  473. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  474. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  475. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  476. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  477. /*------------------------------------------------------------------
  478. * Program Initialization preload registers.
  479. *-----------------------------------------------------------------*/
  480. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  481. selected_cas, write_recovery);
  482. /*------------------------------------------------------------------
  483. * Delay to ensure 200usec have elapsed since reset.
  484. *-----------------------------------------------------------------*/
  485. udelay(400);
  486. /*------------------------------------------------------------------
  487. * Set the memory queue core base addr.
  488. *-----------------------------------------------------------------*/
  489. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  490. /*------------------------------------------------------------------
  491. * Program SDRAM controller options 2 register
  492. * Enable the memory controller.
  493. *-----------------------------------------------------------------*/
  494. mfsdram(SDRAM_MCOPT2, val);
  495. mtsdram(SDRAM_MCOPT2,
  496. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  497. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  498. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  499. /*------------------------------------------------------------------
  500. * Wait for SDRAM_CFG0_DC_EN to complete.
  501. *-----------------------------------------------------------------*/
  502. do {
  503. mfsdram(SDRAM_MCSTAT, val);
  504. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  505. /* get installed memory size */
  506. dram_size = sdram_memsize();
  507. /*
  508. * Limit size to 2GB
  509. */
  510. if (dram_size > CONFIG_MAX_MEM_MAPPED)
  511. dram_size = CONFIG_MAX_MEM_MAPPED;
  512. /* and program tlb entries for this size (dynamic) */
  513. /*
  514. * Program TLB entries with caches enabled, for best performace
  515. * while auto-calibrating and ECC generation
  516. */
  517. program_tlb(0, 0, dram_size, 0);
  518. /*------------------------------------------------------------------
  519. * DQS calibration.
  520. *-----------------------------------------------------------------*/
  521. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  522. #ifdef CONFIG_DDR_ECC
  523. /*------------------------------------------------------------------
  524. * If ecc is enabled, initialize the parity bits.
  525. *-----------------------------------------------------------------*/
  526. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  527. #endif
  528. /*
  529. * Now after initialization (auto-calibration and ECC generation)
  530. * remove the TLB entries with caches enabled and program again with
  531. * desired cache functionality
  532. */
  533. remove_tlb(0, dram_size);
  534. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  535. ppc440sp_sdram_register_dump();
  536. /*
  537. * Clear potential errors resulting from auto-calibration.
  538. * If not done, then we could get an interrupt later on when
  539. * exceptions are enabled.
  540. */
  541. set_mcsr(get_mcsr());
  542. return sdram_memsize();
  543. }
  544. static void get_spd_info(unsigned long *dimm_populated,
  545. unsigned char *iic0_dimm_addr,
  546. unsigned long num_dimm_banks)
  547. {
  548. unsigned long dimm_num;
  549. unsigned long dimm_found;
  550. unsigned char num_of_bytes;
  551. unsigned char total_size;
  552. dimm_found = FALSE;
  553. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  554. num_of_bytes = 0;
  555. total_size = 0;
  556. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  557. debug("\nspd_read(0x%x) returned %d\n",
  558. iic0_dimm_addr[dimm_num], num_of_bytes);
  559. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  560. debug("spd_read(0x%x) returned %d\n",
  561. iic0_dimm_addr[dimm_num], total_size);
  562. if ((num_of_bytes != 0) && (total_size != 0)) {
  563. dimm_populated[dimm_num] = TRUE;
  564. dimm_found = TRUE;
  565. debug("DIMM slot %lu: populated\n", dimm_num);
  566. } else {
  567. dimm_populated[dimm_num] = FALSE;
  568. debug("DIMM slot %lu: Not populated\n", dimm_num);
  569. }
  570. }
  571. if (dimm_found == FALSE) {
  572. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  573. spd_ddr_init_hang ();
  574. }
  575. }
  576. void board_add_ram_info(int use_default)
  577. {
  578. PPC4xx_SYS_INFO board_cfg;
  579. u32 val;
  580. if (is_ecc_enabled())
  581. puts(" (ECC");
  582. else
  583. puts(" (ECC not");
  584. get_sys_info(&board_cfg);
  585. mfsdr(SDR0_DDR0, val);
  586. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  587. printf(" enabled, %d MHz", (val * 2) / 1000000);
  588. mfsdram(SDRAM_MMODE, val);
  589. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  590. printf(", CL%d)", val);
  591. }
  592. /*------------------------------------------------------------------
  593. * For the memory DIMMs installed, this routine verifies that they
  594. * really are DDR specific DIMMs.
  595. *-----------------------------------------------------------------*/
  596. static void check_mem_type(unsigned long *dimm_populated,
  597. unsigned char *iic0_dimm_addr,
  598. unsigned long num_dimm_banks)
  599. {
  600. unsigned long dimm_num;
  601. unsigned long dimm_type;
  602. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  603. if (dimm_populated[dimm_num] == TRUE) {
  604. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  605. switch (dimm_type) {
  606. case 1:
  607. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  608. "slot %d.\n", (unsigned int)dimm_num);
  609. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  610. printf("Replace the DIMM module with a supported DIMM.\n\n");
  611. spd_ddr_init_hang ();
  612. break;
  613. case 2:
  614. printf("ERROR: EDO DIMM detected in slot %d.\n",
  615. (unsigned int)dimm_num);
  616. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  617. printf("Replace the DIMM module with a supported DIMM.\n\n");
  618. spd_ddr_init_hang ();
  619. break;
  620. case 3:
  621. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  622. (unsigned int)dimm_num);
  623. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  624. printf("Replace the DIMM module with a supported DIMM.\n\n");
  625. spd_ddr_init_hang ();
  626. break;
  627. case 4:
  628. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  629. (unsigned int)dimm_num);
  630. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  631. printf("Replace the DIMM module with a supported DIMM.\n\n");
  632. spd_ddr_init_hang ();
  633. break;
  634. case 5:
  635. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  636. (unsigned int)dimm_num);
  637. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  638. printf("Replace the DIMM module with a supported DIMM.\n\n");
  639. spd_ddr_init_hang ();
  640. break;
  641. case 6:
  642. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  643. (unsigned int)dimm_num);
  644. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  645. printf("Replace the DIMM module with a supported DIMM.\n\n");
  646. spd_ddr_init_hang ();
  647. break;
  648. case 7:
  649. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  650. dimm_populated[dimm_num] = SDRAM_DDR1;
  651. break;
  652. case 8:
  653. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  654. dimm_populated[dimm_num] = SDRAM_DDR2;
  655. break;
  656. default:
  657. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  658. (unsigned int)dimm_num);
  659. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  660. printf("Replace the DIMM module with a supported DIMM.\n\n");
  661. spd_ddr_init_hang ();
  662. break;
  663. }
  664. }
  665. }
  666. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  667. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  668. && (dimm_populated[dimm_num] != SDRAM_NONE)
  669. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  670. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  671. spd_ddr_init_hang ();
  672. }
  673. }
  674. }
  675. /*------------------------------------------------------------------
  676. * For the memory DIMMs installed, this routine verifies that
  677. * frequency previously calculated is supported.
  678. *-----------------------------------------------------------------*/
  679. static void check_frequency(unsigned long *dimm_populated,
  680. unsigned char *iic0_dimm_addr,
  681. unsigned long num_dimm_banks)
  682. {
  683. unsigned long dimm_num;
  684. unsigned long tcyc_reg;
  685. unsigned long cycle_time;
  686. unsigned long calc_cycle_time;
  687. unsigned long sdram_freq;
  688. unsigned long sdr_ddrpll;
  689. PPC4xx_SYS_INFO board_cfg;
  690. /*------------------------------------------------------------------
  691. * Get the board configuration info.
  692. *-----------------------------------------------------------------*/
  693. get_sys_info(&board_cfg);
  694. mfsdr(SDR0_DDR0, sdr_ddrpll);
  695. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  696. /*
  697. * calc_cycle_time is calculated from DDR frequency set by board/chip
  698. * and is expressed in multiple of 10 picoseconds
  699. * to match the way DIMM cycle time is calculated below.
  700. */
  701. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  702. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  703. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  704. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  705. /*
  706. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  707. * the higher order nibble (bits 4-7) designates the cycle time
  708. * to a granularity of 1ns;
  709. * the value presented by the lower order nibble (bits 0-3)
  710. * has a granularity of .1ns and is added to the value designated
  711. * by the higher nibble. In addition, four lines of the lower order
  712. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  713. */
  714. /* Convert from hex to decimal */
  715. if ((tcyc_reg & 0x0F) == 0x0D)
  716. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  717. else if ((tcyc_reg & 0x0F) == 0x0C)
  718. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  719. else if ((tcyc_reg & 0x0F) == 0x0B)
  720. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  721. else if ((tcyc_reg & 0x0F) == 0x0A)
  722. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  723. else
  724. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  725. ((tcyc_reg & 0x0F)*10);
  726. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  727. if (cycle_time > (calc_cycle_time + 10)) {
  728. /*
  729. * the provided sdram cycle_time is too small
  730. * for the available DIMM cycle_time.
  731. * The additionnal 100ps is here to accept a small incertainty.
  732. */
  733. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  734. "slot %d \n while calculated cycle time is %d ps.\n",
  735. (unsigned int)(cycle_time*10),
  736. (unsigned int)dimm_num,
  737. (unsigned int)(calc_cycle_time*10));
  738. printf("Replace the DIMM, or change DDR frequency via "
  739. "strapping bits.\n\n");
  740. spd_ddr_init_hang ();
  741. }
  742. }
  743. }
  744. }
  745. /*------------------------------------------------------------------
  746. * For the memory DIMMs installed, this routine verifies two
  747. * ranks/banks maximum are availables.
  748. *-----------------------------------------------------------------*/
  749. static void check_rank_number(unsigned long *dimm_populated,
  750. unsigned char *iic0_dimm_addr,
  751. unsigned long num_dimm_banks)
  752. {
  753. unsigned long dimm_num;
  754. unsigned long dimm_rank;
  755. unsigned long total_rank = 0;
  756. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  757. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  758. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  759. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  760. dimm_rank = (dimm_rank & 0x0F) +1;
  761. else
  762. dimm_rank = dimm_rank & 0x0F;
  763. if (dimm_rank > MAXRANKS) {
  764. printf("ERROR: DRAM DIMM detected with %d ranks in "
  765. "slot %d is not supported.\n", dimm_rank, dimm_num);
  766. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  767. printf("Replace the DIMM module with a supported DIMM.\n\n");
  768. spd_ddr_init_hang ();
  769. } else
  770. total_rank += dimm_rank;
  771. }
  772. if (total_rank > MAXRANKS) {
  773. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  774. "for all slots.\n", (unsigned int)total_rank);
  775. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  776. printf("Remove one of the DIMM modules.\n\n");
  777. spd_ddr_init_hang ();
  778. }
  779. }
  780. }
  781. /*------------------------------------------------------------------
  782. * only support 2.5V modules.
  783. * This routine verifies this.
  784. *-----------------------------------------------------------------*/
  785. static void check_voltage_type(unsigned long *dimm_populated,
  786. unsigned char *iic0_dimm_addr,
  787. unsigned long num_dimm_banks)
  788. {
  789. unsigned long dimm_num;
  790. unsigned long voltage_type;
  791. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  792. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  793. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  794. switch (voltage_type) {
  795. case 0x00:
  796. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  797. printf("This DIMM is 5.0 Volt/TTL.\n");
  798. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  799. (unsigned int)dimm_num);
  800. spd_ddr_init_hang ();
  801. break;
  802. case 0x01:
  803. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  804. printf("This DIMM is LVTTL.\n");
  805. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  806. (unsigned int)dimm_num);
  807. spd_ddr_init_hang ();
  808. break;
  809. case 0x02:
  810. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  811. printf("This DIMM is 1.5 Volt.\n");
  812. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  813. (unsigned int)dimm_num);
  814. spd_ddr_init_hang ();
  815. break;
  816. case 0x03:
  817. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  818. printf("This DIMM is 3.3 Volt/TTL.\n");
  819. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  820. (unsigned int)dimm_num);
  821. spd_ddr_init_hang ();
  822. break;
  823. case 0x04:
  824. /* 2.5 Voltage only for DDR1 */
  825. break;
  826. case 0x05:
  827. /* 1.8 Voltage only for DDR2 */
  828. break;
  829. default:
  830. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  831. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  832. (unsigned int)dimm_num);
  833. spd_ddr_init_hang ();
  834. break;
  835. }
  836. }
  837. }
  838. }
  839. /*-----------------------------------------------------------------------------+
  840. * program_copt1.
  841. *-----------------------------------------------------------------------------*/
  842. static void program_copt1(unsigned long *dimm_populated,
  843. unsigned char *iic0_dimm_addr,
  844. unsigned long num_dimm_banks)
  845. {
  846. unsigned long dimm_num;
  847. unsigned long mcopt1;
  848. unsigned long ecc_enabled;
  849. unsigned long ecc = 0;
  850. unsigned long data_width = 0;
  851. unsigned long dimm_32bit;
  852. unsigned long dimm_64bit;
  853. unsigned long registered = 0;
  854. unsigned long attribute = 0;
  855. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  856. unsigned long bankcount;
  857. unsigned long ddrtype;
  858. unsigned long val;
  859. #ifdef CONFIG_DDR_ECC
  860. ecc_enabled = TRUE;
  861. #else
  862. ecc_enabled = FALSE;
  863. #endif
  864. dimm_32bit = FALSE;
  865. dimm_64bit = FALSE;
  866. buf0 = FALSE;
  867. buf1 = FALSE;
  868. /*------------------------------------------------------------------
  869. * Set memory controller options reg 1, SDRAM_MCOPT1.
  870. *-----------------------------------------------------------------*/
  871. mfsdram(SDRAM_MCOPT1, val);
  872. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  873. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  874. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  875. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  876. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  877. SDRAM_MCOPT1_DREF_MASK);
  878. mcopt1 |= SDRAM_MCOPT1_QDEP;
  879. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  880. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  881. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  882. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  883. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  884. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  885. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  886. /* test ecc support */
  887. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  888. if (ecc != 0x02) /* ecc not supported */
  889. ecc_enabled = FALSE;
  890. /* test bank count */
  891. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  892. if (bankcount == 0x04) /* bank count = 4 */
  893. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  894. else /* bank count = 8 */
  895. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  896. /* test DDR type */
  897. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  898. /* test for buffered/unbuffered, registered, differential clocks */
  899. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  900. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  901. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  902. if (dimm_num == 0) {
  903. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  904. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  905. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  906. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  907. if (registered == 1) { /* DDR2 always buffered */
  908. /* TODO: what about above comments ? */
  909. mcopt1 |= SDRAM_MCOPT1_RDEN;
  910. buf0 = TRUE;
  911. } else {
  912. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  913. if ((attribute & 0x02) == 0x00) {
  914. /* buffered not supported */
  915. buf0 = FALSE;
  916. } else {
  917. mcopt1 |= SDRAM_MCOPT1_RDEN;
  918. buf0 = TRUE;
  919. }
  920. }
  921. }
  922. else if (dimm_num == 1) {
  923. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  924. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  925. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  926. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  927. if (registered == 1) {
  928. /* DDR2 always buffered */
  929. mcopt1 |= SDRAM_MCOPT1_RDEN;
  930. buf1 = TRUE;
  931. } else {
  932. if ((attribute & 0x02) == 0x00) {
  933. /* buffered not supported */
  934. buf1 = FALSE;
  935. } else {
  936. mcopt1 |= SDRAM_MCOPT1_RDEN;
  937. buf1 = TRUE;
  938. }
  939. }
  940. }
  941. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  942. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  943. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  944. switch (data_width) {
  945. case 72:
  946. case 64:
  947. dimm_64bit = TRUE;
  948. break;
  949. case 40:
  950. case 32:
  951. dimm_32bit = TRUE;
  952. break;
  953. default:
  954. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  955. data_width);
  956. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  957. break;
  958. }
  959. }
  960. }
  961. /* verify matching properties */
  962. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  963. if (buf0 != buf1) {
  964. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  965. spd_ddr_init_hang ();
  966. }
  967. }
  968. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  969. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  970. spd_ddr_init_hang ();
  971. }
  972. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  973. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  974. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  975. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  976. } else {
  977. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  978. spd_ddr_init_hang ();
  979. }
  980. if (ecc_enabled == TRUE)
  981. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  982. else
  983. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  984. mtsdram(SDRAM_MCOPT1, mcopt1);
  985. }
  986. /*-----------------------------------------------------------------------------+
  987. * program_codt.
  988. *-----------------------------------------------------------------------------*/
  989. static void program_codt(unsigned long *dimm_populated,
  990. unsigned char *iic0_dimm_addr,
  991. unsigned long num_dimm_banks)
  992. {
  993. unsigned long codt;
  994. unsigned long modt0 = 0;
  995. unsigned long modt1 = 0;
  996. unsigned long modt2 = 0;
  997. unsigned long modt3 = 0;
  998. unsigned char dimm_num;
  999. unsigned char dimm_rank;
  1000. unsigned char total_rank = 0;
  1001. unsigned char total_dimm = 0;
  1002. unsigned char dimm_type = 0;
  1003. unsigned char firstSlot = 0;
  1004. /*------------------------------------------------------------------
  1005. * Set the SDRAM Controller On Die Termination Register
  1006. *-----------------------------------------------------------------*/
  1007. mfsdram(SDRAM_CODT, codt);
  1008. codt |= (SDRAM_CODT_IO_NMODE
  1009. & (~SDRAM_CODT_DQS_SINGLE_END
  1010. & ~SDRAM_CODT_CKSE_SINGLE_END
  1011. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  1012. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  1013. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1014. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1015. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  1016. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  1017. dimm_rank = (dimm_rank & 0x0F) + 1;
  1018. dimm_type = SDRAM_DDR2;
  1019. } else {
  1020. dimm_rank = dimm_rank & 0x0F;
  1021. dimm_type = SDRAM_DDR1;
  1022. }
  1023. total_rank += dimm_rank;
  1024. total_dimm++;
  1025. if ((dimm_num == 0) && (total_dimm == 1))
  1026. firstSlot = TRUE;
  1027. else
  1028. firstSlot = FALSE;
  1029. }
  1030. }
  1031. if (dimm_type == SDRAM_DDR2) {
  1032. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1033. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1034. if (total_rank == 1) {
  1035. codt |= CALC_ODT_R(0);
  1036. modt0 = CALC_ODT_W(0);
  1037. modt1 = 0x00000000;
  1038. modt2 = 0x00000000;
  1039. modt3 = 0x00000000;
  1040. }
  1041. if (total_rank == 2) {
  1042. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1043. modt0 = CALC_ODT_W(0);
  1044. modt1 = CALC_ODT_W(0);
  1045. modt2 = 0x00000000;
  1046. modt3 = 0x00000000;
  1047. }
  1048. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1049. if (total_rank == 1) {
  1050. codt |= CALC_ODT_R(2);
  1051. modt0 = 0x00000000;
  1052. modt1 = 0x00000000;
  1053. modt2 = CALC_ODT_W(2);
  1054. modt3 = 0x00000000;
  1055. }
  1056. if (total_rank == 2) {
  1057. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1058. modt0 = 0x00000000;
  1059. modt1 = 0x00000000;
  1060. modt2 = CALC_ODT_W(2);
  1061. modt3 = CALC_ODT_W(2);
  1062. }
  1063. }
  1064. if (total_dimm == 2) {
  1065. if (total_rank == 2) {
  1066. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1067. modt0 = CALC_ODT_RW(2);
  1068. modt1 = 0x00000000;
  1069. modt2 = CALC_ODT_RW(0);
  1070. modt3 = 0x00000000;
  1071. }
  1072. if (total_rank == 4) {
  1073. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1074. CALC_ODT_R(2) | CALC_ODT_R(3);
  1075. modt0 = CALC_ODT_RW(2);
  1076. modt1 = 0x00000000;
  1077. modt2 = CALC_ODT_RW(0);
  1078. modt3 = 0x00000000;
  1079. }
  1080. }
  1081. } else {
  1082. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1083. modt0 = 0x00000000;
  1084. modt1 = 0x00000000;
  1085. modt2 = 0x00000000;
  1086. modt3 = 0x00000000;
  1087. if (total_dimm == 1) {
  1088. if (total_rank == 1)
  1089. codt |= 0x00800000;
  1090. if (total_rank == 2)
  1091. codt |= 0x02800000;
  1092. }
  1093. if (total_dimm == 2) {
  1094. if (total_rank == 2)
  1095. codt |= 0x08800000;
  1096. if (total_rank == 4)
  1097. codt |= 0x2a800000;
  1098. }
  1099. }
  1100. debug("nb of dimm %d\n", total_dimm);
  1101. debug("nb of rank %d\n", total_rank);
  1102. if (total_dimm == 1)
  1103. debug("dimm in slot %d\n", firstSlot);
  1104. mtsdram(SDRAM_CODT, codt);
  1105. mtsdram(SDRAM_MODT0, modt0);
  1106. mtsdram(SDRAM_MODT1, modt1);
  1107. mtsdram(SDRAM_MODT2, modt2);
  1108. mtsdram(SDRAM_MODT3, modt3);
  1109. }
  1110. /*-----------------------------------------------------------------------------+
  1111. * program_initplr.
  1112. *-----------------------------------------------------------------------------*/
  1113. static void program_initplr(unsigned long *dimm_populated,
  1114. unsigned char *iic0_dimm_addr,
  1115. unsigned long num_dimm_banks,
  1116. ddr_cas_id_t selected_cas,
  1117. int write_recovery)
  1118. {
  1119. u32 cas = 0;
  1120. u32 odt = 0;
  1121. u32 ods = 0;
  1122. u32 mr;
  1123. u32 wr;
  1124. u32 emr;
  1125. u32 emr2;
  1126. u32 emr3;
  1127. int dimm_num;
  1128. int total_dimm = 0;
  1129. /******************************************************
  1130. ** Assumption: if more than one DIMM, all DIMMs are the same
  1131. ** as already checked in check_memory_type
  1132. ******************************************************/
  1133. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1134. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1135. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1136. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1137. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1138. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1139. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1140. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1141. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1142. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1143. switch (selected_cas) {
  1144. case DDR_CAS_3:
  1145. cas = 3 << 4;
  1146. break;
  1147. case DDR_CAS_4:
  1148. cas = 4 << 4;
  1149. break;
  1150. case DDR_CAS_5:
  1151. cas = 5 << 4;
  1152. break;
  1153. default:
  1154. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1155. spd_ddr_init_hang ();
  1156. break;
  1157. }
  1158. #if 0
  1159. /*
  1160. * ToDo - Still a problem with the write recovery:
  1161. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1162. * in the INITPLR reg to the value calculated in program_mode()
  1163. * results in not correctly working DDR2 memory (crash after
  1164. * relocation).
  1165. *
  1166. * So for now, set the write recovery to 3. This seems to work
  1167. * on the Corair module too.
  1168. *
  1169. * 2007-03-01, sr
  1170. */
  1171. switch (write_recovery) {
  1172. case 3:
  1173. wr = WRITE_RECOV_3;
  1174. break;
  1175. case 4:
  1176. wr = WRITE_RECOV_4;
  1177. break;
  1178. case 5:
  1179. wr = WRITE_RECOV_5;
  1180. break;
  1181. case 6:
  1182. wr = WRITE_RECOV_6;
  1183. break;
  1184. default:
  1185. printf("ERROR: write recovery not support (%d)", write_recovery);
  1186. spd_ddr_init_hang ();
  1187. break;
  1188. }
  1189. #else
  1190. wr = WRITE_RECOV_3; /* test-only, see description above */
  1191. #endif
  1192. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1193. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1194. total_dimm++;
  1195. if (total_dimm == 1) {
  1196. odt = ODT_150_OHM;
  1197. ods = ODS_FULL;
  1198. } else if (total_dimm == 2) {
  1199. odt = ODT_75_OHM;
  1200. ods = ODS_REDUCED;
  1201. } else {
  1202. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1203. spd_ddr_init_hang ();
  1204. }
  1205. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1206. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1207. emr2 = CMD_EMR | SELECT_EMR2;
  1208. emr3 = CMD_EMR | SELECT_EMR3;
  1209. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1210. udelay(1000);
  1211. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1212. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1213. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1214. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1215. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1216. udelay(1000);
  1217. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1218. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1219. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1220. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1221. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1222. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1223. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1224. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1225. } else {
  1226. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1227. spd_ddr_init_hang ();
  1228. }
  1229. }
  1230. /*------------------------------------------------------------------
  1231. * This routine programs the SDRAM_MMODE register.
  1232. * the selected_cas is an output parameter, that will be passed
  1233. * by caller to call the above program_initplr( )
  1234. *-----------------------------------------------------------------*/
  1235. static void program_mode(unsigned long *dimm_populated,
  1236. unsigned char *iic0_dimm_addr,
  1237. unsigned long num_dimm_banks,
  1238. ddr_cas_id_t *selected_cas,
  1239. int *write_recovery)
  1240. {
  1241. unsigned long dimm_num;
  1242. unsigned long sdram_ddr1;
  1243. unsigned long t_wr_ns;
  1244. unsigned long t_wr_clk;
  1245. unsigned long cas_bit;
  1246. unsigned long cas_index;
  1247. unsigned long sdram_freq;
  1248. unsigned long ddr_check;
  1249. unsigned long mmode;
  1250. unsigned long tcyc_reg;
  1251. unsigned long cycle_2_0_clk;
  1252. unsigned long cycle_2_5_clk;
  1253. unsigned long cycle_3_0_clk;
  1254. unsigned long cycle_4_0_clk;
  1255. unsigned long cycle_5_0_clk;
  1256. unsigned long max_2_0_tcyc_ns_x_100;
  1257. unsigned long max_2_5_tcyc_ns_x_100;
  1258. unsigned long max_3_0_tcyc_ns_x_100;
  1259. unsigned long max_4_0_tcyc_ns_x_100;
  1260. unsigned long max_5_0_tcyc_ns_x_100;
  1261. unsigned long cycle_time_ns_x_100[3];
  1262. PPC4xx_SYS_INFO board_cfg;
  1263. unsigned char cas_2_0_available;
  1264. unsigned char cas_2_5_available;
  1265. unsigned char cas_3_0_available;
  1266. unsigned char cas_4_0_available;
  1267. unsigned char cas_5_0_available;
  1268. unsigned long sdr_ddrpll;
  1269. /*------------------------------------------------------------------
  1270. * Get the board configuration info.
  1271. *-----------------------------------------------------------------*/
  1272. get_sys_info(&board_cfg);
  1273. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1274. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1275. debug("sdram_freq=%d\n", sdram_freq);
  1276. /*------------------------------------------------------------------
  1277. * Handle the timing. We need to find the worst case timing of all
  1278. * the dimm modules installed.
  1279. *-----------------------------------------------------------------*/
  1280. t_wr_ns = 0;
  1281. cas_2_0_available = TRUE;
  1282. cas_2_5_available = TRUE;
  1283. cas_3_0_available = TRUE;
  1284. cas_4_0_available = TRUE;
  1285. cas_5_0_available = TRUE;
  1286. max_2_0_tcyc_ns_x_100 = 10;
  1287. max_2_5_tcyc_ns_x_100 = 10;
  1288. max_3_0_tcyc_ns_x_100 = 10;
  1289. max_4_0_tcyc_ns_x_100 = 10;
  1290. max_5_0_tcyc_ns_x_100 = 10;
  1291. sdram_ddr1 = TRUE;
  1292. /* loop through all the DIMM slots on the board */
  1293. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1294. /* If a dimm is installed in a particular slot ... */
  1295. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1296. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1297. sdram_ddr1 = TRUE;
  1298. else
  1299. sdram_ddr1 = FALSE;
  1300. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1301. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1302. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1303. /* For a particular DIMM, grab the three CAS values it supports */
  1304. for (cas_index = 0; cas_index < 3; cas_index++) {
  1305. switch (cas_index) {
  1306. case 0:
  1307. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1308. break;
  1309. case 1:
  1310. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1311. break;
  1312. default:
  1313. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1314. break;
  1315. }
  1316. if ((tcyc_reg & 0x0F) >= 10) {
  1317. if ((tcyc_reg & 0x0F) == 0x0D) {
  1318. /* Convert from hex to decimal */
  1319. cycle_time_ns_x_100[cas_index] =
  1320. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1321. } else {
  1322. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1323. "in slot %d\n", (unsigned int)dimm_num);
  1324. spd_ddr_init_hang ();
  1325. }
  1326. } else {
  1327. /* Convert from hex to decimal */
  1328. cycle_time_ns_x_100[cas_index] =
  1329. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1330. ((tcyc_reg & 0x0F)*10);
  1331. }
  1332. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1333. cycle_time_ns_x_100[cas_index]);
  1334. }
  1335. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1336. /* supported for a particular DIMM. */
  1337. cas_index = 0;
  1338. if (sdram_ddr1) {
  1339. /*
  1340. * DDR devices use the following bitmask for CAS latency:
  1341. * Bit 7 6 5 4 3 2 1 0
  1342. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1343. */
  1344. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1345. (cycle_time_ns_x_100[cas_index] != 0)) {
  1346. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1347. cycle_time_ns_x_100[cas_index]);
  1348. cas_index++;
  1349. } else {
  1350. if (cas_index != 0)
  1351. cas_index++;
  1352. cas_4_0_available = FALSE;
  1353. }
  1354. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1355. (cycle_time_ns_x_100[cas_index] != 0)) {
  1356. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1357. cycle_time_ns_x_100[cas_index]);
  1358. cas_index++;
  1359. } else {
  1360. if (cas_index != 0)
  1361. cas_index++;
  1362. cas_3_0_available = FALSE;
  1363. }
  1364. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1365. (cycle_time_ns_x_100[cas_index] != 0)) {
  1366. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1367. cycle_time_ns_x_100[cas_index]);
  1368. cas_index++;
  1369. } else {
  1370. if (cas_index != 0)
  1371. cas_index++;
  1372. cas_2_5_available = FALSE;
  1373. }
  1374. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1375. (cycle_time_ns_x_100[cas_index] != 0)) {
  1376. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1377. cycle_time_ns_x_100[cas_index]);
  1378. cas_index++;
  1379. } else {
  1380. if (cas_index != 0)
  1381. cas_index++;
  1382. cas_2_0_available = FALSE;
  1383. }
  1384. } else {
  1385. /*
  1386. * DDR2 devices use the following bitmask for CAS latency:
  1387. * Bit 7 6 5 4 3 2 1 0
  1388. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1389. */
  1390. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1391. (cycle_time_ns_x_100[cas_index] != 0)) {
  1392. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1393. cycle_time_ns_x_100[cas_index]);
  1394. cas_index++;
  1395. } else {
  1396. if (cas_index != 0)
  1397. cas_index++;
  1398. cas_5_0_available = FALSE;
  1399. }
  1400. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1401. (cycle_time_ns_x_100[cas_index] != 0)) {
  1402. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1403. cycle_time_ns_x_100[cas_index]);
  1404. cas_index++;
  1405. } else {
  1406. if (cas_index != 0)
  1407. cas_index++;
  1408. cas_4_0_available = FALSE;
  1409. }
  1410. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1411. (cycle_time_ns_x_100[cas_index] != 0)) {
  1412. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1413. cycle_time_ns_x_100[cas_index]);
  1414. cas_index++;
  1415. } else {
  1416. if (cas_index != 0)
  1417. cas_index++;
  1418. cas_3_0_available = FALSE;
  1419. }
  1420. }
  1421. }
  1422. }
  1423. /*------------------------------------------------------------------
  1424. * Set the SDRAM mode, SDRAM_MMODE
  1425. *-----------------------------------------------------------------*/
  1426. mfsdram(SDRAM_MMODE, mmode);
  1427. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1428. /* add 10 here because of rounding problems */
  1429. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1430. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1431. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1432. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1433. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1434. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1435. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1436. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1437. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1438. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1439. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1440. *selected_cas = DDR_CAS_2;
  1441. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1442. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1443. *selected_cas = DDR_CAS_2_5;
  1444. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1445. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1446. *selected_cas = DDR_CAS_3;
  1447. } else {
  1448. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1449. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1450. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1451. spd_ddr_init_hang ();
  1452. }
  1453. } else { /* DDR2 */
  1454. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1455. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1456. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1457. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1458. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1459. *selected_cas = DDR_CAS_3;
  1460. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1461. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1462. *selected_cas = DDR_CAS_4;
  1463. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1464. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1465. *selected_cas = DDR_CAS_5;
  1466. } else {
  1467. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1468. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1469. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1470. printf("cas3=%d cas4=%d cas5=%d\n",
  1471. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1472. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1473. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1474. spd_ddr_init_hang ();
  1475. }
  1476. }
  1477. if (sdram_ddr1 == TRUE)
  1478. mmode |= SDRAM_MMODE_WR_DDR1;
  1479. else {
  1480. /* loop through all the DIMM slots on the board */
  1481. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1482. /* If a dimm is installed in a particular slot ... */
  1483. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1484. t_wr_ns = max(t_wr_ns,
  1485. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1486. }
  1487. /*
  1488. * convert from nanoseconds to ddr clocks
  1489. * round up if necessary
  1490. */
  1491. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1492. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1493. if (sdram_freq != ddr_check)
  1494. t_wr_clk++;
  1495. switch (t_wr_clk) {
  1496. case 0:
  1497. case 1:
  1498. case 2:
  1499. case 3:
  1500. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1501. break;
  1502. case 4:
  1503. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1504. break;
  1505. case 5:
  1506. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1507. break;
  1508. default:
  1509. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1510. break;
  1511. }
  1512. *write_recovery = t_wr_clk;
  1513. }
  1514. debug("CAS latency = %d\n", *selected_cas);
  1515. debug("Write recovery = %d\n", *write_recovery);
  1516. mtsdram(SDRAM_MMODE, mmode);
  1517. }
  1518. /*-----------------------------------------------------------------------------+
  1519. * program_rtr.
  1520. *-----------------------------------------------------------------------------*/
  1521. static void program_rtr(unsigned long *dimm_populated,
  1522. unsigned char *iic0_dimm_addr,
  1523. unsigned long num_dimm_banks)
  1524. {
  1525. PPC4xx_SYS_INFO board_cfg;
  1526. unsigned long max_refresh_rate;
  1527. unsigned long dimm_num;
  1528. unsigned long refresh_rate_type;
  1529. unsigned long refresh_rate;
  1530. unsigned long rint;
  1531. unsigned long sdram_freq;
  1532. unsigned long sdr_ddrpll;
  1533. unsigned long val;
  1534. /*------------------------------------------------------------------
  1535. * Get the board configuration info.
  1536. *-----------------------------------------------------------------*/
  1537. get_sys_info(&board_cfg);
  1538. /*------------------------------------------------------------------
  1539. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1540. *-----------------------------------------------------------------*/
  1541. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1542. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1543. max_refresh_rate = 0;
  1544. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1545. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1546. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1547. refresh_rate_type &= 0x7F;
  1548. switch (refresh_rate_type) {
  1549. case 0:
  1550. refresh_rate = 15625;
  1551. break;
  1552. case 1:
  1553. refresh_rate = 3906;
  1554. break;
  1555. case 2:
  1556. refresh_rate = 7812;
  1557. break;
  1558. case 3:
  1559. refresh_rate = 31250;
  1560. break;
  1561. case 4:
  1562. refresh_rate = 62500;
  1563. break;
  1564. case 5:
  1565. refresh_rate = 125000;
  1566. break;
  1567. default:
  1568. refresh_rate = 0;
  1569. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1570. (unsigned int)dimm_num);
  1571. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1572. spd_ddr_init_hang ();
  1573. break;
  1574. }
  1575. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1576. }
  1577. }
  1578. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1579. mfsdram(SDRAM_RTR, val);
  1580. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1581. (SDRAM_RTR_RINT_ENCODE(rint)));
  1582. }
  1583. /*------------------------------------------------------------------
  1584. * This routine programs the SDRAM_TRx registers.
  1585. *-----------------------------------------------------------------*/
  1586. static void program_tr(unsigned long *dimm_populated,
  1587. unsigned char *iic0_dimm_addr,
  1588. unsigned long num_dimm_banks)
  1589. {
  1590. unsigned long dimm_num;
  1591. unsigned long sdram_ddr1;
  1592. unsigned long t_rp_ns;
  1593. unsigned long t_rcd_ns;
  1594. unsigned long t_rrd_ns;
  1595. unsigned long t_ras_ns;
  1596. unsigned long t_rc_ns;
  1597. unsigned long t_rfc_ns;
  1598. unsigned long t_wpc_ns;
  1599. unsigned long t_wtr_ns;
  1600. unsigned long t_rpc_ns;
  1601. unsigned long t_rp_clk;
  1602. unsigned long t_rcd_clk;
  1603. unsigned long t_rrd_clk;
  1604. unsigned long t_ras_clk;
  1605. unsigned long t_rc_clk;
  1606. unsigned long t_rfc_clk;
  1607. unsigned long t_wpc_clk;
  1608. unsigned long t_wtr_clk;
  1609. unsigned long t_rpc_clk;
  1610. unsigned long sdtr1, sdtr2, sdtr3;
  1611. unsigned long ddr_check;
  1612. unsigned long sdram_freq;
  1613. unsigned long sdr_ddrpll;
  1614. PPC4xx_SYS_INFO board_cfg;
  1615. /*------------------------------------------------------------------
  1616. * Get the board configuration info.
  1617. *-----------------------------------------------------------------*/
  1618. get_sys_info(&board_cfg);
  1619. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1620. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1621. /*------------------------------------------------------------------
  1622. * Handle the timing. We need to find the worst case timing of all
  1623. * the dimm modules installed.
  1624. *-----------------------------------------------------------------*/
  1625. t_rp_ns = 0;
  1626. t_rrd_ns = 0;
  1627. t_rcd_ns = 0;
  1628. t_ras_ns = 0;
  1629. t_rc_ns = 0;
  1630. t_rfc_ns = 0;
  1631. t_wpc_ns = 0;
  1632. t_wtr_ns = 0;
  1633. t_rpc_ns = 0;
  1634. sdram_ddr1 = TRUE;
  1635. /* loop through all the DIMM slots on the board */
  1636. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1637. /* If a dimm is installed in a particular slot ... */
  1638. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1639. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1640. sdram_ddr1 = TRUE;
  1641. else
  1642. sdram_ddr1 = FALSE;
  1643. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1644. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1645. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1646. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1647. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1648. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1649. }
  1650. }
  1651. /*------------------------------------------------------------------
  1652. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1653. *-----------------------------------------------------------------*/
  1654. mfsdram(SDRAM_SDTR1, sdtr1);
  1655. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1656. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1657. /* default values */
  1658. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1659. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1660. /* normal operations */
  1661. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1662. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1663. mtsdram(SDRAM_SDTR1, sdtr1);
  1664. /*------------------------------------------------------------------
  1665. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1666. *-----------------------------------------------------------------*/
  1667. mfsdram(SDRAM_SDTR2, sdtr2);
  1668. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1669. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1670. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1671. SDRAM_SDTR2_RRD_MASK);
  1672. /*
  1673. * convert t_rcd from nanoseconds to ddr clocks
  1674. * round up if necessary
  1675. */
  1676. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1677. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1678. if (sdram_freq != ddr_check)
  1679. t_rcd_clk++;
  1680. switch (t_rcd_clk) {
  1681. case 0:
  1682. case 1:
  1683. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1684. break;
  1685. case 2:
  1686. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1687. break;
  1688. case 3:
  1689. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1690. break;
  1691. case 4:
  1692. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1693. break;
  1694. default:
  1695. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1696. break;
  1697. }
  1698. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1699. if (sdram_freq < 200000000) {
  1700. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1701. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1702. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1703. } else {
  1704. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1705. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1706. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1707. }
  1708. } else { /* DDR2 */
  1709. /* loop through all the DIMM slots on the board */
  1710. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1711. /* If a dimm is installed in a particular slot ... */
  1712. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1713. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1714. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1715. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1716. }
  1717. }
  1718. /*
  1719. * convert from nanoseconds to ddr clocks
  1720. * round up if necessary
  1721. */
  1722. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1723. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1724. if (sdram_freq != ddr_check)
  1725. t_wpc_clk++;
  1726. switch (t_wpc_clk) {
  1727. case 0:
  1728. case 1:
  1729. case 2:
  1730. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1731. break;
  1732. case 3:
  1733. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1734. break;
  1735. case 4:
  1736. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1737. break;
  1738. case 5:
  1739. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1740. break;
  1741. default:
  1742. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1743. break;
  1744. }
  1745. /*
  1746. * convert from nanoseconds to ddr clocks
  1747. * round up if necessary
  1748. */
  1749. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1750. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1751. if (sdram_freq != ddr_check)
  1752. t_wtr_clk++;
  1753. switch (t_wtr_clk) {
  1754. case 0:
  1755. case 1:
  1756. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1757. break;
  1758. case 2:
  1759. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1760. break;
  1761. case 3:
  1762. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1763. break;
  1764. default:
  1765. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1766. break;
  1767. }
  1768. /*
  1769. * convert from nanoseconds to ddr clocks
  1770. * round up if necessary
  1771. */
  1772. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1773. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1774. if (sdram_freq != ddr_check)
  1775. t_rpc_clk++;
  1776. switch (t_rpc_clk) {
  1777. case 0:
  1778. case 1:
  1779. case 2:
  1780. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1781. break;
  1782. case 3:
  1783. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1784. break;
  1785. default:
  1786. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1787. break;
  1788. }
  1789. }
  1790. /* default value */
  1791. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1792. /*
  1793. * convert t_rrd from nanoseconds to ddr clocks
  1794. * round up if necessary
  1795. */
  1796. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1797. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1798. if (sdram_freq != ddr_check)
  1799. t_rrd_clk++;
  1800. if (t_rrd_clk == 3)
  1801. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1802. else
  1803. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1804. /*
  1805. * convert t_rp from nanoseconds to ddr clocks
  1806. * round up if necessary
  1807. */
  1808. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1809. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1810. if (sdram_freq != ddr_check)
  1811. t_rp_clk++;
  1812. switch (t_rp_clk) {
  1813. case 0:
  1814. case 1:
  1815. case 2:
  1816. case 3:
  1817. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1818. break;
  1819. case 4:
  1820. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1821. break;
  1822. case 5:
  1823. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1824. break;
  1825. case 6:
  1826. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1827. break;
  1828. default:
  1829. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1830. break;
  1831. }
  1832. mtsdram(SDRAM_SDTR2, sdtr2);
  1833. /*------------------------------------------------------------------
  1834. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1835. *-----------------------------------------------------------------*/
  1836. mfsdram(SDRAM_SDTR3, sdtr3);
  1837. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1838. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1839. /*
  1840. * convert t_ras from nanoseconds to ddr clocks
  1841. * round up if necessary
  1842. */
  1843. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1844. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1845. if (sdram_freq != ddr_check)
  1846. t_ras_clk++;
  1847. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1848. /*
  1849. * convert t_rc from nanoseconds to ddr clocks
  1850. * round up if necessary
  1851. */
  1852. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1853. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1854. if (sdram_freq != ddr_check)
  1855. t_rc_clk++;
  1856. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1857. /* default xcs value */
  1858. sdtr3 |= SDRAM_SDTR3_XCS;
  1859. /*
  1860. * convert t_rfc from nanoseconds to ddr clocks
  1861. * round up if necessary
  1862. */
  1863. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1864. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1865. if (sdram_freq != ddr_check)
  1866. t_rfc_clk++;
  1867. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1868. mtsdram(SDRAM_SDTR3, sdtr3);
  1869. }
  1870. /*-----------------------------------------------------------------------------+
  1871. * program_bxcf.
  1872. *-----------------------------------------------------------------------------*/
  1873. static void program_bxcf(unsigned long *dimm_populated,
  1874. unsigned char *iic0_dimm_addr,
  1875. unsigned long num_dimm_banks)
  1876. {
  1877. unsigned long dimm_num;
  1878. unsigned long num_col_addr;
  1879. unsigned long num_ranks;
  1880. unsigned long num_banks;
  1881. unsigned long mode;
  1882. unsigned long ind_rank;
  1883. unsigned long ind;
  1884. unsigned long ind_bank;
  1885. unsigned long bank_0_populated;
  1886. /*------------------------------------------------------------------
  1887. * Set the BxCF regs. First, wipe out the bank config registers.
  1888. *-----------------------------------------------------------------*/
  1889. mtsdram(SDRAM_MB0CF, 0x00000000);
  1890. mtsdram(SDRAM_MB1CF, 0x00000000);
  1891. mtsdram(SDRAM_MB2CF, 0x00000000);
  1892. mtsdram(SDRAM_MB3CF, 0x00000000);
  1893. mode = SDRAM_BXCF_M_BE_ENABLE;
  1894. bank_0_populated = 0;
  1895. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1896. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1897. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1898. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1899. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1900. num_ranks = (num_ranks & 0x0F) +1;
  1901. else
  1902. num_ranks = num_ranks & 0x0F;
  1903. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1904. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1905. if (num_banks == 4)
  1906. ind = 0;
  1907. else
  1908. ind = 5 << 8;
  1909. switch (num_col_addr) {
  1910. case 0x08:
  1911. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1912. break;
  1913. case 0x09:
  1914. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1915. break;
  1916. case 0x0A:
  1917. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1918. break;
  1919. case 0x0B:
  1920. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1921. break;
  1922. case 0x0C:
  1923. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1924. break;
  1925. default:
  1926. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1927. (unsigned int)dimm_num);
  1928. printf("ERROR: Unsupported value for number of "
  1929. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1930. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1931. spd_ddr_init_hang ();
  1932. }
  1933. }
  1934. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1935. bank_0_populated = 1;
  1936. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1937. mtsdram(SDRAM_MB0CF +
  1938. ((dimm_num + bank_0_populated + ind_rank) << 2),
  1939. mode);
  1940. }
  1941. }
  1942. }
  1943. }
  1944. /*------------------------------------------------------------------
  1945. * program memory queue.
  1946. *-----------------------------------------------------------------*/
  1947. static void program_memory_queue(unsigned long *dimm_populated,
  1948. unsigned char *iic0_dimm_addr,
  1949. unsigned long num_dimm_banks)
  1950. {
  1951. unsigned long dimm_num;
  1952. phys_size_t rank_base_addr;
  1953. unsigned long rank_reg;
  1954. phys_size_t rank_size_bytes;
  1955. unsigned long rank_size_id;
  1956. unsigned long num_ranks;
  1957. unsigned long baseadd_size;
  1958. unsigned long i;
  1959. unsigned long bank_0_populated = 0;
  1960. phys_size_t total_size = 0;
  1961. /*------------------------------------------------------------------
  1962. * Reset the rank_base_address.
  1963. *-----------------------------------------------------------------*/
  1964. rank_reg = SDRAM_R0BAS;
  1965. rank_base_addr = 0x00000000;
  1966. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1967. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1968. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1969. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1970. num_ranks = (num_ranks & 0x0F) + 1;
  1971. else
  1972. num_ranks = num_ranks & 0x0F;
  1973. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1974. /*------------------------------------------------------------------
  1975. * Set the sizes
  1976. *-----------------------------------------------------------------*/
  1977. baseadd_size = 0;
  1978. switch (rank_size_id) {
  1979. case 0x01:
  1980. baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
  1981. total_size = 1024;
  1982. break;
  1983. case 0x02:
  1984. baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
  1985. total_size = 2048;
  1986. break;
  1987. case 0x04:
  1988. baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
  1989. total_size = 4096;
  1990. break;
  1991. case 0x08:
  1992. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1993. total_size = 32;
  1994. break;
  1995. case 0x10:
  1996. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1997. total_size = 64;
  1998. break;
  1999. case 0x20:
  2000. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  2001. total_size = 128;
  2002. break;
  2003. case 0x40:
  2004. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  2005. total_size = 256;
  2006. break;
  2007. case 0x80:
  2008. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  2009. total_size = 512;
  2010. break;
  2011. default:
  2012. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  2013. (unsigned int)dimm_num);
  2014. printf("ERROR: Unsupported value for the banksize: %d.\n",
  2015. (unsigned int)rank_size_id);
  2016. printf("Replace the DIMM module with a supported DIMM.\n\n");
  2017. spd_ddr_init_hang ();
  2018. }
  2019. rank_size_bytes = total_size << 20;
  2020. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  2021. bank_0_populated = 1;
  2022. for (i = 0; i < num_ranks; i++) {
  2023. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  2024. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  2025. baseadd_size));
  2026. rank_base_addr += rank_size_bytes;
  2027. }
  2028. }
  2029. }
  2030. #if defined(CONFIG_460EX) || defined(CONFIG_460GT)
  2031. /*
  2032. * Enable high bandwidth access on 460EX/GT.
  2033. * This should/could probably be done on other
  2034. * PPC's too, like 440SPe.
  2035. * This is currently not used, but with this setup
  2036. * it is possible to use it later on in e.g. the Linux
  2037. * EMAC driver for performance gain.
  2038. */
  2039. mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
  2040. mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
  2041. #endif
  2042. }
  2043. /*-----------------------------------------------------------------------------+
  2044. * is_ecc_enabled.
  2045. *-----------------------------------------------------------------------------*/
  2046. static unsigned long is_ecc_enabled(void)
  2047. {
  2048. unsigned long dimm_num;
  2049. unsigned long ecc;
  2050. unsigned long val;
  2051. ecc = 0;
  2052. /* loop through all the DIMM slots on the board */
  2053. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2054. mfsdram(SDRAM_MCOPT1, val);
  2055. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  2056. }
  2057. return ecc;
  2058. }
  2059. static void blank_string(int size)
  2060. {
  2061. int i;
  2062. for (i=0; i<size; i++)
  2063. putc('\b');
  2064. for (i=0; i<size; i++)
  2065. putc(' ');
  2066. for (i=0; i<size; i++)
  2067. putc('\b');
  2068. }
  2069. #ifdef CONFIG_DDR_ECC
  2070. /*-----------------------------------------------------------------------------+
  2071. * program_ecc.
  2072. *-----------------------------------------------------------------------------*/
  2073. static void program_ecc(unsigned long *dimm_populated,
  2074. unsigned char *iic0_dimm_addr,
  2075. unsigned long num_dimm_banks,
  2076. unsigned long tlb_word2_i_value)
  2077. {
  2078. unsigned long mcopt1;
  2079. unsigned long mcopt2;
  2080. unsigned long mcstat;
  2081. unsigned long dimm_num;
  2082. unsigned long ecc;
  2083. ecc = 0;
  2084. /* loop through all the DIMM slots on the board */
  2085. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2086. /* If a dimm is installed in a particular slot ... */
  2087. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2088. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2089. }
  2090. if (ecc == 0)
  2091. return;
  2092. if (sdram_memsize() > CONFIG_MAX_MEM_MAPPED) {
  2093. printf("\nWarning: Can't enable ECC on systems with more than 2GB of SDRAM!\n");
  2094. return;
  2095. }
  2096. mfsdram(SDRAM_MCOPT1, mcopt1);
  2097. mfsdram(SDRAM_MCOPT2, mcopt2);
  2098. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2099. /* DDR controller must be enabled and not in self-refresh. */
  2100. mfsdram(SDRAM_MCSTAT, mcstat);
  2101. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2102. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2103. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2104. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2105. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2106. }
  2107. }
  2108. return;
  2109. }
  2110. static void wait_ddr_idle(void)
  2111. {
  2112. u32 val;
  2113. do {
  2114. mfsdram(SDRAM_MCSTAT, val);
  2115. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2116. }
  2117. /*-----------------------------------------------------------------------------+
  2118. * program_ecc_addr.
  2119. *-----------------------------------------------------------------------------*/
  2120. static void program_ecc_addr(unsigned long start_address,
  2121. unsigned long num_bytes,
  2122. unsigned long tlb_word2_i_value)
  2123. {
  2124. unsigned long current_address;
  2125. unsigned long end_address;
  2126. unsigned long address_increment;
  2127. unsigned long mcopt1;
  2128. char str[] = "ECC generation -";
  2129. char slash[] = "\\|/-\\|/-";
  2130. int loop = 0;
  2131. int loopi = 0;
  2132. current_address = start_address;
  2133. mfsdram(SDRAM_MCOPT1, mcopt1);
  2134. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2135. mtsdram(SDRAM_MCOPT1,
  2136. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2137. sync();
  2138. eieio();
  2139. wait_ddr_idle();
  2140. puts(str);
  2141. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2142. /* ECC bit set method for non-cached memory */
  2143. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2144. address_increment = 4;
  2145. else
  2146. address_increment = 8;
  2147. end_address = current_address + num_bytes;
  2148. while (current_address < end_address) {
  2149. *((unsigned long *)current_address) = 0x00000000;
  2150. current_address += address_increment;
  2151. if ((loop++ % (2 << 20)) == 0) {
  2152. putc('\b');
  2153. putc(slash[loopi++ % 8]);
  2154. }
  2155. }
  2156. } else {
  2157. /* ECC bit set method for cached memory */
  2158. dcbz_area(start_address, num_bytes);
  2159. /* Write modified dcache lines back to memory */
  2160. clean_dcache_range(start_address, start_address + num_bytes);
  2161. }
  2162. blank_string(strlen(str));
  2163. sync();
  2164. eieio();
  2165. wait_ddr_idle();
  2166. /* clear ECC error repoting registers */
  2167. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2168. mtdcr(0x4c, 0xffffffff);
  2169. mtsdram(SDRAM_MCOPT1,
  2170. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2171. sync();
  2172. eieio();
  2173. wait_ddr_idle();
  2174. }
  2175. }
  2176. #endif
  2177. /*-----------------------------------------------------------------------------+
  2178. * program_DQS_calibration.
  2179. *-----------------------------------------------------------------------------*/
  2180. static void program_DQS_calibration(unsigned long *dimm_populated,
  2181. unsigned char *iic0_dimm_addr,
  2182. unsigned long num_dimm_banks)
  2183. {
  2184. unsigned long val;
  2185. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2186. mtsdram(SDRAM_RQDC, 0x80000037);
  2187. mtsdram(SDRAM_RDCC, 0x40000000);
  2188. mtsdram(SDRAM_RFDC, 0x000001DF);
  2189. test();
  2190. #else
  2191. /*------------------------------------------------------------------
  2192. * Program RDCC register
  2193. * Read sample cycle auto-update enable
  2194. *-----------------------------------------------------------------*/
  2195. mfsdram(SDRAM_RDCC, val);
  2196. mtsdram(SDRAM_RDCC,
  2197. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2198. | SDRAM_RDCC_RSAE_ENABLE);
  2199. /*------------------------------------------------------------------
  2200. * Program RQDC register
  2201. * Internal DQS delay mechanism enable
  2202. *-----------------------------------------------------------------*/
  2203. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2204. /*------------------------------------------------------------------
  2205. * Program RFDC register
  2206. * Set Feedback Fractional Oversample
  2207. * Auto-detect read sample cycle enable
  2208. *-----------------------------------------------------------------*/
  2209. mfsdram(SDRAM_RFDC, val);
  2210. mtsdram(SDRAM_RFDC,
  2211. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2212. SDRAM_RFDC_RFFD_MASK))
  2213. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2214. SDRAM_RFDC_RFFD_ENCODE(0)));
  2215. DQS_calibration_process();
  2216. #endif
  2217. }
  2218. static int short_mem_test(void)
  2219. {
  2220. u32 *membase;
  2221. u32 bxcr_num;
  2222. u32 bxcf;
  2223. int i;
  2224. int j;
  2225. phys_size_t base_addr;
  2226. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2227. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2228. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2229. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2230. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2231. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2232. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2233. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2234. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2235. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2236. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2237. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2238. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2239. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2240. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2241. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2242. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2243. int l;
  2244. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2245. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2246. /* Banks enabled */
  2247. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2248. /* Bank is enabled */
  2249. /*
  2250. * Only run test on accessable memory (below 2GB)
  2251. */
  2252. base_addr = SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num));
  2253. if (base_addr >= CONFIG_MAX_MEM_MAPPED)
  2254. continue;
  2255. /*------------------------------------------------------------------
  2256. * Run the short memory test.
  2257. *-----------------------------------------------------------------*/
  2258. membase = (u32 *)(u32)base_addr;
  2259. for (i = 0; i < NUMMEMTESTS; i++) {
  2260. for (j = 0; j < NUMMEMWORDS; j++) {
  2261. membase[j] = test[i][j];
  2262. ppcDcbf((u32)&(membase[j]));
  2263. }
  2264. sync();
  2265. for (l=0; l<NUMLOOPS; l++) {
  2266. for (j = 0; j < NUMMEMWORDS; j++) {
  2267. if (membase[j] != test[i][j]) {
  2268. ppcDcbf((u32)&(membase[j]));
  2269. return 0;
  2270. }
  2271. ppcDcbf((u32)&(membase[j]));
  2272. }
  2273. sync();
  2274. }
  2275. }
  2276. } /* if bank enabled */
  2277. } /* for bxcf_num */
  2278. return 1;
  2279. }
  2280. #ifndef HARD_CODED_DQS
  2281. /*-----------------------------------------------------------------------------+
  2282. * DQS_calibration_process.
  2283. *-----------------------------------------------------------------------------*/
  2284. static void DQS_calibration_process(void)
  2285. {
  2286. unsigned long rfdc_reg;
  2287. unsigned long rffd;
  2288. unsigned long val;
  2289. long rffd_average;
  2290. long max_start;
  2291. long min_end;
  2292. unsigned long begin_rqfd[MAXRANKS];
  2293. unsigned long begin_rffd[MAXRANKS];
  2294. unsigned long end_rqfd[MAXRANKS];
  2295. unsigned long end_rffd[MAXRANKS];
  2296. char window_found;
  2297. unsigned long dlycal;
  2298. unsigned long dly_val;
  2299. unsigned long max_pass_length;
  2300. unsigned long current_pass_length;
  2301. unsigned long current_fail_length;
  2302. unsigned long current_start;
  2303. long max_end;
  2304. unsigned char fail_found;
  2305. unsigned char pass_found;
  2306. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2307. u32 rqdc_reg;
  2308. u32 rqfd;
  2309. u32 rqfd_start;
  2310. u32 rqfd_average;
  2311. int loopi = 0;
  2312. char str[] = "Auto calibration -";
  2313. char slash[] = "\\|/-\\|/-";
  2314. /*------------------------------------------------------------------
  2315. * Test to determine the best read clock delay tuning bits.
  2316. *
  2317. * Before the DDR controller can be used, the read clock delay needs to be
  2318. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2319. * This value cannot be hardcoded into the program because it changes
  2320. * depending on the board's setup and environment.
  2321. * To do this, all delay values are tested to see if they
  2322. * work or not. By doing this, you get groups of fails with groups of
  2323. * passing values. The idea is to find the start and end of a passing
  2324. * window and take the center of it to use as the read clock delay.
  2325. *
  2326. * A failure has to be seen first so that when we hit a pass, we know
  2327. * that it is truely the start of the window. If we get passing values
  2328. * to start off with, we don't know if we are at the start of the window.
  2329. *
  2330. * The code assumes that a failure will always be found.
  2331. * If a failure is not found, there is no easy way to get the middle
  2332. * of the passing window. I guess we can pretty much pick any value
  2333. * but some values will be better than others. Since the lowest speed
  2334. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2335. * from experimentation it is safe to say you will always have a failure.
  2336. *-----------------------------------------------------------------*/
  2337. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2338. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2339. puts(str);
  2340. calibration_loop:
  2341. mfsdram(SDRAM_RQDC, rqdc_reg);
  2342. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2343. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2344. #else /* CONFIG_DDR_RQDC_FIXED */
  2345. /*
  2346. * On Katmai the complete auto-calibration somehow doesn't seem to
  2347. * produce the best results, meaning optimal values for RQFD/RFFD.
  2348. * This was discovered by GDA using a high bandwidth scope,
  2349. * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
  2350. * so now on Katmai "only" RFFD is auto-calibrated.
  2351. */
  2352. mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
  2353. #endif /* CONFIG_DDR_RQDC_FIXED */
  2354. max_start = 0;
  2355. min_end = 0;
  2356. begin_rqfd[0] = 0;
  2357. begin_rffd[0] = 0;
  2358. begin_rqfd[1] = 0;
  2359. begin_rffd[1] = 0;
  2360. end_rqfd[0] = 0;
  2361. end_rffd[0] = 0;
  2362. end_rqfd[1] = 0;
  2363. end_rffd[1] = 0;
  2364. window_found = FALSE;
  2365. max_pass_length = 0;
  2366. max_start = 0;
  2367. max_end = 0;
  2368. current_pass_length = 0;
  2369. current_fail_length = 0;
  2370. current_start = 0;
  2371. window_found = FALSE;
  2372. fail_found = FALSE;
  2373. pass_found = FALSE;
  2374. /*
  2375. * get the delay line calibration register value
  2376. */
  2377. mfsdram(SDRAM_DLCR, dlycal);
  2378. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2379. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2380. mfsdram(SDRAM_RFDC, rfdc_reg);
  2381. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2382. /*------------------------------------------------------------------
  2383. * Set the timing reg for the test.
  2384. *-----------------------------------------------------------------*/
  2385. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2386. /*------------------------------------------------------------------
  2387. * See if the rffd value passed.
  2388. *-----------------------------------------------------------------*/
  2389. if (short_mem_test()) {
  2390. if (fail_found == TRUE) {
  2391. pass_found = TRUE;
  2392. if (current_pass_length == 0)
  2393. current_start = rffd;
  2394. current_fail_length = 0;
  2395. current_pass_length++;
  2396. if (current_pass_length > max_pass_length) {
  2397. max_pass_length = current_pass_length;
  2398. max_start = current_start;
  2399. max_end = rffd;
  2400. }
  2401. }
  2402. } else {
  2403. current_pass_length = 0;
  2404. current_fail_length++;
  2405. if (current_fail_length >= (dly_val >> 2)) {
  2406. if (fail_found == FALSE) {
  2407. fail_found = TRUE;
  2408. } else if (pass_found == TRUE) {
  2409. window_found = TRUE;
  2410. break;
  2411. }
  2412. }
  2413. }
  2414. } /* for rffd */
  2415. /*------------------------------------------------------------------
  2416. * Set the average RFFD value
  2417. *-----------------------------------------------------------------*/
  2418. rffd_average = ((max_start + max_end) >> 1);
  2419. if (rffd_average < 0)
  2420. rffd_average = 0;
  2421. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2422. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2423. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2424. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2425. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2426. max_pass_length = 0;
  2427. max_start = 0;
  2428. max_end = 0;
  2429. current_pass_length = 0;
  2430. current_fail_length = 0;
  2431. current_start = 0;
  2432. window_found = FALSE;
  2433. fail_found = FALSE;
  2434. pass_found = FALSE;
  2435. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2436. mfsdram(SDRAM_RQDC, rqdc_reg);
  2437. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2438. /*------------------------------------------------------------------
  2439. * Set the timing reg for the test.
  2440. *-----------------------------------------------------------------*/
  2441. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2442. /*------------------------------------------------------------------
  2443. * See if the rffd value passed.
  2444. *-----------------------------------------------------------------*/
  2445. if (short_mem_test()) {
  2446. if (fail_found == TRUE) {
  2447. pass_found = TRUE;
  2448. if (current_pass_length == 0)
  2449. current_start = rqfd;
  2450. current_fail_length = 0;
  2451. current_pass_length++;
  2452. if (current_pass_length > max_pass_length) {
  2453. max_pass_length = current_pass_length;
  2454. max_start = current_start;
  2455. max_end = rqfd;
  2456. }
  2457. }
  2458. } else {
  2459. current_pass_length = 0;
  2460. current_fail_length++;
  2461. if (fail_found == FALSE) {
  2462. fail_found = TRUE;
  2463. } else if (pass_found == TRUE) {
  2464. window_found = TRUE;
  2465. break;
  2466. }
  2467. }
  2468. }
  2469. rqfd_average = ((max_start + max_end) >> 1);
  2470. /*------------------------------------------------------------------
  2471. * Make sure we found the valid read passing window. Halt if not
  2472. *-----------------------------------------------------------------*/
  2473. if (window_found == FALSE) {
  2474. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2475. putc('\b');
  2476. putc(slash[loopi++ % 8]);
  2477. /* try again from with a different RQFD start value */
  2478. rqfd_start++;
  2479. goto calibration_loop;
  2480. }
  2481. printf("\nERROR: Cannot determine a common read delay for the "
  2482. "DIMM(s) installed.\n");
  2483. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2484. ppc440sp_sdram_register_dump();
  2485. spd_ddr_init_hang ();
  2486. }
  2487. if (rqfd_average < 0)
  2488. rqfd_average = 0;
  2489. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2490. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2491. mtsdram(SDRAM_RQDC,
  2492. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2493. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2494. blank_string(strlen(str));
  2495. #endif /* CONFIG_DDR_RQDC_FIXED */
  2496. /*
  2497. * Now complete RDSS configuration as mentioned on page 7 of the AMCC
  2498. * PowerPC440SP/SPe DDR2 application note:
  2499. * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
  2500. */
  2501. mfsdram(SDRAM_RTSR, val);
  2502. if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
  2503. mfsdram(SDRAM_RDCC, val);
  2504. if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
  2505. val += 0x40000000;
  2506. mtsdram(SDRAM_RDCC, val);
  2507. }
  2508. }
  2509. mfsdram(SDRAM_DLCR, val);
  2510. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2511. mfsdram(SDRAM_RQDC, val);
  2512. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2513. mfsdram(SDRAM_RFDC, val);
  2514. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2515. mfsdram(SDRAM_RDCC, val);
  2516. debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2517. }
  2518. #else /* calibration test with hardvalues */
  2519. /*-----------------------------------------------------------------------------+
  2520. * DQS_calibration_process.
  2521. *-----------------------------------------------------------------------------*/
  2522. static void test(void)
  2523. {
  2524. unsigned long dimm_num;
  2525. unsigned long ecc_temp;
  2526. unsigned long i, j;
  2527. unsigned long *membase;
  2528. unsigned long bxcf[MAXRANKS];
  2529. unsigned long val;
  2530. char window_found;
  2531. char begin_found[MAXDIMMS];
  2532. char end_found[MAXDIMMS];
  2533. char search_end[MAXDIMMS];
  2534. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2535. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2536. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2537. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2538. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2539. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2540. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2541. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2542. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2543. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2544. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2545. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2546. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2547. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2548. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2549. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2550. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2551. /*------------------------------------------------------------------
  2552. * Test to determine the best read clock delay tuning bits.
  2553. *
  2554. * Before the DDR controller can be used, the read clock delay needs to be
  2555. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2556. * This value cannot be hardcoded into the program because it changes
  2557. * depending on the board's setup and environment.
  2558. * To do this, all delay values are tested to see if they
  2559. * work or not. By doing this, you get groups of fails with groups of
  2560. * passing values. The idea is to find the start and end of a passing
  2561. * window and take the center of it to use as the read clock delay.
  2562. *
  2563. * A failure has to be seen first so that when we hit a pass, we know
  2564. * that it is truely the start of the window. If we get passing values
  2565. * to start off with, we don't know if we are at the start of the window.
  2566. *
  2567. * The code assumes that a failure will always be found.
  2568. * If a failure is not found, there is no easy way to get the middle
  2569. * of the passing window. I guess we can pretty much pick any value
  2570. * but some values will be better than others. Since the lowest speed
  2571. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2572. * from experimentation it is safe to say you will always have a failure.
  2573. *-----------------------------------------------------------------*/
  2574. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2575. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2576. mfsdram(SDRAM_MCOPT1, val);
  2577. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2578. SDRAM_MCOPT1_MCHK_NON);
  2579. window_found = FALSE;
  2580. begin_found[0] = FALSE;
  2581. end_found[0] = FALSE;
  2582. search_end[0] = FALSE;
  2583. begin_found[1] = FALSE;
  2584. end_found[1] = FALSE;
  2585. search_end[1] = FALSE;
  2586. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2587. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2588. /* Banks enabled */
  2589. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2590. /* Bank is enabled */
  2591. membase =
  2592. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2593. /*------------------------------------------------------------------
  2594. * Run the short memory test.
  2595. *-----------------------------------------------------------------*/
  2596. for (i = 0; i < NUMMEMTESTS; i++) {
  2597. for (j = 0; j < NUMMEMWORDS; j++) {
  2598. membase[j] = test[i][j];
  2599. ppcDcbf((u32)&(membase[j]));
  2600. }
  2601. sync();
  2602. for (j = 0; j < NUMMEMWORDS; j++) {
  2603. if (membase[j] != test[i][j]) {
  2604. ppcDcbf((u32)&(membase[j]));
  2605. break;
  2606. }
  2607. ppcDcbf((u32)&(membase[j]));
  2608. }
  2609. sync();
  2610. if (j < NUMMEMWORDS)
  2611. break;
  2612. }
  2613. /*------------------------------------------------------------------
  2614. * See if the rffd value passed.
  2615. *-----------------------------------------------------------------*/
  2616. if (i < NUMMEMTESTS) {
  2617. if ((end_found[dimm_num] == FALSE) &&
  2618. (search_end[dimm_num] == TRUE)) {
  2619. end_found[dimm_num] = TRUE;
  2620. }
  2621. if ((end_found[0] == TRUE) &&
  2622. (end_found[1] == TRUE))
  2623. break;
  2624. } else {
  2625. if (begin_found[dimm_num] == FALSE) {
  2626. begin_found[dimm_num] = TRUE;
  2627. search_end[dimm_num] = TRUE;
  2628. }
  2629. }
  2630. } else {
  2631. begin_found[dimm_num] = TRUE;
  2632. end_found[dimm_num] = TRUE;
  2633. }
  2634. }
  2635. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2636. window_found = TRUE;
  2637. /*------------------------------------------------------------------
  2638. * Make sure we found the valid read passing window. Halt if not
  2639. *-----------------------------------------------------------------*/
  2640. if (window_found == FALSE) {
  2641. printf("ERROR: Cannot determine a common read delay for the "
  2642. "DIMM(s) installed.\n");
  2643. spd_ddr_init_hang ();
  2644. }
  2645. /*------------------------------------------------------------------
  2646. * Restore the ECC variable to what it originally was
  2647. *-----------------------------------------------------------------*/
  2648. mtsdram(SDRAM_MCOPT1,
  2649. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2650. | ecc_temp);
  2651. }
  2652. #endif
  2653. #if defined(DEBUG)
  2654. static void ppc440sp_sdram_register_dump(void)
  2655. {
  2656. unsigned int sdram_reg;
  2657. unsigned int sdram_data;
  2658. unsigned int dcr_data;
  2659. printf("\n Register Dump:\n");
  2660. sdram_reg = SDRAM_MCSTAT;
  2661. mfsdram(sdram_reg, sdram_data);
  2662. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2663. sdram_reg = SDRAM_MCOPT1;
  2664. mfsdram(sdram_reg, sdram_data);
  2665. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2666. sdram_reg = SDRAM_MCOPT2;
  2667. mfsdram(sdram_reg, sdram_data);
  2668. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2669. sdram_reg = SDRAM_MODT0;
  2670. mfsdram(sdram_reg, sdram_data);
  2671. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2672. sdram_reg = SDRAM_MODT1;
  2673. mfsdram(sdram_reg, sdram_data);
  2674. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2675. sdram_reg = SDRAM_MODT2;
  2676. mfsdram(sdram_reg, sdram_data);
  2677. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2678. sdram_reg = SDRAM_MODT3;
  2679. mfsdram(sdram_reg, sdram_data);
  2680. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2681. sdram_reg = SDRAM_CODT;
  2682. mfsdram(sdram_reg, sdram_data);
  2683. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2684. sdram_reg = SDRAM_VVPR;
  2685. mfsdram(sdram_reg, sdram_data);
  2686. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2687. sdram_reg = SDRAM_OPARS;
  2688. mfsdram(sdram_reg, sdram_data);
  2689. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2690. /*
  2691. * OPAR2 is only used as a trigger register.
  2692. * No data is contained in this register, and reading or writing
  2693. * to is can cause bad things to happen (hangs). Just skip it
  2694. * and report NA
  2695. * sdram_reg = SDRAM_OPAR2;
  2696. * mfsdram(sdram_reg, sdram_data);
  2697. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2698. */
  2699. printf(" SDRAM_OPART = N/A ");
  2700. sdram_reg = SDRAM_RTR;
  2701. mfsdram(sdram_reg, sdram_data);
  2702. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2703. sdram_reg = SDRAM_MB0CF;
  2704. mfsdram(sdram_reg, sdram_data);
  2705. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2706. sdram_reg = SDRAM_MB1CF;
  2707. mfsdram(sdram_reg, sdram_data);
  2708. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2709. sdram_reg = SDRAM_MB2CF;
  2710. mfsdram(sdram_reg, sdram_data);
  2711. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2712. sdram_reg = SDRAM_MB3CF;
  2713. mfsdram(sdram_reg, sdram_data);
  2714. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2715. sdram_reg = SDRAM_INITPLR0;
  2716. mfsdram(sdram_reg, sdram_data);
  2717. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2718. sdram_reg = SDRAM_INITPLR1;
  2719. mfsdram(sdram_reg, sdram_data);
  2720. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2721. sdram_reg = SDRAM_INITPLR2;
  2722. mfsdram(sdram_reg, sdram_data);
  2723. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2724. sdram_reg = SDRAM_INITPLR3;
  2725. mfsdram(sdram_reg, sdram_data);
  2726. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2727. sdram_reg = SDRAM_INITPLR4;
  2728. mfsdram(sdram_reg, sdram_data);
  2729. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2730. sdram_reg = SDRAM_INITPLR5;
  2731. mfsdram(sdram_reg, sdram_data);
  2732. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2733. sdram_reg = SDRAM_INITPLR6;
  2734. mfsdram(sdram_reg, sdram_data);
  2735. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2736. sdram_reg = SDRAM_INITPLR7;
  2737. mfsdram(sdram_reg, sdram_data);
  2738. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2739. sdram_reg = SDRAM_INITPLR8;
  2740. mfsdram(sdram_reg, sdram_data);
  2741. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2742. sdram_reg = SDRAM_INITPLR9;
  2743. mfsdram(sdram_reg, sdram_data);
  2744. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2745. sdram_reg = SDRAM_INITPLR10;
  2746. mfsdram(sdram_reg, sdram_data);
  2747. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2748. sdram_reg = SDRAM_INITPLR11;
  2749. mfsdram(sdram_reg, sdram_data);
  2750. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2751. sdram_reg = SDRAM_INITPLR12;
  2752. mfsdram(sdram_reg, sdram_data);
  2753. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2754. sdram_reg = SDRAM_INITPLR13;
  2755. mfsdram(sdram_reg, sdram_data);
  2756. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2757. sdram_reg = SDRAM_INITPLR14;
  2758. mfsdram(sdram_reg, sdram_data);
  2759. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2760. sdram_reg = SDRAM_INITPLR15;
  2761. mfsdram(sdram_reg, sdram_data);
  2762. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2763. sdram_reg = SDRAM_RQDC;
  2764. mfsdram(sdram_reg, sdram_data);
  2765. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2766. sdram_reg = SDRAM_RFDC;
  2767. mfsdram(sdram_reg, sdram_data);
  2768. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2769. sdram_reg = SDRAM_RDCC;
  2770. mfsdram(sdram_reg, sdram_data);
  2771. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2772. sdram_reg = SDRAM_DLCR;
  2773. mfsdram(sdram_reg, sdram_data);
  2774. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2775. sdram_reg = SDRAM_CLKTR;
  2776. mfsdram(sdram_reg, sdram_data);
  2777. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2778. sdram_reg = SDRAM_WRDTR;
  2779. mfsdram(sdram_reg, sdram_data);
  2780. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2781. sdram_reg = SDRAM_SDTR1;
  2782. mfsdram(sdram_reg, sdram_data);
  2783. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2784. sdram_reg = SDRAM_SDTR2;
  2785. mfsdram(sdram_reg, sdram_data);
  2786. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2787. sdram_reg = SDRAM_SDTR3;
  2788. mfsdram(sdram_reg, sdram_data);
  2789. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2790. sdram_reg = SDRAM_MMODE;
  2791. mfsdram(sdram_reg, sdram_data);
  2792. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2793. sdram_reg = SDRAM_MEMODE;
  2794. mfsdram(sdram_reg, sdram_data);
  2795. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2796. sdram_reg = SDRAM_ECCCR;
  2797. mfsdram(sdram_reg, sdram_data);
  2798. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2799. dcr_data = mfdcr(SDRAM_R0BAS);
  2800. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2801. dcr_data = mfdcr(SDRAM_R1BAS);
  2802. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2803. dcr_data = mfdcr(SDRAM_R2BAS);
  2804. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2805. dcr_data = mfdcr(SDRAM_R3BAS);
  2806. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2807. }
  2808. #else /* !defined(DEBUG) */
  2809. static void ppc440sp_sdram_register_dump(void)
  2810. {
  2811. }
  2812. #endif /* defined(DEBUG) */
  2813. #elif defined(CONFIG_405EX)
  2814. /*-----------------------------------------------------------------------------
  2815. * Function: initdram
  2816. * Description: Configures the PPC405EX(r) DDR1/DDR2 SDRAM memory
  2817. * banks. The configuration is performed using static, compile-
  2818. * time parameters.
  2819. *---------------------------------------------------------------------------*/
  2820. phys_size_t initdram(int board_type)
  2821. {
  2822. /*
  2823. * Only run this SDRAM init code once. For NAND booting
  2824. * targets like Kilauea, we call initdram() early from the
  2825. * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot().
  2826. * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT)
  2827. * which calls initdram() again. This time the controller
  2828. * mustn't be reconfigured again since we're already running
  2829. * from SDRAM.
  2830. */
  2831. #if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL)
  2832. unsigned long val;
  2833. /* Set Memory Bank Configuration Registers */
  2834. mtsdram(SDRAM_MB0CF, CFG_SDRAM0_MB0CF);
  2835. mtsdram(SDRAM_MB1CF, CFG_SDRAM0_MB1CF);
  2836. mtsdram(SDRAM_MB2CF, CFG_SDRAM0_MB2CF);
  2837. mtsdram(SDRAM_MB3CF, CFG_SDRAM0_MB3CF);
  2838. /* Set Memory Clock Timing Register */
  2839. mtsdram(SDRAM_CLKTR, CFG_SDRAM0_CLKTR);
  2840. /* Set Refresh Time Register */
  2841. mtsdram(SDRAM_RTR, CFG_SDRAM0_RTR);
  2842. /* Set SDRAM Timing Registers */
  2843. mtsdram(SDRAM_SDTR1, CFG_SDRAM0_SDTR1);
  2844. mtsdram(SDRAM_SDTR2, CFG_SDRAM0_SDTR2);
  2845. mtsdram(SDRAM_SDTR3, CFG_SDRAM0_SDTR3);
  2846. /* Set Mode and Extended Mode Registers */
  2847. mtsdram(SDRAM_MMODE, CFG_SDRAM0_MMODE);
  2848. mtsdram(SDRAM_MEMODE, CFG_SDRAM0_MEMODE);
  2849. /* Set Memory Controller Options 1 Register */
  2850. mtsdram(SDRAM_MCOPT1, CFG_SDRAM0_MCOPT1);
  2851. /* Set Manual Initialization Control Registers */
  2852. mtsdram(SDRAM_INITPLR0, CFG_SDRAM0_INITPLR0);
  2853. mtsdram(SDRAM_INITPLR1, CFG_SDRAM0_INITPLR1);
  2854. mtsdram(SDRAM_INITPLR2, CFG_SDRAM0_INITPLR2);
  2855. mtsdram(SDRAM_INITPLR3, CFG_SDRAM0_INITPLR3);
  2856. mtsdram(SDRAM_INITPLR4, CFG_SDRAM0_INITPLR4);
  2857. mtsdram(SDRAM_INITPLR5, CFG_SDRAM0_INITPLR5);
  2858. mtsdram(SDRAM_INITPLR6, CFG_SDRAM0_INITPLR6);
  2859. mtsdram(SDRAM_INITPLR7, CFG_SDRAM0_INITPLR7);
  2860. mtsdram(SDRAM_INITPLR8, CFG_SDRAM0_INITPLR8);
  2861. mtsdram(SDRAM_INITPLR9, CFG_SDRAM0_INITPLR9);
  2862. mtsdram(SDRAM_INITPLR10, CFG_SDRAM0_INITPLR10);
  2863. mtsdram(SDRAM_INITPLR11, CFG_SDRAM0_INITPLR11);
  2864. mtsdram(SDRAM_INITPLR12, CFG_SDRAM0_INITPLR12);
  2865. mtsdram(SDRAM_INITPLR13, CFG_SDRAM0_INITPLR13);
  2866. mtsdram(SDRAM_INITPLR14, CFG_SDRAM0_INITPLR14);
  2867. mtsdram(SDRAM_INITPLR15, CFG_SDRAM0_INITPLR15);
  2868. /* Set On-Die Termination Registers */
  2869. mtsdram(SDRAM_CODT, CFG_SDRAM0_CODT);
  2870. mtsdram(SDRAM_MODT0, CFG_SDRAM0_MODT0);
  2871. mtsdram(SDRAM_MODT1, CFG_SDRAM0_MODT1);
  2872. /* Set Write Timing Register */
  2873. mtsdram(SDRAM_WRDTR, CFG_SDRAM0_WRDTR);
  2874. /*
  2875. * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and
  2876. * SDRAM0_MCOPT2[IPTR] = 1
  2877. */
  2878. mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT |
  2879. SDRAM_MCOPT2_IPTR_EXECUTE));
  2880. /*
  2881. * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the
  2882. * completion of initialization.
  2883. */
  2884. do {
  2885. mfsdram(SDRAM_MCSTAT, val);
  2886. } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP);
  2887. /* Set Delay Control Registers */
  2888. mtsdram(SDRAM_DLCR, CFG_SDRAM0_DLCR);
  2889. mtsdram(SDRAM_RDCC, CFG_SDRAM0_RDCC);
  2890. mtsdram(SDRAM_RQDC, CFG_SDRAM0_RQDC);
  2891. mtsdram(SDRAM_RFDC, CFG_SDRAM0_RFDC);
  2892. /*
  2893. * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1:
  2894. */
  2895. mfsdram(SDRAM_MCOPT2, val);
  2896. mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE);
  2897. #if defined(CONFIG_DDR_ECC)
  2898. ecc_init(CFG_SDRAM_BASE, CFG_MBYTES_SDRAM << 20);
  2899. #endif /* defined(CONFIG_DDR_ECC) */
  2900. #endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */
  2901. return (CFG_MBYTES_SDRAM << 20);
  2902. }
  2903. #endif /* defined(CONFIG_SPD_EEPROM) && defined(CONFIG_440SP) || ... */