mmc.c 21 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. /*
  2. * Copyright 2008, Freescale Semiconductor, Inc
  3. * Andy Fleming
  4. *
  5. * Based vaguely on the Linux code
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <config.h>
  26. #include <common.h>
  27. #include <command.h>
  28. #include <mmc.h>
  29. #include <part.h>
  30. #include <malloc.h>
  31. #include <linux/list.h>
  32. #include <div64.h>
  33. /* Set block count limit because of 16 bit register limit on some hardware*/
  34. #ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
  35. #define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
  36. #endif
  37. static struct list_head mmc_devices;
  38. static int cur_dev_num = -1;
  39. int __board_mmc_getcd(u8 *cd, struct mmc *mmc) {
  40. return -1;
  41. }
  42. int board_mmc_getcd(u8 *cd, struct mmc *mmc)__attribute__((weak,
  43. alias("__board_mmc_getcd")));
  44. int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
  45. {
  46. return mmc->send_cmd(mmc, cmd, data);
  47. }
  48. int mmc_send_status(struct mmc *mmc, int timeout)
  49. {
  50. struct mmc_cmd cmd;
  51. int err;
  52. #ifdef CONFIG_MMC_TRACE
  53. int status;
  54. #endif
  55. cmd.cmdidx = MMC_CMD_SEND_STATUS;
  56. cmd.resp_type = MMC_RSP_R1;
  57. cmd.cmdarg = 0;
  58. cmd.flags = 0;
  59. do {
  60. err = mmc_send_cmd(mmc, &cmd, NULL);
  61. if (err)
  62. return err;
  63. else if (cmd.response[0] & MMC_STATUS_RDY_FOR_DATA)
  64. break;
  65. udelay(1000);
  66. if (cmd.response[0] & MMC_STATUS_MASK) {
  67. printf("Status Error: 0x%08X\n", cmd.response[0]);
  68. return COMM_ERR;
  69. }
  70. } while (timeout--);
  71. if (!timeout) {
  72. printf("Timeout waiting card ready\n");
  73. return TIMEOUT;
  74. }
  75. return 0;
  76. }
  77. int mmc_set_blocklen(struct mmc *mmc, int len)
  78. {
  79. struct mmc_cmd cmd;
  80. cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
  81. cmd.resp_type = MMC_RSP_R1;
  82. cmd.cmdarg = len;
  83. cmd.flags = 0;
  84. return mmc_send_cmd(mmc, &cmd, NULL);
  85. }
  86. struct mmc *find_mmc_device(int dev_num)
  87. {
  88. struct mmc *m;
  89. struct list_head *entry;
  90. list_for_each(entry, &mmc_devices) {
  91. m = list_entry(entry, struct mmc, link);
  92. if (m->block_dev.dev == dev_num)
  93. return m;
  94. }
  95. printf("MMC Device %d not found\n", dev_num);
  96. return NULL;
  97. }
  98. static ulong
  99. mmc_write_blocks(struct mmc *mmc, ulong start, lbaint_t blkcnt, const void*src)
  100. {
  101. struct mmc_cmd cmd;
  102. struct mmc_data data;
  103. int timeout = 1000;
  104. if ((start + blkcnt) > mmc->block_dev.lba) {
  105. printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
  106. start + blkcnt, mmc->block_dev.lba);
  107. return 0;
  108. }
  109. if (blkcnt > 1)
  110. cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
  111. else
  112. cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
  113. if (mmc->high_capacity)
  114. cmd.cmdarg = start;
  115. else
  116. cmd.cmdarg = start * mmc->write_bl_len;
  117. cmd.resp_type = MMC_RSP_R1;
  118. cmd.flags = 0;
  119. data.src = src;
  120. data.blocks = blkcnt;
  121. data.blocksize = mmc->write_bl_len;
  122. data.flags = MMC_DATA_WRITE;
  123. if (mmc_send_cmd(mmc, &cmd, &data)) {
  124. printf("mmc write failed\n");
  125. return 0;
  126. }
  127. /* SPI multiblock writes terminate using a special
  128. * token, not a STOP_TRANSMISSION request.
  129. */
  130. if (!mmc_host_is_spi(mmc) && blkcnt > 1) {
  131. cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
  132. cmd.cmdarg = 0;
  133. cmd.resp_type = MMC_RSP_R1b;
  134. cmd.flags = 0;
  135. if (mmc_send_cmd(mmc, &cmd, NULL)) {
  136. printf("mmc fail to send stop cmd\n");
  137. return 0;
  138. }
  139. /* Waiting for the ready status */
  140. mmc_send_status(mmc, timeout);
  141. }
  142. return blkcnt;
  143. }
  144. static ulong
  145. mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src)
  146. {
  147. lbaint_t cur, blocks_todo = blkcnt;
  148. struct mmc *mmc = find_mmc_device(dev_num);
  149. if (!mmc)
  150. return 0;
  151. if (mmc_set_blocklen(mmc, mmc->write_bl_len))
  152. return 0;
  153. do {
  154. cur = (blocks_todo > CONFIG_SYS_MMC_MAX_BLK_COUNT) ?
  155. CONFIG_SYS_MMC_MAX_BLK_COUNT : blocks_todo;
  156. if(mmc_write_blocks(mmc, start, cur, src) != cur)
  157. return 0;
  158. blocks_todo -= cur;
  159. start += cur;
  160. src += cur * mmc->write_bl_len;
  161. } while (blocks_todo > 0);
  162. return blkcnt;
  163. }
  164. int mmc_read_blocks(struct mmc *mmc, void *dst, ulong start, lbaint_t blkcnt)
  165. {
  166. struct mmc_cmd cmd;
  167. struct mmc_data data;
  168. int timeout = 1000;
  169. if (blkcnt > 1)
  170. cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
  171. else
  172. cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
  173. if (mmc->high_capacity)
  174. cmd.cmdarg = start;
  175. else
  176. cmd.cmdarg = start * mmc->read_bl_len;
  177. cmd.resp_type = MMC_RSP_R1;
  178. cmd.flags = 0;
  179. data.dest = dst;
  180. data.blocks = blkcnt;
  181. data.blocksize = mmc->read_bl_len;
  182. data.flags = MMC_DATA_READ;
  183. if (mmc_send_cmd(mmc, &cmd, &data))
  184. return 0;
  185. if (blkcnt > 1) {
  186. cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
  187. cmd.cmdarg = 0;
  188. cmd.resp_type = MMC_RSP_R1b;
  189. cmd.flags = 0;
  190. if (mmc_send_cmd(mmc, &cmd, NULL)) {
  191. printf("mmc fail to send stop cmd\n");
  192. return 0;
  193. }
  194. /* Waiting for the ready status */
  195. mmc_send_status(mmc, timeout);
  196. }
  197. return blkcnt;
  198. }
  199. static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst)
  200. {
  201. lbaint_t cur, blocks_todo = blkcnt;
  202. if (blkcnt == 0)
  203. return 0;
  204. struct mmc *mmc = find_mmc_device(dev_num);
  205. if (!mmc)
  206. return 0;
  207. if ((start + blkcnt) > mmc->block_dev.lba) {
  208. printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
  209. start + blkcnt, mmc->block_dev.lba);
  210. return 0;
  211. }
  212. if (mmc_set_blocklen(mmc, mmc->read_bl_len))
  213. return 0;
  214. do {
  215. cur = (blocks_todo > CONFIG_SYS_MMC_MAX_BLK_COUNT) ?
  216. CONFIG_SYS_MMC_MAX_BLK_COUNT : blocks_todo;
  217. if(mmc_read_blocks(mmc, dst, start, cur) != cur)
  218. return 0;
  219. blocks_todo -= cur;
  220. start += cur;
  221. dst += cur * mmc->read_bl_len;
  222. } while (blocks_todo > 0);
  223. return blkcnt;
  224. }
  225. int mmc_go_idle(struct mmc* mmc)
  226. {
  227. struct mmc_cmd cmd;
  228. int err;
  229. udelay(1000);
  230. cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
  231. cmd.cmdarg = 0;
  232. cmd.resp_type = MMC_RSP_NONE;
  233. cmd.flags = 0;
  234. err = mmc_send_cmd(mmc, &cmd, NULL);
  235. if (err)
  236. return err;
  237. udelay(2000);
  238. return 0;
  239. }
  240. int
  241. sd_send_op_cond(struct mmc *mmc)
  242. {
  243. int timeout = 1000;
  244. int err;
  245. struct mmc_cmd cmd;
  246. do {
  247. cmd.cmdidx = MMC_CMD_APP_CMD;
  248. cmd.resp_type = MMC_RSP_R1;
  249. cmd.cmdarg = 0;
  250. cmd.flags = 0;
  251. err = mmc_send_cmd(mmc, &cmd, NULL);
  252. if (err)
  253. return err;
  254. cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
  255. cmd.resp_type = MMC_RSP_R3;
  256. /*
  257. * Most cards do not answer if some reserved bits
  258. * in the ocr are set. However, Some controller
  259. * can set bit 7 (reserved for low voltages), but
  260. * how to manage low voltages SD card is not yet
  261. * specified.
  262. */
  263. cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
  264. (mmc->voltages & 0xff8000);
  265. if (mmc->version == SD_VERSION_2)
  266. cmd.cmdarg |= OCR_HCS;
  267. err = mmc_send_cmd(mmc, &cmd, NULL);
  268. if (err)
  269. return err;
  270. udelay(1000);
  271. } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
  272. if (timeout <= 0)
  273. return UNUSABLE_ERR;
  274. if (mmc->version != SD_VERSION_2)
  275. mmc->version = SD_VERSION_1_0;
  276. if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
  277. cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
  278. cmd.resp_type = MMC_RSP_R3;
  279. cmd.cmdarg = 0;
  280. cmd.flags = 0;
  281. err = mmc_send_cmd(mmc, &cmd, NULL);
  282. if (err)
  283. return err;
  284. }
  285. mmc->ocr = cmd.response[0];
  286. mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
  287. mmc->rca = 0;
  288. return 0;
  289. }
  290. int mmc_send_op_cond(struct mmc *mmc)
  291. {
  292. int timeout = 1000;
  293. struct mmc_cmd cmd;
  294. int err;
  295. /* Some cards seem to need this */
  296. mmc_go_idle(mmc);
  297. do {
  298. cmd.cmdidx = MMC_CMD_SEND_OP_COND;
  299. cmd.resp_type = MMC_RSP_R3;
  300. cmd.cmdarg = OCR_HCS | (mmc_host_is_spi(mmc) ? 0 :
  301. mmc->voltages);
  302. cmd.flags = 0;
  303. err = mmc_send_cmd(mmc, &cmd, NULL);
  304. if (err)
  305. return err;
  306. udelay(1000);
  307. } while (!(cmd.response[0] & OCR_BUSY) && timeout--);
  308. if (timeout <= 0)
  309. return UNUSABLE_ERR;
  310. if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
  311. cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
  312. cmd.resp_type = MMC_RSP_R3;
  313. cmd.cmdarg = 0;
  314. cmd.flags = 0;
  315. err = mmc_send_cmd(mmc, &cmd, NULL);
  316. if (err)
  317. return err;
  318. }
  319. mmc->version = MMC_VERSION_UNKNOWN;
  320. mmc->ocr = cmd.response[0];
  321. mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
  322. mmc->rca = 0;
  323. return 0;
  324. }
  325. int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
  326. {
  327. struct mmc_cmd cmd;
  328. struct mmc_data data;
  329. int err;
  330. /* Get the Card Status Register */
  331. cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
  332. cmd.resp_type = MMC_RSP_R1;
  333. cmd.cmdarg = 0;
  334. cmd.flags = 0;
  335. data.dest = ext_csd;
  336. data.blocks = 1;
  337. data.blocksize = 512;
  338. data.flags = MMC_DATA_READ;
  339. err = mmc_send_cmd(mmc, &cmd, &data);
  340. return err;
  341. }
  342. int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
  343. {
  344. struct mmc_cmd cmd;
  345. int timeout = 1000;
  346. int ret;
  347. cmd.cmdidx = MMC_CMD_SWITCH;
  348. cmd.resp_type = MMC_RSP_R1b;
  349. cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
  350. (index << 16) |
  351. (value << 8);
  352. cmd.flags = 0;
  353. ret = mmc_send_cmd(mmc, &cmd, NULL);
  354. /* Waiting for the ready status */
  355. mmc_send_status(mmc, timeout);
  356. return ret;
  357. }
  358. int mmc_change_freq(struct mmc *mmc)
  359. {
  360. char ext_csd[512];
  361. char cardtype;
  362. int err;
  363. mmc->card_caps = 0;
  364. if (mmc_host_is_spi(mmc))
  365. return 0;
  366. /* Only version 4 supports high-speed */
  367. if (mmc->version < MMC_VERSION_4)
  368. return 0;
  369. mmc->card_caps |= MMC_MODE_4BIT;
  370. err = mmc_send_ext_csd(mmc, ext_csd);
  371. if (err)
  372. return err;
  373. if (ext_csd[212] || ext_csd[213] || ext_csd[214] || ext_csd[215])
  374. mmc->high_capacity = 1;
  375. cardtype = ext_csd[196] & 0xf;
  376. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
  377. if (err)
  378. return err;
  379. /* Now check to see that it worked */
  380. err = mmc_send_ext_csd(mmc, ext_csd);
  381. if (err)
  382. return err;
  383. /* No high-speed support */
  384. if (!ext_csd[185])
  385. return 0;
  386. /* High Speed is set, there are two types: 52MHz and 26MHz */
  387. if (cardtype & MMC_HS_52MHZ)
  388. mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
  389. else
  390. mmc->card_caps |= MMC_MODE_HS;
  391. return 0;
  392. }
  393. int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
  394. {
  395. struct mmc_cmd cmd;
  396. struct mmc_data data;
  397. /* Switch the frequency */
  398. cmd.cmdidx = SD_CMD_SWITCH_FUNC;
  399. cmd.resp_type = MMC_RSP_R1;
  400. cmd.cmdarg = (mode << 31) | 0xffffff;
  401. cmd.cmdarg &= ~(0xf << (group * 4));
  402. cmd.cmdarg |= value << (group * 4);
  403. cmd.flags = 0;
  404. data.dest = (char *)resp;
  405. data.blocksize = 64;
  406. data.blocks = 1;
  407. data.flags = MMC_DATA_READ;
  408. return mmc_send_cmd(mmc, &cmd, &data);
  409. }
  410. int sd_change_freq(struct mmc *mmc)
  411. {
  412. int err;
  413. struct mmc_cmd cmd;
  414. uint scr[2];
  415. uint switch_status[16];
  416. struct mmc_data data;
  417. int timeout;
  418. mmc->card_caps = 0;
  419. if (mmc_host_is_spi(mmc))
  420. return 0;
  421. /* Read the SCR to find out if this card supports higher speeds */
  422. cmd.cmdidx = MMC_CMD_APP_CMD;
  423. cmd.resp_type = MMC_RSP_R1;
  424. cmd.cmdarg = mmc->rca << 16;
  425. cmd.flags = 0;
  426. err = mmc_send_cmd(mmc, &cmd, NULL);
  427. if (err)
  428. return err;
  429. cmd.cmdidx = SD_CMD_APP_SEND_SCR;
  430. cmd.resp_type = MMC_RSP_R1;
  431. cmd.cmdarg = 0;
  432. cmd.flags = 0;
  433. timeout = 3;
  434. retry_scr:
  435. data.dest = (char *)&scr;
  436. data.blocksize = 8;
  437. data.blocks = 1;
  438. data.flags = MMC_DATA_READ;
  439. err = mmc_send_cmd(mmc, &cmd, &data);
  440. if (err) {
  441. if (timeout--)
  442. goto retry_scr;
  443. return err;
  444. }
  445. mmc->scr[0] = __be32_to_cpu(scr[0]);
  446. mmc->scr[1] = __be32_to_cpu(scr[1]);
  447. switch ((mmc->scr[0] >> 24) & 0xf) {
  448. case 0:
  449. mmc->version = SD_VERSION_1_0;
  450. break;
  451. case 1:
  452. mmc->version = SD_VERSION_1_10;
  453. break;
  454. case 2:
  455. mmc->version = SD_VERSION_2;
  456. break;
  457. default:
  458. mmc->version = SD_VERSION_1_0;
  459. break;
  460. }
  461. if (mmc->scr[0] & SD_DATA_4BIT)
  462. mmc->card_caps |= MMC_MODE_4BIT;
  463. /* Version 1.0 doesn't support switching */
  464. if (mmc->version == SD_VERSION_1_0)
  465. return 0;
  466. timeout = 4;
  467. while (timeout--) {
  468. err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
  469. (u8 *)&switch_status);
  470. if (err)
  471. return err;
  472. /* The high-speed function is busy. Try again */
  473. if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
  474. break;
  475. }
  476. /* If high-speed isn't supported, we return */
  477. if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
  478. return 0;
  479. err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)&switch_status);
  480. if (err)
  481. return err;
  482. if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
  483. mmc->card_caps |= MMC_MODE_HS;
  484. return 0;
  485. }
  486. /* frequency bases */
  487. /* divided by 10 to be nice to platforms without floating point */
  488. static const int fbase[] = {
  489. 10000,
  490. 100000,
  491. 1000000,
  492. 10000000,
  493. };
  494. /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
  495. * to platforms without floating point.
  496. */
  497. static const int multipliers[] = {
  498. 0, /* reserved */
  499. 10,
  500. 12,
  501. 13,
  502. 15,
  503. 20,
  504. 25,
  505. 30,
  506. 35,
  507. 40,
  508. 45,
  509. 50,
  510. 55,
  511. 60,
  512. 70,
  513. 80,
  514. };
  515. void mmc_set_ios(struct mmc *mmc)
  516. {
  517. mmc->set_ios(mmc);
  518. }
  519. void mmc_set_clock(struct mmc *mmc, uint clock)
  520. {
  521. if (clock > mmc->f_max)
  522. clock = mmc->f_max;
  523. if (clock < mmc->f_min)
  524. clock = mmc->f_min;
  525. mmc->clock = clock;
  526. mmc_set_ios(mmc);
  527. }
  528. void mmc_set_bus_width(struct mmc *mmc, uint width)
  529. {
  530. mmc->bus_width = width;
  531. mmc_set_ios(mmc);
  532. }
  533. int mmc_startup(struct mmc *mmc)
  534. {
  535. int err;
  536. uint mult, freq;
  537. u64 cmult, csize;
  538. struct mmc_cmd cmd;
  539. char ext_csd[512];
  540. int timeout = 1000;
  541. #ifdef CONFIG_MMC_SPI_CRC_ON
  542. if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
  543. cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
  544. cmd.resp_type = MMC_RSP_R1;
  545. cmd.cmdarg = 1;
  546. cmd.flags = 0;
  547. err = mmc_send_cmd(mmc, &cmd, NULL);
  548. if (err)
  549. return err;
  550. }
  551. #endif
  552. /* Put the Card in Identify Mode */
  553. cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
  554. MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
  555. cmd.resp_type = MMC_RSP_R2;
  556. cmd.cmdarg = 0;
  557. cmd.flags = 0;
  558. err = mmc_send_cmd(mmc, &cmd, NULL);
  559. if (err)
  560. return err;
  561. memcpy(mmc->cid, cmd.response, 16);
  562. /*
  563. * For MMC cards, set the Relative Address.
  564. * For SD cards, get the Relatvie Address.
  565. * This also puts the cards into Standby State
  566. */
  567. if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
  568. cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
  569. cmd.cmdarg = mmc->rca << 16;
  570. cmd.resp_type = MMC_RSP_R6;
  571. cmd.flags = 0;
  572. err = mmc_send_cmd(mmc, &cmd, NULL);
  573. if (err)
  574. return err;
  575. if (IS_SD(mmc))
  576. mmc->rca = (cmd.response[0] >> 16) & 0xffff;
  577. }
  578. /* Get the Card-Specific Data */
  579. cmd.cmdidx = MMC_CMD_SEND_CSD;
  580. cmd.resp_type = MMC_RSP_R2;
  581. cmd.cmdarg = mmc->rca << 16;
  582. cmd.flags = 0;
  583. err = mmc_send_cmd(mmc, &cmd, NULL);
  584. /* Waiting for the ready status */
  585. mmc_send_status(mmc, timeout);
  586. if (err)
  587. return err;
  588. mmc->csd[0] = cmd.response[0];
  589. mmc->csd[1] = cmd.response[1];
  590. mmc->csd[2] = cmd.response[2];
  591. mmc->csd[3] = cmd.response[3];
  592. if (mmc->version == MMC_VERSION_UNKNOWN) {
  593. int version = (cmd.response[0] >> 26) & 0xf;
  594. switch (version) {
  595. case 0:
  596. mmc->version = MMC_VERSION_1_2;
  597. break;
  598. case 1:
  599. mmc->version = MMC_VERSION_1_4;
  600. break;
  601. case 2:
  602. mmc->version = MMC_VERSION_2_2;
  603. break;
  604. case 3:
  605. mmc->version = MMC_VERSION_3;
  606. break;
  607. case 4:
  608. mmc->version = MMC_VERSION_4;
  609. break;
  610. default:
  611. mmc->version = MMC_VERSION_1_2;
  612. break;
  613. }
  614. }
  615. /* divide frequency by 10, since the mults are 10x bigger */
  616. freq = fbase[(cmd.response[0] & 0x7)];
  617. mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
  618. mmc->tran_speed = freq * mult;
  619. mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
  620. if (IS_SD(mmc))
  621. mmc->write_bl_len = mmc->read_bl_len;
  622. else
  623. mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
  624. if (mmc->high_capacity) {
  625. csize = (mmc->csd[1] & 0x3f) << 16
  626. | (mmc->csd[2] & 0xffff0000) >> 16;
  627. cmult = 8;
  628. } else {
  629. csize = (mmc->csd[1] & 0x3ff) << 2
  630. | (mmc->csd[2] & 0xc0000000) >> 30;
  631. cmult = (mmc->csd[2] & 0x00038000) >> 15;
  632. }
  633. mmc->capacity = (csize + 1) << (cmult + 2);
  634. mmc->capacity *= mmc->read_bl_len;
  635. if (mmc->read_bl_len > 512)
  636. mmc->read_bl_len = 512;
  637. if (mmc->write_bl_len > 512)
  638. mmc->write_bl_len = 512;
  639. /* Select the card, and put it into Transfer Mode */
  640. if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
  641. cmd.cmdidx = MMC_CMD_SELECT_CARD;
  642. cmd.resp_type = MMC_RSP_R1b;
  643. cmd.cmdarg = mmc->rca << 16;
  644. cmd.flags = 0;
  645. err = mmc_send_cmd(mmc, &cmd, NULL);
  646. if (err)
  647. return err;
  648. }
  649. if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
  650. /* check ext_csd version and capacity */
  651. err = mmc_send_ext_csd(mmc, ext_csd);
  652. if (!err & (ext_csd[192] >= 2)) {
  653. mmc->capacity = ext_csd[212] << 0 | ext_csd[213] << 8 |
  654. ext_csd[214] << 16 | ext_csd[215] << 24;
  655. mmc->capacity *= 512;
  656. }
  657. }
  658. if (IS_SD(mmc))
  659. err = sd_change_freq(mmc);
  660. else
  661. err = mmc_change_freq(mmc);
  662. if (err)
  663. return err;
  664. /* Restrict card's capabilities by what the host can do */
  665. mmc->card_caps &= mmc->host_caps;
  666. if (IS_SD(mmc)) {
  667. if (mmc->card_caps & MMC_MODE_4BIT) {
  668. cmd.cmdidx = MMC_CMD_APP_CMD;
  669. cmd.resp_type = MMC_RSP_R1;
  670. cmd.cmdarg = mmc->rca << 16;
  671. cmd.flags = 0;
  672. err = mmc_send_cmd(mmc, &cmd, NULL);
  673. if (err)
  674. return err;
  675. cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
  676. cmd.resp_type = MMC_RSP_R1;
  677. cmd.cmdarg = 2;
  678. cmd.flags = 0;
  679. err = mmc_send_cmd(mmc, &cmd, NULL);
  680. if (err)
  681. return err;
  682. mmc_set_bus_width(mmc, 4);
  683. }
  684. if (mmc->card_caps & MMC_MODE_HS)
  685. mmc_set_clock(mmc, 50000000);
  686. else
  687. mmc_set_clock(mmc, 25000000);
  688. } else {
  689. if (mmc->card_caps & MMC_MODE_4BIT) {
  690. /* Set the card to use 4 bit*/
  691. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
  692. EXT_CSD_BUS_WIDTH,
  693. EXT_CSD_BUS_WIDTH_4);
  694. if (err)
  695. return err;
  696. mmc_set_bus_width(mmc, 4);
  697. } else if (mmc->card_caps & MMC_MODE_8BIT) {
  698. /* Set the card to use 8 bit*/
  699. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
  700. EXT_CSD_BUS_WIDTH,
  701. EXT_CSD_BUS_WIDTH_8);
  702. if (err)
  703. return err;
  704. mmc_set_bus_width(mmc, 8);
  705. }
  706. if (mmc->card_caps & MMC_MODE_HS) {
  707. if (mmc->card_caps & MMC_MODE_HS_52MHz)
  708. mmc_set_clock(mmc, 52000000);
  709. else
  710. mmc_set_clock(mmc, 26000000);
  711. } else
  712. mmc_set_clock(mmc, 20000000);
  713. }
  714. /* fill in device description */
  715. mmc->block_dev.lun = 0;
  716. mmc->block_dev.type = 0;
  717. mmc->block_dev.blksz = mmc->read_bl_len;
  718. mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
  719. sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8,
  720. (mmc->cid[2] << 8) | (mmc->cid[3] >> 24));
  721. sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff,
  722. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  723. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  724. sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28,
  725. (mmc->cid[2] >> 24) & 0xf);
  726. init_part(&mmc->block_dev);
  727. return 0;
  728. }
  729. int mmc_send_if_cond(struct mmc *mmc)
  730. {
  731. struct mmc_cmd cmd;
  732. int err;
  733. cmd.cmdidx = SD_CMD_SEND_IF_COND;
  734. /* We set the bit if the host supports voltages between 2.7 and 3.6 V */
  735. cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
  736. cmd.resp_type = MMC_RSP_R7;
  737. cmd.flags = 0;
  738. err = mmc_send_cmd(mmc, &cmd, NULL);
  739. if (err)
  740. return err;
  741. if ((cmd.response[0] & 0xff) != 0xaa)
  742. return UNUSABLE_ERR;
  743. else
  744. mmc->version = SD_VERSION_2;
  745. return 0;
  746. }
  747. int mmc_register(struct mmc *mmc)
  748. {
  749. /* Setup the universal parts of the block interface just once */
  750. mmc->block_dev.if_type = IF_TYPE_MMC;
  751. mmc->block_dev.dev = cur_dev_num++;
  752. mmc->block_dev.removable = 1;
  753. mmc->block_dev.block_read = mmc_bread;
  754. mmc->block_dev.block_write = mmc_bwrite;
  755. INIT_LIST_HEAD (&mmc->link);
  756. list_add_tail (&mmc->link, &mmc_devices);
  757. return 0;
  758. }
  759. block_dev_desc_t *mmc_get_dev(int dev)
  760. {
  761. struct mmc *mmc = find_mmc_device(dev);
  762. return mmc ? &mmc->block_dev : NULL;
  763. }
  764. int mmc_init(struct mmc *mmc)
  765. {
  766. int err;
  767. err = mmc->init(mmc);
  768. if (err)
  769. return err;
  770. mmc_set_bus_width(mmc, 1);
  771. mmc_set_clock(mmc, 1);
  772. /* Reset the Card */
  773. err = mmc_go_idle(mmc);
  774. if (err)
  775. return err;
  776. /* Test for SD version 2 */
  777. err = mmc_send_if_cond(mmc);
  778. /* Now try to get the SD card's operating condition */
  779. err = sd_send_op_cond(mmc);
  780. /* If the command timed out, we check for an MMC card */
  781. if (err == TIMEOUT) {
  782. err = mmc_send_op_cond(mmc);
  783. if (err) {
  784. printf("Card did not respond to voltage select!\n");
  785. return UNUSABLE_ERR;
  786. }
  787. }
  788. return mmc_startup(mmc);
  789. }
  790. /*
  791. * CPU and board-specific MMC initializations. Aliased function
  792. * signals caller to move on
  793. */
  794. static int __def_mmc_init(bd_t *bis)
  795. {
  796. return -1;
  797. }
  798. int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
  799. int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
  800. void print_mmc_devices(char separator)
  801. {
  802. struct mmc *m;
  803. struct list_head *entry;
  804. list_for_each(entry, &mmc_devices) {
  805. m = list_entry(entry, struct mmc, link);
  806. printf("%s: %d", m->name, m->block_dev.dev);
  807. if (entry->next != &mmc_devices)
  808. printf("%c ", separator);
  809. }
  810. printf("\n");
  811. }
  812. int mmc_initialize(bd_t *bis)
  813. {
  814. INIT_LIST_HEAD (&mmc_devices);
  815. cur_dev_num = 0;
  816. if (board_mmc_init(bis) < 0)
  817. cpu_mmc_init(bis);
  818. print_mmc_devices(',');
  819. return 0;
  820. }