44x_spd_ddr2.c 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  43. /*-----------------------------------------------------------------------------+
  44. * Defines
  45. *-----------------------------------------------------------------------------*/
  46. #ifndef TRUE
  47. #define TRUE 1
  48. #endif
  49. #ifndef FALSE
  50. #define FALSE 0
  51. #endif
  52. #define SDRAM_DDR1 1
  53. #define SDRAM_DDR2 2
  54. #define SDRAM_NONE 0
  55. #define MAXDIMMS 2
  56. #define MAXRANKS 4
  57. #define MAXBXCF 4
  58. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  59. #define ONE_BILLION 1000000000
  60. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  61. #define CMD_NOP (7 << 19)
  62. #define CMD_PRECHARGE (2 << 19)
  63. #define CMD_REFRESH (1 << 19)
  64. #define CMD_EMR (0 << 19)
  65. #define CMD_READ (5 << 19)
  66. #define CMD_WRITE (4 << 19)
  67. #define SELECT_MR (0 << 16)
  68. #define SELECT_EMR (1 << 16)
  69. #define SELECT_EMR2 (2 << 16)
  70. #define SELECT_EMR3 (3 << 16)
  71. /* MR */
  72. #define DLL_RESET 0x00000100
  73. #define WRITE_RECOV_2 (1 << 9)
  74. #define WRITE_RECOV_3 (2 << 9)
  75. #define WRITE_RECOV_4 (3 << 9)
  76. #define WRITE_RECOV_5 (4 << 9)
  77. #define WRITE_RECOV_6 (5 << 9)
  78. #define BURST_LEN_4 0x00000002
  79. /* EMR */
  80. #define ODT_0_OHM 0x00000000
  81. #define ODT_50_OHM 0x00000044
  82. #define ODT_75_OHM 0x00000004
  83. #define ODT_150_OHM 0x00000040
  84. #define ODS_FULL 0x00000000
  85. #define ODS_REDUCED 0x00000002
  86. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  87. #define ODT_EB0R (0x80000000 >> 8)
  88. #define ODT_EB0W (0x80000000 >> 7)
  89. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  90. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  91. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  92. /* Defines for the Read Cycle Delay test */
  93. #define NUMMEMTESTS 8
  94. #define NUMMEMWORDS 8
  95. #define NUMLOOPS 256 /* memory test loops */
  96. #undef CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
  97. /*
  98. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  99. * region. Right now the cache should still be disabled in U-Boot because of the
  100. * EMAC driver, that need it's buffer descriptor to be located in non cached
  101. * memory.
  102. *
  103. * If at some time this restriction doesn't apply anymore, just define
  104. * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
  105. * everything correctly.
  106. */
  107. #ifdef CFG_ENABLE_SDRAM_CACHE
  108. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  109. #else
  110. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  111. #endif
  112. #if defined(CONFIG_PPC4xx_USE_SPD_DDR_INIT_HANG)
  113. extern void spd_ddr_init_hang (void);
  114. #define HANG() spd_ddr_init_hang()
  115. #else
  116. #define HANG() hang()
  117. #endif
  118. /* Private Structure Definitions */
  119. /* enum only to ease code for cas latency setting */
  120. typedef enum ddr_cas_id {
  121. DDR_CAS_2 = 20,
  122. DDR_CAS_2_5 = 25,
  123. DDR_CAS_3 = 30,
  124. DDR_CAS_4 = 40,
  125. DDR_CAS_5 = 50
  126. } ddr_cas_id_t;
  127. /*-----------------------------------------------------------------------------+
  128. * Prototypes
  129. *-----------------------------------------------------------------------------*/
  130. static unsigned long sdram_memsize(void);
  131. void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
  132. static void get_spd_info(unsigned long *dimm_populated,
  133. unsigned char *iic0_dimm_addr,
  134. unsigned long num_dimm_banks);
  135. static void check_mem_type(unsigned long *dimm_populated,
  136. unsigned char *iic0_dimm_addr,
  137. unsigned long num_dimm_banks);
  138. static void check_frequency(unsigned long *dimm_populated,
  139. unsigned char *iic0_dimm_addr,
  140. unsigned long num_dimm_banks);
  141. static void check_rank_number(unsigned long *dimm_populated,
  142. unsigned char *iic0_dimm_addr,
  143. unsigned long num_dimm_banks);
  144. static void check_voltage_type(unsigned long *dimm_populated,
  145. unsigned char *iic0_dimm_addr,
  146. unsigned long num_dimm_banks);
  147. static void program_memory_queue(unsigned long *dimm_populated,
  148. unsigned char *iic0_dimm_addr,
  149. unsigned long num_dimm_banks);
  150. static void program_codt(unsigned long *dimm_populated,
  151. unsigned char *iic0_dimm_addr,
  152. unsigned long num_dimm_banks);
  153. static void program_mode(unsigned long *dimm_populated,
  154. unsigned char *iic0_dimm_addr,
  155. unsigned long num_dimm_banks,
  156. ddr_cas_id_t *selected_cas,
  157. int *write_recovery);
  158. static void program_tr(unsigned long *dimm_populated,
  159. unsigned char *iic0_dimm_addr,
  160. unsigned long num_dimm_banks);
  161. static void program_rtr(unsigned long *dimm_populated,
  162. unsigned char *iic0_dimm_addr,
  163. unsigned long num_dimm_banks);
  164. static void program_bxcf(unsigned long *dimm_populated,
  165. unsigned char *iic0_dimm_addr,
  166. unsigned long num_dimm_banks);
  167. static void program_copt1(unsigned long *dimm_populated,
  168. unsigned char *iic0_dimm_addr,
  169. unsigned long num_dimm_banks);
  170. static void program_initplr(unsigned long *dimm_populated,
  171. unsigned char *iic0_dimm_addr,
  172. unsigned long num_dimm_banks,
  173. ddr_cas_id_t selected_cas,
  174. int write_recovery);
  175. static unsigned long is_ecc_enabled(void);
  176. #ifdef CONFIG_DDR_ECC
  177. static void program_ecc(unsigned long *dimm_populated,
  178. unsigned char *iic0_dimm_addr,
  179. unsigned long num_dimm_banks,
  180. unsigned long tlb_word2_i_value);
  181. static void program_ecc_addr(unsigned long start_address,
  182. unsigned long num_bytes,
  183. unsigned long tlb_word2_i_value);
  184. #endif
  185. static void program_DQS_calibration(unsigned long *dimm_populated,
  186. unsigned char *iic0_dimm_addr,
  187. unsigned long num_dimm_banks);
  188. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  189. static void test(void);
  190. #else
  191. static void DQS_calibration_process(void);
  192. #endif
  193. #if defined(DEBUG)
  194. static void ppc440sp_sdram_register_dump(void);
  195. #endif
  196. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  197. void dcbz_area(u32 start_address, u32 num_bytes);
  198. void dflush(void);
  199. static u32 mfdcr_any(u32 dcr)
  200. {
  201. u32 val;
  202. switch (dcr) {
  203. case SDRAM_R0BAS + 0:
  204. val = mfdcr(SDRAM_R0BAS + 0);
  205. break;
  206. case SDRAM_R0BAS + 1:
  207. val = mfdcr(SDRAM_R0BAS + 1);
  208. break;
  209. case SDRAM_R0BAS + 2:
  210. val = mfdcr(SDRAM_R0BAS + 2);
  211. break;
  212. case SDRAM_R0BAS + 3:
  213. val = mfdcr(SDRAM_R0BAS + 3);
  214. break;
  215. default:
  216. printf("DCR %d not defined in case statement!!!\n", dcr);
  217. val = 0; /* just to satisfy the compiler */
  218. }
  219. return val;
  220. }
  221. static void mtdcr_any(u32 dcr, u32 val)
  222. {
  223. switch (dcr) {
  224. case SDRAM_R0BAS + 0:
  225. mtdcr(SDRAM_R0BAS + 0, val);
  226. break;
  227. case SDRAM_R0BAS + 1:
  228. mtdcr(SDRAM_R0BAS + 1, val);
  229. break;
  230. case SDRAM_R0BAS + 2:
  231. mtdcr(SDRAM_R0BAS + 2, val);
  232. break;
  233. case SDRAM_R0BAS + 3:
  234. mtdcr(SDRAM_R0BAS + 3, val);
  235. break;
  236. default:
  237. printf("DCR %d not defined in case statement!!!\n", dcr);
  238. }
  239. }
  240. static unsigned char spd_read(uchar chip, uint addr)
  241. {
  242. unsigned char data[2];
  243. if (i2c_probe(chip) == 0)
  244. if (i2c_read(chip, addr, 1, data, 1) == 0)
  245. return data[0];
  246. return 0;
  247. }
  248. /*-----------------------------------------------------------------------------+
  249. * sdram_memsize
  250. *-----------------------------------------------------------------------------*/
  251. static unsigned long sdram_memsize(void)
  252. {
  253. unsigned long mem_size;
  254. unsigned long mcopt2;
  255. unsigned long mcstat;
  256. unsigned long mb0cf;
  257. unsigned long sdsz;
  258. unsigned long i;
  259. mem_size = 0;
  260. mfsdram(SDRAM_MCOPT2, mcopt2);
  261. mfsdram(SDRAM_MCSTAT, mcstat);
  262. /* DDR controller must be enabled and not in self-refresh. */
  263. /* Otherwise memsize is zero. */
  264. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  265. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  266. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  267. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  268. for (i = 0; i < MAXBXCF; i++) {
  269. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  270. /* Banks enabled */
  271. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  272. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  273. switch(sdsz) {
  274. case SDRAM_RXBAS_SDSZ_8:
  275. mem_size+=8;
  276. break;
  277. case SDRAM_RXBAS_SDSZ_16:
  278. mem_size+=16;
  279. break;
  280. case SDRAM_RXBAS_SDSZ_32:
  281. mem_size+=32;
  282. break;
  283. case SDRAM_RXBAS_SDSZ_64:
  284. mem_size+=64;
  285. break;
  286. case SDRAM_RXBAS_SDSZ_128:
  287. mem_size+=128;
  288. break;
  289. case SDRAM_RXBAS_SDSZ_256:
  290. mem_size+=256;
  291. break;
  292. case SDRAM_RXBAS_SDSZ_512:
  293. mem_size+=512;
  294. break;
  295. case SDRAM_RXBAS_SDSZ_1024:
  296. mem_size+=1024;
  297. break;
  298. case SDRAM_RXBAS_SDSZ_2048:
  299. mem_size+=2048;
  300. break;
  301. case SDRAM_RXBAS_SDSZ_4096:
  302. mem_size+=4096;
  303. break;
  304. default:
  305. mem_size=0;
  306. break;
  307. }
  308. }
  309. }
  310. }
  311. mem_size *= 1024 * 1024;
  312. return(mem_size);
  313. }
  314. /*-----------------------------------------------------------------------------+
  315. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  316. * Note: This routine runs from flash with a stack set up in the chip's
  317. * sram space. It is important that the routine does not require .sbss, .bss or
  318. * .data sections. It also cannot call routines that require these sections.
  319. *-----------------------------------------------------------------------------*/
  320. /*-----------------------------------------------------------------------------
  321. * Function: initdram
  322. * Description: Configures SDRAM memory banks for DDR operation.
  323. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  324. * via the IIC bus and then configures the DDR SDRAM memory
  325. * banks appropriately. If Auto Memory Configuration is
  326. * not used, it is assumed that no DIMM is plugged
  327. *-----------------------------------------------------------------------------*/
  328. long int initdram(int board_type)
  329. {
  330. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  331. unsigned char spd0[MAX_SPD_BYTES];
  332. unsigned char spd1[MAX_SPD_BYTES];
  333. unsigned char *dimm_spd[MAXDIMMS];
  334. unsigned long dimm_populated[MAXDIMMS];
  335. unsigned long num_dimm_banks; /* on board dimm banks */
  336. unsigned long val;
  337. ddr_cas_id_t selected_cas;
  338. int write_recovery;
  339. unsigned long dram_size = 0;
  340. num_dimm_banks = sizeof(iic0_dimm_addr);
  341. /*------------------------------------------------------------------
  342. * Set up an array of SPD matrixes.
  343. *-----------------------------------------------------------------*/
  344. dimm_spd[0] = spd0;
  345. dimm_spd[1] = spd1;
  346. /*------------------------------------------------------------------
  347. * Reset the DDR-SDRAM controller.
  348. *-----------------------------------------------------------------*/
  349. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  350. mtsdr(SDR0_SRST, 0x00000000);
  351. /*
  352. * Make sure I2C controller is initialized
  353. * before continuing.
  354. */
  355. /* switch to correct I2C bus */
  356. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  357. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  358. /*------------------------------------------------------------------
  359. * Clear out the serial presence detect buffers.
  360. * Perform IIC reads from the dimm. Fill in the spds.
  361. * Check to see if the dimm slots are populated
  362. *-----------------------------------------------------------------*/
  363. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  364. /*------------------------------------------------------------------
  365. * Check the memory type for the dimms plugged.
  366. *-----------------------------------------------------------------*/
  367. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  368. /*------------------------------------------------------------------
  369. * Check the frequency supported for the dimms plugged.
  370. *-----------------------------------------------------------------*/
  371. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  372. /*------------------------------------------------------------------
  373. * Check the total rank number.
  374. *-----------------------------------------------------------------*/
  375. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  376. /*------------------------------------------------------------------
  377. * Check the voltage type for the dimms plugged.
  378. *-----------------------------------------------------------------*/
  379. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  380. /*------------------------------------------------------------------
  381. * Program SDRAM controller options 2 register
  382. * Except Enabling of the memory controller.
  383. *-----------------------------------------------------------------*/
  384. mfsdram(SDRAM_MCOPT2, val);
  385. mtsdram(SDRAM_MCOPT2,
  386. (val &
  387. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  388. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  389. SDRAM_MCOPT2_ISIE_MASK))
  390. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  391. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  392. SDRAM_MCOPT2_ISIE_ENABLE));
  393. /*------------------------------------------------------------------
  394. * Program SDRAM controller options 1 register
  395. * Note: Does not enable the memory controller.
  396. *-----------------------------------------------------------------*/
  397. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  398. /*------------------------------------------------------------------
  399. * Set the SDRAM Controller On Die Termination Register
  400. *-----------------------------------------------------------------*/
  401. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  402. /*------------------------------------------------------------------
  403. * Program SDRAM refresh register.
  404. *-----------------------------------------------------------------*/
  405. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  406. /*------------------------------------------------------------------
  407. * Program SDRAM mode register.
  408. *-----------------------------------------------------------------*/
  409. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  410. &selected_cas, &write_recovery);
  411. /*------------------------------------------------------------------
  412. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  413. *-----------------------------------------------------------------*/
  414. mfsdram(SDRAM_WRDTR, val);
  415. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  416. (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  417. /*------------------------------------------------------------------
  418. * Set the SDRAM Clock Timing Register
  419. *-----------------------------------------------------------------*/
  420. mfsdram(SDRAM_CLKTR, val);
  421. #ifdef CFG_44x_DDR2_CKTR_180
  422. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_180_DEG_ADV);
  423. #else
  424. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
  425. #endif
  426. /*------------------------------------------------------------------
  427. * Program the BxCF registers.
  428. *-----------------------------------------------------------------*/
  429. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  430. /*------------------------------------------------------------------
  431. * Program SDRAM timing registers.
  432. *-----------------------------------------------------------------*/
  433. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  434. /*------------------------------------------------------------------
  435. * Set the Extended Mode register
  436. *-----------------------------------------------------------------*/
  437. mfsdram(SDRAM_MEMODE, val);
  438. mtsdram(SDRAM_MEMODE,
  439. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  440. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  441. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  442. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  443. /*------------------------------------------------------------------
  444. * Program Initialization preload registers.
  445. *-----------------------------------------------------------------*/
  446. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  447. selected_cas, write_recovery);
  448. /*------------------------------------------------------------------
  449. * Delay to ensure 200usec have elapsed since reset.
  450. *-----------------------------------------------------------------*/
  451. udelay(400);
  452. /*------------------------------------------------------------------
  453. * Set the memory queue core base addr.
  454. *-----------------------------------------------------------------*/
  455. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  456. /*------------------------------------------------------------------
  457. * Program SDRAM controller options 2 register
  458. * Enable the memory controller.
  459. *-----------------------------------------------------------------*/
  460. mfsdram(SDRAM_MCOPT2, val);
  461. mtsdram(SDRAM_MCOPT2,
  462. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  463. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  464. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  465. /*------------------------------------------------------------------
  466. * Wait for SDRAM_CFG0_DC_EN to complete.
  467. *-----------------------------------------------------------------*/
  468. do {
  469. mfsdram(SDRAM_MCSTAT, val);
  470. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  471. /* get installed memory size */
  472. dram_size = sdram_memsize();
  473. /* and program tlb entries for this size (dynamic) */
  474. program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
  475. /*------------------------------------------------------------------
  476. * DQS calibration.
  477. *-----------------------------------------------------------------*/
  478. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  479. #ifdef CONFIG_DDR_ECC
  480. /*------------------------------------------------------------------
  481. * If ecc is enabled, initialize the parity bits.
  482. *-----------------------------------------------------------------*/
  483. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
  484. #endif
  485. #ifdef DEBUG
  486. ppc440sp_sdram_register_dump();
  487. #endif
  488. return dram_size;
  489. }
  490. static void get_spd_info(unsigned long *dimm_populated,
  491. unsigned char *iic0_dimm_addr,
  492. unsigned long num_dimm_banks)
  493. {
  494. unsigned long dimm_num;
  495. unsigned long dimm_found;
  496. unsigned char num_of_bytes;
  497. unsigned char total_size;
  498. dimm_found = FALSE;
  499. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  500. num_of_bytes = 0;
  501. total_size = 0;
  502. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  503. debug("\nspd_read(0x%x) returned %d\n",
  504. iic0_dimm_addr[dimm_num], num_of_bytes);
  505. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  506. debug("spd_read(0x%x) returned %d\n",
  507. iic0_dimm_addr[dimm_num], total_size);
  508. if ((num_of_bytes != 0) && (total_size != 0)) {
  509. dimm_populated[dimm_num] = TRUE;
  510. dimm_found = TRUE;
  511. debug("DIMM slot %lu: populated\n", dimm_num);
  512. } else {
  513. dimm_populated[dimm_num] = FALSE;
  514. debug("DIMM slot %lu: Not populated\n", dimm_num);
  515. }
  516. }
  517. if (dimm_found == FALSE) {
  518. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  519. HANG();
  520. }
  521. }
  522. #ifdef CONFIG_ADD_RAM_INFO
  523. void board_add_ram_info(int use_default)
  524. {
  525. PPC440_SYS_INFO board_cfg;
  526. u32 val;
  527. if (is_ecc_enabled())
  528. puts(" (ECC");
  529. else
  530. puts(" (ECC not");
  531. get_sys_info(&board_cfg);
  532. mfsdr(SDR0_DDR0, val);
  533. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  534. printf(" enabled, %d MHz", (val * 2) / 1000000);
  535. mfsdram(SDRAM_MMODE, val);
  536. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  537. printf(", CL%d)", val);
  538. }
  539. #endif
  540. /*------------------------------------------------------------------
  541. * For the memory DIMMs installed, this routine verifies that they
  542. * really are DDR specific DIMMs.
  543. *-----------------------------------------------------------------*/
  544. static void check_mem_type(unsigned long *dimm_populated,
  545. unsigned char *iic0_dimm_addr,
  546. unsigned long num_dimm_banks)
  547. {
  548. unsigned long dimm_num;
  549. unsigned long dimm_type;
  550. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  551. if (dimm_populated[dimm_num] == TRUE) {
  552. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  553. switch (dimm_type) {
  554. case 1:
  555. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  556. "slot %d.\n", (unsigned int)dimm_num);
  557. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  558. printf("Replace the DIMM module with a supported DIMM.\n\n");
  559. HANG();
  560. break;
  561. case 2:
  562. printf("ERROR: EDO DIMM detected in slot %d.\n",
  563. (unsigned int)dimm_num);
  564. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  565. printf("Replace the DIMM module with a supported DIMM.\n\n");
  566. HANG();
  567. break;
  568. case 3:
  569. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  570. (unsigned int)dimm_num);
  571. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  572. printf("Replace the DIMM module with a supported DIMM.\n\n");
  573. HANG();
  574. break;
  575. case 4:
  576. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  577. (unsigned int)dimm_num);
  578. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  579. printf("Replace the DIMM module with a supported DIMM.\n\n");
  580. HANG();
  581. break;
  582. case 5:
  583. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  584. (unsigned int)dimm_num);
  585. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  586. printf("Replace the DIMM module with a supported DIMM.\n\n");
  587. HANG();
  588. break;
  589. case 6:
  590. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  591. (unsigned int)dimm_num);
  592. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  593. printf("Replace the DIMM module with a supported DIMM.\n\n");
  594. HANG();
  595. break;
  596. case 7:
  597. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  598. dimm_populated[dimm_num] = SDRAM_DDR1;
  599. break;
  600. case 8:
  601. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  602. dimm_populated[dimm_num] = SDRAM_DDR2;
  603. break;
  604. default:
  605. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  606. (unsigned int)dimm_num);
  607. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  608. printf("Replace the DIMM module with a supported DIMM.\n\n");
  609. HANG();
  610. break;
  611. }
  612. }
  613. }
  614. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  615. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  616. && (dimm_populated[dimm_num] != SDRAM_NONE)
  617. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  618. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  619. HANG();
  620. }
  621. }
  622. }
  623. /*------------------------------------------------------------------
  624. * For the memory DIMMs installed, this routine verifies that
  625. * frequency previously calculated is supported.
  626. *-----------------------------------------------------------------*/
  627. static void check_frequency(unsigned long *dimm_populated,
  628. unsigned char *iic0_dimm_addr,
  629. unsigned long num_dimm_banks)
  630. {
  631. unsigned long dimm_num;
  632. unsigned long tcyc_reg;
  633. unsigned long cycle_time;
  634. unsigned long calc_cycle_time;
  635. unsigned long sdram_freq;
  636. unsigned long sdr_ddrpll;
  637. PPC440_SYS_INFO board_cfg;
  638. /*------------------------------------------------------------------
  639. * Get the board configuration info.
  640. *-----------------------------------------------------------------*/
  641. get_sys_info(&board_cfg);
  642. mfsdr(SDR0_DDR0, sdr_ddrpll);
  643. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  644. /*
  645. * calc_cycle_time is calculated from DDR frequency set by board/chip
  646. * and is expressed in multiple of 10 picoseconds
  647. * to match the way DIMM cycle time is calculated below.
  648. */
  649. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  650. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  651. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  652. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  653. /*
  654. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  655. * the higher order nibble (bits 4-7) designates the cycle time
  656. * to a granularity of 1ns;
  657. * the value presented by the lower order nibble (bits 0-3)
  658. * has a granularity of .1ns and is added to the value designated
  659. * by the higher nibble. In addition, four lines of the lower order
  660. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  661. */
  662. /* Convert from hex to decimal */
  663. if ((tcyc_reg & 0x0F) == 0x0D)
  664. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  665. else if ((tcyc_reg & 0x0F) == 0x0C)
  666. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  667. else if ((tcyc_reg & 0x0F) == 0x0B)
  668. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  669. else if ((tcyc_reg & 0x0F) == 0x0A)
  670. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  671. else
  672. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  673. ((tcyc_reg & 0x0F)*10);
  674. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  675. if (cycle_time > (calc_cycle_time + 10)) {
  676. /*
  677. * the provided sdram cycle_time is too small
  678. * for the available DIMM cycle_time.
  679. * The additionnal 100ps is here to accept a small incertainty.
  680. */
  681. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  682. "slot %d \n while calculated cycle time is %d ps.\n",
  683. (unsigned int)(cycle_time*10),
  684. (unsigned int)dimm_num,
  685. (unsigned int)(calc_cycle_time*10));
  686. printf("Replace the DIMM, or change DDR frequency via "
  687. "strapping bits.\n\n");
  688. HANG();
  689. }
  690. }
  691. }
  692. }
  693. /*------------------------------------------------------------------
  694. * For the memory DIMMs installed, this routine verifies two
  695. * ranks/banks maximum are availables.
  696. *-----------------------------------------------------------------*/
  697. static void check_rank_number(unsigned long *dimm_populated,
  698. unsigned char *iic0_dimm_addr,
  699. unsigned long num_dimm_banks)
  700. {
  701. unsigned long dimm_num;
  702. unsigned long dimm_rank;
  703. unsigned long total_rank = 0;
  704. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  705. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  706. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  707. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  708. dimm_rank = (dimm_rank & 0x0F) +1;
  709. else
  710. dimm_rank = dimm_rank & 0x0F;
  711. if (dimm_rank > MAXRANKS) {
  712. printf("ERROR: DRAM DIMM detected with %d ranks in "
  713. "slot %d is not supported.\n", dimm_rank, dimm_num);
  714. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  715. printf("Replace the DIMM module with a supported DIMM.\n\n");
  716. HANG();
  717. } else
  718. total_rank += dimm_rank;
  719. }
  720. if (total_rank > MAXRANKS) {
  721. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  722. "for all slots.\n", (unsigned int)total_rank);
  723. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  724. printf("Remove one of the DIMM modules.\n\n");
  725. HANG();
  726. }
  727. }
  728. }
  729. /*------------------------------------------------------------------
  730. * only support 2.5V modules.
  731. * This routine verifies this.
  732. *-----------------------------------------------------------------*/
  733. static void check_voltage_type(unsigned long *dimm_populated,
  734. unsigned char *iic0_dimm_addr,
  735. unsigned long num_dimm_banks)
  736. {
  737. unsigned long dimm_num;
  738. unsigned long voltage_type;
  739. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  740. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  741. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  742. switch (voltage_type) {
  743. case 0x00:
  744. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  745. printf("This DIMM is 5.0 Volt/TTL.\n");
  746. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  747. (unsigned int)dimm_num);
  748. HANG();
  749. break;
  750. case 0x01:
  751. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  752. printf("This DIMM is LVTTL.\n");
  753. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  754. (unsigned int)dimm_num);
  755. HANG();
  756. break;
  757. case 0x02:
  758. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  759. printf("This DIMM is 1.5 Volt.\n");
  760. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  761. (unsigned int)dimm_num);
  762. HANG();
  763. break;
  764. case 0x03:
  765. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  766. printf("This DIMM is 3.3 Volt/TTL.\n");
  767. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  768. (unsigned int)dimm_num);
  769. HANG();
  770. break;
  771. case 0x04:
  772. /* 2.5 Voltage only for DDR1 */
  773. break;
  774. case 0x05:
  775. /* 1.8 Voltage only for DDR2 */
  776. break;
  777. default:
  778. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  779. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  780. (unsigned int)dimm_num);
  781. HANG();
  782. break;
  783. }
  784. }
  785. }
  786. }
  787. /*-----------------------------------------------------------------------------+
  788. * program_copt1.
  789. *-----------------------------------------------------------------------------*/
  790. static void program_copt1(unsigned long *dimm_populated,
  791. unsigned char *iic0_dimm_addr,
  792. unsigned long num_dimm_banks)
  793. {
  794. unsigned long dimm_num;
  795. unsigned long mcopt1;
  796. unsigned long ecc_enabled;
  797. unsigned long ecc = 0;
  798. unsigned long data_width = 0;
  799. unsigned long dimm_32bit;
  800. unsigned long dimm_64bit;
  801. unsigned long registered = 0;
  802. unsigned long attribute = 0;
  803. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  804. unsigned long bankcount;
  805. unsigned long ddrtype;
  806. unsigned long val;
  807. #ifdef CONFIG_DDR_ECC
  808. ecc_enabled = TRUE;
  809. #else
  810. ecc_enabled = FALSE;
  811. #endif
  812. dimm_32bit = FALSE;
  813. dimm_64bit = FALSE;
  814. buf0 = FALSE;
  815. buf1 = FALSE;
  816. /*------------------------------------------------------------------
  817. * Set memory controller options reg 1, SDRAM_MCOPT1.
  818. *-----------------------------------------------------------------*/
  819. mfsdram(SDRAM_MCOPT1, val);
  820. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  821. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  822. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  823. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  824. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  825. SDRAM_MCOPT1_DREF_MASK);
  826. mcopt1 |= SDRAM_MCOPT1_QDEP;
  827. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  828. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  829. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  830. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  831. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  832. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  833. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  834. /* test ecc support */
  835. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  836. if (ecc != 0x02) /* ecc not supported */
  837. ecc_enabled = FALSE;
  838. /* test bank count */
  839. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  840. if (bankcount == 0x04) /* bank count = 4 */
  841. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  842. else /* bank count = 8 */
  843. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  844. /* test DDR type */
  845. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  846. /* test for buffered/unbuffered, registered, differential clocks */
  847. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  848. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  849. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  850. if (dimm_num == 0) {
  851. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  852. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  853. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  854. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  855. if (registered == 1) { /* DDR2 always buffered */
  856. /* TODO: what about above comments ? */
  857. mcopt1 |= SDRAM_MCOPT1_RDEN;
  858. buf0 = TRUE;
  859. } else {
  860. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  861. if ((attribute & 0x02) == 0x00) {
  862. /* buffered not supported */
  863. buf0 = FALSE;
  864. } else {
  865. mcopt1 |= SDRAM_MCOPT1_RDEN;
  866. buf0 = TRUE;
  867. }
  868. }
  869. }
  870. else if (dimm_num == 1) {
  871. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  872. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  873. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  874. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  875. if (registered == 1) {
  876. /* DDR2 always buffered */
  877. mcopt1 |= SDRAM_MCOPT1_RDEN;
  878. buf1 = TRUE;
  879. } else {
  880. if ((attribute & 0x02) == 0x00) {
  881. /* buffered not supported */
  882. buf1 = FALSE;
  883. } else {
  884. mcopt1 |= SDRAM_MCOPT1_RDEN;
  885. buf1 = TRUE;
  886. }
  887. }
  888. }
  889. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  890. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  891. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  892. switch (data_width) {
  893. case 72:
  894. case 64:
  895. dimm_64bit = TRUE;
  896. break;
  897. case 40:
  898. case 32:
  899. dimm_32bit = TRUE;
  900. break;
  901. default:
  902. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  903. data_width);
  904. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  905. break;
  906. }
  907. }
  908. }
  909. /* verify matching properties */
  910. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  911. if (buf0 != buf1) {
  912. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  913. HANG();
  914. }
  915. }
  916. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  917. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  918. HANG();
  919. }
  920. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  921. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  922. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  923. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  924. } else {
  925. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  926. HANG();
  927. }
  928. if (ecc_enabled == TRUE)
  929. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  930. else
  931. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  932. mtsdram(SDRAM_MCOPT1, mcopt1);
  933. }
  934. /*-----------------------------------------------------------------------------+
  935. * program_codt.
  936. *-----------------------------------------------------------------------------*/
  937. static void program_codt(unsigned long *dimm_populated,
  938. unsigned char *iic0_dimm_addr,
  939. unsigned long num_dimm_banks)
  940. {
  941. unsigned long codt;
  942. unsigned long modt0 = 0;
  943. unsigned long modt1 = 0;
  944. unsigned long modt2 = 0;
  945. unsigned long modt3 = 0;
  946. unsigned char dimm_num;
  947. unsigned char dimm_rank;
  948. unsigned char total_rank = 0;
  949. unsigned char total_dimm = 0;
  950. unsigned char dimm_type = 0;
  951. unsigned char firstSlot = 0;
  952. /*------------------------------------------------------------------
  953. * Set the SDRAM Controller On Die Termination Register
  954. *-----------------------------------------------------------------*/
  955. mfsdram(SDRAM_CODT, codt);
  956. codt |= (SDRAM_CODT_IO_NMODE
  957. & (~SDRAM_CODT_DQS_SINGLE_END
  958. & ~SDRAM_CODT_CKSE_SINGLE_END
  959. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  960. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  961. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  962. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  963. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  964. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  965. dimm_rank = (dimm_rank & 0x0F) + 1;
  966. dimm_type = SDRAM_DDR2;
  967. } else {
  968. dimm_rank = dimm_rank & 0x0F;
  969. dimm_type = SDRAM_DDR1;
  970. }
  971. total_rank += dimm_rank;
  972. total_dimm++;
  973. if ((dimm_num == 0) && (total_dimm == 1))
  974. firstSlot = TRUE;
  975. else
  976. firstSlot = FALSE;
  977. }
  978. }
  979. if (dimm_type == SDRAM_DDR2) {
  980. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  981. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  982. if (total_rank == 1) {
  983. codt |= CALC_ODT_R(0);
  984. modt0 = CALC_ODT_W(0);
  985. modt1 = 0x00000000;
  986. modt2 = 0x00000000;
  987. modt3 = 0x00000000;
  988. }
  989. if (total_rank == 2) {
  990. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  991. modt0 = CALC_ODT_W(0);
  992. modt1 = CALC_ODT_W(0);
  993. modt2 = 0x00000000;
  994. modt3 = 0x00000000;
  995. }
  996. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  997. if (total_rank == 1) {
  998. codt |= CALC_ODT_R(2);
  999. modt0 = 0x00000000;
  1000. modt1 = 0x00000000;
  1001. modt2 = CALC_ODT_W(2);
  1002. modt3 = 0x00000000;
  1003. }
  1004. if (total_rank == 2) {
  1005. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1006. modt0 = 0x00000000;
  1007. modt1 = 0x00000000;
  1008. modt2 = CALC_ODT_W(2);
  1009. modt3 = CALC_ODT_W(2);
  1010. }
  1011. }
  1012. if (total_dimm == 2) {
  1013. if (total_rank == 2) {
  1014. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1015. modt0 = CALC_ODT_RW(2);
  1016. modt1 = 0x00000000;
  1017. modt2 = CALC_ODT_RW(0);
  1018. modt3 = 0x00000000;
  1019. }
  1020. if (total_rank == 4) {
  1021. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1022. CALC_ODT_R(2) | CALC_ODT_R(3);
  1023. modt0 = CALC_ODT_RW(2);
  1024. modt1 = 0x00000000;
  1025. modt2 = CALC_ODT_RW(0);
  1026. modt3 = 0x00000000;
  1027. }
  1028. }
  1029. } else {
  1030. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1031. modt0 = 0x00000000;
  1032. modt1 = 0x00000000;
  1033. modt2 = 0x00000000;
  1034. modt3 = 0x00000000;
  1035. if (total_dimm == 1) {
  1036. if (total_rank == 1)
  1037. codt |= 0x00800000;
  1038. if (total_rank == 2)
  1039. codt |= 0x02800000;
  1040. }
  1041. if (total_dimm == 2) {
  1042. if (total_rank == 2)
  1043. codt |= 0x08800000;
  1044. if (total_rank == 4)
  1045. codt |= 0x2a800000;
  1046. }
  1047. }
  1048. debug("nb of dimm %d\n", total_dimm);
  1049. debug("nb of rank %d\n", total_rank);
  1050. if (total_dimm == 1)
  1051. debug("dimm in slot %d\n", firstSlot);
  1052. mtsdram(SDRAM_CODT, codt);
  1053. mtsdram(SDRAM_MODT0, modt0);
  1054. mtsdram(SDRAM_MODT1, modt1);
  1055. mtsdram(SDRAM_MODT2, modt2);
  1056. mtsdram(SDRAM_MODT3, modt3);
  1057. }
  1058. /*-----------------------------------------------------------------------------+
  1059. * program_initplr.
  1060. *-----------------------------------------------------------------------------*/
  1061. static void program_initplr(unsigned long *dimm_populated,
  1062. unsigned char *iic0_dimm_addr,
  1063. unsigned long num_dimm_banks,
  1064. ddr_cas_id_t selected_cas,
  1065. int write_recovery)
  1066. {
  1067. u32 cas = 0;
  1068. u32 odt = 0;
  1069. u32 ods = 0;
  1070. u32 mr;
  1071. u32 wr;
  1072. u32 emr;
  1073. u32 emr2;
  1074. u32 emr3;
  1075. int dimm_num;
  1076. int total_dimm = 0;
  1077. /******************************************************
  1078. ** Assumption: if more than one DIMM, all DIMMs are the same
  1079. ** as already checked in check_memory_type
  1080. ******************************************************/
  1081. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1082. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1083. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1084. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1085. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1086. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1087. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1088. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1089. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1090. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1091. switch (selected_cas) {
  1092. case DDR_CAS_3:
  1093. cas = 3 << 4;
  1094. break;
  1095. case DDR_CAS_4:
  1096. cas = 4 << 4;
  1097. break;
  1098. case DDR_CAS_5:
  1099. cas = 5 << 4;
  1100. break;
  1101. default:
  1102. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1103. HANG();
  1104. break;
  1105. }
  1106. #if 0
  1107. /*
  1108. * ToDo - Still a problem with the write recovery:
  1109. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1110. * in the INITPLR reg to the value calculated in program_mode()
  1111. * results in not correctly working DDR2 memory (crash after
  1112. * relocation).
  1113. *
  1114. * So for now, set the write recovery to 3. This seems to work
  1115. * on the Corair module too.
  1116. *
  1117. * 2007-03-01, sr
  1118. */
  1119. switch (write_recovery) {
  1120. case 3:
  1121. wr = WRITE_RECOV_3;
  1122. break;
  1123. case 4:
  1124. wr = WRITE_RECOV_4;
  1125. break;
  1126. case 5:
  1127. wr = WRITE_RECOV_5;
  1128. break;
  1129. case 6:
  1130. wr = WRITE_RECOV_6;
  1131. break;
  1132. default:
  1133. printf("ERROR: write recovery not support (%d)", write_recovery);
  1134. HANG();
  1135. break;
  1136. }
  1137. #else
  1138. wr = WRITE_RECOV_3; /* test-only, see description above */
  1139. #endif
  1140. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1141. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1142. total_dimm++;
  1143. if (total_dimm == 1) {
  1144. odt = ODT_150_OHM;
  1145. ods = ODS_FULL;
  1146. } else if (total_dimm == 2) {
  1147. odt = ODT_75_OHM;
  1148. ods = ODS_REDUCED;
  1149. } else {
  1150. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1151. HANG();
  1152. }
  1153. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1154. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1155. emr2 = CMD_EMR | SELECT_EMR2;
  1156. emr3 = CMD_EMR | SELECT_EMR3;
  1157. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1158. udelay(1000);
  1159. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1160. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1161. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1162. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1163. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1164. udelay(1000);
  1165. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1166. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1167. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1168. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1169. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1170. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1171. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1172. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1173. } else {
  1174. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1175. HANG();
  1176. }
  1177. }
  1178. /*------------------------------------------------------------------
  1179. * This routine programs the SDRAM_MMODE register.
  1180. * the selected_cas is an output parameter, that will be passed
  1181. * by caller to call the above program_initplr( )
  1182. *-----------------------------------------------------------------*/
  1183. static void program_mode(unsigned long *dimm_populated,
  1184. unsigned char *iic0_dimm_addr,
  1185. unsigned long num_dimm_banks,
  1186. ddr_cas_id_t *selected_cas,
  1187. int *write_recovery)
  1188. {
  1189. unsigned long dimm_num;
  1190. unsigned long sdram_ddr1;
  1191. unsigned long t_wr_ns;
  1192. unsigned long t_wr_clk;
  1193. unsigned long cas_bit;
  1194. unsigned long cas_index;
  1195. unsigned long sdram_freq;
  1196. unsigned long ddr_check;
  1197. unsigned long mmode;
  1198. unsigned long tcyc_reg;
  1199. unsigned long cycle_2_0_clk;
  1200. unsigned long cycle_2_5_clk;
  1201. unsigned long cycle_3_0_clk;
  1202. unsigned long cycle_4_0_clk;
  1203. unsigned long cycle_5_0_clk;
  1204. unsigned long max_2_0_tcyc_ns_x_100;
  1205. unsigned long max_2_5_tcyc_ns_x_100;
  1206. unsigned long max_3_0_tcyc_ns_x_100;
  1207. unsigned long max_4_0_tcyc_ns_x_100;
  1208. unsigned long max_5_0_tcyc_ns_x_100;
  1209. unsigned long cycle_time_ns_x_100[3];
  1210. PPC440_SYS_INFO board_cfg;
  1211. unsigned char cas_2_0_available;
  1212. unsigned char cas_2_5_available;
  1213. unsigned char cas_3_0_available;
  1214. unsigned char cas_4_0_available;
  1215. unsigned char cas_5_0_available;
  1216. unsigned long sdr_ddrpll;
  1217. /*------------------------------------------------------------------
  1218. * Get the board configuration info.
  1219. *-----------------------------------------------------------------*/
  1220. get_sys_info(&board_cfg);
  1221. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1222. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1223. debug("sdram_freq=%d\n", sdram_freq);
  1224. /*------------------------------------------------------------------
  1225. * Handle the timing. We need to find the worst case timing of all
  1226. * the dimm modules installed.
  1227. *-----------------------------------------------------------------*/
  1228. t_wr_ns = 0;
  1229. cas_2_0_available = TRUE;
  1230. cas_2_5_available = TRUE;
  1231. cas_3_0_available = TRUE;
  1232. cas_4_0_available = TRUE;
  1233. cas_5_0_available = TRUE;
  1234. max_2_0_tcyc_ns_x_100 = 10;
  1235. max_2_5_tcyc_ns_x_100 = 10;
  1236. max_3_0_tcyc_ns_x_100 = 10;
  1237. max_4_0_tcyc_ns_x_100 = 10;
  1238. max_5_0_tcyc_ns_x_100 = 10;
  1239. sdram_ddr1 = TRUE;
  1240. /* loop through all the DIMM slots on the board */
  1241. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1242. /* If a dimm is installed in a particular slot ... */
  1243. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1244. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1245. sdram_ddr1 = TRUE;
  1246. else
  1247. sdram_ddr1 = FALSE;
  1248. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1249. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1250. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1251. /* For a particular DIMM, grab the three CAS values it supports */
  1252. for (cas_index = 0; cas_index < 3; cas_index++) {
  1253. switch (cas_index) {
  1254. case 0:
  1255. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1256. break;
  1257. case 1:
  1258. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1259. break;
  1260. default:
  1261. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1262. break;
  1263. }
  1264. if ((tcyc_reg & 0x0F) >= 10) {
  1265. if ((tcyc_reg & 0x0F) == 0x0D) {
  1266. /* Convert from hex to decimal */
  1267. cycle_time_ns_x_100[cas_index] =
  1268. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1269. } else {
  1270. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1271. "in slot %d\n", (unsigned int)dimm_num);
  1272. HANG();
  1273. }
  1274. } else {
  1275. /* Convert from hex to decimal */
  1276. cycle_time_ns_x_100[cas_index] =
  1277. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1278. ((tcyc_reg & 0x0F)*10);
  1279. }
  1280. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1281. cycle_time_ns_x_100[cas_index]);
  1282. }
  1283. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1284. /* supported for a particular DIMM. */
  1285. cas_index = 0;
  1286. if (sdram_ddr1) {
  1287. /*
  1288. * DDR devices use the following bitmask for CAS latency:
  1289. * Bit 7 6 5 4 3 2 1 0
  1290. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1291. */
  1292. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1293. (cycle_time_ns_x_100[cas_index] != 0)) {
  1294. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1295. cycle_time_ns_x_100[cas_index]);
  1296. cas_index++;
  1297. } else {
  1298. if (cas_index != 0)
  1299. cas_index++;
  1300. cas_4_0_available = FALSE;
  1301. }
  1302. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1303. (cycle_time_ns_x_100[cas_index] != 0)) {
  1304. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1305. cycle_time_ns_x_100[cas_index]);
  1306. cas_index++;
  1307. } else {
  1308. if (cas_index != 0)
  1309. cas_index++;
  1310. cas_3_0_available = FALSE;
  1311. }
  1312. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1313. (cycle_time_ns_x_100[cas_index] != 0)) {
  1314. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1315. cycle_time_ns_x_100[cas_index]);
  1316. cas_index++;
  1317. } else {
  1318. if (cas_index != 0)
  1319. cas_index++;
  1320. cas_2_5_available = FALSE;
  1321. }
  1322. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1323. (cycle_time_ns_x_100[cas_index] != 0)) {
  1324. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1325. cycle_time_ns_x_100[cas_index]);
  1326. cas_index++;
  1327. } else {
  1328. if (cas_index != 0)
  1329. cas_index++;
  1330. cas_2_0_available = FALSE;
  1331. }
  1332. } else {
  1333. /*
  1334. * DDR2 devices use the following bitmask for CAS latency:
  1335. * Bit 7 6 5 4 3 2 1 0
  1336. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1337. */
  1338. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1339. (cycle_time_ns_x_100[cas_index] != 0)) {
  1340. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1341. cycle_time_ns_x_100[cas_index]);
  1342. cas_index++;
  1343. } else {
  1344. if (cas_index != 0)
  1345. cas_index++;
  1346. cas_5_0_available = FALSE;
  1347. }
  1348. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1349. (cycle_time_ns_x_100[cas_index] != 0)) {
  1350. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1351. cycle_time_ns_x_100[cas_index]);
  1352. cas_index++;
  1353. } else {
  1354. if (cas_index != 0)
  1355. cas_index++;
  1356. cas_4_0_available = FALSE;
  1357. }
  1358. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1359. (cycle_time_ns_x_100[cas_index] != 0)) {
  1360. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1361. cycle_time_ns_x_100[cas_index]);
  1362. cas_index++;
  1363. } else {
  1364. if (cas_index != 0)
  1365. cas_index++;
  1366. cas_3_0_available = FALSE;
  1367. }
  1368. }
  1369. }
  1370. }
  1371. /*------------------------------------------------------------------
  1372. * Set the SDRAM mode, SDRAM_MMODE
  1373. *-----------------------------------------------------------------*/
  1374. mfsdram(SDRAM_MMODE, mmode);
  1375. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1376. /* add 10 here because of rounding problems */
  1377. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1378. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1379. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1380. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1381. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1382. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1383. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1384. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1385. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1386. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1387. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1388. *selected_cas = DDR_CAS_2;
  1389. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1390. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1391. *selected_cas = DDR_CAS_2_5;
  1392. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1393. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1394. *selected_cas = DDR_CAS_3;
  1395. } else {
  1396. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1397. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1398. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1399. HANG();
  1400. }
  1401. } else { /* DDR2 */
  1402. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1403. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1404. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1405. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1406. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1407. *selected_cas = DDR_CAS_3;
  1408. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1409. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1410. *selected_cas = DDR_CAS_4;
  1411. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1412. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1413. *selected_cas = DDR_CAS_5;
  1414. } else {
  1415. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1416. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1417. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1418. printf("cas3=%d cas4=%d cas5=%d\n",
  1419. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1420. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1421. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1422. HANG();
  1423. }
  1424. }
  1425. if (sdram_ddr1 == TRUE)
  1426. mmode |= SDRAM_MMODE_WR_DDR1;
  1427. else {
  1428. /* loop through all the DIMM slots on the board */
  1429. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1430. /* If a dimm is installed in a particular slot ... */
  1431. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1432. t_wr_ns = max(t_wr_ns,
  1433. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1434. }
  1435. /*
  1436. * convert from nanoseconds to ddr clocks
  1437. * round up if necessary
  1438. */
  1439. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1440. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1441. if (sdram_freq != ddr_check)
  1442. t_wr_clk++;
  1443. switch (t_wr_clk) {
  1444. case 0:
  1445. case 1:
  1446. case 2:
  1447. case 3:
  1448. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1449. break;
  1450. case 4:
  1451. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1452. break;
  1453. case 5:
  1454. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1455. break;
  1456. default:
  1457. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1458. break;
  1459. }
  1460. *write_recovery = t_wr_clk;
  1461. }
  1462. debug("CAS latency = %d\n", *selected_cas);
  1463. debug("Write recovery = %d\n", *write_recovery);
  1464. mtsdram(SDRAM_MMODE, mmode);
  1465. }
  1466. /*-----------------------------------------------------------------------------+
  1467. * program_rtr.
  1468. *-----------------------------------------------------------------------------*/
  1469. static void program_rtr(unsigned long *dimm_populated,
  1470. unsigned char *iic0_dimm_addr,
  1471. unsigned long num_dimm_banks)
  1472. {
  1473. PPC440_SYS_INFO board_cfg;
  1474. unsigned long max_refresh_rate;
  1475. unsigned long dimm_num;
  1476. unsigned long refresh_rate_type;
  1477. unsigned long refresh_rate;
  1478. unsigned long rint;
  1479. unsigned long sdram_freq;
  1480. unsigned long sdr_ddrpll;
  1481. unsigned long val;
  1482. /*------------------------------------------------------------------
  1483. * Get the board configuration info.
  1484. *-----------------------------------------------------------------*/
  1485. get_sys_info(&board_cfg);
  1486. /*------------------------------------------------------------------
  1487. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1488. *-----------------------------------------------------------------*/
  1489. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1490. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1491. max_refresh_rate = 0;
  1492. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1493. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1494. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1495. refresh_rate_type &= 0x7F;
  1496. switch (refresh_rate_type) {
  1497. case 0:
  1498. refresh_rate = 15625;
  1499. break;
  1500. case 1:
  1501. refresh_rate = 3906;
  1502. break;
  1503. case 2:
  1504. refresh_rate = 7812;
  1505. break;
  1506. case 3:
  1507. refresh_rate = 31250;
  1508. break;
  1509. case 4:
  1510. refresh_rate = 62500;
  1511. break;
  1512. case 5:
  1513. refresh_rate = 125000;
  1514. break;
  1515. default:
  1516. refresh_rate = 0;
  1517. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1518. (unsigned int)dimm_num);
  1519. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1520. HANG();
  1521. break;
  1522. }
  1523. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1524. }
  1525. }
  1526. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1527. mfsdram(SDRAM_RTR, val);
  1528. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1529. (SDRAM_RTR_RINT_ENCODE(rint)));
  1530. }
  1531. /*------------------------------------------------------------------
  1532. * This routine programs the SDRAM_TRx registers.
  1533. *-----------------------------------------------------------------*/
  1534. static void program_tr(unsigned long *dimm_populated,
  1535. unsigned char *iic0_dimm_addr,
  1536. unsigned long num_dimm_banks)
  1537. {
  1538. unsigned long dimm_num;
  1539. unsigned long sdram_ddr1;
  1540. unsigned long t_rp_ns;
  1541. unsigned long t_rcd_ns;
  1542. unsigned long t_rrd_ns;
  1543. unsigned long t_ras_ns;
  1544. unsigned long t_rc_ns;
  1545. unsigned long t_rfc_ns;
  1546. unsigned long t_wpc_ns;
  1547. unsigned long t_wtr_ns;
  1548. unsigned long t_rpc_ns;
  1549. unsigned long t_rp_clk;
  1550. unsigned long t_rcd_clk;
  1551. unsigned long t_rrd_clk;
  1552. unsigned long t_ras_clk;
  1553. unsigned long t_rc_clk;
  1554. unsigned long t_rfc_clk;
  1555. unsigned long t_wpc_clk;
  1556. unsigned long t_wtr_clk;
  1557. unsigned long t_rpc_clk;
  1558. unsigned long sdtr1, sdtr2, sdtr3;
  1559. unsigned long ddr_check;
  1560. unsigned long sdram_freq;
  1561. unsigned long sdr_ddrpll;
  1562. PPC440_SYS_INFO board_cfg;
  1563. /*------------------------------------------------------------------
  1564. * Get the board configuration info.
  1565. *-----------------------------------------------------------------*/
  1566. get_sys_info(&board_cfg);
  1567. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1568. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1569. /*------------------------------------------------------------------
  1570. * Handle the timing. We need to find the worst case timing of all
  1571. * the dimm modules installed.
  1572. *-----------------------------------------------------------------*/
  1573. t_rp_ns = 0;
  1574. t_rrd_ns = 0;
  1575. t_rcd_ns = 0;
  1576. t_ras_ns = 0;
  1577. t_rc_ns = 0;
  1578. t_rfc_ns = 0;
  1579. t_wpc_ns = 0;
  1580. t_wtr_ns = 0;
  1581. t_rpc_ns = 0;
  1582. sdram_ddr1 = TRUE;
  1583. /* loop through all the DIMM slots on the board */
  1584. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1585. /* If a dimm is installed in a particular slot ... */
  1586. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1587. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1588. sdram_ddr1 = TRUE;
  1589. else
  1590. sdram_ddr1 = FALSE;
  1591. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1592. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1593. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1594. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1595. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1596. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1597. }
  1598. }
  1599. /*------------------------------------------------------------------
  1600. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1601. *-----------------------------------------------------------------*/
  1602. mfsdram(SDRAM_SDTR1, sdtr1);
  1603. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1604. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1605. /* default values */
  1606. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1607. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1608. /* normal operations */
  1609. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1610. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1611. mtsdram(SDRAM_SDTR1, sdtr1);
  1612. /*------------------------------------------------------------------
  1613. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1614. *-----------------------------------------------------------------*/
  1615. mfsdram(SDRAM_SDTR2, sdtr2);
  1616. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1617. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1618. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1619. SDRAM_SDTR2_RRD_MASK);
  1620. /*
  1621. * convert t_rcd from nanoseconds to ddr clocks
  1622. * round up if necessary
  1623. */
  1624. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1625. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1626. if (sdram_freq != ddr_check)
  1627. t_rcd_clk++;
  1628. switch (t_rcd_clk) {
  1629. case 0:
  1630. case 1:
  1631. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1632. break;
  1633. case 2:
  1634. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1635. break;
  1636. case 3:
  1637. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1638. break;
  1639. case 4:
  1640. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1641. break;
  1642. default:
  1643. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1644. break;
  1645. }
  1646. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1647. if (sdram_freq < 200000000) {
  1648. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1649. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1650. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1651. } else {
  1652. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1653. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1654. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1655. }
  1656. } else { /* DDR2 */
  1657. /* loop through all the DIMM slots on the board */
  1658. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1659. /* If a dimm is installed in a particular slot ... */
  1660. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1661. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1662. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1663. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1664. }
  1665. }
  1666. /*
  1667. * convert from nanoseconds to ddr clocks
  1668. * round up if necessary
  1669. */
  1670. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1671. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1672. if (sdram_freq != ddr_check)
  1673. t_wpc_clk++;
  1674. switch (t_wpc_clk) {
  1675. case 0:
  1676. case 1:
  1677. case 2:
  1678. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1679. break;
  1680. case 3:
  1681. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1682. break;
  1683. case 4:
  1684. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1685. break;
  1686. case 5:
  1687. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1688. break;
  1689. default:
  1690. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1691. break;
  1692. }
  1693. /*
  1694. * convert from nanoseconds to ddr clocks
  1695. * round up if necessary
  1696. */
  1697. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1698. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1699. if (sdram_freq != ddr_check)
  1700. t_wtr_clk++;
  1701. switch (t_wtr_clk) {
  1702. case 0:
  1703. case 1:
  1704. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1705. break;
  1706. case 2:
  1707. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1708. break;
  1709. case 3:
  1710. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1711. break;
  1712. default:
  1713. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1714. break;
  1715. }
  1716. /*
  1717. * convert from nanoseconds to ddr clocks
  1718. * round up if necessary
  1719. */
  1720. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1721. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1722. if (sdram_freq != ddr_check)
  1723. t_rpc_clk++;
  1724. switch (t_rpc_clk) {
  1725. case 0:
  1726. case 1:
  1727. case 2:
  1728. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1729. break;
  1730. case 3:
  1731. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1732. break;
  1733. default:
  1734. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1735. break;
  1736. }
  1737. }
  1738. /* default value */
  1739. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1740. /*
  1741. * convert t_rrd from nanoseconds to ddr clocks
  1742. * round up if necessary
  1743. */
  1744. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1745. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1746. if (sdram_freq != ddr_check)
  1747. t_rrd_clk++;
  1748. if (t_rrd_clk == 3)
  1749. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1750. else
  1751. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1752. /*
  1753. * convert t_rp from nanoseconds to ddr clocks
  1754. * round up if necessary
  1755. */
  1756. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1757. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1758. if (sdram_freq != ddr_check)
  1759. t_rp_clk++;
  1760. switch (t_rp_clk) {
  1761. case 0:
  1762. case 1:
  1763. case 2:
  1764. case 3:
  1765. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1766. break;
  1767. case 4:
  1768. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1769. break;
  1770. case 5:
  1771. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1772. break;
  1773. case 6:
  1774. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1775. break;
  1776. default:
  1777. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1778. break;
  1779. }
  1780. mtsdram(SDRAM_SDTR2, sdtr2);
  1781. /*------------------------------------------------------------------
  1782. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1783. *-----------------------------------------------------------------*/
  1784. mfsdram(SDRAM_SDTR3, sdtr3);
  1785. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1786. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1787. /*
  1788. * convert t_ras from nanoseconds to ddr clocks
  1789. * round up if necessary
  1790. */
  1791. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1792. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1793. if (sdram_freq != ddr_check)
  1794. t_ras_clk++;
  1795. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1796. /*
  1797. * convert t_rc from nanoseconds to ddr clocks
  1798. * round up if necessary
  1799. */
  1800. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1801. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1802. if (sdram_freq != ddr_check)
  1803. t_rc_clk++;
  1804. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1805. /* default xcs value */
  1806. sdtr3 |= SDRAM_SDTR3_XCS;
  1807. /*
  1808. * convert t_rfc from nanoseconds to ddr clocks
  1809. * round up if necessary
  1810. */
  1811. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1812. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1813. if (sdram_freq != ddr_check)
  1814. t_rfc_clk++;
  1815. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1816. mtsdram(SDRAM_SDTR3, sdtr3);
  1817. }
  1818. /*-----------------------------------------------------------------------------+
  1819. * program_bxcf.
  1820. *-----------------------------------------------------------------------------*/
  1821. static void program_bxcf(unsigned long *dimm_populated,
  1822. unsigned char *iic0_dimm_addr,
  1823. unsigned long num_dimm_banks)
  1824. {
  1825. unsigned long dimm_num;
  1826. unsigned long num_col_addr;
  1827. unsigned long num_ranks;
  1828. unsigned long num_banks;
  1829. unsigned long mode;
  1830. unsigned long ind_rank;
  1831. unsigned long ind;
  1832. unsigned long ind_bank;
  1833. unsigned long bank_0_populated;
  1834. /*------------------------------------------------------------------
  1835. * Set the BxCF regs. First, wipe out the bank config registers.
  1836. *-----------------------------------------------------------------*/
  1837. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
  1838. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1839. mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
  1840. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1841. mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
  1842. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1843. mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
  1844. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1845. mode = SDRAM_BXCF_M_BE_ENABLE;
  1846. bank_0_populated = 0;
  1847. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1848. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1849. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1850. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1851. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1852. num_ranks = (num_ranks & 0x0F) +1;
  1853. else
  1854. num_ranks = num_ranks & 0x0F;
  1855. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1856. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1857. if (num_banks == 4)
  1858. ind = 0;
  1859. else
  1860. ind = 5;
  1861. switch (num_col_addr) {
  1862. case 0x08:
  1863. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1864. break;
  1865. case 0x09:
  1866. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1867. break;
  1868. case 0x0A:
  1869. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1870. break;
  1871. case 0x0B:
  1872. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1873. break;
  1874. case 0x0C:
  1875. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1876. break;
  1877. default:
  1878. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1879. (unsigned int)dimm_num);
  1880. printf("ERROR: Unsupported value for number of "
  1881. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1882. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1883. HANG();
  1884. }
  1885. }
  1886. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1887. bank_0_populated = 1;
  1888. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1889. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
  1890. mtdcr(SDRAMC_CFGDATA, mode);
  1891. }
  1892. }
  1893. }
  1894. }
  1895. /*------------------------------------------------------------------
  1896. * program memory queue.
  1897. *-----------------------------------------------------------------*/
  1898. static void program_memory_queue(unsigned long *dimm_populated,
  1899. unsigned char *iic0_dimm_addr,
  1900. unsigned long num_dimm_banks)
  1901. {
  1902. unsigned long dimm_num;
  1903. unsigned long rank_base_addr;
  1904. unsigned long rank_reg;
  1905. unsigned long rank_size_bytes;
  1906. unsigned long rank_size_id;
  1907. unsigned long num_ranks;
  1908. unsigned long baseadd_size;
  1909. unsigned long i;
  1910. unsigned long bank_0_populated = 0;
  1911. /*------------------------------------------------------------------
  1912. * Reset the rank_base_address.
  1913. *-----------------------------------------------------------------*/
  1914. rank_reg = SDRAM_R0BAS;
  1915. rank_base_addr = 0x00000000;
  1916. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1917. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1918. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1919. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1920. num_ranks = (num_ranks & 0x0F) + 1;
  1921. else
  1922. num_ranks = num_ranks & 0x0F;
  1923. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1924. /*------------------------------------------------------------------
  1925. * Set the sizes
  1926. *-----------------------------------------------------------------*/
  1927. baseadd_size = 0;
  1928. rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
  1929. switch (rank_size_id) {
  1930. case 0x02:
  1931. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1932. break;
  1933. case 0x04:
  1934. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1935. break;
  1936. case 0x08:
  1937. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1938. break;
  1939. case 0x10:
  1940. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1941. break;
  1942. case 0x20:
  1943. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1944. break;
  1945. case 0x40:
  1946. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1947. break;
  1948. case 0x80:
  1949. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1950. break;
  1951. default:
  1952. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1953. (unsigned int)dimm_num);
  1954. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1955. (unsigned int)rank_size_id);
  1956. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1957. HANG();
  1958. }
  1959. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1960. bank_0_populated = 1;
  1961. for (i = 0; i < num_ranks; i++) {
  1962. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1963. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  1964. baseadd_size));
  1965. rank_base_addr += rank_size_bytes;
  1966. }
  1967. }
  1968. }
  1969. }
  1970. /*-----------------------------------------------------------------------------+
  1971. * is_ecc_enabled.
  1972. *-----------------------------------------------------------------------------*/
  1973. static unsigned long is_ecc_enabled(void)
  1974. {
  1975. unsigned long dimm_num;
  1976. unsigned long ecc;
  1977. unsigned long val;
  1978. ecc = 0;
  1979. /* loop through all the DIMM slots on the board */
  1980. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1981. mfsdram(SDRAM_MCOPT1, val);
  1982. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  1983. }
  1984. return ecc;
  1985. }
  1986. static void blank_string(int size)
  1987. {
  1988. int i;
  1989. for (i=0; i<size; i++)
  1990. putc('\b');
  1991. for (i=0; i<size; i++)
  1992. putc(' ');
  1993. for (i=0; i<size; i++)
  1994. putc('\b');
  1995. }
  1996. #ifdef CONFIG_DDR_ECC
  1997. /*-----------------------------------------------------------------------------+
  1998. * program_ecc.
  1999. *-----------------------------------------------------------------------------*/
  2000. static void program_ecc(unsigned long *dimm_populated,
  2001. unsigned char *iic0_dimm_addr,
  2002. unsigned long num_dimm_banks,
  2003. unsigned long tlb_word2_i_value)
  2004. {
  2005. unsigned long mcopt1;
  2006. unsigned long mcopt2;
  2007. unsigned long mcstat;
  2008. unsigned long dimm_num;
  2009. unsigned long ecc;
  2010. ecc = 0;
  2011. /* loop through all the DIMM slots on the board */
  2012. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2013. /* If a dimm is installed in a particular slot ... */
  2014. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2015. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2016. }
  2017. if (ecc == 0)
  2018. return;
  2019. mfsdram(SDRAM_MCOPT1, mcopt1);
  2020. mfsdram(SDRAM_MCOPT2, mcopt2);
  2021. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2022. /* DDR controller must be enabled and not in self-refresh. */
  2023. mfsdram(SDRAM_MCSTAT, mcstat);
  2024. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2025. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2026. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2027. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2028. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2029. }
  2030. }
  2031. return;
  2032. }
  2033. #ifdef CONFIG_ECC_ERROR_RESET
  2034. /*
  2035. * Check for ECC errors and reset board upon any error here
  2036. *
  2037. * On the Katmai 440SPe eval board, from time to time, the first
  2038. * lword write access after DDR2 initializazion with ECC checking
  2039. * enabled, leads to an ECC error. I couldn't find a configuration
  2040. * without this happening. On my board with the current setup it
  2041. * happens about 1 from 10 times.
  2042. *
  2043. * The ECC modules used for testing are:
  2044. * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
  2045. *
  2046. * This has to get fixed for the Katmai and tested for the other
  2047. * board (440SP/440SPe) that will eventually use this code in the
  2048. * future.
  2049. *
  2050. * 2007-03-01, sr
  2051. */
  2052. static void check_ecc(void)
  2053. {
  2054. u32 val;
  2055. mfsdram(SDRAM_ECCCR, val);
  2056. if (val != 0) {
  2057. printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
  2058. val, mfdcr(0x4c), mfdcr(0x4e));
  2059. printf("ECC error occured, resetting board...\n");
  2060. do_reset(NULL, 0, 0, NULL);
  2061. }
  2062. }
  2063. #endif
  2064. static void wait_ddr_idle(void)
  2065. {
  2066. u32 val;
  2067. do {
  2068. mfsdram(SDRAM_MCSTAT, val);
  2069. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2070. }
  2071. /*-----------------------------------------------------------------------------+
  2072. * program_ecc_addr.
  2073. *-----------------------------------------------------------------------------*/
  2074. static void program_ecc_addr(unsigned long start_address,
  2075. unsigned long num_bytes,
  2076. unsigned long tlb_word2_i_value)
  2077. {
  2078. unsigned long current_address;
  2079. unsigned long end_address;
  2080. unsigned long address_increment;
  2081. unsigned long mcopt1;
  2082. char str[] = "ECC generation -";
  2083. char slash[] = "\\|/-\\|/-";
  2084. int loop = 0;
  2085. int loopi = 0;
  2086. current_address = start_address;
  2087. mfsdram(SDRAM_MCOPT1, mcopt1);
  2088. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2089. mtsdram(SDRAM_MCOPT1,
  2090. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2091. sync();
  2092. eieio();
  2093. wait_ddr_idle();
  2094. puts(str);
  2095. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2096. /* ECC bit set method for non-cached memory */
  2097. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2098. address_increment = 4;
  2099. else
  2100. address_increment = 8;
  2101. end_address = current_address + num_bytes;
  2102. while (current_address < end_address) {
  2103. *((unsigned long *)current_address) = 0x00000000;
  2104. current_address += address_increment;
  2105. if ((loop++ % (2 << 20)) == 0) {
  2106. putc('\b');
  2107. putc(slash[loopi++ % 8]);
  2108. }
  2109. }
  2110. } else {
  2111. /* ECC bit set method for cached memory */
  2112. dcbz_area(start_address, num_bytes);
  2113. dflush();
  2114. }
  2115. blank_string(strlen(str));
  2116. sync();
  2117. eieio();
  2118. wait_ddr_idle();
  2119. /* clear ECC error repoting registers */
  2120. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2121. mtdcr(0x4c, 0xffffffff);
  2122. mtsdram(SDRAM_MCOPT1,
  2123. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2124. sync();
  2125. eieio();
  2126. wait_ddr_idle();
  2127. #ifdef CONFIG_ECC_ERROR_RESET
  2128. /*
  2129. * One write to 0 is enough to trigger this ECC error
  2130. * (see description above)
  2131. */
  2132. out_be32(0, 0x12345678);
  2133. check_ecc();
  2134. #endif
  2135. }
  2136. }
  2137. #endif
  2138. /*-----------------------------------------------------------------------------+
  2139. * program_DQS_calibration.
  2140. *-----------------------------------------------------------------------------*/
  2141. static void program_DQS_calibration(unsigned long *dimm_populated,
  2142. unsigned char *iic0_dimm_addr,
  2143. unsigned long num_dimm_banks)
  2144. {
  2145. unsigned long val;
  2146. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2147. mtsdram(SDRAM_RQDC, 0x80000037);
  2148. mtsdram(SDRAM_RDCC, 0x40000000);
  2149. mtsdram(SDRAM_RFDC, 0x000001DF);
  2150. test();
  2151. #else
  2152. /*------------------------------------------------------------------
  2153. * Program RDCC register
  2154. * Read sample cycle auto-update enable
  2155. *-----------------------------------------------------------------*/
  2156. /*
  2157. * Modified for the Katmai platform: with some DIMMs, the DDR2
  2158. * controller automatically selects the T2 read cycle, but this
  2159. * proves unreliable. Go ahead and force the DDR2 controller
  2160. * to use the T4 sample and disable the automatic update of the
  2161. * RDSS field.
  2162. */
  2163. mfsdram(SDRAM_RDCC, val);
  2164. mtsdram(SDRAM_RDCC,
  2165. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2166. | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
  2167. /*------------------------------------------------------------------
  2168. * Program RQDC register
  2169. * Internal DQS delay mechanism enable
  2170. *-----------------------------------------------------------------*/
  2171. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2172. /*------------------------------------------------------------------
  2173. * Program RFDC register
  2174. * Set Feedback Fractional Oversample
  2175. * Auto-detect read sample cycle enable
  2176. *-----------------------------------------------------------------*/
  2177. mfsdram(SDRAM_RFDC, val);
  2178. mtsdram(SDRAM_RFDC,
  2179. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2180. SDRAM_RFDC_RFFD_MASK))
  2181. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2182. SDRAM_RFDC_RFFD_ENCODE(0)));
  2183. DQS_calibration_process();
  2184. #endif
  2185. }
  2186. static int short_mem_test(void)
  2187. {
  2188. u32 *membase;
  2189. u32 bxcr_num;
  2190. u32 bxcf;
  2191. int i;
  2192. int j;
  2193. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2194. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2195. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2196. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2197. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2198. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2199. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2200. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2201. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2202. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2203. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2204. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2205. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2206. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2207. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2208. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2209. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2210. int l;
  2211. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2212. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2213. /* Banks enabled */
  2214. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2215. /* Bank is enabled */
  2216. /*------------------------------------------------------------------
  2217. * Run the short memory test.
  2218. *-----------------------------------------------------------------*/
  2219. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2220. for (i = 0; i < NUMMEMTESTS; i++) {
  2221. for (j = 0; j < NUMMEMWORDS; j++) {
  2222. membase[j] = test[i][j];
  2223. ppcDcbf((u32)&(membase[j]));
  2224. }
  2225. sync();
  2226. for (l=0; l<NUMLOOPS; l++) {
  2227. for (j = 0; j < NUMMEMWORDS; j++) {
  2228. if (membase[j] != test[i][j]) {
  2229. ppcDcbf((u32)&(membase[j]));
  2230. return 0;
  2231. }
  2232. ppcDcbf((u32)&(membase[j]));
  2233. }
  2234. sync();
  2235. }
  2236. }
  2237. } /* if bank enabled */
  2238. } /* for bxcf_num */
  2239. return 1;
  2240. }
  2241. #ifndef HARD_CODED_DQS
  2242. /*-----------------------------------------------------------------------------+
  2243. * DQS_calibration_process.
  2244. *-----------------------------------------------------------------------------*/
  2245. static void DQS_calibration_process(void)
  2246. {
  2247. unsigned long rfdc_reg;
  2248. unsigned long rffd;
  2249. unsigned long rqdc_reg;
  2250. unsigned long rqfd;
  2251. unsigned long val;
  2252. long rqfd_average;
  2253. long rffd_average;
  2254. long max_start;
  2255. long min_end;
  2256. unsigned long begin_rqfd[MAXRANKS];
  2257. unsigned long begin_rffd[MAXRANKS];
  2258. unsigned long end_rqfd[MAXRANKS];
  2259. unsigned long end_rffd[MAXRANKS];
  2260. char window_found;
  2261. unsigned long dlycal;
  2262. unsigned long dly_val;
  2263. unsigned long max_pass_length;
  2264. unsigned long current_pass_length;
  2265. unsigned long current_fail_length;
  2266. unsigned long current_start;
  2267. long max_end;
  2268. unsigned char fail_found;
  2269. unsigned char pass_found;
  2270. u32 rqfd_start;
  2271. char str[] = "Auto calibration -";
  2272. char slash[] = "\\|/-\\|/-";
  2273. int loopi = 0;
  2274. /*------------------------------------------------------------------
  2275. * Test to determine the best read clock delay tuning bits.
  2276. *
  2277. * Before the DDR controller can be used, the read clock delay needs to be
  2278. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2279. * This value cannot be hardcoded into the program because it changes
  2280. * depending on the board's setup and environment.
  2281. * To do this, all delay values are tested to see if they
  2282. * work or not. By doing this, you get groups of fails with groups of
  2283. * passing values. The idea is to find the start and end of a passing
  2284. * window and take the center of it to use as the read clock delay.
  2285. *
  2286. * A failure has to be seen first so that when we hit a pass, we know
  2287. * that it is truely the start of the window. If we get passing values
  2288. * to start off with, we don't know if we are at the start of the window.
  2289. *
  2290. * The code assumes that a failure will always be found.
  2291. * If a failure is not found, there is no easy way to get the middle
  2292. * of the passing window. I guess we can pretty much pick any value
  2293. * but some values will be better than others. Since the lowest speed
  2294. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2295. * from experimentation it is safe to say you will always have a failure.
  2296. *-----------------------------------------------------------------*/
  2297. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2298. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2299. puts(str);
  2300. calibration_loop:
  2301. mfsdram(SDRAM_RQDC, rqdc_reg);
  2302. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2303. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2304. max_start = 0;
  2305. min_end = 0;
  2306. begin_rqfd[0] = 0;
  2307. begin_rffd[0] = 0;
  2308. begin_rqfd[1] = 0;
  2309. begin_rffd[1] = 0;
  2310. end_rqfd[0] = 0;
  2311. end_rffd[0] = 0;
  2312. end_rqfd[1] = 0;
  2313. end_rffd[1] = 0;
  2314. window_found = FALSE;
  2315. max_pass_length = 0;
  2316. max_start = 0;
  2317. max_end = 0;
  2318. current_pass_length = 0;
  2319. current_fail_length = 0;
  2320. current_start = 0;
  2321. window_found = FALSE;
  2322. fail_found = FALSE;
  2323. pass_found = FALSE;
  2324. /*
  2325. * get the delay line calibration register value
  2326. */
  2327. mfsdram(SDRAM_DLCR, dlycal);
  2328. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2329. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2330. mfsdram(SDRAM_RFDC, rfdc_reg);
  2331. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2332. /*------------------------------------------------------------------
  2333. * Set the timing reg for the test.
  2334. *-----------------------------------------------------------------*/
  2335. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2336. /*------------------------------------------------------------------
  2337. * See if the rffd value passed.
  2338. *-----------------------------------------------------------------*/
  2339. if (short_mem_test()) {
  2340. if (fail_found == TRUE) {
  2341. pass_found = TRUE;
  2342. if (current_pass_length == 0)
  2343. current_start = rffd;
  2344. current_fail_length = 0;
  2345. current_pass_length++;
  2346. if (current_pass_length > max_pass_length) {
  2347. max_pass_length = current_pass_length;
  2348. max_start = current_start;
  2349. max_end = rffd;
  2350. }
  2351. }
  2352. } else {
  2353. current_pass_length = 0;
  2354. current_fail_length++;
  2355. if (current_fail_length >= (dly_val >> 2)) {
  2356. if (fail_found == FALSE) {
  2357. fail_found = TRUE;
  2358. } else if (pass_found == TRUE) {
  2359. window_found = TRUE;
  2360. break;
  2361. }
  2362. }
  2363. }
  2364. } /* for rffd */
  2365. /*------------------------------------------------------------------
  2366. * Set the average RFFD value
  2367. *-----------------------------------------------------------------*/
  2368. rffd_average = ((max_start + max_end) >> 1);
  2369. if (rffd_average < 0)
  2370. rffd_average = 0;
  2371. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2372. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2373. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2374. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2375. max_pass_length = 0;
  2376. max_start = 0;
  2377. max_end = 0;
  2378. current_pass_length = 0;
  2379. current_fail_length = 0;
  2380. current_start = 0;
  2381. window_found = FALSE;
  2382. fail_found = FALSE;
  2383. pass_found = FALSE;
  2384. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2385. mfsdram(SDRAM_RQDC, rqdc_reg);
  2386. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2387. /*------------------------------------------------------------------
  2388. * Set the timing reg for the test.
  2389. *-----------------------------------------------------------------*/
  2390. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2391. /*------------------------------------------------------------------
  2392. * See if the rffd value passed.
  2393. *-----------------------------------------------------------------*/
  2394. if (short_mem_test()) {
  2395. if (fail_found == TRUE) {
  2396. pass_found = TRUE;
  2397. if (current_pass_length == 0)
  2398. current_start = rqfd;
  2399. current_fail_length = 0;
  2400. current_pass_length++;
  2401. if (current_pass_length > max_pass_length) {
  2402. max_pass_length = current_pass_length;
  2403. max_start = current_start;
  2404. max_end = rqfd;
  2405. }
  2406. }
  2407. } else {
  2408. current_pass_length = 0;
  2409. current_fail_length++;
  2410. if (fail_found == FALSE) {
  2411. fail_found = TRUE;
  2412. } else if (pass_found == TRUE) {
  2413. window_found = TRUE;
  2414. break;
  2415. }
  2416. }
  2417. }
  2418. rqfd_average = ((max_start + max_end) >> 1);
  2419. /*------------------------------------------------------------------
  2420. * Make sure we found the valid read passing window. Halt if not
  2421. *-----------------------------------------------------------------*/
  2422. if (window_found == FALSE) {
  2423. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2424. putc('\b');
  2425. putc(slash[loopi++ % 8]);
  2426. /* try again from with a different RQFD start value */
  2427. rqfd_start++;
  2428. goto calibration_loop;
  2429. }
  2430. printf("\nERROR: Cannot determine a common read delay for the "
  2431. "DIMM(s) installed.\n");
  2432. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2433. HANG();
  2434. }
  2435. blank_string(strlen(str));
  2436. if (rqfd_average < 0)
  2437. rqfd_average = 0;
  2438. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2439. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2440. mtsdram(SDRAM_RQDC,
  2441. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2442. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2443. mfsdram(SDRAM_DLCR, val);
  2444. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2445. mfsdram(SDRAM_RQDC, val);
  2446. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2447. mfsdram(SDRAM_RFDC, val);
  2448. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2449. }
  2450. #else /* calibration test with hardvalues */
  2451. /*-----------------------------------------------------------------------------+
  2452. * DQS_calibration_process.
  2453. *-----------------------------------------------------------------------------*/
  2454. static void test(void)
  2455. {
  2456. unsigned long dimm_num;
  2457. unsigned long ecc_temp;
  2458. unsigned long i, j;
  2459. unsigned long *membase;
  2460. unsigned long bxcf[MAXRANKS];
  2461. unsigned long val;
  2462. char window_found;
  2463. char begin_found[MAXDIMMS];
  2464. char end_found[MAXDIMMS];
  2465. char search_end[MAXDIMMS];
  2466. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2467. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2468. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2469. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2470. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2471. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2472. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2473. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2474. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2475. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2476. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2477. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2478. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2479. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2480. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2481. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2482. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2483. /*------------------------------------------------------------------
  2484. * Test to determine the best read clock delay tuning bits.
  2485. *
  2486. * Before the DDR controller can be used, the read clock delay needs to be
  2487. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2488. * This value cannot be hardcoded into the program because it changes
  2489. * depending on the board's setup and environment.
  2490. * To do this, all delay values are tested to see if they
  2491. * work or not. By doing this, you get groups of fails with groups of
  2492. * passing values. The idea is to find the start and end of a passing
  2493. * window and take the center of it to use as the read clock delay.
  2494. *
  2495. * A failure has to be seen first so that when we hit a pass, we know
  2496. * that it is truely the start of the window. If we get passing values
  2497. * to start off with, we don't know if we are at the start of the window.
  2498. *
  2499. * The code assumes that a failure will always be found.
  2500. * If a failure is not found, there is no easy way to get the middle
  2501. * of the passing window. I guess we can pretty much pick any value
  2502. * but some values will be better than others. Since the lowest speed
  2503. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2504. * from experimentation it is safe to say you will always have a failure.
  2505. *-----------------------------------------------------------------*/
  2506. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2507. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2508. mfsdram(SDRAM_MCOPT1, val);
  2509. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2510. SDRAM_MCOPT1_MCHK_NON);
  2511. window_found = FALSE;
  2512. begin_found[0] = FALSE;
  2513. end_found[0] = FALSE;
  2514. search_end[0] = FALSE;
  2515. begin_found[1] = FALSE;
  2516. end_found[1] = FALSE;
  2517. search_end[1] = FALSE;
  2518. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2519. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2520. /* Banks enabled */
  2521. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2522. /* Bank is enabled */
  2523. membase =
  2524. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2525. /*------------------------------------------------------------------
  2526. * Run the short memory test.
  2527. *-----------------------------------------------------------------*/
  2528. for (i = 0; i < NUMMEMTESTS; i++) {
  2529. for (j = 0; j < NUMMEMWORDS; j++) {
  2530. membase[j] = test[i][j];
  2531. ppcDcbf((u32)&(membase[j]));
  2532. }
  2533. sync();
  2534. for (j = 0; j < NUMMEMWORDS; j++) {
  2535. if (membase[j] != test[i][j]) {
  2536. ppcDcbf((u32)&(membase[j]));
  2537. break;
  2538. }
  2539. ppcDcbf((u32)&(membase[j]));
  2540. }
  2541. sync();
  2542. if (j < NUMMEMWORDS)
  2543. break;
  2544. }
  2545. /*------------------------------------------------------------------
  2546. * See if the rffd value passed.
  2547. *-----------------------------------------------------------------*/
  2548. if (i < NUMMEMTESTS) {
  2549. if ((end_found[dimm_num] == FALSE) &&
  2550. (search_end[dimm_num] == TRUE)) {
  2551. end_found[dimm_num] = TRUE;
  2552. }
  2553. if ((end_found[0] == TRUE) &&
  2554. (end_found[1] == TRUE))
  2555. break;
  2556. } else {
  2557. if (begin_found[dimm_num] == FALSE) {
  2558. begin_found[dimm_num] = TRUE;
  2559. search_end[dimm_num] = TRUE;
  2560. }
  2561. }
  2562. } else {
  2563. begin_found[dimm_num] = TRUE;
  2564. end_found[dimm_num] = TRUE;
  2565. }
  2566. }
  2567. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2568. window_found = TRUE;
  2569. /*------------------------------------------------------------------
  2570. * Make sure we found the valid read passing window. Halt if not
  2571. *-----------------------------------------------------------------*/
  2572. if (window_found == FALSE) {
  2573. printf("ERROR: Cannot determine a common read delay for the "
  2574. "DIMM(s) installed.\n");
  2575. HANG();
  2576. }
  2577. /*------------------------------------------------------------------
  2578. * Restore the ECC variable to what it originally was
  2579. *-----------------------------------------------------------------*/
  2580. mtsdram(SDRAM_MCOPT1,
  2581. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2582. | ecc_temp);
  2583. }
  2584. #endif
  2585. #if defined(DEBUG)
  2586. static void ppc440sp_sdram_register_dump(void)
  2587. {
  2588. unsigned int sdram_reg;
  2589. unsigned int sdram_data;
  2590. unsigned int dcr_data;
  2591. printf("\n Register Dump:\n");
  2592. sdram_reg = SDRAM_MCSTAT;
  2593. mfsdram(sdram_reg, sdram_data);
  2594. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2595. sdram_reg = SDRAM_MCOPT1;
  2596. mfsdram(sdram_reg, sdram_data);
  2597. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2598. sdram_reg = SDRAM_MCOPT2;
  2599. mfsdram(sdram_reg, sdram_data);
  2600. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2601. sdram_reg = SDRAM_MODT0;
  2602. mfsdram(sdram_reg, sdram_data);
  2603. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2604. sdram_reg = SDRAM_MODT1;
  2605. mfsdram(sdram_reg, sdram_data);
  2606. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2607. sdram_reg = SDRAM_MODT2;
  2608. mfsdram(sdram_reg, sdram_data);
  2609. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2610. sdram_reg = SDRAM_MODT3;
  2611. mfsdram(sdram_reg, sdram_data);
  2612. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2613. sdram_reg = SDRAM_CODT;
  2614. mfsdram(sdram_reg, sdram_data);
  2615. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2616. sdram_reg = SDRAM_VVPR;
  2617. mfsdram(sdram_reg, sdram_data);
  2618. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2619. sdram_reg = SDRAM_OPARS;
  2620. mfsdram(sdram_reg, sdram_data);
  2621. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2622. /*
  2623. * OPAR2 is only used as a trigger register.
  2624. * No data is contained in this register, and reading or writing
  2625. * to is can cause bad things to happen (hangs). Just skip it
  2626. * and report NA
  2627. * sdram_reg = SDRAM_OPAR2;
  2628. * mfsdram(sdram_reg, sdram_data);
  2629. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2630. */
  2631. printf(" SDRAM_OPART = N/A ");
  2632. sdram_reg = SDRAM_RTR;
  2633. mfsdram(sdram_reg, sdram_data);
  2634. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2635. sdram_reg = SDRAM_MB0CF;
  2636. mfsdram(sdram_reg, sdram_data);
  2637. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2638. sdram_reg = SDRAM_MB1CF;
  2639. mfsdram(sdram_reg, sdram_data);
  2640. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2641. sdram_reg = SDRAM_MB2CF;
  2642. mfsdram(sdram_reg, sdram_data);
  2643. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2644. sdram_reg = SDRAM_MB3CF;
  2645. mfsdram(sdram_reg, sdram_data);
  2646. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2647. sdram_reg = SDRAM_INITPLR0;
  2648. mfsdram(sdram_reg, sdram_data);
  2649. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2650. sdram_reg = SDRAM_INITPLR1;
  2651. mfsdram(sdram_reg, sdram_data);
  2652. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2653. sdram_reg = SDRAM_INITPLR2;
  2654. mfsdram(sdram_reg, sdram_data);
  2655. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2656. sdram_reg = SDRAM_INITPLR3;
  2657. mfsdram(sdram_reg, sdram_data);
  2658. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2659. sdram_reg = SDRAM_INITPLR4;
  2660. mfsdram(sdram_reg, sdram_data);
  2661. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2662. sdram_reg = SDRAM_INITPLR5;
  2663. mfsdram(sdram_reg, sdram_data);
  2664. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2665. sdram_reg = SDRAM_INITPLR6;
  2666. mfsdram(sdram_reg, sdram_data);
  2667. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2668. sdram_reg = SDRAM_INITPLR7;
  2669. mfsdram(sdram_reg, sdram_data);
  2670. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2671. sdram_reg = SDRAM_INITPLR8;
  2672. mfsdram(sdram_reg, sdram_data);
  2673. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2674. sdram_reg = SDRAM_INITPLR9;
  2675. mfsdram(sdram_reg, sdram_data);
  2676. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2677. sdram_reg = SDRAM_INITPLR10;
  2678. mfsdram(sdram_reg, sdram_data);
  2679. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2680. sdram_reg = SDRAM_INITPLR11;
  2681. mfsdram(sdram_reg, sdram_data);
  2682. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2683. sdram_reg = SDRAM_INITPLR12;
  2684. mfsdram(sdram_reg, sdram_data);
  2685. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2686. sdram_reg = SDRAM_INITPLR13;
  2687. mfsdram(sdram_reg, sdram_data);
  2688. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2689. sdram_reg = SDRAM_INITPLR14;
  2690. mfsdram(sdram_reg, sdram_data);
  2691. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2692. sdram_reg = SDRAM_INITPLR15;
  2693. mfsdram(sdram_reg, sdram_data);
  2694. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2695. sdram_reg = SDRAM_RQDC;
  2696. mfsdram(sdram_reg, sdram_data);
  2697. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2698. sdram_reg = SDRAM_RFDC;
  2699. mfsdram(sdram_reg, sdram_data);
  2700. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2701. sdram_reg = SDRAM_RDCC;
  2702. mfsdram(sdram_reg, sdram_data);
  2703. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2704. sdram_reg = SDRAM_DLCR;
  2705. mfsdram(sdram_reg, sdram_data);
  2706. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2707. sdram_reg = SDRAM_CLKTR;
  2708. mfsdram(sdram_reg, sdram_data);
  2709. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2710. sdram_reg = SDRAM_WRDTR;
  2711. mfsdram(sdram_reg, sdram_data);
  2712. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2713. sdram_reg = SDRAM_SDTR1;
  2714. mfsdram(sdram_reg, sdram_data);
  2715. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2716. sdram_reg = SDRAM_SDTR2;
  2717. mfsdram(sdram_reg, sdram_data);
  2718. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2719. sdram_reg = SDRAM_SDTR3;
  2720. mfsdram(sdram_reg, sdram_data);
  2721. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2722. sdram_reg = SDRAM_MMODE;
  2723. mfsdram(sdram_reg, sdram_data);
  2724. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2725. sdram_reg = SDRAM_MEMODE;
  2726. mfsdram(sdram_reg, sdram_data);
  2727. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2728. sdram_reg = SDRAM_ECCCR;
  2729. mfsdram(sdram_reg, sdram_data);
  2730. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2731. dcr_data = mfdcr(SDRAM_R0BAS);
  2732. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2733. dcr_data = mfdcr(SDRAM_R1BAS);
  2734. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2735. dcr_data = mfdcr(SDRAM_R2BAS);
  2736. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2737. dcr_data = mfdcr(SDRAM_R3BAS);
  2738. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2739. }
  2740. #endif
  2741. #endif /* CONFIG_SPD_EEPROM */