i2c.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707
  1. /*
  2. * (C) Copyright 2000
  3. * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
  4. *
  5. * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  6. * Marius Groeger <mgroeger@sysgo.de>
  7. *
  8. * See file CREDITS for list of people who contributed to this
  9. * project.
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation; either version 2 of
  14. * the License, or (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  24. * MA 02111-1307 USA
  25. *
  26. * Back ported to the 8xx platform (from the 8260 platform) by
  27. * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
  28. */
  29. #include <common.h>
  30. #ifdef CONFIG_HARD_I2C
  31. #include <commproc.h>
  32. #include <i2c.h>
  33. #ifdef CONFIG_LWMON
  34. #include <watchdog.h>
  35. #endif
  36. DECLARE_GLOBAL_DATA_PTR;
  37. /* define to enable debug messages */
  38. #undef DEBUG_I2C
  39. /* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */
  40. #define TOUT_LOOP 1000000
  41. #define NUM_RX_BDS 4
  42. #define NUM_TX_BDS 4
  43. #define MAX_TX_SPACE 256
  44. #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
  45. typedef struct I2C_BD
  46. {
  47. unsigned short status;
  48. unsigned short length;
  49. unsigned char *addr;
  50. } I2C_BD;
  51. #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
  52. #define BD_I2C_TX_CL 0x0001 /* collision error */
  53. #define BD_I2C_TX_UN 0x0002 /* underflow error */
  54. #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
  55. #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
  56. #define BD_I2C_RX_ERR BD_SC_OV
  57. typedef void (*i2c_ecb_t)(int, int); /* error callback function */
  58. /* This structure keeps track of the bd and buffer space usage. */
  59. typedef struct i2c_state {
  60. int rx_idx; /* index to next free Rx BD */
  61. int tx_idx; /* index to next free Tx BD */
  62. void *rxbd; /* pointer to next free Rx BD */
  63. void *txbd; /* pointer to next free Tx BD */
  64. int tx_space; /* number of Tx bytes left */
  65. unsigned char *tx_buf; /* pointer to free Tx area */
  66. i2c_ecb_t err_cb; /* error callback function */
  67. } i2c_state_t;
  68. /* flags for i2c_send() and i2c_receive() */
  69. #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
  70. #define I2CF_START_COND 0x02 /* tx: generate start condition */
  71. #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
  72. /* return codes */
  73. #define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */
  74. #define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */
  75. #define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */
  76. #define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */
  77. /* error callback flags */
  78. #define I2CECB_RX_ERR 0x10 /* this is a receive error */
  79. #define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */
  80. #define I2CECB_RX_MASK 0x0f /* mask for error bits */
  81. #define I2CECB_TX_ERR 0x20 /* this is a transmit error */
  82. #define I2CECB_TX_CL 0x01 /* transmit collision error */
  83. #define I2CECB_TX_UN 0x02 /* transmit underflow error */
  84. #define I2CECB_TX_NAK 0x04 /* transmit no ack error */
  85. #define I2CECB_TX_MASK 0x0f /* mask for error bits */
  86. #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
  87. #ifdef DEBUG_I2C
  88. #define PRINTD(x) printf x
  89. #else
  90. #define PRINTD(x)
  91. #endif
  92. /*
  93. * Returns the best value of I2BRG to meet desired clock speed of I2C with
  94. * input parameters (clock speed, filter, and predivider value).
  95. * It returns computer speed value and the difference between it and desired
  96. * speed.
  97. */
  98. static inline int
  99. i2c_roundrate(int hz, int speed, int filter, int modval,
  100. int *brgval, int *totspeed)
  101. {
  102. int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
  103. PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
  104. hz, speed, filter, modval));
  105. div = moddiv * speed;
  106. brgdiv = (hz + div - 1) / div;
  107. PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
  108. *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter);
  109. if ((*brgval < 0) || (*brgval > 255)) {
  110. PRINTD(("\t\trejected brgval=%d\n", *brgval));
  111. return -1;
  112. }
  113. brgdiv = 2 * (*brgval + 3 + (2 * filter));
  114. div = moddiv * brgdiv ;
  115. *totspeed = hz / div;
  116. PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
  117. return 0;
  118. }
  119. /*
  120. * Sets the I2C clock predivider and divider to meet required clock speed.
  121. */
  122. static int
  123. i2c_setrate (int hz, int speed)
  124. {
  125. immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
  126. volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c;
  127. int brgval,
  128. modval, /* 0-3 */
  129. bestspeed_diff = speed,
  130. bestspeed_brgval = 0,
  131. bestspeed_modval = 0,
  132. bestspeed_filter = 0,
  133. totspeed,
  134. filter = 0; /* Use this fixed value */
  135. for (modval = 0; modval < 4; modval++) {
  136. if (i2c_roundrate(hz,speed,filter,modval,&brgval,&totspeed) == 0) {
  137. int diff = speed - totspeed;
  138. if ((diff >= 0) && (diff < bestspeed_diff)) {
  139. bestspeed_diff = diff;
  140. bestspeed_modval = modval;
  141. bestspeed_brgval = brgval;
  142. bestspeed_filter = filter;
  143. }
  144. }
  145. }
  146. PRINTD (("[I2C] Best is:\n"));
  147. PRINTD (("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
  148. hz,
  149. speed,
  150. bestspeed_filter,
  151. bestspeed_modval,
  152. bestspeed_brgval,
  153. bestspeed_diff));
  154. i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
  155. i2c->i2c_i2brg = bestspeed_brgval & 0xff;
  156. PRINTD (("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod,
  157. i2c->i2c_i2brg));
  158. return 1;
  159. }
  160. void
  161. i2c_init(int speed, int slaveaddr)
  162. {
  163. volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR ;
  164. volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
  165. volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
  166. volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
  167. ulong rbase, tbase;
  168. volatile I2C_BD *rxbd, *txbd;
  169. uint dpaddr;
  170. #ifdef CONFIG_SYS_I2C_INIT_BOARD
  171. /* call board specific i2c bus reset routine before accessing the */
  172. /* environment, which might be in a chip on that bus. For details */
  173. /* about this problem see doc/I2C_Edge_Conditions. */
  174. i2c_init_board();
  175. #endif
  176. #ifdef CONFIG_SYS_I2C_UCODE_PATCH
  177. iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
  178. #else
  179. /* Disable relocation */
  180. iip->iic_rpbase = 0;
  181. #endif
  182. #ifdef CONFIG_SYS_ALLOC_DPRAM
  183. dpaddr = iip->iic_rbase;
  184. if (dpaddr == 0) {
  185. /* need to allocate dual port ram */
  186. dpaddr = dpram_alloc_align(
  187. (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
  188. MAX_TX_SPACE, 8);
  189. }
  190. #else
  191. dpaddr = CPM_I2C_BASE;
  192. #endif
  193. /*
  194. * initialise data in dual port ram:
  195. *
  196. * dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
  197. * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
  198. * tx buffer (MAX_TX_SPACE bytes)
  199. */
  200. rbase = dpaddr;
  201. tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
  202. /* Initialize Port B I2C pins. */
  203. cp->cp_pbpar |= 0x00000030;
  204. cp->cp_pbdir |= 0x00000030;
  205. cp->cp_pbodr |= 0x00000030;
  206. /* Disable interrupts */
  207. i2c->i2c_i2mod = 0x00;
  208. i2c->i2c_i2cmr = 0x00;
  209. i2c->i2c_i2cer = 0xff;
  210. i2c->i2c_i2add = slaveaddr;
  211. /*
  212. * Set the I2C BRG Clock division factor from desired i2c rate
  213. * and current CPU rate (we assume sccr dfbgr field is 0;
  214. * divide BRGCLK by 1)
  215. */
  216. PRINTD(("[I2C] Setting rate...\n"));
  217. i2c_setrate (gd->cpu_clk, CONFIG_SYS_I2C_SPEED) ;
  218. /* Set I2C controller in master mode */
  219. i2c->i2c_i2com = 0x01;
  220. /* Set SDMA bus arbitration level to 5 (SDCR) */
  221. immap->im_siu_conf.sc_sdcr = 0x0001 ;
  222. /* Initialize Tx/Rx parameters */
  223. iip->iic_rbase = rbase;
  224. iip->iic_tbase = tbase;
  225. rxbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_rbase]);
  226. txbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_tbase]);
  227. PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
  228. PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
  229. PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
  230. PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
  231. /* Set big endian byte order */
  232. iip->iic_tfcr = 0x10;
  233. iip->iic_rfcr = 0x10;
  234. /* Set maximum receive size. */
  235. iip->iic_mrblr = I2C_RXTX_LEN;
  236. #ifdef CONFIG_SYS_I2C_UCODE_PATCH
  237. /*
  238. * Initialize required parameters if using microcode patch.
  239. */
  240. iip->iic_rbptr = iip->iic_rbase;
  241. iip->iic_tbptr = iip->iic_tbase;
  242. iip->iic_rstate = 0;
  243. iip->iic_tstate = 0;
  244. #else
  245. cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG;
  246. do {
  247. __asm__ __volatile__ ("eieio");
  248. } while (cp->cp_cpcr & CPM_CR_FLG);
  249. #endif
  250. /* Clear events and interrupts */
  251. i2c->i2c_i2cer = 0xff;
  252. i2c->i2c_i2cmr = 0x00;
  253. }
  254. static void
  255. i2c_newio(i2c_state_t *state)
  256. {
  257. volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR ;
  258. volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
  259. volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
  260. PRINTD(("[I2C] i2c_newio\n"));
  261. #ifdef CONFIG_SYS_I2C_UCODE_PATCH
  262. iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
  263. #endif
  264. state->rx_idx = 0;
  265. state->tx_idx = 0;
  266. state->rxbd = (void*)&cp->cp_dpmem[iip->iic_rbase];
  267. state->txbd = (void*)&cp->cp_dpmem[iip->iic_tbase];
  268. state->tx_space = MAX_TX_SPACE;
  269. state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
  270. state->err_cb = NULL;
  271. PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
  272. PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
  273. PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
  274. /* clear the buffer memory */
  275. memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
  276. }
  277. static int
  278. i2c_send(i2c_state_t *state,
  279. unsigned char address,
  280. unsigned char secondary_address,
  281. unsigned int flags,
  282. unsigned short size,
  283. unsigned char *dataout)
  284. {
  285. volatile I2C_BD *txbd;
  286. int i,j;
  287. PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
  288. address, secondary_address, flags, size));
  289. /* trying to send message larger than BD */
  290. if (size > I2C_RXTX_LEN)
  291. return I2CERR_MSG_TOO_LONG;
  292. /* no more free bds */
  293. if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
  294. return I2CERR_NO_BUFFERS;
  295. txbd = (I2C_BD *)state->txbd;
  296. txbd->addr = state->tx_buf;
  297. PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
  298. if (flags & I2CF_START_COND) {
  299. PRINTD(("[I2C] Formatting addresses...\n"));
  300. if (flags & I2CF_ENABLE_SECONDARY) {
  301. txbd->length = size + 2; /* Length of msg + dest addr */
  302. txbd->addr[0] = address << 1;
  303. txbd->addr[1] = secondary_address;
  304. i = 2;
  305. } else {
  306. txbd->length = size + 1; /* Length of msg + dest addr */
  307. txbd->addr[0] = address << 1; /* Write dest addr to BD */
  308. i = 1;
  309. }
  310. } else {
  311. txbd->length = size; /* Length of message */
  312. i = 0;
  313. }
  314. /* set up txbd */
  315. txbd->status = BD_SC_READY;
  316. if (flags & I2CF_START_COND)
  317. txbd->status |= BD_I2C_TX_START;
  318. if (flags & I2CF_STOP_COND)
  319. txbd->status |= BD_SC_LAST | BD_SC_WRAP;
  320. /* Copy data to send into buffer */
  321. PRINTD(("[I2C] copy data...\n"));
  322. for(j = 0; j < size; i++, j++)
  323. txbd->addr[i] = dataout[j];
  324. PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
  325. txbd->length,
  326. txbd->status,
  327. txbd->addr[0],
  328. txbd->addr[1]));
  329. /* advance state */
  330. state->tx_buf += txbd->length;
  331. state->tx_space -= txbd->length;
  332. state->tx_idx++;
  333. state->txbd = (void*)(txbd + 1);
  334. return 0;
  335. }
  336. static int
  337. i2c_receive(i2c_state_t *state,
  338. unsigned char address,
  339. unsigned char secondary_address,
  340. unsigned int flags,
  341. unsigned short size_to_expect,
  342. unsigned char *datain)
  343. {
  344. volatile I2C_BD *rxbd, *txbd;
  345. PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
  346. /* Expected to receive too much */
  347. if (size_to_expect > I2C_RXTX_LEN)
  348. return I2CERR_MSG_TOO_LONG;
  349. /* no more free bds */
  350. if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
  351. || state->tx_space < 2)
  352. return I2CERR_NO_BUFFERS;
  353. rxbd = (I2C_BD *)state->rxbd;
  354. txbd = (I2C_BD *)state->txbd;
  355. PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
  356. PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
  357. txbd->addr = state->tx_buf;
  358. /* set up TXBD for destination address */
  359. if (flags & I2CF_ENABLE_SECONDARY) {
  360. txbd->length = 2;
  361. txbd->addr[0] = address << 1; /* Write data */
  362. txbd->addr[1] = secondary_address; /* Internal address */
  363. txbd->status = BD_SC_READY;
  364. } else {
  365. txbd->length = 1 + size_to_expect;
  366. txbd->addr[0] = (address << 1) | 0x01;
  367. txbd->status = BD_SC_READY;
  368. memset(&txbd->addr[1], 0, txbd->length);
  369. }
  370. /* set up rxbd for reception */
  371. rxbd->status = BD_SC_EMPTY;
  372. rxbd->length = size_to_expect;
  373. rxbd->addr = datain;
  374. txbd->status |= BD_I2C_TX_START;
  375. if (flags & I2CF_STOP_COND) {
  376. txbd->status |= BD_SC_LAST | BD_SC_WRAP;
  377. rxbd->status |= BD_SC_WRAP;
  378. }
  379. PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
  380. txbd->length,
  381. txbd->status,
  382. txbd->addr[0],
  383. txbd->addr[1]));
  384. PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
  385. rxbd->length,
  386. rxbd->status,
  387. rxbd->addr[0],
  388. rxbd->addr[1]));
  389. /* advance state */
  390. state->tx_buf += txbd->length;
  391. state->tx_space -= txbd->length;
  392. state->tx_idx++;
  393. state->txbd = (void*)(txbd + 1);
  394. state->rx_idx++;
  395. state->rxbd = (void*)(rxbd + 1);
  396. return 0;
  397. }
  398. static int i2c_doio(i2c_state_t *state)
  399. {
  400. volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR ;
  401. volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
  402. volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
  403. volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
  404. volatile I2C_BD *txbd, *rxbd;
  405. volatile int j = 0;
  406. PRINTD(("[I2C] i2c_doio\n"));
  407. #ifdef CONFIG_SYS_I2C_UCODE_PATCH
  408. iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
  409. #endif
  410. if (state->tx_idx <= 0 && state->rx_idx <= 0) {
  411. PRINTD(("[I2C] No I/O is queued\n"));
  412. return I2CERR_QUEUE_EMPTY;
  413. }
  414. iip->iic_rbptr = iip->iic_rbase;
  415. iip->iic_tbptr = iip->iic_tbase;
  416. /* Enable I2C */
  417. PRINTD(("[I2C] Enabling I2C...\n"));
  418. i2c->i2c_i2mod |= 0x01;
  419. /* Begin transmission */
  420. i2c->i2c_i2com |= 0x80;
  421. /* Loop until transmit & receive completed */
  422. if (state->tx_idx > 0) {
  423. txbd = ((I2C_BD*)state->txbd) - 1;
  424. PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
  425. while((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) {
  426. if (ctrlc()) {
  427. return (-1);
  428. }
  429. __asm__ __volatile__ ("eieio");
  430. }
  431. }
  432. if ((state->rx_idx > 0) && (j < TOUT_LOOP)) {
  433. rxbd = ((I2C_BD*)state->rxbd) - 1;
  434. PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
  435. while((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) {
  436. if (ctrlc()) {
  437. return (-1);
  438. }
  439. __asm__ __volatile__ ("eieio");
  440. }
  441. }
  442. /* Turn off I2C */
  443. i2c->i2c_i2mod &= ~0x01;
  444. if (state->err_cb != NULL) {
  445. int n, i, b;
  446. /*
  447. * if we have an error callback function, look at the
  448. * error bits in the bd status and pass them back
  449. */
  450. if ((n = state->tx_idx) > 0) {
  451. for (i = 0; i < n; i++) {
  452. txbd = ((I2C_BD*)state->txbd) - (n - i);
  453. if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
  454. (*state->err_cb)(I2CECB_TX_ERR|b, i);
  455. }
  456. }
  457. if ((n = state->rx_idx) > 0) {
  458. for (i = 0; i < n; i++) {
  459. rxbd = ((I2C_BD*)state->rxbd) - (n - i);
  460. if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
  461. (*state->err_cb)(I2CECB_RX_ERR|b, i);
  462. }
  463. }
  464. if (j >= TOUT_LOOP)
  465. (*state->err_cb)(I2CECB_TIMEOUT, 0);
  466. }
  467. return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;
  468. }
  469. static int had_tx_nak;
  470. static void
  471. i2c_test_callback(int flags, int xnum)
  472. {
  473. if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
  474. had_tx_nak = 1;
  475. }
  476. int i2c_probe(uchar chip)
  477. {
  478. i2c_state_t state;
  479. int rc;
  480. uchar buf[1];
  481. i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
  482. i2c_newio(&state);
  483. state.err_cb = i2c_test_callback;
  484. had_tx_nak = 0;
  485. rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
  486. if (rc != 0)
  487. return (rc);
  488. rc = i2c_doio(&state);
  489. if ((rc != 0) && (rc != I2CERR_TIMEOUT))
  490. return (rc);
  491. return (had_tx_nak);
  492. }
  493. int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
  494. {
  495. i2c_state_t state;
  496. uchar xaddr[4];
  497. int rc;
  498. #ifdef CONFIG_LWMON
  499. WATCHDOG_RESET();
  500. #endif
  501. xaddr[0] = (addr >> 24) & 0xFF;
  502. xaddr[1] = (addr >> 16) & 0xFF;
  503. xaddr[2] = (addr >> 8) & 0xFF;
  504. xaddr[3] = addr & 0xFF;
  505. #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
  506. /*
  507. * EEPROM chips that implement "address overflow" are ones like
  508. * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
  509. * extra bits end up in the "chip address" bit slots. This makes
  510. * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
  511. *
  512. * Note that we consider the length of the address field to still
  513. * be one byte because the extra address bits are hidden in the
  514. * chip address.
  515. */
  516. chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
  517. #endif
  518. i2c_newio(&state);
  519. rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
  520. if (rc != 0) {
  521. if (gd->have_console)
  522. printf("i2c_read: i2c_send failed (%d)\n", rc);
  523. return 1;
  524. }
  525. rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
  526. if (rc != 0) {
  527. if (gd->have_console)
  528. printf("i2c_read: i2c_receive failed (%d)\n", rc);
  529. return 1;
  530. }
  531. rc = i2c_doio(&state);
  532. if (rc != 0) {
  533. if (gd->have_console)
  534. printf("i2c_read: i2c_doio failed (%d)\n", rc);
  535. return 1;
  536. }
  537. return 0;
  538. }
  539. int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
  540. {
  541. i2c_state_t state;
  542. uchar xaddr[4];
  543. int rc;
  544. xaddr[0] = (addr >> 24) & 0xFF;
  545. xaddr[1] = (addr >> 16) & 0xFF;
  546. xaddr[2] = (addr >> 8) & 0xFF;
  547. xaddr[3] = addr & 0xFF;
  548. #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
  549. /*
  550. * EEPROM chips that implement "address overflow" are ones like
  551. * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
  552. * extra bits end up in the "chip address" bit slots. This makes
  553. * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
  554. *
  555. * Note that we consider the length of the address field to still
  556. * be one byte because the extra address bits are hidden in the
  557. * chip address.
  558. */
  559. chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
  560. #endif
  561. i2c_newio(&state);
  562. rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
  563. if (rc != 0) {
  564. if (gd->have_console)
  565. printf("i2c_write: first i2c_send failed (%d)\n", rc);
  566. return 1;
  567. }
  568. rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
  569. if (rc != 0) {
  570. if (gd->have_console)
  571. printf("i2c_write: second i2c_send failed (%d)\n", rc);
  572. return 1;
  573. }
  574. rc = i2c_doio(&state);
  575. if (rc != 0) {
  576. if (gd->have_console)
  577. printf("i2c_write: i2c_doio failed (%d)\n", rc);
  578. return 1;
  579. }
  580. return 0;
  581. }
  582. #endif /* CONFIG_HARD_I2C */