44x_spd_ddr2.c 99 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those currently are:
  5. *
  6. * 405: 405EX(r)
  7. * 440/460: 440SP/440SPe/460EX/460GT
  8. *
  9. * Copyright (c) 2008 Nuovation System Designs, LLC
  10. * Grant Erickson <gerickson@nuovations.com>
  11. * (C) Copyright 2007-2009
  12. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  13. *
  14. * COPYRIGHT AMCC CORPORATION 2004
  15. *
  16. * See file CREDITS for list of people who contributed to this
  17. * project.
  18. *
  19. * This program is free software; you can redistribute it and/or
  20. * modify it under the terms of the GNU General Public License as
  21. * published by the Free Software Foundation; either version 2 of
  22. * the License, or (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  32. * MA 02111-1307 USA
  33. *
  34. */
  35. /* define DEBUG for debugging output (obviously ;-)) */
  36. #if 0
  37. #define DEBUG
  38. #endif
  39. #include <common.h>
  40. #include <command.h>
  41. #include <ppc4xx.h>
  42. #include <i2c.h>
  43. #include <asm/io.h>
  44. #include <asm/processor.h>
  45. #include <asm/mmu.h>
  46. #include <asm/cache.h>
  47. #include "ecc.h"
  48. #if defined(CONFIG_SDRAM_PPC4xx_IBM_DDR2)
  49. #define PPC4xx_IBM_DDR2_DUMP_REGISTER(mnemonic) \
  50. do { \
  51. u32 data; \
  52. mfsdram(SDRAM_##mnemonic, data); \
  53. printf("%20s[%02x] = 0x%08X\n", \
  54. "SDRAM_" #mnemonic, SDRAM_##mnemonic, data); \
  55. } while (0)
  56. #define PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(mnemonic) \
  57. do { \
  58. u32 data; \
  59. data = mfdcr(SDRAM_##mnemonic); \
  60. printf("%20s[%02x] = 0x%08X\n", \
  61. "SDRAM_" #mnemonic, SDRAM_##mnemonic, data); \
  62. } while (0)
  63. #if defined(CONFIG_440)
  64. /*
  65. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2
  66. * memory region. Right now the cache should still be disabled in U-Boot
  67. * because of the EMAC driver, that need its buffer descriptor to be located
  68. * in non cached memory.
  69. *
  70. * If at some time this restriction doesn't apply anymore, just define
  71. * CONFIG_4xx_DCACHE in the board config file and this code should setup
  72. * everything correctly.
  73. */
  74. #ifdef CONFIG_4xx_DCACHE
  75. /* enable caching on SDRAM */
  76. #define MY_TLB_WORD2_I_ENABLE 0
  77. #else
  78. /* disable caching on SDRAM */
  79. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE
  80. #endif /* CONFIG_4xx_DCACHE */
  81. void dcbz_area(u32 start_address, u32 num_bytes);
  82. #endif /* CONFIG_440 */
  83. #define MAXRANKS 4
  84. #define MAXBXCF 4
  85. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  86. #if !defined(CONFIG_NAND_SPL)
  87. /*-----------------------------------------------------------------------------+
  88. * sdram_memsize
  89. *-----------------------------------------------------------------------------*/
  90. phys_size_t sdram_memsize(void)
  91. {
  92. phys_size_t mem_size;
  93. unsigned long mcopt2;
  94. unsigned long mcstat;
  95. unsigned long mb0cf;
  96. unsigned long sdsz;
  97. unsigned long i;
  98. mem_size = 0;
  99. mfsdram(SDRAM_MCOPT2, mcopt2);
  100. mfsdram(SDRAM_MCSTAT, mcstat);
  101. /* DDR controller must be enabled and not in self-refresh. */
  102. /* Otherwise memsize is zero. */
  103. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  104. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  105. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  106. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  107. for (i = 0; i < MAXBXCF; i++) {
  108. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  109. /* Banks enabled */
  110. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  111. #if defined(CONFIG_440)
  112. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  113. #else
  114. sdsz = mb0cf & SDRAM_RXBAS_SDSZ_MASK;
  115. #endif
  116. switch(sdsz) {
  117. case SDRAM_RXBAS_SDSZ_8:
  118. mem_size+=8;
  119. break;
  120. case SDRAM_RXBAS_SDSZ_16:
  121. mem_size+=16;
  122. break;
  123. case SDRAM_RXBAS_SDSZ_32:
  124. mem_size+=32;
  125. break;
  126. case SDRAM_RXBAS_SDSZ_64:
  127. mem_size+=64;
  128. break;
  129. case SDRAM_RXBAS_SDSZ_128:
  130. mem_size+=128;
  131. break;
  132. case SDRAM_RXBAS_SDSZ_256:
  133. mem_size+=256;
  134. break;
  135. case SDRAM_RXBAS_SDSZ_512:
  136. mem_size+=512;
  137. break;
  138. case SDRAM_RXBAS_SDSZ_1024:
  139. mem_size+=1024;
  140. break;
  141. case SDRAM_RXBAS_SDSZ_2048:
  142. mem_size+=2048;
  143. break;
  144. case SDRAM_RXBAS_SDSZ_4096:
  145. mem_size+=4096;
  146. break;
  147. default:
  148. printf("WARNING: Unsupported bank size (SDSZ=0x%lx)!\n"
  149. , sdsz);
  150. mem_size=0;
  151. break;
  152. }
  153. }
  154. }
  155. }
  156. return mem_size << 20;
  157. }
  158. /*-----------------------------------------------------------------------------+
  159. * is_ecc_enabled
  160. *-----------------------------------------------------------------------------*/
  161. static unsigned long is_ecc_enabled(void)
  162. {
  163. unsigned long val;
  164. mfsdram(SDRAM_MCOPT1, val);
  165. return SDRAM_MCOPT1_MCHK_CHK_DECODE(val);
  166. }
  167. /*-----------------------------------------------------------------------------+
  168. * board_add_ram_info
  169. *-----------------------------------------------------------------------------*/
  170. void board_add_ram_info(int use_default)
  171. {
  172. PPC4xx_SYS_INFO board_cfg;
  173. u32 val;
  174. if (is_ecc_enabled())
  175. puts(" (ECC");
  176. else
  177. puts(" (ECC not");
  178. get_sys_info(&board_cfg);
  179. #if defined(CONFIG_405EX)
  180. val = board_cfg.freqPLB;
  181. #else
  182. mfsdr(SDR0_DDR0, val);
  183. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  184. #endif
  185. printf(" enabled, %d MHz", (val * 2) / 1000000);
  186. mfsdram(SDRAM_MMODE, val);
  187. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  188. printf(", CL%d)", val);
  189. }
  190. #endif /* !CONFIG_NAND_SPL */
  191. #if defined(CONFIG_SPD_EEPROM)
  192. /*-----------------------------------------------------------------------------+
  193. * Defines
  194. *-----------------------------------------------------------------------------*/
  195. #ifndef TRUE
  196. #define TRUE 1
  197. #endif
  198. #ifndef FALSE
  199. #define FALSE 0
  200. #endif
  201. #define SDRAM_DDR1 1
  202. #define SDRAM_DDR2 2
  203. #define SDRAM_NONE 0
  204. #define MAXDIMMS 2
  205. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  206. #define ONE_BILLION 1000000000
  207. #define CMD_NOP (7 << 19)
  208. #define CMD_PRECHARGE (2 << 19)
  209. #define CMD_REFRESH (1 << 19)
  210. #define CMD_EMR (0 << 19)
  211. #define CMD_READ (5 << 19)
  212. #define CMD_WRITE (4 << 19)
  213. #define SELECT_MR (0 << 16)
  214. #define SELECT_EMR (1 << 16)
  215. #define SELECT_EMR2 (2 << 16)
  216. #define SELECT_EMR3 (3 << 16)
  217. /* MR */
  218. #define DLL_RESET 0x00000100
  219. #define WRITE_RECOV_2 (1 << 9)
  220. #define WRITE_RECOV_3 (2 << 9)
  221. #define WRITE_RECOV_4 (3 << 9)
  222. #define WRITE_RECOV_5 (4 << 9)
  223. #define WRITE_RECOV_6 (5 << 9)
  224. #define BURST_LEN_4 0x00000002
  225. /* EMR */
  226. #define ODT_0_OHM 0x00000000
  227. #define ODT_50_OHM 0x00000044
  228. #define ODT_75_OHM 0x00000004
  229. #define ODT_150_OHM 0x00000040
  230. #define ODS_FULL 0x00000000
  231. #define ODS_REDUCED 0x00000002
  232. #define OCD_CALIB_DEF 0x00000380
  233. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  234. #define ODT_EB0R (0x80000000 >> 8)
  235. #define ODT_EB0W (0x80000000 >> 7)
  236. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  237. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  238. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  239. /* Defines for the Read Cycle Delay test */
  240. #define NUMMEMTESTS 8
  241. #define NUMMEMWORDS 8
  242. #define NUMLOOPS 64 /* memory test loops */
  243. /*
  244. * Newer PPC's like 440SPe, 460EX/GT can be equipped with more than 2GB of SDRAM.
  245. * To support such configurations, we "only" map the first 2GB via the TLB's. We
  246. * need some free virtual address space for the remaining peripherals like, SoC
  247. * devices, FLASH etc.
  248. *
  249. * Note that ECC is currently not supported on configurations with more than 2GB
  250. * SDRAM. This is because we only map the first 2GB on such systems, and therefore
  251. * the ECC parity byte of the remaining area can't be written.
  252. */
  253. /*
  254. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  255. */
  256. void __spd_ddr_init_hang (void)
  257. {
  258. hang ();
  259. }
  260. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  261. /*
  262. * To provide an interface for board specific config values in this common
  263. * DDR setup code, we implement he "weak" default functions here. They return
  264. * the default value back to the caller.
  265. *
  266. * Please see include/configs/yucca.h for an example fora board specific
  267. * implementation.
  268. */
  269. u32 __ddr_wrdtr(u32 default_val)
  270. {
  271. return default_val;
  272. }
  273. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  274. u32 __ddr_clktr(u32 default_val)
  275. {
  276. return default_val;
  277. }
  278. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  279. /* Private Structure Definitions */
  280. /* enum only to ease code for cas latency setting */
  281. typedef enum ddr_cas_id {
  282. DDR_CAS_2 = 20,
  283. DDR_CAS_2_5 = 25,
  284. DDR_CAS_3 = 30,
  285. DDR_CAS_4 = 40,
  286. DDR_CAS_5 = 50
  287. } ddr_cas_id_t;
  288. /*-----------------------------------------------------------------------------+
  289. * Prototypes
  290. *-----------------------------------------------------------------------------*/
  291. static void get_spd_info(unsigned long *dimm_populated,
  292. unsigned char *iic0_dimm_addr,
  293. unsigned long num_dimm_banks);
  294. static void check_mem_type(unsigned long *dimm_populated,
  295. unsigned char *iic0_dimm_addr,
  296. unsigned long num_dimm_banks);
  297. static void check_frequency(unsigned long *dimm_populated,
  298. unsigned char *iic0_dimm_addr,
  299. unsigned long num_dimm_banks);
  300. static void check_rank_number(unsigned long *dimm_populated,
  301. unsigned char *iic0_dimm_addr,
  302. unsigned long num_dimm_banks);
  303. static void check_voltage_type(unsigned long *dimm_populated,
  304. unsigned char *iic0_dimm_addr,
  305. unsigned long num_dimm_banks);
  306. static void program_memory_queue(unsigned long *dimm_populated,
  307. unsigned char *iic0_dimm_addr,
  308. unsigned long num_dimm_banks);
  309. static void program_codt(unsigned long *dimm_populated,
  310. unsigned char *iic0_dimm_addr,
  311. unsigned long num_dimm_banks);
  312. static void program_mode(unsigned long *dimm_populated,
  313. unsigned char *iic0_dimm_addr,
  314. unsigned long num_dimm_banks,
  315. ddr_cas_id_t *selected_cas,
  316. int *write_recovery);
  317. static void program_tr(unsigned long *dimm_populated,
  318. unsigned char *iic0_dimm_addr,
  319. unsigned long num_dimm_banks);
  320. static void program_rtr(unsigned long *dimm_populated,
  321. unsigned char *iic0_dimm_addr,
  322. unsigned long num_dimm_banks);
  323. static void program_bxcf(unsigned long *dimm_populated,
  324. unsigned char *iic0_dimm_addr,
  325. unsigned long num_dimm_banks);
  326. static void program_copt1(unsigned long *dimm_populated,
  327. unsigned char *iic0_dimm_addr,
  328. unsigned long num_dimm_banks);
  329. static void program_initplr(unsigned long *dimm_populated,
  330. unsigned char *iic0_dimm_addr,
  331. unsigned long num_dimm_banks,
  332. ddr_cas_id_t selected_cas,
  333. int write_recovery);
  334. #ifdef CONFIG_DDR_ECC
  335. static void program_ecc(unsigned long *dimm_populated,
  336. unsigned char *iic0_dimm_addr,
  337. unsigned long num_dimm_banks,
  338. unsigned long tlb_word2_i_value);
  339. #endif
  340. #if !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
  341. static void program_DQS_calibration(unsigned long *dimm_populated,
  342. unsigned char *iic0_dimm_addr,
  343. unsigned long num_dimm_banks);
  344. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  345. static void test(void);
  346. #else
  347. static void DQS_calibration_process(void);
  348. #endif
  349. #endif
  350. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  351. static unsigned char spd_read(uchar chip, uint addr)
  352. {
  353. unsigned char data[2];
  354. if (i2c_probe(chip) == 0)
  355. if (i2c_read(chip, addr, 1, data, 1) == 0)
  356. return data[0];
  357. return 0;
  358. }
  359. /*-----------------------------------------------------------------------------+
  360. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  361. * Note: This routine runs from flash with a stack set up in the chip's
  362. * sram space. It is important that the routine does not require .sbss, .bss or
  363. * .data sections. It also cannot call routines that require these sections.
  364. *-----------------------------------------------------------------------------*/
  365. /*-----------------------------------------------------------------------------
  366. * Function: initdram
  367. * Description: Configures SDRAM memory banks for DDR operation.
  368. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  369. * via the IIC bus and then configures the DDR SDRAM memory
  370. * banks appropriately. If Auto Memory Configuration is
  371. * not used, it is assumed that no DIMM is plugged
  372. *-----------------------------------------------------------------------------*/
  373. phys_size_t initdram(int board_type)
  374. {
  375. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  376. unsigned char spd0[MAX_SPD_BYTES];
  377. unsigned char spd1[MAX_SPD_BYTES];
  378. unsigned char *dimm_spd[MAXDIMMS];
  379. unsigned long dimm_populated[MAXDIMMS];
  380. unsigned long num_dimm_banks; /* on board dimm banks */
  381. unsigned long val;
  382. ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */
  383. int write_recovery;
  384. phys_size_t dram_size = 0;
  385. num_dimm_banks = sizeof(iic0_dimm_addr);
  386. /*------------------------------------------------------------------
  387. * Set up an array of SPD matrixes.
  388. *-----------------------------------------------------------------*/
  389. dimm_spd[0] = spd0;
  390. dimm_spd[1] = spd1;
  391. /*------------------------------------------------------------------
  392. * Reset the DDR-SDRAM controller.
  393. *-----------------------------------------------------------------*/
  394. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  395. mtsdr(SDR0_SRST, 0x00000000);
  396. /*
  397. * Make sure I2C controller is initialized
  398. * before continuing.
  399. */
  400. /* switch to correct I2C bus */
  401. I2C_SET_BUS(CONFIG_SYS_SPD_BUS_NUM);
  402. i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
  403. /*------------------------------------------------------------------
  404. * Clear out the serial presence detect buffers.
  405. * Perform IIC reads from the dimm. Fill in the spds.
  406. * Check to see if the dimm slots are populated
  407. *-----------------------------------------------------------------*/
  408. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  409. /*------------------------------------------------------------------
  410. * Check the memory type for the dimms plugged.
  411. *-----------------------------------------------------------------*/
  412. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  413. /*------------------------------------------------------------------
  414. * Check the frequency supported for the dimms plugged.
  415. *-----------------------------------------------------------------*/
  416. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  417. /*------------------------------------------------------------------
  418. * Check the total rank number.
  419. *-----------------------------------------------------------------*/
  420. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  421. /*------------------------------------------------------------------
  422. * Check the voltage type for the dimms plugged.
  423. *-----------------------------------------------------------------*/
  424. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  425. /*------------------------------------------------------------------
  426. * Program SDRAM controller options 2 register
  427. * Except Enabling of the memory controller.
  428. *-----------------------------------------------------------------*/
  429. mfsdram(SDRAM_MCOPT2, val);
  430. mtsdram(SDRAM_MCOPT2,
  431. (val &
  432. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  433. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  434. SDRAM_MCOPT2_ISIE_MASK))
  435. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  436. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  437. SDRAM_MCOPT2_ISIE_ENABLE));
  438. /*------------------------------------------------------------------
  439. * Program SDRAM controller options 1 register
  440. * Note: Does not enable the memory controller.
  441. *-----------------------------------------------------------------*/
  442. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  443. /*------------------------------------------------------------------
  444. * Set the SDRAM Controller On Die Termination Register
  445. *-----------------------------------------------------------------*/
  446. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  447. /*------------------------------------------------------------------
  448. * Program SDRAM refresh register.
  449. *-----------------------------------------------------------------*/
  450. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  451. /*------------------------------------------------------------------
  452. * Program SDRAM mode register.
  453. *-----------------------------------------------------------------*/
  454. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  455. &selected_cas, &write_recovery);
  456. /*------------------------------------------------------------------
  457. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  458. *-----------------------------------------------------------------*/
  459. mfsdram(SDRAM_WRDTR, val);
  460. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  461. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  462. /*------------------------------------------------------------------
  463. * Set the SDRAM Clock Timing Register
  464. *-----------------------------------------------------------------*/
  465. mfsdram(SDRAM_CLKTR, val);
  466. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  467. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  468. /*------------------------------------------------------------------
  469. * Program the BxCF registers.
  470. *-----------------------------------------------------------------*/
  471. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  472. /*------------------------------------------------------------------
  473. * Program SDRAM timing registers.
  474. *-----------------------------------------------------------------*/
  475. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  476. /*------------------------------------------------------------------
  477. * Set the Extended Mode register
  478. *-----------------------------------------------------------------*/
  479. mfsdram(SDRAM_MEMODE, val);
  480. mtsdram(SDRAM_MEMODE,
  481. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  482. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  483. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  484. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  485. /*------------------------------------------------------------------
  486. * Program Initialization preload registers.
  487. *-----------------------------------------------------------------*/
  488. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  489. selected_cas, write_recovery);
  490. /*------------------------------------------------------------------
  491. * Delay to ensure 200usec have elapsed since reset.
  492. *-----------------------------------------------------------------*/
  493. udelay(400);
  494. /*------------------------------------------------------------------
  495. * Set the memory queue core base addr.
  496. *-----------------------------------------------------------------*/
  497. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  498. /*------------------------------------------------------------------
  499. * Program SDRAM controller options 2 register
  500. * Enable the memory controller.
  501. *-----------------------------------------------------------------*/
  502. mfsdram(SDRAM_MCOPT2, val);
  503. mtsdram(SDRAM_MCOPT2,
  504. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  505. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  506. SDRAM_MCOPT2_IPTR_EXECUTE);
  507. /*------------------------------------------------------------------
  508. * Wait for IPTR_EXECUTE init sequence to complete.
  509. *-----------------------------------------------------------------*/
  510. do {
  511. mfsdram(SDRAM_MCSTAT, val);
  512. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  513. /* enable the controller only after init sequence completes */
  514. mfsdram(SDRAM_MCOPT2, val);
  515. mtsdram(SDRAM_MCOPT2, (val | SDRAM_MCOPT2_DCEN_ENABLE));
  516. /* Make sure delay-line calibration is done before proceeding */
  517. do {
  518. mfsdram(SDRAM_DLCR, val);
  519. } while (!(val & SDRAM_DLCR_DLCS_COMPLETE));
  520. /* get installed memory size */
  521. dram_size = sdram_memsize();
  522. /*
  523. * Limit size to 2GB
  524. */
  525. if (dram_size > CONFIG_MAX_MEM_MAPPED)
  526. dram_size = CONFIG_MAX_MEM_MAPPED;
  527. /* and program tlb entries for this size (dynamic) */
  528. /*
  529. * Program TLB entries with caches enabled, for best performace
  530. * while auto-calibrating and ECC generation
  531. */
  532. program_tlb(0, 0, dram_size, 0);
  533. /*------------------------------------------------------------------
  534. * DQS calibration.
  535. *-----------------------------------------------------------------*/
  536. #if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
  537. DQS_autocalibration();
  538. #else
  539. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  540. #endif
  541. #ifdef CONFIG_DDR_ECC
  542. /*------------------------------------------------------------------
  543. * If ecc is enabled, initialize the parity bits.
  544. *-----------------------------------------------------------------*/
  545. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  546. #endif
  547. /*
  548. * Now after initialization (auto-calibration and ECC generation)
  549. * remove the TLB entries with caches enabled and program again with
  550. * desired cache functionality
  551. */
  552. remove_tlb(0, dram_size);
  553. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  554. ppc4xx_ibm_ddr2_register_dump();
  555. /*
  556. * Clear potential errors resulting from auto-calibration.
  557. * If not done, then we could get an interrupt later on when
  558. * exceptions are enabled.
  559. */
  560. set_mcsr(get_mcsr());
  561. return sdram_memsize();
  562. }
  563. static void get_spd_info(unsigned long *dimm_populated,
  564. unsigned char *iic0_dimm_addr,
  565. unsigned long num_dimm_banks)
  566. {
  567. unsigned long dimm_num;
  568. unsigned long dimm_found;
  569. unsigned char num_of_bytes;
  570. unsigned char total_size;
  571. dimm_found = FALSE;
  572. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  573. num_of_bytes = 0;
  574. total_size = 0;
  575. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  576. debug("\nspd_read(0x%x) returned %d\n",
  577. iic0_dimm_addr[dimm_num], num_of_bytes);
  578. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  579. debug("spd_read(0x%x) returned %d\n",
  580. iic0_dimm_addr[dimm_num], total_size);
  581. if ((num_of_bytes != 0) && (total_size != 0)) {
  582. dimm_populated[dimm_num] = TRUE;
  583. dimm_found = TRUE;
  584. debug("DIMM slot %lu: populated\n", dimm_num);
  585. } else {
  586. dimm_populated[dimm_num] = FALSE;
  587. debug("DIMM slot %lu: Not populated\n", dimm_num);
  588. }
  589. }
  590. if (dimm_found == FALSE) {
  591. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  592. spd_ddr_init_hang ();
  593. }
  594. }
  595. /*------------------------------------------------------------------
  596. * For the memory DIMMs installed, this routine verifies that they
  597. * really are DDR specific DIMMs.
  598. *-----------------------------------------------------------------*/
  599. static void check_mem_type(unsigned long *dimm_populated,
  600. unsigned char *iic0_dimm_addr,
  601. unsigned long num_dimm_banks)
  602. {
  603. unsigned long dimm_num;
  604. unsigned long dimm_type;
  605. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  606. if (dimm_populated[dimm_num] == TRUE) {
  607. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  608. switch (dimm_type) {
  609. case 1:
  610. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  611. "slot %d.\n", (unsigned int)dimm_num);
  612. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  613. printf("Replace the DIMM module with a supported DIMM.\n\n");
  614. spd_ddr_init_hang ();
  615. break;
  616. case 2:
  617. printf("ERROR: EDO DIMM detected in slot %d.\n",
  618. (unsigned int)dimm_num);
  619. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  620. printf("Replace the DIMM module with a supported DIMM.\n\n");
  621. spd_ddr_init_hang ();
  622. break;
  623. case 3:
  624. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  625. (unsigned int)dimm_num);
  626. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  627. printf("Replace the DIMM module with a supported DIMM.\n\n");
  628. spd_ddr_init_hang ();
  629. break;
  630. case 4:
  631. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  632. (unsigned int)dimm_num);
  633. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  634. printf("Replace the DIMM module with a supported DIMM.\n\n");
  635. spd_ddr_init_hang ();
  636. break;
  637. case 5:
  638. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  639. (unsigned int)dimm_num);
  640. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  641. printf("Replace the DIMM module with a supported DIMM.\n\n");
  642. spd_ddr_init_hang ();
  643. break;
  644. case 6:
  645. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  646. (unsigned int)dimm_num);
  647. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  648. printf("Replace the DIMM module with a supported DIMM.\n\n");
  649. spd_ddr_init_hang ();
  650. break;
  651. case 7:
  652. debug("DIMM slot %lu: DDR1 SDRAM detected\n", dimm_num);
  653. dimm_populated[dimm_num] = SDRAM_DDR1;
  654. break;
  655. case 8:
  656. debug("DIMM slot %lu: DDR2 SDRAM detected\n", dimm_num);
  657. dimm_populated[dimm_num] = SDRAM_DDR2;
  658. break;
  659. default:
  660. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  661. (unsigned int)dimm_num);
  662. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  663. printf("Replace the DIMM module with a supported DIMM.\n\n");
  664. spd_ddr_init_hang ();
  665. break;
  666. }
  667. }
  668. }
  669. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  670. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  671. && (dimm_populated[dimm_num] != SDRAM_NONE)
  672. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  673. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  674. spd_ddr_init_hang ();
  675. }
  676. }
  677. }
  678. /*------------------------------------------------------------------
  679. * For the memory DIMMs installed, this routine verifies that
  680. * frequency previously calculated is supported.
  681. *-----------------------------------------------------------------*/
  682. static void check_frequency(unsigned long *dimm_populated,
  683. unsigned char *iic0_dimm_addr,
  684. unsigned long num_dimm_banks)
  685. {
  686. unsigned long dimm_num;
  687. unsigned long tcyc_reg;
  688. unsigned long cycle_time;
  689. unsigned long calc_cycle_time;
  690. unsigned long sdram_freq;
  691. unsigned long sdr_ddrpll;
  692. PPC4xx_SYS_INFO board_cfg;
  693. /*------------------------------------------------------------------
  694. * Get the board configuration info.
  695. *-----------------------------------------------------------------*/
  696. get_sys_info(&board_cfg);
  697. mfsdr(SDR0_DDR0, sdr_ddrpll);
  698. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  699. /*
  700. * calc_cycle_time is calculated from DDR frequency set by board/chip
  701. * and is expressed in multiple of 10 picoseconds
  702. * to match the way DIMM cycle time is calculated below.
  703. */
  704. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  705. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  706. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  707. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  708. /*
  709. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  710. * the higher order nibble (bits 4-7) designates the cycle time
  711. * to a granularity of 1ns;
  712. * the value presented by the lower order nibble (bits 0-3)
  713. * has a granularity of .1ns and is added to the value designated
  714. * by the higher nibble. In addition, four lines of the lower order
  715. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  716. */
  717. /* Convert from hex to decimal */
  718. if ((tcyc_reg & 0x0F) == 0x0D)
  719. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  720. else if ((tcyc_reg & 0x0F) == 0x0C)
  721. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  722. else if ((tcyc_reg & 0x0F) == 0x0B)
  723. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  724. else if ((tcyc_reg & 0x0F) == 0x0A)
  725. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  726. else
  727. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  728. ((tcyc_reg & 0x0F)*10);
  729. debug("cycle_time=%lu [10 picoseconds]\n", cycle_time);
  730. if (cycle_time > (calc_cycle_time + 10)) {
  731. /*
  732. * the provided sdram cycle_time is too small
  733. * for the available DIMM cycle_time.
  734. * The additionnal 100ps is here to accept a small incertainty.
  735. */
  736. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  737. "slot %d \n while calculated cycle time is %d ps.\n",
  738. (unsigned int)(cycle_time*10),
  739. (unsigned int)dimm_num,
  740. (unsigned int)(calc_cycle_time*10));
  741. printf("Replace the DIMM, or change DDR frequency via "
  742. "strapping bits.\n\n");
  743. spd_ddr_init_hang ();
  744. }
  745. }
  746. }
  747. }
  748. /*------------------------------------------------------------------
  749. * For the memory DIMMs installed, this routine verifies two
  750. * ranks/banks maximum are availables.
  751. *-----------------------------------------------------------------*/
  752. static void check_rank_number(unsigned long *dimm_populated,
  753. unsigned char *iic0_dimm_addr,
  754. unsigned long num_dimm_banks)
  755. {
  756. unsigned long dimm_num;
  757. unsigned long dimm_rank;
  758. unsigned long total_rank = 0;
  759. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  760. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  761. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  762. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  763. dimm_rank = (dimm_rank & 0x0F) +1;
  764. else
  765. dimm_rank = dimm_rank & 0x0F;
  766. if (dimm_rank > MAXRANKS) {
  767. printf("ERROR: DRAM DIMM detected with %lu ranks in "
  768. "slot %lu is not supported.\n", dimm_rank, dimm_num);
  769. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  770. printf("Replace the DIMM module with a supported DIMM.\n\n");
  771. spd_ddr_init_hang ();
  772. } else
  773. total_rank += dimm_rank;
  774. }
  775. if (total_rank > MAXRANKS) {
  776. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  777. "for all slots.\n", (unsigned int)total_rank);
  778. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  779. printf("Remove one of the DIMM modules.\n\n");
  780. spd_ddr_init_hang ();
  781. }
  782. }
  783. }
  784. /*------------------------------------------------------------------
  785. * only support 2.5V modules.
  786. * This routine verifies this.
  787. *-----------------------------------------------------------------*/
  788. static void check_voltage_type(unsigned long *dimm_populated,
  789. unsigned char *iic0_dimm_addr,
  790. unsigned long num_dimm_banks)
  791. {
  792. unsigned long dimm_num;
  793. unsigned long voltage_type;
  794. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  795. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  796. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  797. switch (voltage_type) {
  798. case 0x00:
  799. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  800. printf("This DIMM is 5.0 Volt/TTL.\n");
  801. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  802. (unsigned int)dimm_num);
  803. spd_ddr_init_hang ();
  804. break;
  805. case 0x01:
  806. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  807. printf("This DIMM is LVTTL.\n");
  808. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  809. (unsigned int)dimm_num);
  810. spd_ddr_init_hang ();
  811. break;
  812. case 0x02:
  813. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  814. printf("This DIMM is 1.5 Volt.\n");
  815. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  816. (unsigned int)dimm_num);
  817. spd_ddr_init_hang ();
  818. break;
  819. case 0x03:
  820. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  821. printf("This DIMM is 3.3 Volt/TTL.\n");
  822. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  823. (unsigned int)dimm_num);
  824. spd_ddr_init_hang ();
  825. break;
  826. case 0x04:
  827. /* 2.5 Voltage only for DDR1 */
  828. break;
  829. case 0x05:
  830. /* 1.8 Voltage only for DDR2 */
  831. break;
  832. default:
  833. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  834. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  835. (unsigned int)dimm_num);
  836. spd_ddr_init_hang ();
  837. break;
  838. }
  839. }
  840. }
  841. }
  842. /*-----------------------------------------------------------------------------+
  843. * program_copt1.
  844. *-----------------------------------------------------------------------------*/
  845. static void program_copt1(unsigned long *dimm_populated,
  846. unsigned char *iic0_dimm_addr,
  847. unsigned long num_dimm_banks)
  848. {
  849. unsigned long dimm_num;
  850. unsigned long mcopt1;
  851. unsigned long ecc_enabled;
  852. unsigned long ecc = 0;
  853. unsigned long data_width = 0;
  854. unsigned long dimm_32bit;
  855. unsigned long dimm_64bit;
  856. unsigned long registered = 0;
  857. unsigned long attribute = 0;
  858. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  859. unsigned long bankcount;
  860. unsigned long ddrtype;
  861. unsigned long val;
  862. #ifdef CONFIG_DDR_ECC
  863. ecc_enabled = TRUE;
  864. #else
  865. ecc_enabled = FALSE;
  866. #endif
  867. dimm_32bit = FALSE;
  868. dimm_64bit = FALSE;
  869. buf0 = FALSE;
  870. buf1 = FALSE;
  871. /*------------------------------------------------------------------
  872. * Set memory controller options reg 1, SDRAM_MCOPT1.
  873. *-----------------------------------------------------------------*/
  874. mfsdram(SDRAM_MCOPT1, val);
  875. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  876. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  877. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  878. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  879. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  880. SDRAM_MCOPT1_DREF_MASK);
  881. mcopt1 |= SDRAM_MCOPT1_QDEP;
  882. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  883. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  884. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  885. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  886. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  887. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  888. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  889. /* test ecc support */
  890. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  891. if (ecc != 0x02) /* ecc not supported */
  892. ecc_enabled = FALSE;
  893. /* test bank count */
  894. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  895. if (bankcount == 0x04) /* bank count = 4 */
  896. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  897. else /* bank count = 8 */
  898. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  899. /* test DDR type */
  900. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  901. /* test for buffered/unbuffered, registered, differential clocks */
  902. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  903. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  904. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  905. if (dimm_num == 0) {
  906. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  907. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  908. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  909. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  910. if (registered == 1) { /* DDR2 always buffered */
  911. /* TODO: what about above comments ? */
  912. mcopt1 |= SDRAM_MCOPT1_RDEN;
  913. buf0 = TRUE;
  914. } else {
  915. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  916. if ((attribute & 0x02) == 0x00) {
  917. /* buffered not supported */
  918. buf0 = FALSE;
  919. } else {
  920. mcopt1 |= SDRAM_MCOPT1_RDEN;
  921. buf0 = TRUE;
  922. }
  923. }
  924. }
  925. else if (dimm_num == 1) {
  926. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  927. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  928. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  929. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  930. if (registered == 1) {
  931. /* DDR2 always buffered */
  932. mcopt1 |= SDRAM_MCOPT1_RDEN;
  933. buf1 = TRUE;
  934. } else {
  935. if ((attribute & 0x02) == 0x00) {
  936. /* buffered not supported */
  937. buf1 = FALSE;
  938. } else {
  939. mcopt1 |= SDRAM_MCOPT1_RDEN;
  940. buf1 = TRUE;
  941. }
  942. }
  943. }
  944. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  945. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  946. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  947. switch (data_width) {
  948. case 72:
  949. case 64:
  950. dimm_64bit = TRUE;
  951. break;
  952. case 40:
  953. case 32:
  954. dimm_32bit = TRUE;
  955. break;
  956. default:
  957. printf("WARNING: Detected a DIMM with a data width of %lu bits.\n",
  958. data_width);
  959. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  960. break;
  961. }
  962. }
  963. }
  964. /* verify matching properties */
  965. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  966. if (buf0 != buf1) {
  967. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  968. spd_ddr_init_hang ();
  969. }
  970. }
  971. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  972. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  973. spd_ddr_init_hang ();
  974. }
  975. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  976. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  977. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  978. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  979. } else {
  980. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  981. spd_ddr_init_hang ();
  982. }
  983. if (ecc_enabled == TRUE)
  984. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  985. else
  986. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  987. mtsdram(SDRAM_MCOPT1, mcopt1);
  988. }
  989. /*-----------------------------------------------------------------------------+
  990. * program_codt.
  991. *-----------------------------------------------------------------------------*/
  992. static void program_codt(unsigned long *dimm_populated,
  993. unsigned char *iic0_dimm_addr,
  994. unsigned long num_dimm_banks)
  995. {
  996. unsigned long codt;
  997. unsigned long modt0 = 0;
  998. unsigned long modt1 = 0;
  999. unsigned long modt2 = 0;
  1000. unsigned long modt3 = 0;
  1001. unsigned char dimm_num;
  1002. unsigned char dimm_rank;
  1003. unsigned char total_rank = 0;
  1004. unsigned char total_dimm = 0;
  1005. unsigned char dimm_type = 0;
  1006. unsigned char firstSlot = 0;
  1007. /*------------------------------------------------------------------
  1008. * Set the SDRAM Controller On Die Termination Register
  1009. *-----------------------------------------------------------------*/
  1010. mfsdram(SDRAM_CODT, codt);
  1011. codt &= ~(SDRAM_CODT_DQS_SINGLE_END | SDRAM_CODT_CKSE_SINGLE_END);
  1012. codt |= SDRAM_CODT_IO_NMODE;
  1013. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1014. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1015. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  1016. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  1017. dimm_rank = (dimm_rank & 0x0F) + 1;
  1018. dimm_type = SDRAM_DDR2;
  1019. } else {
  1020. dimm_rank = dimm_rank & 0x0F;
  1021. dimm_type = SDRAM_DDR1;
  1022. }
  1023. total_rank += dimm_rank;
  1024. total_dimm++;
  1025. if ((dimm_num == 0) && (total_dimm == 1))
  1026. firstSlot = TRUE;
  1027. else
  1028. firstSlot = FALSE;
  1029. }
  1030. }
  1031. if (dimm_type == SDRAM_DDR2) {
  1032. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1033. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1034. if (total_rank == 1) { /* PUUU */
  1035. codt |= CALC_ODT_R(0);
  1036. modt0 = CALC_ODT_W(0);
  1037. modt1 = 0x00000000;
  1038. modt2 = 0x00000000;
  1039. modt3 = 0x00000000;
  1040. }
  1041. if (total_rank == 2) { /* PPUU */
  1042. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1043. modt0 = CALC_ODT_W(0) | CALC_ODT_W(1);
  1044. modt1 = 0x00000000;
  1045. modt2 = 0x00000000;
  1046. modt3 = 0x00000000;
  1047. }
  1048. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1049. if (total_rank == 1) { /* UUPU */
  1050. codt |= CALC_ODT_R(2);
  1051. modt0 = 0x00000000;
  1052. modt1 = 0x00000000;
  1053. modt2 = CALC_ODT_W(2);
  1054. modt3 = 0x00000000;
  1055. }
  1056. if (total_rank == 2) { /* UUPP */
  1057. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1058. modt0 = 0x00000000;
  1059. modt1 = 0x00000000;
  1060. modt2 = CALC_ODT_W(2) | CALC_ODT_W(3);
  1061. modt3 = 0x00000000;
  1062. }
  1063. }
  1064. if (total_dimm == 2) {
  1065. if (total_rank == 2) { /* PUPU */
  1066. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1067. modt0 = CALC_ODT_RW(2);
  1068. modt1 = 0x00000000;
  1069. modt2 = CALC_ODT_RW(0);
  1070. modt3 = 0x00000000;
  1071. }
  1072. if (total_rank == 4) { /* PPPP */
  1073. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1074. CALC_ODT_R(2) | CALC_ODT_R(3);
  1075. modt0 = CALC_ODT_RW(2) | CALC_ODT_RW(3);
  1076. modt1 = 0x00000000;
  1077. modt2 = CALC_ODT_RW(0) | CALC_ODT_RW(1);
  1078. modt3 = 0x00000000;
  1079. }
  1080. }
  1081. } else {
  1082. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1083. modt0 = 0x00000000;
  1084. modt1 = 0x00000000;
  1085. modt2 = 0x00000000;
  1086. modt3 = 0x00000000;
  1087. if (total_dimm == 1) {
  1088. if (total_rank == 1)
  1089. codt |= 0x00800000;
  1090. if (total_rank == 2)
  1091. codt |= 0x02800000;
  1092. }
  1093. if (total_dimm == 2) {
  1094. if (total_rank == 2)
  1095. codt |= 0x08800000;
  1096. if (total_rank == 4)
  1097. codt |= 0x2a800000;
  1098. }
  1099. }
  1100. debug("nb of dimm %d\n", total_dimm);
  1101. debug("nb of rank %d\n", total_rank);
  1102. if (total_dimm == 1)
  1103. debug("dimm in slot %d\n", firstSlot);
  1104. mtsdram(SDRAM_CODT, codt);
  1105. mtsdram(SDRAM_MODT0, modt0);
  1106. mtsdram(SDRAM_MODT1, modt1);
  1107. mtsdram(SDRAM_MODT2, modt2);
  1108. mtsdram(SDRAM_MODT3, modt3);
  1109. }
  1110. /*-----------------------------------------------------------------------------+
  1111. * program_initplr.
  1112. *-----------------------------------------------------------------------------*/
  1113. static void program_initplr(unsigned long *dimm_populated,
  1114. unsigned char *iic0_dimm_addr,
  1115. unsigned long num_dimm_banks,
  1116. ddr_cas_id_t selected_cas,
  1117. int write_recovery)
  1118. {
  1119. u32 cas = 0;
  1120. u32 odt = 0;
  1121. u32 ods = 0;
  1122. u32 mr;
  1123. u32 wr;
  1124. u32 emr;
  1125. u32 emr2;
  1126. u32 emr3;
  1127. int dimm_num;
  1128. int total_dimm = 0;
  1129. /******************************************************
  1130. ** Assumption: if more than one DIMM, all DIMMs are the same
  1131. ** as already checked in check_memory_type
  1132. ******************************************************/
  1133. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1134. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1135. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1136. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1137. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1138. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1139. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1140. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1141. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1142. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1143. switch (selected_cas) {
  1144. case DDR_CAS_3:
  1145. cas = 3 << 4;
  1146. break;
  1147. case DDR_CAS_4:
  1148. cas = 4 << 4;
  1149. break;
  1150. case DDR_CAS_5:
  1151. cas = 5 << 4;
  1152. break;
  1153. default:
  1154. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1155. spd_ddr_init_hang ();
  1156. break;
  1157. }
  1158. #if 0
  1159. /*
  1160. * ToDo - Still a problem with the write recovery:
  1161. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1162. * in the INITPLR reg to the value calculated in program_mode()
  1163. * results in not correctly working DDR2 memory (crash after
  1164. * relocation).
  1165. *
  1166. * So for now, set the write recovery to 3. This seems to work
  1167. * on the Corair module too.
  1168. *
  1169. * 2007-03-01, sr
  1170. */
  1171. switch (write_recovery) {
  1172. case 3:
  1173. wr = WRITE_RECOV_3;
  1174. break;
  1175. case 4:
  1176. wr = WRITE_RECOV_4;
  1177. break;
  1178. case 5:
  1179. wr = WRITE_RECOV_5;
  1180. break;
  1181. case 6:
  1182. wr = WRITE_RECOV_6;
  1183. break;
  1184. default:
  1185. printf("ERROR: write recovery not support (%d)", write_recovery);
  1186. spd_ddr_init_hang ();
  1187. break;
  1188. }
  1189. #else
  1190. wr = WRITE_RECOV_3; /* test-only, see description above */
  1191. #endif
  1192. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1193. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1194. total_dimm++;
  1195. if (total_dimm == 1) {
  1196. odt = ODT_150_OHM;
  1197. ods = ODS_FULL;
  1198. } else if (total_dimm == 2) {
  1199. odt = ODT_75_OHM;
  1200. ods = ODS_REDUCED;
  1201. } else {
  1202. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1203. spd_ddr_init_hang ();
  1204. }
  1205. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1206. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1207. emr2 = CMD_EMR | SELECT_EMR2;
  1208. emr3 = CMD_EMR | SELECT_EMR3;
  1209. /* NOP - Wait 106 MemClk cycles */
  1210. mtsdram(SDRAM_INITPLR0, SDRAM_INITPLR_ENABLE | CMD_NOP |
  1211. SDRAM_INITPLR_IMWT_ENCODE(106));
  1212. udelay(1000);
  1213. /* precharge 4 MemClk cycles */
  1214. mtsdram(SDRAM_INITPLR1, SDRAM_INITPLR_ENABLE | CMD_PRECHARGE |
  1215. SDRAM_INITPLR_IMWT_ENCODE(4));
  1216. /* EMR2 - Wait tMRD (2 MemClk cycles) */
  1217. mtsdram(SDRAM_INITPLR2, SDRAM_INITPLR_ENABLE | emr2 |
  1218. SDRAM_INITPLR_IMWT_ENCODE(2));
  1219. /* EMR3 - Wait tMRD (2 MemClk cycles) */
  1220. mtsdram(SDRAM_INITPLR3, SDRAM_INITPLR_ENABLE | emr3 |
  1221. SDRAM_INITPLR_IMWT_ENCODE(2));
  1222. /* EMR DLL ENABLE - Wait tMRD (2 MemClk cycles) */
  1223. mtsdram(SDRAM_INITPLR4, SDRAM_INITPLR_ENABLE | emr |
  1224. SDRAM_INITPLR_IMWT_ENCODE(2));
  1225. /* MR w/ DLL reset - 200 cycle wait for DLL reset */
  1226. mtsdram(SDRAM_INITPLR5, SDRAM_INITPLR_ENABLE | mr | DLL_RESET |
  1227. SDRAM_INITPLR_IMWT_ENCODE(200));
  1228. udelay(1000);
  1229. /* precharge 4 MemClk cycles */
  1230. mtsdram(SDRAM_INITPLR6, SDRAM_INITPLR_ENABLE | CMD_PRECHARGE |
  1231. SDRAM_INITPLR_IMWT_ENCODE(4));
  1232. /* Refresh 25 MemClk cycles */
  1233. mtsdram(SDRAM_INITPLR7, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
  1234. SDRAM_INITPLR_IMWT_ENCODE(25));
  1235. /* Refresh 25 MemClk cycles */
  1236. mtsdram(SDRAM_INITPLR8, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
  1237. SDRAM_INITPLR_IMWT_ENCODE(25));
  1238. /* Refresh 25 MemClk cycles */
  1239. mtsdram(SDRAM_INITPLR9, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
  1240. SDRAM_INITPLR_IMWT_ENCODE(25));
  1241. /* Refresh 25 MemClk cycles */
  1242. mtsdram(SDRAM_INITPLR10, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
  1243. SDRAM_INITPLR_IMWT_ENCODE(25));
  1244. /* MR w/o DLL reset - Wait tMRD (2 MemClk cycles) */
  1245. mtsdram(SDRAM_INITPLR11, SDRAM_INITPLR_ENABLE | mr |
  1246. SDRAM_INITPLR_IMWT_ENCODE(2));
  1247. /* EMR OCD Default - Wait tMRD (2 MemClk cycles) */
  1248. mtsdram(SDRAM_INITPLR12, SDRAM_INITPLR_ENABLE | OCD_CALIB_DEF |
  1249. SDRAM_INITPLR_IMWT_ENCODE(2) | emr);
  1250. /* EMR OCD Exit */
  1251. mtsdram(SDRAM_INITPLR13, SDRAM_INITPLR_ENABLE | emr |
  1252. SDRAM_INITPLR_IMWT_ENCODE(2));
  1253. } else {
  1254. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1255. spd_ddr_init_hang ();
  1256. }
  1257. }
  1258. /*------------------------------------------------------------------
  1259. * This routine programs the SDRAM_MMODE register.
  1260. * the selected_cas is an output parameter, that will be passed
  1261. * by caller to call the above program_initplr( )
  1262. *-----------------------------------------------------------------*/
  1263. static void program_mode(unsigned long *dimm_populated,
  1264. unsigned char *iic0_dimm_addr,
  1265. unsigned long num_dimm_banks,
  1266. ddr_cas_id_t *selected_cas,
  1267. int *write_recovery)
  1268. {
  1269. unsigned long dimm_num;
  1270. unsigned long sdram_ddr1;
  1271. unsigned long t_wr_ns;
  1272. unsigned long t_wr_clk;
  1273. unsigned long cas_bit;
  1274. unsigned long cas_index;
  1275. unsigned long sdram_freq;
  1276. unsigned long ddr_check;
  1277. unsigned long mmode;
  1278. unsigned long tcyc_reg;
  1279. unsigned long cycle_2_0_clk;
  1280. unsigned long cycle_2_5_clk;
  1281. unsigned long cycle_3_0_clk;
  1282. unsigned long cycle_4_0_clk;
  1283. unsigned long cycle_5_0_clk;
  1284. unsigned long max_2_0_tcyc_ns_x_100;
  1285. unsigned long max_2_5_tcyc_ns_x_100;
  1286. unsigned long max_3_0_tcyc_ns_x_100;
  1287. unsigned long max_4_0_tcyc_ns_x_100;
  1288. unsigned long max_5_0_tcyc_ns_x_100;
  1289. unsigned long cycle_time_ns_x_100[3];
  1290. PPC4xx_SYS_INFO board_cfg;
  1291. unsigned char cas_2_0_available;
  1292. unsigned char cas_2_5_available;
  1293. unsigned char cas_3_0_available;
  1294. unsigned char cas_4_0_available;
  1295. unsigned char cas_5_0_available;
  1296. unsigned long sdr_ddrpll;
  1297. /*------------------------------------------------------------------
  1298. * Get the board configuration info.
  1299. *-----------------------------------------------------------------*/
  1300. get_sys_info(&board_cfg);
  1301. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1302. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1303. debug("sdram_freq=%lu\n", sdram_freq);
  1304. /*------------------------------------------------------------------
  1305. * Handle the timing. We need to find the worst case timing of all
  1306. * the dimm modules installed.
  1307. *-----------------------------------------------------------------*/
  1308. t_wr_ns = 0;
  1309. cas_2_0_available = TRUE;
  1310. cas_2_5_available = TRUE;
  1311. cas_3_0_available = TRUE;
  1312. cas_4_0_available = TRUE;
  1313. cas_5_0_available = TRUE;
  1314. max_2_0_tcyc_ns_x_100 = 10;
  1315. max_2_5_tcyc_ns_x_100 = 10;
  1316. max_3_0_tcyc_ns_x_100 = 10;
  1317. max_4_0_tcyc_ns_x_100 = 10;
  1318. max_5_0_tcyc_ns_x_100 = 10;
  1319. sdram_ddr1 = TRUE;
  1320. /* loop through all the DIMM slots on the board */
  1321. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1322. /* If a dimm is installed in a particular slot ... */
  1323. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1324. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1325. sdram_ddr1 = TRUE;
  1326. else
  1327. sdram_ddr1 = FALSE;
  1328. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1329. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1330. debug("cas_bit[SPD byte 18]=%02lx\n", cas_bit);
  1331. /* For a particular DIMM, grab the three CAS values it supports */
  1332. for (cas_index = 0; cas_index < 3; cas_index++) {
  1333. switch (cas_index) {
  1334. case 0:
  1335. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1336. break;
  1337. case 1:
  1338. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1339. break;
  1340. default:
  1341. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1342. break;
  1343. }
  1344. if ((tcyc_reg & 0x0F) >= 10) {
  1345. if ((tcyc_reg & 0x0F) == 0x0D) {
  1346. /* Convert from hex to decimal */
  1347. cycle_time_ns_x_100[cas_index] =
  1348. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1349. } else {
  1350. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1351. "in slot %d\n", (unsigned int)dimm_num);
  1352. spd_ddr_init_hang ();
  1353. }
  1354. } else {
  1355. /* Convert from hex to decimal */
  1356. cycle_time_ns_x_100[cas_index] =
  1357. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1358. ((tcyc_reg & 0x0F)*10);
  1359. }
  1360. debug("cas_index=%lu: cycle_time_ns_x_100=%lu\n", cas_index,
  1361. cycle_time_ns_x_100[cas_index]);
  1362. }
  1363. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1364. /* supported for a particular DIMM. */
  1365. cas_index = 0;
  1366. if (sdram_ddr1) {
  1367. /*
  1368. * DDR devices use the following bitmask for CAS latency:
  1369. * Bit 7 6 5 4 3 2 1 0
  1370. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1371. */
  1372. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1373. (cycle_time_ns_x_100[cas_index] != 0)) {
  1374. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1375. cycle_time_ns_x_100[cas_index]);
  1376. cas_index++;
  1377. } else {
  1378. if (cas_index != 0)
  1379. cas_index++;
  1380. cas_4_0_available = FALSE;
  1381. }
  1382. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1383. (cycle_time_ns_x_100[cas_index] != 0)) {
  1384. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1385. cycle_time_ns_x_100[cas_index]);
  1386. cas_index++;
  1387. } else {
  1388. if (cas_index != 0)
  1389. cas_index++;
  1390. cas_3_0_available = FALSE;
  1391. }
  1392. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1393. (cycle_time_ns_x_100[cas_index] != 0)) {
  1394. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1395. cycle_time_ns_x_100[cas_index]);
  1396. cas_index++;
  1397. } else {
  1398. if (cas_index != 0)
  1399. cas_index++;
  1400. cas_2_5_available = FALSE;
  1401. }
  1402. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1403. (cycle_time_ns_x_100[cas_index] != 0)) {
  1404. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1405. cycle_time_ns_x_100[cas_index]);
  1406. cas_index++;
  1407. } else {
  1408. if (cas_index != 0)
  1409. cas_index++;
  1410. cas_2_0_available = FALSE;
  1411. }
  1412. } else {
  1413. /*
  1414. * DDR2 devices use the following bitmask for CAS latency:
  1415. * Bit 7 6 5 4 3 2 1 0
  1416. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1417. */
  1418. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1419. (cycle_time_ns_x_100[cas_index] != 0)) {
  1420. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1421. cycle_time_ns_x_100[cas_index]);
  1422. cas_index++;
  1423. } else {
  1424. if (cas_index != 0)
  1425. cas_index++;
  1426. cas_5_0_available = FALSE;
  1427. }
  1428. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1429. (cycle_time_ns_x_100[cas_index] != 0)) {
  1430. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1431. cycle_time_ns_x_100[cas_index]);
  1432. cas_index++;
  1433. } else {
  1434. if (cas_index != 0)
  1435. cas_index++;
  1436. cas_4_0_available = FALSE;
  1437. }
  1438. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1439. (cycle_time_ns_x_100[cas_index] != 0)) {
  1440. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1441. cycle_time_ns_x_100[cas_index]);
  1442. cas_index++;
  1443. } else {
  1444. if (cas_index != 0)
  1445. cas_index++;
  1446. cas_3_0_available = FALSE;
  1447. }
  1448. }
  1449. }
  1450. }
  1451. /*------------------------------------------------------------------
  1452. * Set the SDRAM mode, SDRAM_MMODE
  1453. *-----------------------------------------------------------------*/
  1454. mfsdram(SDRAM_MMODE, mmode);
  1455. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1456. /* add 10 here because of rounding problems */
  1457. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1458. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1459. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1460. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1461. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1462. debug("cycle_3_0_clk=%lu\n", cycle_3_0_clk);
  1463. debug("cycle_4_0_clk=%lu\n", cycle_4_0_clk);
  1464. debug("cycle_5_0_clk=%lu\n", cycle_5_0_clk);
  1465. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1466. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1467. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1468. *selected_cas = DDR_CAS_2;
  1469. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1470. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1471. *selected_cas = DDR_CAS_2_5;
  1472. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1473. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1474. *selected_cas = DDR_CAS_3;
  1475. } else {
  1476. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1477. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1478. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1479. spd_ddr_init_hang ();
  1480. }
  1481. } else { /* DDR2 */
  1482. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1483. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1484. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1485. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1486. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1487. *selected_cas = DDR_CAS_3;
  1488. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1489. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1490. *selected_cas = DDR_CAS_4;
  1491. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1492. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1493. *selected_cas = DDR_CAS_5;
  1494. } else {
  1495. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1496. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1497. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1498. printf("cas3=%d cas4=%d cas5=%d\n",
  1499. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1500. printf("sdram_freq=%lu cycle3=%lu cycle4=%lu cycle5=%lu\n\n",
  1501. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1502. spd_ddr_init_hang ();
  1503. }
  1504. }
  1505. if (sdram_ddr1 == TRUE)
  1506. mmode |= SDRAM_MMODE_WR_DDR1;
  1507. else {
  1508. /* loop through all the DIMM slots on the board */
  1509. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1510. /* If a dimm is installed in a particular slot ... */
  1511. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1512. t_wr_ns = max(t_wr_ns,
  1513. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1514. }
  1515. /*
  1516. * convert from nanoseconds to ddr clocks
  1517. * round up if necessary
  1518. */
  1519. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1520. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1521. if (sdram_freq != ddr_check)
  1522. t_wr_clk++;
  1523. switch (t_wr_clk) {
  1524. case 0:
  1525. case 1:
  1526. case 2:
  1527. case 3:
  1528. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1529. break;
  1530. case 4:
  1531. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1532. break;
  1533. case 5:
  1534. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1535. break;
  1536. default:
  1537. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1538. break;
  1539. }
  1540. *write_recovery = t_wr_clk;
  1541. }
  1542. debug("CAS latency = %d\n", *selected_cas);
  1543. debug("Write recovery = %d\n", *write_recovery);
  1544. mtsdram(SDRAM_MMODE, mmode);
  1545. }
  1546. /*-----------------------------------------------------------------------------+
  1547. * program_rtr.
  1548. *-----------------------------------------------------------------------------*/
  1549. static void program_rtr(unsigned long *dimm_populated,
  1550. unsigned char *iic0_dimm_addr,
  1551. unsigned long num_dimm_banks)
  1552. {
  1553. PPC4xx_SYS_INFO board_cfg;
  1554. unsigned long max_refresh_rate;
  1555. unsigned long dimm_num;
  1556. unsigned long refresh_rate_type;
  1557. unsigned long refresh_rate;
  1558. unsigned long rint;
  1559. unsigned long sdram_freq;
  1560. unsigned long sdr_ddrpll;
  1561. unsigned long val;
  1562. /*------------------------------------------------------------------
  1563. * Get the board configuration info.
  1564. *-----------------------------------------------------------------*/
  1565. get_sys_info(&board_cfg);
  1566. /*------------------------------------------------------------------
  1567. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1568. *-----------------------------------------------------------------*/
  1569. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1570. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1571. max_refresh_rate = 0;
  1572. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1573. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1574. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1575. refresh_rate_type &= 0x7F;
  1576. switch (refresh_rate_type) {
  1577. case 0:
  1578. refresh_rate = 15625;
  1579. break;
  1580. case 1:
  1581. refresh_rate = 3906;
  1582. break;
  1583. case 2:
  1584. refresh_rate = 7812;
  1585. break;
  1586. case 3:
  1587. refresh_rate = 31250;
  1588. break;
  1589. case 4:
  1590. refresh_rate = 62500;
  1591. break;
  1592. case 5:
  1593. refresh_rate = 125000;
  1594. break;
  1595. default:
  1596. refresh_rate = 0;
  1597. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1598. (unsigned int)dimm_num);
  1599. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1600. spd_ddr_init_hang ();
  1601. break;
  1602. }
  1603. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1604. }
  1605. }
  1606. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1607. mfsdram(SDRAM_RTR, val);
  1608. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1609. (SDRAM_RTR_RINT_ENCODE(rint)));
  1610. }
  1611. /*------------------------------------------------------------------
  1612. * This routine programs the SDRAM_TRx registers.
  1613. *-----------------------------------------------------------------*/
  1614. static void program_tr(unsigned long *dimm_populated,
  1615. unsigned char *iic0_dimm_addr,
  1616. unsigned long num_dimm_banks)
  1617. {
  1618. unsigned long dimm_num;
  1619. unsigned long sdram_ddr1;
  1620. unsigned long t_rp_ns;
  1621. unsigned long t_rcd_ns;
  1622. unsigned long t_rrd_ns;
  1623. unsigned long t_ras_ns;
  1624. unsigned long t_rc_ns;
  1625. unsigned long t_rfc_ns;
  1626. unsigned long t_wpc_ns;
  1627. unsigned long t_wtr_ns;
  1628. unsigned long t_rpc_ns;
  1629. unsigned long t_rp_clk;
  1630. unsigned long t_rcd_clk;
  1631. unsigned long t_rrd_clk;
  1632. unsigned long t_ras_clk;
  1633. unsigned long t_rc_clk;
  1634. unsigned long t_rfc_clk;
  1635. unsigned long t_wpc_clk;
  1636. unsigned long t_wtr_clk;
  1637. unsigned long t_rpc_clk;
  1638. unsigned long sdtr1, sdtr2, sdtr3;
  1639. unsigned long ddr_check;
  1640. unsigned long sdram_freq;
  1641. unsigned long sdr_ddrpll;
  1642. PPC4xx_SYS_INFO board_cfg;
  1643. /*------------------------------------------------------------------
  1644. * Get the board configuration info.
  1645. *-----------------------------------------------------------------*/
  1646. get_sys_info(&board_cfg);
  1647. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1648. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1649. /*------------------------------------------------------------------
  1650. * Handle the timing. We need to find the worst case timing of all
  1651. * the dimm modules installed.
  1652. *-----------------------------------------------------------------*/
  1653. t_rp_ns = 0;
  1654. t_rrd_ns = 0;
  1655. t_rcd_ns = 0;
  1656. t_ras_ns = 0;
  1657. t_rc_ns = 0;
  1658. t_rfc_ns = 0;
  1659. t_wpc_ns = 0;
  1660. t_wtr_ns = 0;
  1661. t_rpc_ns = 0;
  1662. sdram_ddr1 = TRUE;
  1663. /* loop through all the DIMM slots on the board */
  1664. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1665. /* If a dimm is installed in a particular slot ... */
  1666. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1667. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1668. sdram_ddr1 = TRUE;
  1669. else
  1670. sdram_ddr1 = FALSE;
  1671. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1672. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1673. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1674. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1675. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1676. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1677. }
  1678. }
  1679. /*------------------------------------------------------------------
  1680. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1681. *-----------------------------------------------------------------*/
  1682. mfsdram(SDRAM_SDTR1, sdtr1);
  1683. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1684. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1685. /* default values */
  1686. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1687. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1688. /* normal operations */
  1689. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1690. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1691. mtsdram(SDRAM_SDTR1, sdtr1);
  1692. /*------------------------------------------------------------------
  1693. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1694. *-----------------------------------------------------------------*/
  1695. mfsdram(SDRAM_SDTR2, sdtr2);
  1696. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1697. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1698. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1699. SDRAM_SDTR2_RRD_MASK);
  1700. /*
  1701. * convert t_rcd from nanoseconds to ddr clocks
  1702. * round up if necessary
  1703. */
  1704. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1705. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1706. if (sdram_freq != ddr_check)
  1707. t_rcd_clk++;
  1708. switch (t_rcd_clk) {
  1709. case 0:
  1710. case 1:
  1711. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1712. break;
  1713. case 2:
  1714. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1715. break;
  1716. case 3:
  1717. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1718. break;
  1719. case 4:
  1720. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1721. break;
  1722. default:
  1723. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1724. break;
  1725. }
  1726. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1727. if (sdram_freq < 200000000) {
  1728. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1729. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1730. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1731. } else {
  1732. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1733. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1734. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1735. }
  1736. } else { /* DDR2 */
  1737. /* loop through all the DIMM slots on the board */
  1738. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1739. /* If a dimm is installed in a particular slot ... */
  1740. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1741. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1742. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1743. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1744. }
  1745. }
  1746. /*
  1747. * convert from nanoseconds to ddr clocks
  1748. * round up if necessary
  1749. */
  1750. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1751. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1752. if (sdram_freq != ddr_check)
  1753. t_wpc_clk++;
  1754. switch (t_wpc_clk) {
  1755. case 0:
  1756. case 1:
  1757. case 2:
  1758. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1759. break;
  1760. case 3:
  1761. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1762. break;
  1763. case 4:
  1764. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1765. break;
  1766. case 5:
  1767. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1768. break;
  1769. default:
  1770. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1771. break;
  1772. }
  1773. /*
  1774. * convert from nanoseconds to ddr clocks
  1775. * round up if necessary
  1776. */
  1777. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1778. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1779. if (sdram_freq != ddr_check)
  1780. t_wtr_clk++;
  1781. switch (t_wtr_clk) {
  1782. case 0:
  1783. case 1:
  1784. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1785. break;
  1786. case 2:
  1787. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1788. break;
  1789. case 3:
  1790. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1791. break;
  1792. default:
  1793. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1794. break;
  1795. }
  1796. /*
  1797. * convert from nanoseconds to ddr clocks
  1798. * round up if necessary
  1799. */
  1800. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1801. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1802. if (sdram_freq != ddr_check)
  1803. t_rpc_clk++;
  1804. switch (t_rpc_clk) {
  1805. case 0:
  1806. case 1:
  1807. case 2:
  1808. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1809. break;
  1810. case 3:
  1811. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1812. break;
  1813. default:
  1814. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1815. break;
  1816. }
  1817. }
  1818. /* default value */
  1819. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1820. /*
  1821. * convert t_rrd from nanoseconds to ddr clocks
  1822. * round up if necessary
  1823. */
  1824. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1825. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1826. if (sdram_freq != ddr_check)
  1827. t_rrd_clk++;
  1828. if (t_rrd_clk == 3)
  1829. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1830. else
  1831. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1832. /*
  1833. * convert t_rp from nanoseconds to ddr clocks
  1834. * round up if necessary
  1835. */
  1836. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1837. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1838. if (sdram_freq != ddr_check)
  1839. t_rp_clk++;
  1840. switch (t_rp_clk) {
  1841. case 0:
  1842. case 1:
  1843. case 2:
  1844. case 3:
  1845. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1846. break;
  1847. case 4:
  1848. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1849. break;
  1850. case 5:
  1851. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1852. break;
  1853. case 6:
  1854. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1855. break;
  1856. default:
  1857. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1858. break;
  1859. }
  1860. mtsdram(SDRAM_SDTR2, sdtr2);
  1861. /*------------------------------------------------------------------
  1862. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1863. *-----------------------------------------------------------------*/
  1864. mfsdram(SDRAM_SDTR3, sdtr3);
  1865. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1866. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1867. /*
  1868. * convert t_ras from nanoseconds to ddr clocks
  1869. * round up if necessary
  1870. */
  1871. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1872. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1873. if (sdram_freq != ddr_check)
  1874. t_ras_clk++;
  1875. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1876. /*
  1877. * convert t_rc from nanoseconds to ddr clocks
  1878. * round up if necessary
  1879. */
  1880. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1881. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1882. if (sdram_freq != ddr_check)
  1883. t_rc_clk++;
  1884. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1885. /* default xcs value */
  1886. sdtr3 |= SDRAM_SDTR3_XCS;
  1887. /*
  1888. * convert t_rfc from nanoseconds to ddr clocks
  1889. * round up if necessary
  1890. */
  1891. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1892. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1893. if (sdram_freq != ddr_check)
  1894. t_rfc_clk++;
  1895. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1896. mtsdram(SDRAM_SDTR3, sdtr3);
  1897. }
  1898. /*-----------------------------------------------------------------------------+
  1899. * program_bxcf.
  1900. *-----------------------------------------------------------------------------*/
  1901. static void program_bxcf(unsigned long *dimm_populated,
  1902. unsigned char *iic0_dimm_addr,
  1903. unsigned long num_dimm_banks)
  1904. {
  1905. unsigned long dimm_num;
  1906. unsigned long num_col_addr;
  1907. unsigned long num_ranks;
  1908. unsigned long num_banks;
  1909. unsigned long mode;
  1910. unsigned long ind_rank;
  1911. unsigned long ind;
  1912. unsigned long ind_bank;
  1913. unsigned long bank_0_populated;
  1914. /*------------------------------------------------------------------
  1915. * Set the BxCF regs. First, wipe out the bank config registers.
  1916. *-----------------------------------------------------------------*/
  1917. mtsdram(SDRAM_MB0CF, 0x00000000);
  1918. mtsdram(SDRAM_MB1CF, 0x00000000);
  1919. mtsdram(SDRAM_MB2CF, 0x00000000);
  1920. mtsdram(SDRAM_MB3CF, 0x00000000);
  1921. mode = SDRAM_BXCF_M_BE_ENABLE;
  1922. bank_0_populated = 0;
  1923. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1924. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1925. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1926. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1927. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1928. num_ranks = (num_ranks & 0x0F) +1;
  1929. else
  1930. num_ranks = num_ranks & 0x0F;
  1931. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1932. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1933. if (num_banks == 4)
  1934. ind = 0;
  1935. else
  1936. ind = 5 << 8;
  1937. switch (num_col_addr) {
  1938. case 0x08:
  1939. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1940. break;
  1941. case 0x09:
  1942. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1943. break;
  1944. case 0x0A:
  1945. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1946. break;
  1947. case 0x0B:
  1948. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1949. break;
  1950. case 0x0C:
  1951. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1952. break;
  1953. default:
  1954. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1955. (unsigned int)dimm_num);
  1956. printf("ERROR: Unsupported value for number of "
  1957. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1958. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1959. spd_ddr_init_hang ();
  1960. }
  1961. }
  1962. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1963. bank_0_populated = 1;
  1964. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1965. mtsdram(SDRAM_MB0CF +
  1966. ((dimm_num + bank_0_populated + ind_rank) << 2),
  1967. mode);
  1968. }
  1969. }
  1970. }
  1971. }
  1972. /*------------------------------------------------------------------
  1973. * program memory queue.
  1974. *-----------------------------------------------------------------*/
  1975. static void program_memory_queue(unsigned long *dimm_populated,
  1976. unsigned char *iic0_dimm_addr,
  1977. unsigned long num_dimm_banks)
  1978. {
  1979. unsigned long dimm_num;
  1980. phys_size_t rank_base_addr;
  1981. unsigned long rank_reg;
  1982. phys_size_t rank_size_bytes;
  1983. unsigned long rank_size_id;
  1984. unsigned long num_ranks;
  1985. unsigned long baseadd_size;
  1986. unsigned long i;
  1987. unsigned long bank_0_populated = 0;
  1988. phys_size_t total_size = 0;
  1989. /*------------------------------------------------------------------
  1990. * Reset the rank_base_address.
  1991. *-----------------------------------------------------------------*/
  1992. rank_reg = SDRAM_R0BAS;
  1993. rank_base_addr = 0x00000000;
  1994. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1995. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1996. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1997. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1998. num_ranks = (num_ranks & 0x0F) + 1;
  1999. else
  2000. num_ranks = num_ranks & 0x0F;
  2001. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  2002. /*------------------------------------------------------------------
  2003. * Set the sizes
  2004. *-----------------------------------------------------------------*/
  2005. baseadd_size = 0;
  2006. switch (rank_size_id) {
  2007. case 0x01:
  2008. baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
  2009. total_size = 1024;
  2010. break;
  2011. case 0x02:
  2012. baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
  2013. total_size = 2048;
  2014. break;
  2015. case 0x04:
  2016. baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
  2017. total_size = 4096;
  2018. break;
  2019. case 0x08:
  2020. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  2021. total_size = 32;
  2022. break;
  2023. case 0x10:
  2024. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  2025. total_size = 64;
  2026. break;
  2027. case 0x20:
  2028. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  2029. total_size = 128;
  2030. break;
  2031. case 0x40:
  2032. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  2033. total_size = 256;
  2034. break;
  2035. case 0x80:
  2036. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  2037. total_size = 512;
  2038. break;
  2039. default:
  2040. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  2041. (unsigned int)dimm_num);
  2042. printf("ERROR: Unsupported value for the banksize: %d.\n",
  2043. (unsigned int)rank_size_id);
  2044. printf("Replace the DIMM module with a supported DIMM.\n\n");
  2045. spd_ddr_init_hang ();
  2046. }
  2047. rank_size_bytes = total_size << 20;
  2048. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  2049. bank_0_populated = 1;
  2050. for (i = 0; i < num_ranks; i++) {
  2051. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  2052. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  2053. baseadd_size));
  2054. rank_base_addr += rank_size_bytes;
  2055. }
  2056. }
  2057. }
  2058. #if defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  2059. defined(CONFIG_460EX) || defined(CONFIG_460GT) || \
  2060. defined(CONFIG_460SX)
  2061. /*
  2062. * Enable high bandwidth access
  2063. * This is currently not used, but with this setup
  2064. * it is possible to use it later on in e.g. the Linux
  2065. * EMAC driver for performance gain.
  2066. */
  2067. mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
  2068. mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
  2069. /*
  2070. * Set optimal value for Memory Queue HB/LL Configuration registers
  2071. */
  2072. mtdcr(SDRAM_CONF1HB, (mfdcr(SDRAM_CONF1HB) & ~SDRAM_CONF1HB_MASK) |
  2073. SDRAM_CONF1HB_AAFR | SDRAM_CONF1HB_RPEN | SDRAM_CONF1HB_RFTE |
  2074. SDRAM_CONF1HB_RPLM | SDRAM_CONF1HB_WRCL);
  2075. mtdcr(SDRAM_CONF1LL, (mfdcr(SDRAM_CONF1LL) & ~SDRAM_CONF1LL_MASK) |
  2076. SDRAM_CONF1LL_AAFR | SDRAM_CONF1LL_RPEN | SDRAM_CONF1LL_RFTE |
  2077. SDRAM_CONF1LL_RPLM);
  2078. mtdcr(SDRAM_CONFPATHB, mfdcr(SDRAM_CONFPATHB) | SDRAM_CONFPATHB_TPEN);
  2079. #endif
  2080. }
  2081. #ifdef CONFIG_DDR_ECC
  2082. /*-----------------------------------------------------------------------------+
  2083. * program_ecc.
  2084. *-----------------------------------------------------------------------------*/
  2085. static void program_ecc(unsigned long *dimm_populated,
  2086. unsigned char *iic0_dimm_addr,
  2087. unsigned long num_dimm_banks,
  2088. unsigned long tlb_word2_i_value)
  2089. {
  2090. unsigned long dimm_num;
  2091. unsigned long ecc;
  2092. ecc = 0;
  2093. /* loop through all the DIMM slots on the board */
  2094. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2095. /* If a dimm is installed in a particular slot ... */
  2096. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2097. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2098. }
  2099. if (ecc == 0)
  2100. return;
  2101. do_program_ecc(tlb_word2_i_value);
  2102. }
  2103. #endif
  2104. #if !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
  2105. /*-----------------------------------------------------------------------------+
  2106. * program_DQS_calibration.
  2107. *-----------------------------------------------------------------------------*/
  2108. static void program_DQS_calibration(unsigned long *dimm_populated,
  2109. unsigned char *iic0_dimm_addr,
  2110. unsigned long num_dimm_banks)
  2111. {
  2112. unsigned long val;
  2113. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2114. mtsdram(SDRAM_RQDC, 0x80000037);
  2115. mtsdram(SDRAM_RDCC, 0x40000000);
  2116. mtsdram(SDRAM_RFDC, 0x000001DF);
  2117. test();
  2118. #else
  2119. /*------------------------------------------------------------------
  2120. * Program RDCC register
  2121. * Read sample cycle auto-update enable
  2122. *-----------------------------------------------------------------*/
  2123. mfsdram(SDRAM_RDCC, val);
  2124. mtsdram(SDRAM_RDCC,
  2125. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2126. | SDRAM_RDCC_RSAE_ENABLE);
  2127. /*------------------------------------------------------------------
  2128. * Program RQDC register
  2129. * Internal DQS delay mechanism enable
  2130. *-----------------------------------------------------------------*/
  2131. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2132. /*------------------------------------------------------------------
  2133. * Program RFDC register
  2134. * Set Feedback Fractional Oversample
  2135. * Auto-detect read sample cycle enable
  2136. * Set RFOS to 1/4 of memclk cycle (0x3f)
  2137. *-----------------------------------------------------------------*/
  2138. mfsdram(SDRAM_RFDC, val);
  2139. mtsdram(SDRAM_RFDC,
  2140. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2141. SDRAM_RFDC_RFFD_MASK))
  2142. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0x3f) |
  2143. SDRAM_RFDC_RFFD_ENCODE(0)));
  2144. DQS_calibration_process();
  2145. #endif
  2146. }
  2147. static int short_mem_test(void)
  2148. {
  2149. u32 *membase;
  2150. u32 bxcr_num;
  2151. u32 bxcf;
  2152. int i;
  2153. int j;
  2154. phys_size_t base_addr;
  2155. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2156. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2157. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2158. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2159. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2160. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2161. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2162. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2163. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2164. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2165. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2166. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2167. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2168. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2169. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2170. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2171. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2172. int l;
  2173. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2174. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2175. /* Banks enabled */
  2176. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2177. /* Bank is enabled */
  2178. /*
  2179. * Only run test on accessable memory (below 2GB)
  2180. */
  2181. base_addr = SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num));
  2182. if (base_addr >= CONFIG_MAX_MEM_MAPPED)
  2183. continue;
  2184. /*------------------------------------------------------------------
  2185. * Run the short memory test.
  2186. *-----------------------------------------------------------------*/
  2187. membase = (u32 *)(u32)base_addr;
  2188. for (i = 0; i < NUMMEMTESTS; i++) {
  2189. for (j = 0; j < NUMMEMWORDS; j++) {
  2190. membase[j] = test[i][j];
  2191. ppcDcbf((u32)&(membase[j]));
  2192. }
  2193. sync();
  2194. for (l=0; l<NUMLOOPS; l++) {
  2195. for (j = 0; j < NUMMEMWORDS; j++) {
  2196. if (membase[j] != test[i][j]) {
  2197. ppcDcbf((u32)&(membase[j]));
  2198. return 0;
  2199. }
  2200. ppcDcbf((u32)&(membase[j]));
  2201. }
  2202. sync();
  2203. }
  2204. }
  2205. } /* if bank enabled */
  2206. } /* for bxcf_num */
  2207. return 1;
  2208. }
  2209. #ifndef HARD_CODED_DQS
  2210. /*-----------------------------------------------------------------------------+
  2211. * DQS_calibration_process.
  2212. *-----------------------------------------------------------------------------*/
  2213. static void DQS_calibration_process(void)
  2214. {
  2215. unsigned long rfdc_reg;
  2216. unsigned long rffd;
  2217. unsigned long val;
  2218. long rffd_average;
  2219. long max_start;
  2220. long min_end;
  2221. unsigned long begin_rqfd[MAXRANKS];
  2222. unsigned long begin_rffd[MAXRANKS];
  2223. unsigned long end_rqfd[MAXRANKS];
  2224. unsigned long end_rffd[MAXRANKS];
  2225. char window_found;
  2226. unsigned long dlycal;
  2227. unsigned long dly_val;
  2228. unsigned long max_pass_length;
  2229. unsigned long current_pass_length;
  2230. unsigned long current_fail_length;
  2231. unsigned long current_start;
  2232. long max_end;
  2233. unsigned char fail_found;
  2234. unsigned char pass_found;
  2235. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2236. u32 rqdc_reg;
  2237. u32 rqfd;
  2238. u32 rqfd_start;
  2239. u32 rqfd_average;
  2240. int loopi = 0;
  2241. char str[] = "Auto calibration -";
  2242. char slash[] = "\\|/-\\|/-";
  2243. /*------------------------------------------------------------------
  2244. * Test to determine the best read clock delay tuning bits.
  2245. *
  2246. * Before the DDR controller can be used, the read clock delay needs to be
  2247. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2248. * This value cannot be hardcoded into the program because it changes
  2249. * depending on the board's setup and environment.
  2250. * To do this, all delay values are tested to see if they
  2251. * work or not. By doing this, you get groups of fails with groups of
  2252. * passing values. The idea is to find the start and end of a passing
  2253. * window and take the center of it to use as the read clock delay.
  2254. *
  2255. * A failure has to be seen first so that when we hit a pass, we know
  2256. * that it is truely the start of the window. If we get passing values
  2257. * to start off with, we don't know if we are at the start of the window.
  2258. *
  2259. * The code assumes that a failure will always be found.
  2260. * If a failure is not found, there is no easy way to get the middle
  2261. * of the passing window. I guess we can pretty much pick any value
  2262. * but some values will be better than others. Since the lowest speed
  2263. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2264. * from experimentation it is safe to say you will always have a failure.
  2265. *-----------------------------------------------------------------*/
  2266. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2267. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2268. puts(str);
  2269. calibration_loop:
  2270. mfsdram(SDRAM_RQDC, rqdc_reg);
  2271. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2272. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2273. #else /* CONFIG_DDR_RQDC_FIXED */
  2274. /*
  2275. * On Katmai the complete auto-calibration somehow doesn't seem to
  2276. * produce the best results, meaning optimal values for RQFD/RFFD.
  2277. * This was discovered by GDA using a high bandwidth scope,
  2278. * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
  2279. * so now on Katmai "only" RFFD is auto-calibrated.
  2280. */
  2281. mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
  2282. #endif /* CONFIG_DDR_RQDC_FIXED */
  2283. max_start = 0;
  2284. min_end = 0;
  2285. begin_rqfd[0] = 0;
  2286. begin_rffd[0] = 0;
  2287. begin_rqfd[1] = 0;
  2288. begin_rffd[1] = 0;
  2289. end_rqfd[0] = 0;
  2290. end_rffd[0] = 0;
  2291. end_rqfd[1] = 0;
  2292. end_rffd[1] = 0;
  2293. window_found = FALSE;
  2294. max_pass_length = 0;
  2295. max_start = 0;
  2296. max_end = 0;
  2297. current_pass_length = 0;
  2298. current_fail_length = 0;
  2299. current_start = 0;
  2300. window_found = FALSE;
  2301. fail_found = FALSE;
  2302. pass_found = FALSE;
  2303. /*
  2304. * get the delay line calibration register value
  2305. */
  2306. mfsdram(SDRAM_DLCR, dlycal);
  2307. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2308. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2309. mfsdram(SDRAM_RFDC, rfdc_reg);
  2310. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2311. /*------------------------------------------------------------------
  2312. * Set the timing reg for the test.
  2313. *-----------------------------------------------------------------*/
  2314. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2315. /*------------------------------------------------------------------
  2316. * See if the rffd value passed.
  2317. *-----------------------------------------------------------------*/
  2318. if (short_mem_test()) {
  2319. if (fail_found == TRUE) {
  2320. pass_found = TRUE;
  2321. if (current_pass_length == 0)
  2322. current_start = rffd;
  2323. current_fail_length = 0;
  2324. current_pass_length++;
  2325. if (current_pass_length > max_pass_length) {
  2326. max_pass_length = current_pass_length;
  2327. max_start = current_start;
  2328. max_end = rffd;
  2329. }
  2330. }
  2331. } else {
  2332. current_pass_length = 0;
  2333. current_fail_length++;
  2334. if (current_fail_length >= (dly_val >> 2)) {
  2335. if (fail_found == FALSE) {
  2336. fail_found = TRUE;
  2337. } else if (pass_found == TRUE) {
  2338. window_found = TRUE;
  2339. break;
  2340. }
  2341. }
  2342. }
  2343. } /* for rffd */
  2344. /*------------------------------------------------------------------
  2345. * Set the average RFFD value
  2346. *-----------------------------------------------------------------*/
  2347. rffd_average = ((max_start + max_end) >> 1);
  2348. if (rffd_average < 0)
  2349. rffd_average = 0;
  2350. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2351. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2352. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2353. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2354. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2355. max_pass_length = 0;
  2356. max_start = 0;
  2357. max_end = 0;
  2358. current_pass_length = 0;
  2359. current_fail_length = 0;
  2360. current_start = 0;
  2361. window_found = FALSE;
  2362. fail_found = FALSE;
  2363. pass_found = FALSE;
  2364. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2365. mfsdram(SDRAM_RQDC, rqdc_reg);
  2366. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2367. /*------------------------------------------------------------------
  2368. * Set the timing reg for the test.
  2369. *-----------------------------------------------------------------*/
  2370. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2371. /*------------------------------------------------------------------
  2372. * See if the rffd value passed.
  2373. *-----------------------------------------------------------------*/
  2374. if (short_mem_test()) {
  2375. if (fail_found == TRUE) {
  2376. pass_found = TRUE;
  2377. if (current_pass_length == 0)
  2378. current_start = rqfd;
  2379. current_fail_length = 0;
  2380. current_pass_length++;
  2381. if (current_pass_length > max_pass_length) {
  2382. max_pass_length = current_pass_length;
  2383. max_start = current_start;
  2384. max_end = rqfd;
  2385. }
  2386. }
  2387. } else {
  2388. current_pass_length = 0;
  2389. current_fail_length++;
  2390. if (fail_found == FALSE) {
  2391. fail_found = TRUE;
  2392. } else if (pass_found == TRUE) {
  2393. window_found = TRUE;
  2394. break;
  2395. }
  2396. }
  2397. }
  2398. rqfd_average = ((max_start + max_end) >> 1);
  2399. /*------------------------------------------------------------------
  2400. * Make sure we found the valid read passing window. Halt if not
  2401. *-----------------------------------------------------------------*/
  2402. if (window_found == FALSE) {
  2403. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2404. putc('\b');
  2405. putc(slash[loopi++ % 8]);
  2406. /* try again from with a different RQFD start value */
  2407. rqfd_start++;
  2408. goto calibration_loop;
  2409. }
  2410. printf("\nERROR: Cannot determine a common read delay for the "
  2411. "DIMM(s) installed.\n");
  2412. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2413. ppc4xx_ibm_ddr2_register_dump();
  2414. spd_ddr_init_hang ();
  2415. }
  2416. if (rqfd_average < 0)
  2417. rqfd_average = 0;
  2418. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2419. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2420. mtsdram(SDRAM_RQDC,
  2421. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2422. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2423. blank_string(strlen(str));
  2424. #endif /* CONFIG_DDR_RQDC_FIXED */
  2425. /*
  2426. * Now complete RDSS configuration as mentioned on page 7 of the AMCC
  2427. * PowerPC440SP/SPe DDR2 application note:
  2428. * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
  2429. */
  2430. mfsdram(SDRAM_RTSR, val);
  2431. if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
  2432. mfsdram(SDRAM_RDCC, val);
  2433. if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
  2434. val += 0x40000000;
  2435. mtsdram(SDRAM_RDCC, val);
  2436. }
  2437. }
  2438. mfsdram(SDRAM_DLCR, val);
  2439. debug("%s[%d] DLCR: 0x%08lX\n", __FUNCTION__, __LINE__, val);
  2440. mfsdram(SDRAM_RQDC, val);
  2441. debug("%s[%d] RQDC: 0x%08lX\n", __FUNCTION__, __LINE__, val);
  2442. mfsdram(SDRAM_RFDC, val);
  2443. debug("%s[%d] RFDC: 0x%08lX\n", __FUNCTION__, __LINE__, val);
  2444. mfsdram(SDRAM_RDCC, val);
  2445. debug("%s[%d] RDCC: 0x%08lX\n", __FUNCTION__, __LINE__, val);
  2446. }
  2447. #else /* calibration test with hardvalues */
  2448. /*-----------------------------------------------------------------------------+
  2449. * DQS_calibration_process.
  2450. *-----------------------------------------------------------------------------*/
  2451. static void test(void)
  2452. {
  2453. unsigned long dimm_num;
  2454. unsigned long ecc_temp;
  2455. unsigned long i, j;
  2456. unsigned long *membase;
  2457. unsigned long bxcf[MAXRANKS];
  2458. unsigned long val;
  2459. char window_found;
  2460. char begin_found[MAXDIMMS];
  2461. char end_found[MAXDIMMS];
  2462. char search_end[MAXDIMMS];
  2463. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2464. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2465. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2466. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2467. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2468. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2469. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2470. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2471. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2472. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2473. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2474. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2475. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2476. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2477. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2478. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2479. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2480. /*------------------------------------------------------------------
  2481. * Test to determine the best read clock delay tuning bits.
  2482. *
  2483. * Before the DDR controller can be used, the read clock delay needs to be
  2484. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2485. * This value cannot be hardcoded into the program because it changes
  2486. * depending on the board's setup and environment.
  2487. * To do this, all delay values are tested to see if they
  2488. * work or not. By doing this, you get groups of fails with groups of
  2489. * passing values. The idea is to find the start and end of a passing
  2490. * window and take the center of it to use as the read clock delay.
  2491. *
  2492. * A failure has to be seen first so that when we hit a pass, we know
  2493. * that it is truely the start of the window. If we get passing values
  2494. * to start off with, we don't know if we are at the start of the window.
  2495. *
  2496. * The code assumes that a failure will always be found.
  2497. * If a failure is not found, there is no easy way to get the middle
  2498. * of the passing window. I guess we can pretty much pick any value
  2499. * but some values will be better than others. Since the lowest speed
  2500. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2501. * from experimentation it is safe to say you will always have a failure.
  2502. *-----------------------------------------------------------------*/
  2503. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2504. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2505. mfsdram(SDRAM_MCOPT1, val);
  2506. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2507. SDRAM_MCOPT1_MCHK_NON);
  2508. window_found = FALSE;
  2509. begin_found[0] = FALSE;
  2510. end_found[0] = FALSE;
  2511. search_end[0] = FALSE;
  2512. begin_found[1] = FALSE;
  2513. end_found[1] = FALSE;
  2514. search_end[1] = FALSE;
  2515. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2516. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2517. /* Banks enabled */
  2518. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2519. /* Bank is enabled */
  2520. membase =
  2521. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2522. /*------------------------------------------------------------------
  2523. * Run the short memory test.
  2524. *-----------------------------------------------------------------*/
  2525. for (i = 0; i < NUMMEMTESTS; i++) {
  2526. for (j = 0; j < NUMMEMWORDS; j++) {
  2527. membase[j] = test[i][j];
  2528. ppcDcbf((u32)&(membase[j]));
  2529. }
  2530. sync();
  2531. for (j = 0; j < NUMMEMWORDS; j++) {
  2532. if (membase[j] != test[i][j]) {
  2533. ppcDcbf((u32)&(membase[j]));
  2534. break;
  2535. }
  2536. ppcDcbf((u32)&(membase[j]));
  2537. }
  2538. sync();
  2539. if (j < NUMMEMWORDS)
  2540. break;
  2541. }
  2542. /*------------------------------------------------------------------
  2543. * See if the rffd value passed.
  2544. *-----------------------------------------------------------------*/
  2545. if (i < NUMMEMTESTS) {
  2546. if ((end_found[dimm_num] == FALSE) &&
  2547. (search_end[dimm_num] == TRUE)) {
  2548. end_found[dimm_num] = TRUE;
  2549. }
  2550. if ((end_found[0] == TRUE) &&
  2551. (end_found[1] == TRUE))
  2552. break;
  2553. } else {
  2554. if (begin_found[dimm_num] == FALSE) {
  2555. begin_found[dimm_num] = TRUE;
  2556. search_end[dimm_num] = TRUE;
  2557. }
  2558. }
  2559. } else {
  2560. begin_found[dimm_num] = TRUE;
  2561. end_found[dimm_num] = TRUE;
  2562. }
  2563. }
  2564. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2565. window_found = TRUE;
  2566. /*------------------------------------------------------------------
  2567. * Make sure we found the valid read passing window. Halt if not
  2568. *-----------------------------------------------------------------*/
  2569. if (window_found == FALSE) {
  2570. printf("ERROR: Cannot determine a common read delay for the "
  2571. "DIMM(s) installed.\n");
  2572. spd_ddr_init_hang ();
  2573. }
  2574. /*------------------------------------------------------------------
  2575. * Restore the ECC variable to what it originally was
  2576. *-----------------------------------------------------------------*/
  2577. mtsdram(SDRAM_MCOPT1,
  2578. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2579. | ecc_temp);
  2580. }
  2581. #endif /* !HARD_CODED_DQS */
  2582. #endif /* !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION) */
  2583. #else /* CONFIG_SPD_EEPROM */
  2584. /*-----------------------------------------------------------------------------
  2585. * Function: initdram
  2586. * Description: Configures the PPC4xx IBM DDR1/DDR2 SDRAM memory controller.
  2587. * The configuration is performed using static, compile-
  2588. * time parameters.
  2589. * Configures the PPC405EX(r) and PPC460EX/GT
  2590. *---------------------------------------------------------------------------*/
  2591. phys_size_t initdram(int board_type)
  2592. {
  2593. /*
  2594. * Only run this SDRAM init code once. For NAND booting
  2595. * targets like Kilauea, we call initdram() early from the
  2596. * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot().
  2597. * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT)
  2598. * which calls initdram() again. This time the controller
  2599. * mustn't be reconfigured again since we're already running
  2600. * from SDRAM.
  2601. */
  2602. #if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL)
  2603. unsigned long val;
  2604. #if defined(CONFIG_440)
  2605. mtdcr(SDRAM_R0BAS, CONFIG_SYS_SDRAM_R0BAS);
  2606. mtdcr(SDRAM_R1BAS, CONFIG_SYS_SDRAM_R1BAS);
  2607. mtdcr(SDRAM_R2BAS, CONFIG_SYS_SDRAM_R2BAS);
  2608. mtdcr(SDRAM_R3BAS, CONFIG_SYS_SDRAM_R3BAS);
  2609. mtdcr(SDRAM_PLBADDULL, CONFIG_SYS_SDRAM_PLBADDULL); /* MQ0_BAUL */
  2610. mtdcr(SDRAM_PLBADDUHB, CONFIG_SYS_SDRAM_PLBADDUHB); /* MQ0_BAUH */
  2611. mtdcr(SDRAM_CONF1LL, CONFIG_SYS_SDRAM_CONF1LL);
  2612. mtdcr(SDRAM_CONF1HB, CONFIG_SYS_SDRAM_CONF1HB);
  2613. mtdcr(SDRAM_CONFPATHB, CONFIG_SYS_SDRAM_CONFPATHB);
  2614. #endif
  2615. /* Set Memory Bank Configuration Registers */
  2616. mtsdram(SDRAM_MB0CF, CONFIG_SYS_SDRAM0_MB0CF);
  2617. mtsdram(SDRAM_MB1CF, CONFIG_SYS_SDRAM0_MB1CF);
  2618. mtsdram(SDRAM_MB2CF, CONFIG_SYS_SDRAM0_MB2CF);
  2619. mtsdram(SDRAM_MB3CF, CONFIG_SYS_SDRAM0_MB3CF);
  2620. /* Set Memory Clock Timing Register */
  2621. mtsdram(SDRAM_CLKTR, CONFIG_SYS_SDRAM0_CLKTR);
  2622. /* Set Refresh Time Register */
  2623. mtsdram(SDRAM_RTR, CONFIG_SYS_SDRAM0_RTR);
  2624. /* Set SDRAM Timing Registers */
  2625. mtsdram(SDRAM_SDTR1, CONFIG_SYS_SDRAM0_SDTR1);
  2626. mtsdram(SDRAM_SDTR2, CONFIG_SYS_SDRAM0_SDTR2);
  2627. mtsdram(SDRAM_SDTR3, CONFIG_SYS_SDRAM0_SDTR3);
  2628. /* Set Mode and Extended Mode Registers */
  2629. mtsdram(SDRAM_MMODE, CONFIG_SYS_SDRAM0_MMODE);
  2630. mtsdram(SDRAM_MEMODE, CONFIG_SYS_SDRAM0_MEMODE);
  2631. /* Set Memory Controller Options 1 Register */
  2632. mtsdram(SDRAM_MCOPT1, CONFIG_SYS_SDRAM0_MCOPT1);
  2633. /* Set Manual Initialization Control Registers */
  2634. mtsdram(SDRAM_INITPLR0, CONFIG_SYS_SDRAM0_INITPLR0);
  2635. mtsdram(SDRAM_INITPLR1, CONFIG_SYS_SDRAM0_INITPLR1);
  2636. mtsdram(SDRAM_INITPLR2, CONFIG_SYS_SDRAM0_INITPLR2);
  2637. mtsdram(SDRAM_INITPLR3, CONFIG_SYS_SDRAM0_INITPLR3);
  2638. mtsdram(SDRAM_INITPLR4, CONFIG_SYS_SDRAM0_INITPLR4);
  2639. mtsdram(SDRAM_INITPLR5, CONFIG_SYS_SDRAM0_INITPLR5);
  2640. mtsdram(SDRAM_INITPLR6, CONFIG_SYS_SDRAM0_INITPLR6);
  2641. mtsdram(SDRAM_INITPLR7, CONFIG_SYS_SDRAM0_INITPLR7);
  2642. mtsdram(SDRAM_INITPLR8, CONFIG_SYS_SDRAM0_INITPLR8);
  2643. mtsdram(SDRAM_INITPLR9, CONFIG_SYS_SDRAM0_INITPLR9);
  2644. mtsdram(SDRAM_INITPLR10, CONFIG_SYS_SDRAM0_INITPLR10);
  2645. mtsdram(SDRAM_INITPLR11, CONFIG_SYS_SDRAM0_INITPLR11);
  2646. mtsdram(SDRAM_INITPLR12, CONFIG_SYS_SDRAM0_INITPLR12);
  2647. mtsdram(SDRAM_INITPLR13, CONFIG_SYS_SDRAM0_INITPLR13);
  2648. mtsdram(SDRAM_INITPLR14, CONFIG_SYS_SDRAM0_INITPLR14);
  2649. mtsdram(SDRAM_INITPLR15, CONFIG_SYS_SDRAM0_INITPLR15);
  2650. /* Set On-Die Termination Registers */
  2651. mtsdram(SDRAM_CODT, CONFIG_SYS_SDRAM0_CODT);
  2652. mtsdram(SDRAM_MODT0, CONFIG_SYS_SDRAM0_MODT0);
  2653. mtsdram(SDRAM_MODT1, CONFIG_SYS_SDRAM0_MODT1);
  2654. /* Set Write Timing Register */
  2655. mtsdram(SDRAM_WRDTR, CONFIG_SYS_SDRAM0_WRDTR);
  2656. /*
  2657. * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and
  2658. * SDRAM0_MCOPT2[IPTR] = 1
  2659. */
  2660. mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT |
  2661. SDRAM_MCOPT2_IPTR_EXECUTE));
  2662. /*
  2663. * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the
  2664. * completion of initialization.
  2665. */
  2666. do {
  2667. mfsdram(SDRAM_MCSTAT, val);
  2668. } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP);
  2669. /* Set Delay Control Registers */
  2670. mtsdram(SDRAM_DLCR, CONFIG_SYS_SDRAM0_DLCR);
  2671. #if !defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
  2672. mtsdram(SDRAM_RDCC, CONFIG_SYS_SDRAM0_RDCC);
  2673. mtsdram(SDRAM_RQDC, CONFIG_SYS_SDRAM0_RQDC);
  2674. mtsdram(SDRAM_RFDC, CONFIG_SYS_SDRAM0_RFDC);
  2675. #endif /* !CONFIG_PPC4xx_DDR_AUTOCALIBRATION */
  2676. /*
  2677. * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1:
  2678. */
  2679. mfsdram(SDRAM_MCOPT2, val);
  2680. mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE);
  2681. #if defined(CONFIG_440)
  2682. /*
  2683. * Program TLB entries with caches enabled, for best performace
  2684. * while auto-calibrating and ECC generation
  2685. */
  2686. program_tlb(0, 0, (CONFIG_SYS_MBYTES_SDRAM << 20), 0);
  2687. #endif
  2688. #if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
  2689. #if !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL)
  2690. /*------------------------------------------------------------------
  2691. | DQS calibration.
  2692. +-----------------------------------------------------------------*/
  2693. DQS_autocalibration();
  2694. #endif /* !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL) */
  2695. #endif /* CONFIG_PPC4xx_DDR_AUTOCALIBRATION */
  2696. #if defined(CONFIG_DDR_ECC)
  2697. do_program_ecc(0);
  2698. #endif /* defined(CONFIG_DDR_ECC) */
  2699. #if defined(CONFIG_440)
  2700. /*
  2701. * Now after initialization (auto-calibration and ECC generation)
  2702. * remove the TLB entries with caches enabled and program again with
  2703. * desired cache functionality
  2704. */
  2705. remove_tlb(0, (CONFIG_SYS_MBYTES_SDRAM << 20));
  2706. program_tlb(0, 0, (CONFIG_SYS_MBYTES_SDRAM << 20), MY_TLB_WORD2_I_ENABLE);
  2707. #endif
  2708. ppc4xx_ibm_ddr2_register_dump();
  2709. #if defined(CONFIG_PPC4xx_DDR_AUTOCALIBRATION)
  2710. /*
  2711. * Clear potential errors resulting from auto-calibration.
  2712. * If not done, then we could get an interrupt later on when
  2713. * exceptions are enabled.
  2714. */
  2715. set_mcsr(get_mcsr());
  2716. #endif /* CONFIG_PPC4xx_DDR_AUTOCALIBRATION */
  2717. #endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */
  2718. return (CONFIG_SYS_MBYTES_SDRAM << 20);
  2719. }
  2720. #endif /* CONFIG_SPD_EEPROM */
  2721. #if !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL)
  2722. #if defined(CONFIG_440)
  2723. u32 mfdcr_any(u32 dcr)
  2724. {
  2725. u32 val;
  2726. switch (dcr) {
  2727. case SDRAM_R0BAS + 0:
  2728. val = mfdcr(SDRAM_R0BAS + 0);
  2729. break;
  2730. case SDRAM_R0BAS + 1:
  2731. val = mfdcr(SDRAM_R0BAS + 1);
  2732. break;
  2733. case SDRAM_R0BAS + 2:
  2734. val = mfdcr(SDRAM_R0BAS + 2);
  2735. break;
  2736. case SDRAM_R0BAS + 3:
  2737. val = mfdcr(SDRAM_R0BAS + 3);
  2738. break;
  2739. default:
  2740. printf("DCR %d not defined in case statement!!!\n", dcr);
  2741. val = 0; /* just to satisfy the compiler */
  2742. }
  2743. return val;
  2744. }
  2745. void mtdcr_any(u32 dcr, u32 val)
  2746. {
  2747. switch (dcr) {
  2748. case SDRAM_R0BAS + 0:
  2749. mtdcr(SDRAM_R0BAS + 0, val);
  2750. break;
  2751. case SDRAM_R0BAS + 1:
  2752. mtdcr(SDRAM_R0BAS + 1, val);
  2753. break;
  2754. case SDRAM_R0BAS + 2:
  2755. mtdcr(SDRAM_R0BAS + 2, val);
  2756. break;
  2757. case SDRAM_R0BAS + 3:
  2758. mtdcr(SDRAM_R0BAS + 3, val);
  2759. break;
  2760. default:
  2761. printf("DCR %d not defined in case statement!!!\n", dcr);
  2762. }
  2763. }
  2764. #endif /* defined(CONFIG_440) */
  2765. #endif /* !defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL) */
  2766. inline void ppc4xx_ibm_ddr2_register_dump(void)
  2767. {
  2768. #if defined(DEBUG)
  2769. printf("\nPPC4xx IBM DDR2 Register Dump:\n");
  2770. #if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  2771. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  2772. PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R0BAS);
  2773. PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R1BAS);
  2774. PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R2BAS);
  2775. PPC4xx_IBM_DDR2_DUMP_MQ_REGISTER(R3BAS);
  2776. #endif /* (defined(CONFIG_440SP) || ... */
  2777. #if defined(CONFIG_405EX)
  2778. PPC4xx_IBM_DDR2_DUMP_REGISTER(BESR);
  2779. PPC4xx_IBM_DDR2_DUMP_REGISTER(BEARL);
  2780. PPC4xx_IBM_DDR2_DUMP_REGISTER(BEARH);
  2781. PPC4xx_IBM_DDR2_DUMP_REGISTER(WMIRQ);
  2782. PPC4xx_IBM_DDR2_DUMP_REGISTER(PLBOPT);
  2783. PPC4xx_IBM_DDR2_DUMP_REGISTER(PUABA);
  2784. #endif /* defined(CONFIG_405EX) */
  2785. PPC4xx_IBM_DDR2_DUMP_REGISTER(MB0CF);
  2786. PPC4xx_IBM_DDR2_DUMP_REGISTER(MB1CF);
  2787. PPC4xx_IBM_DDR2_DUMP_REGISTER(MB2CF);
  2788. PPC4xx_IBM_DDR2_DUMP_REGISTER(MB3CF);
  2789. PPC4xx_IBM_DDR2_DUMP_REGISTER(MCSTAT);
  2790. PPC4xx_IBM_DDR2_DUMP_REGISTER(MCOPT1);
  2791. PPC4xx_IBM_DDR2_DUMP_REGISTER(MCOPT2);
  2792. PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT0);
  2793. PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT1);
  2794. PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT2);
  2795. PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT3);
  2796. PPC4xx_IBM_DDR2_DUMP_REGISTER(CODT);
  2797. #if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  2798. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  2799. PPC4xx_IBM_DDR2_DUMP_REGISTER(VVPR);
  2800. PPC4xx_IBM_DDR2_DUMP_REGISTER(OPARS);
  2801. /*
  2802. * OPART is only used as a trigger register.
  2803. *
  2804. * No data is contained in this register, and reading or writing
  2805. * to is can cause bad things to happen (hangs). Just skip it and
  2806. * report "N/A".
  2807. */
  2808. printf("%20s = N/A\n", "SDRAM_OPART");
  2809. #endif /* defined(CONFIG_440SP) || ... */
  2810. PPC4xx_IBM_DDR2_DUMP_REGISTER(RTR);
  2811. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR0);
  2812. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR1);
  2813. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR2);
  2814. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR3);
  2815. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR4);
  2816. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR5);
  2817. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR6);
  2818. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR7);
  2819. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR8);
  2820. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR9);
  2821. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR10);
  2822. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR11);
  2823. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR12);
  2824. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR13);
  2825. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR14);
  2826. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR15);
  2827. PPC4xx_IBM_DDR2_DUMP_REGISTER(RQDC);
  2828. PPC4xx_IBM_DDR2_DUMP_REGISTER(RFDC);
  2829. PPC4xx_IBM_DDR2_DUMP_REGISTER(RDCC);
  2830. PPC4xx_IBM_DDR2_DUMP_REGISTER(DLCR);
  2831. PPC4xx_IBM_DDR2_DUMP_REGISTER(CLKTR);
  2832. PPC4xx_IBM_DDR2_DUMP_REGISTER(WRDTR);
  2833. PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR1);
  2834. PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR2);
  2835. PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR3);
  2836. PPC4xx_IBM_DDR2_DUMP_REGISTER(MMODE);
  2837. PPC4xx_IBM_DDR2_DUMP_REGISTER(MEMODE);
  2838. PPC4xx_IBM_DDR2_DUMP_REGISTER(ECCES);
  2839. #if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  2840. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  2841. PPC4xx_IBM_DDR2_DUMP_REGISTER(CID);
  2842. #endif /* defined(CONFIG_440SP) || ... */
  2843. PPC4xx_IBM_DDR2_DUMP_REGISTER(RID);
  2844. PPC4xx_IBM_DDR2_DUMP_REGISTER(FCSR);
  2845. PPC4xx_IBM_DDR2_DUMP_REGISTER(RTSR);
  2846. #endif /* defined(DEBUG) */
  2847. }
  2848. #endif /* CONFIG_SDRAM_PPC4xx_IBM_DDR2 */