44x_spd_ddr2.c 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  43. /*-----------------------------------------------------------------------------+
  44. * Defines
  45. *-----------------------------------------------------------------------------*/
  46. #ifndef TRUE
  47. #define TRUE 1
  48. #endif
  49. #ifndef FALSE
  50. #define FALSE 0
  51. #endif
  52. #define SDRAM_DDR1 1
  53. #define SDRAM_DDR2 2
  54. #define SDRAM_NONE 0
  55. #define MAXDIMMS 2
  56. #define MAXRANKS 4
  57. #define MAXBXCF 4
  58. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  59. #define ONE_BILLION 1000000000
  60. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  61. #define CMD_NOP (7 << 19)
  62. #define CMD_PRECHARGE (2 << 19)
  63. #define CMD_REFRESH (1 << 19)
  64. #define CMD_EMR (0 << 19)
  65. #define CMD_READ (5 << 19)
  66. #define CMD_WRITE (4 << 19)
  67. #define SELECT_MR (0 << 16)
  68. #define SELECT_EMR (1 << 16)
  69. #define SELECT_EMR2 (2 << 16)
  70. #define SELECT_EMR3 (3 << 16)
  71. /* MR */
  72. #define DLL_RESET 0x00000100
  73. #define WRITE_RECOV_2 (1 << 9)
  74. #define WRITE_RECOV_3 (2 << 9)
  75. #define WRITE_RECOV_4 (3 << 9)
  76. #define WRITE_RECOV_5 (4 << 9)
  77. #define WRITE_RECOV_6 (5 << 9)
  78. #define BURST_LEN_4 0x00000002
  79. /* EMR */
  80. #define ODT_0_OHM 0x00000000
  81. #define ODT_50_OHM 0x00000044
  82. #define ODT_75_OHM 0x00000004
  83. #define ODT_150_OHM 0x00000040
  84. #define ODS_FULL 0x00000000
  85. #define ODS_REDUCED 0x00000002
  86. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  87. #define ODT_EB0R (0x80000000 >> 8)
  88. #define ODT_EB0W (0x80000000 >> 7)
  89. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  90. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  91. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  92. /* Defines for the Read Cycle Delay test */
  93. #define NUMMEMTESTS 8
  94. #define NUMMEMWORDS 8
  95. #define NUMLOOPS 256 /* memory test loops */
  96. #undef CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
  97. /*
  98. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  99. * region. Right now the cache should still be disabled in U-Boot because of the
  100. * EMAC driver, that need it's buffer descriptor to be located in non cached
  101. * memory.
  102. *
  103. * If at some time this restriction doesn't apply anymore, just define
  104. * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
  105. * everything correctly.
  106. */
  107. #ifdef CFG_ENABLE_SDRAM_CACHE
  108. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  109. #else
  110. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  111. #endif
  112. /* Private Structure Definitions */
  113. /* enum only to ease code for cas latency setting */
  114. typedef enum ddr_cas_id {
  115. DDR_CAS_2 = 20,
  116. DDR_CAS_2_5 = 25,
  117. DDR_CAS_3 = 30,
  118. DDR_CAS_4 = 40,
  119. DDR_CAS_5 = 50
  120. } ddr_cas_id_t;
  121. /*-----------------------------------------------------------------------------+
  122. * Prototypes
  123. *-----------------------------------------------------------------------------*/
  124. static unsigned long sdram_memsize(void);
  125. void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
  126. static void get_spd_info(unsigned long *dimm_populated,
  127. unsigned char *iic0_dimm_addr,
  128. unsigned long num_dimm_banks);
  129. static void check_mem_type(unsigned long *dimm_populated,
  130. unsigned char *iic0_dimm_addr,
  131. unsigned long num_dimm_banks);
  132. static void check_frequency(unsigned long *dimm_populated,
  133. unsigned char *iic0_dimm_addr,
  134. unsigned long num_dimm_banks);
  135. static void check_rank_number(unsigned long *dimm_populated,
  136. unsigned char *iic0_dimm_addr,
  137. unsigned long num_dimm_banks);
  138. static void check_voltage_type(unsigned long *dimm_populated,
  139. unsigned char *iic0_dimm_addr,
  140. unsigned long num_dimm_banks);
  141. static void program_memory_queue(unsigned long *dimm_populated,
  142. unsigned char *iic0_dimm_addr,
  143. unsigned long num_dimm_banks);
  144. static void program_codt(unsigned long *dimm_populated,
  145. unsigned char *iic0_dimm_addr,
  146. unsigned long num_dimm_banks);
  147. static void program_mode(unsigned long *dimm_populated,
  148. unsigned char *iic0_dimm_addr,
  149. unsigned long num_dimm_banks,
  150. ddr_cas_id_t *selected_cas,
  151. int *write_recovery);
  152. static void program_tr(unsigned long *dimm_populated,
  153. unsigned char *iic0_dimm_addr,
  154. unsigned long num_dimm_banks);
  155. static void program_rtr(unsigned long *dimm_populated,
  156. unsigned char *iic0_dimm_addr,
  157. unsigned long num_dimm_banks);
  158. static void program_bxcf(unsigned long *dimm_populated,
  159. unsigned char *iic0_dimm_addr,
  160. unsigned long num_dimm_banks);
  161. static void program_copt1(unsigned long *dimm_populated,
  162. unsigned char *iic0_dimm_addr,
  163. unsigned long num_dimm_banks);
  164. static void program_initplr(unsigned long *dimm_populated,
  165. unsigned char *iic0_dimm_addr,
  166. unsigned long num_dimm_banks,
  167. ddr_cas_id_t selected_cas,
  168. int write_recovery);
  169. static unsigned long is_ecc_enabled(void);
  170. #ifdef CONFIG_DDR_ECC
  171. static void program_ecc(unsigned long *dimm_populated,
  172. unsigned char *iic0_dimm_addr,
  173. unsigned long num_dimm_banks,
  174. unsigned long tlb_word2_i_value);
  175. static void program_ecc_addr(unsigned long start_address,
  176. unsigned long num_bytes,
  177. unsigned long tlb_word2_i_value);
  178. #endif
  179. static void program_DQS_calibration(unsigned long *dimm_populated,
  180. unsigned char *iic0_dimm_addr,
  181. unsigned long num_dimm_banks);
  182. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  183. static void test(void);
  184. #else
  185. static void DQS_calibration_process(void);
  186. #endif
  187. #if defined(DEBUG)
  188. static void ppc440sp_sdram_register_dump(void);
  189. #endif
  190. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  191. void dcbz_area(u32 start_address, u32 num_bytes);
  192. void dflush(void);
  193. static u32 mfdcr_any(u32 dcr)
  194. {
  195. u32 val;
  196. switch (dcr) {
  197. case SDRAM_R0BAS + 0:
  198. val = mfdcr(SDRAM_R0BAS + 0);
  199. break;
  200. case SDRAM_R0BAS + 1:
  201. val = mfdcr(SDRAM_R0BAS + 1);
  202. break;
  203. case SDRAM_R0BAS + 2:
  204. val = mfdcr(SDRAM_R0BAS + 2);
  205. break;
  206. case SDRAM_R0BAS + 3:
  207. val = mfdcr(SDRAM_R0BAS + 3);
  208. break;
  209. default:
  210. printf("DCR %d not defined in case statement!!!\n", dcr);
  211. val = 0; /* just to satisfy the compiler */
  212. }
  213. return val;
  214. }
  215. static void mtdcr_any(u32 dcr, u32 val)
  216. {
  217. switch (dcr) {
  218. case SDRAM_R0BAS + 0:
  219. mtdcr(SDRAM_R0BAS + 0, val);
  220. break;
  221. case SDRAM_R0BAS + 1:
  222. mtdcr(SDRAM_R0BAS + 1, val);
  223. break;
  224. case SDRAM_R0BAS + 2:
  225. mtdcr(SDRAM_R0BAS + 2, val);
  226. break;
  227. case SDRAM_R0BAS + 3:
  228. mtdcr(SDRAM_R0BAS + 3, val);
  229. break;
  230. default:
  231. printf("DCR %d not defined in case statement!!!\n", dcr);
  232. }
  233. }
  234. static unsigned char spd_read(uchar chip, uint addr)
  235. {
  236. unsigned char data[2];
  237. if (i2c_probe(chip) == 0)
  238. if (i2c_read(chip, addr, 1, data, 1) == 0)
  239. return data[0];
  240. return 0;
  241. }
  242. /*-----------------------------------------------------------------------------+
  243. * sdram_memsize
  244. *-----------------------------------------------------------------------------*/
  245. static unsigned long sdram_memsize(void)
  246. {
  247. unsigned long mem_size;
  248. unsigned long mcopt2;
  249. unsigned long mcstat;
  250. unsigned long mb0cf;
  251. unsigned long sdsz;
  252. unsigned long i;
  253. mem_size = 0;
  254. mfsdram(SDRAM_MCOPT2, mcopt2);
  255. mfsdram(SDRAM_MCSTAT, mcstat);
  256. /* DDR controller must be enabled and not in self-refresh. */
  257. /* Otherwise memsize is zero. */
  258. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  259. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  260. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  261. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  262. for (i = 0; i < MAXBXCF; i++) {
  263. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  264. /* Banks enabled */
  265. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  266. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  267. switch(sdsz) {
  268. case SDRAM_RXBAS_SDSZ_8:
  269. mem_size+=8;
  270. break;
  271. case SDRAM_RXBAS_SDSZ_16:
  272. mem_size+=16;
  273. break;
  274. case SDRAM_RXBAS_SDSZ_32:
  275. mem_size+=32;
  276. break;
  277. case SDRAM_RXBAS_SDSZ_64:
  278. mem_size+=64;
  279. break;
  280. case SDRAM_RXBAS_SDSZ_128:
  281. mem_size+=128;
  282. break;
  283. case SDRAM_RXBAS_SDSZ_256:
  284. mem_size+=256;
  285. break;
  286. case SDRAM_RXBAS_SDSZ_512:
  287. mem_size+=512;
  288. break;
  289. case SDRAM_RXBAS_SDSZ_1024:
  290. mem_size+=1024;
  291. break;
  292. case SDRAM_RXBAS_SDSZ_2048:
  293. mem_size+=2048;
  294. break;
  295. case SDRAM_RXBAS_SDSZ_4096:
  296. mem_size+=4096;
  297. break;
  298. default:
  299. mem_size=0;
  300. break;
  301. }
  302. }
  303. }
  304. }
  305. mem_size *= 1024 * 1024;
  306. return(mem_size);
  307. }
  308. /*-----------------------------------------------------------------------------+
  309. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  310. * Note: This routine runs from flash with a stack set up in the chip's
  311. * sram space. It is important that the routine does not require .sbss, .bss or
  312. * .data sections. It also cannot call routines that require these sections.
  313. *-----------------------------------------------------------------------------*/
  314. /*-----------------------------------------------------------------------------
  315. * Function: initdram
  316. * Description: Configures SDRAM memory banks for DDR operation.
  317. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  318. * via the IIC bus and then configures the DDR SDRAM memory
  319. * banks appropriately. If Auto Memory Configuration is
  320. * not used, it is assumed that no DIMM is plugged
  321. *-----------------------------------------------------------------------------*/
  322. long int initdram(int board_type)
  323. {
  324. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  325. unsigned char spd0[MAX_SPD_BYTES];
  326. unsigned char spd1[MAX_SPD_BYTES];
  327. unsigned char *dimm_spd[MAXDIMMS];
  328. unsigned long dimm_populated[MAXDIMMS];
  329. unsigned long num_dimm_banks; /* on board dimm banks */
  330. unsigned long val;
  331. ddr_cas_id_t selected_cas;
  332. int write_recovery;
  333. unsigned long dram_size = 0;
  334. num_dimm_banks = sizeof(iic0_dimm_addr);
  335. /*------------------------------------------------------------------
  336. * Set up an array of SPD matrixes.
  337. *-----------------------------------------------------------------*/
  338. dimm_spd[0] = spd0;
  339. dimm_spd[1] = spd1;
  340. /*------------------------------------------------------------------
  341. * Reset the DDR-SDRAM controller.
  342. *-----------------------------------------------------------------*/
  343. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  344. mtsdr(SDR0_SRST, 0x00000000);
  345. /*
  346. * Make sure I2C controller is initialized
  347. * before continuing.
  348. */
  349. /* switch to correct I2C bus */
  350. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  351. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  352. /*------------------------------------------------------------------
  353. * Clear out the serial presence detect buffers.
  354. * Perform IIC reads from the dimm. Fill in the spds.
  355. * Check to see if the dimm slots are populated
  356. *-----------------------------------------------------------------*/
  357. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  358. /*------------------------------------------------------------------
  359. * Check the memory type for the dimms plugged.
  360. *-----------------------------------------------------------------*/
  361. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  362. /*------------------------------------------------------------------
  363. * Check the frequency supported for the dimms plugged.
  364. *-----------------------------------------------------------------*/
  365. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  366. /*------------------------------------------------------------------
  367. * Check the total rank number.
  368. *-----------------------------------------------------------------*/
  369. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  370. /*------------------------------------------------------------------
  371. * Check the voltage type for the dimms plugged.
  372. *-----------------------------------------------------------------*/
  373. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  374. /*------------------------------------------------------------------
  375. * Program SDRAM controller options 2 register
  376. * Except Enabling of the memory controller.
  377. *-----------------------------------------------------------------*/
  378. mfsdram(SDRAM_MCOPT2, val);
  379. mtsdram(SDRAM_MCOPT2,
  380. (val &
  381. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  382. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  383. SDRAM_MCOPT2_ISIE_MASK))
  384. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  385. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  386. SDRAM_MCOPT2_ISIE_ENABLE));
  387. /*------------------------------------------------------------------
  388. * Program SDRAM controller options 1 register
  389. * Note: Does not enable the memory controller.
  390. *-----------------------------------------------------------------*/
  391. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  392. /*------------------------------------------------------------------
  393. * Set the SDRAM Controller On Die Termination Register
  394. *-----------------------------------------------------------------*/
  395. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  396. /*------------------------------------------------------------------
  397. * Program SDRAM refresh register.
  398. *-----------------------------------------------------------------*/
  399. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  400. /*------------------------------------------------------------------
  401. * Program SDRAM mode register.
  402. *-----------------------------------------------------------------*/
  403. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  404. &selected_cas, &write_recovery);
  405. /*------------------------------------------------------------------
  406. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  407. *-----------------------------------------------------------------*/
  408. mfsdram(SDRAM_WRDTR, val);
  409. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  410. (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  411. /*------------------------------------------------------------------
  412. * Set the SDRAM Clock Timing Register
  413. *-----------------------------------------------------------------*/
  414. mfsdram(SDRAM_CLKTR, val);
  415. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
  416. /*------------------------------------------------------------------
  417. * Program the BxCF registers.
  418. *-----------------------------------------------------------------*/
  419. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  420. /*------------------------------------------------------------------
  421. * Program SDRAM timing registers.
  422. *-----------------------------------------------------------------*/
  423. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  424. /*------------------------------------------------------------------
  425. * Set the Extended Mode register
  426. *-----------------------------------------------------------------*/
  427. mfsdram(SDRAM_MEMODE, val);
  428. mtsdram(SDRAM_MEMODE,
  429. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  430. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  431. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  432. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  433. /*------------------------------------------------------------------
  434. * Program Initialization preload registers.
  435. *-----------------------------------------------------------------*/
  436. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  437. selected_cas, write_recovery);
  438. /*------------------------------------------------------------------
  439. * Delay to ensure 200usec have elapsed since reset.
  440. *-----------------------------------------------------------------*/
  441. udelay(400);
  442. /*------------------------------------------------------------------
  443. * Set the memory queue core base addr.
  444. *-----------------------------------------------------------------*/
  445. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  446. /*------------------------------------------------------------------
  447. * Program SDRAM controller options 2 register
  448. * Enable the memory controller.
  449. *-----------------------------------------------------------------*/
  450. mfsdram(SDRAM_MCOPT2, val);
  451. mtsdram(SDRAM_MCOPT2,
  452. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  453. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  454. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  455. /*------------------------------------------------------------------
  456. * Wait for SDRAM_CFG0_DC_EN to complete.
  457. *-----------------------------------------------------------------*/
  458. do {
  459. mfsdram(SDRAM_MCSTAT, val);
  460. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  461. /* get installed memory size */
  462. dram_size = sdram_memsize();
  463. /* and program tlb entries for this size (dynamic) */
  464. program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
  465. /*------------------------------------------------------------------
  466. * DQS calibration.
  467. *-----------------------------------------------------------------*/
  468. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  469. #ifdef CONFIG_DDR_ECC
  470. /*------------------------------------------------------------------
  471. * If ecc is enabled, initialize the parity bits.
  472. *-----------------------------------------------------------------*/
  473. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
  474. #endif
  475. #ifdef DEBUG
  476. ppc440sp_sdram_register_dump();
  477. #endif
  478. return dram_size;
  479. }
  480. static void get_spd_info(unsigned long *dimm_populated,
  481. unsigned char *iic0_dimm_addr,
  482. unsigned long num_dimm_banks)
  483. {
  484. unsigned long dimm_num;
  485. unsigned long dimm_found;
  486. unsigned char num_of_bytes;
  487. unsigned char total_size;
  488. dimm_found = FALSE;
  489. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  490. num_of_bytes = 0;
  491. total_size = 0;
  492. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  493. debug("\nspd_read(0x%x) returned %d\n",
  494. iic0_dimm_addr[dimm_num], num_of_bytes);
  495. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  496. debug("spd_read(0x%x) returned %d\n",
  497. iic0_dimm_addr[dimm_num], total_size);
  498. if ((num_of_bytes != 0) && (total_size != 0)) {
  499. dimm_populated[dimm_num] = TRUE;
  500. dimm_found = TRUE;
  501. debug("DIMM slot %lu: populated\n", dimm_num);
  502. } else {
  503. dimm_populated[dimm_num] = FALSE;
  504. debug("DIMM slot %lu: Not populated\n", dimm_num);
  505. }
  506. }
  507. if (dimm_found == FALSE) {
  508. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  509. hang();
  510. }
  511. }
  512. #ifdef CONFIG_ADD_RAM_INFO
  513. void board_add_ram_info(int use_default)
  514. {
  515. PPC440_SYS_INFO board_cfg;
  516. u32 val;
  517. if (is_ecc_enabled())
  518. puts(" (ECC");
  519. else
  520. puts(" (ECC not");
  521. get_sys_info(&board_cfg);
  522. mfsdr(SDR0_DDR0, val);
  523. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  524. printf(" enabled, %d MHz", (val * 2) / 1000000);
  525. mfsdram(SDRAM_MMODE, val);
  526. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  527. printf(", CL%d)", val);
  528. }
  529. #endif
  530. /*------------------------------------------------------------------
  531. * For the memory DIMMs installed, this routine verifies that they
  532. * really are DDR specific DIMMs.
  533. *-----------------------------------------------------------------*/
  534. static void check_mem_type(unsigned long *dimm_populated,
  535. unsigned char *iic0_dimm_addr,
  536. unsigned long num_dimm_banks)
  537. {
  538. unsigned long dimm_num;
  539. unsigned long dimm_type;
  540. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  541. if (dimm_populated[dimm_num] == TRUE) {
  542. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  543. switch (dimm_type) {
  544. case 1:
  545. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  546. "slot %d.\n", (unsigned int)dimm_num);
  547. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  548. printf("Replace the DIMM module with a supported DIMM.\n\n");
  549. hang();
  550. break;
  551. case 2:
  552. printf("ERROR: EDO DIMM detected in slot %d.\n",
  553. (unsigned int)dimm_num);
  554. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  555. printf("Replace the DIMM module with a supported DIMM.\n\n");
  556. hang();
  557. break;
  558. case 3:
  559. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  560. (unsigned int)dimm_num);
  561. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  562. printf("Replace the DIMM module with a supported DIMM.\n\n");
  563. hang();
  564. break;
  565. case 4:
  566. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  567. (unsigned int)dimm_num);
  568. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  569. printf("Replace the DIMM module with a supported DIMM.\n\n");
  570. hang();
  571. break;
  572. case 5:
  573. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  574. (unsigned int)dimm_num);
  575. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  576. printf("Replace the DIMM module with a supported DIMM.\n\n");
  577. hang();
  578. break;
  579. case 6:
  580. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  581. (unsigned int)dimm_num);
  582. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  583. printf("Replace the DIMM module with a supported DIMM.\n\n");
  584. hang();
  585. break;
  586. case 7:
  587. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  588. dimm_populated[dimm_num] = SDRAM_DDR1;
  589. break;
  590. case 8:
  591. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  592. dimm_populated[dimm_num] = SDRAM_DDR2;
  593. break;
  594. default:
  595. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  596. (unsigned int)dimm_num);
  597. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  598. printf("Replace the DIMM module with a supported DIMM.\n\n");
  599. hang();
  600. break;
  601. }
  602. }
  603. }
  604. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  605. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  606. && (dimm_populated[dimm_num] != SDRAM_NONE)
  607. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  608. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  609. hang();
  610. }
  611. }
  612. }
  613. /*------------------------------------------------------------------
  614. * For the memory DIMMs installed, this routine verifies that
  615. * frequency previously calculated is supported.
  616. *-----------------------------------------------------------------*/
  617. static void check_frequency(unsigned long *dimm_populated,
  618. unsigned char *iic0_dimm_addr,
  619. unsigned long num_dimm_banks)
  620. {
  621. unsigned long dimm_num;
  622. unsigned long tcyc_reg;
  623. unsigned long cycle_time;
  624. unsigned long calc_cycle_time;
  625. unsigned long sdram_freq;
  626. unsigned long sdr_ddrpll;
  627. PPC440_SYS_INFO board_cfg;
  628. /*------------------------------------------------------------------
  629. * Get the board configuration info.
  630. *-----------------------------------------------------------------*/
  631. get_sys_info(&board_cfg);
  632. mfsdr(SDR0_DDR0, sdr_ddrpll);
  633. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  634. /*
  635. * calc_cycle_time is calculated from DDR frequency set by board/chip
  636. * and is expressed in multiple of 10 picoseconds
  637. * to match the way DIMM cycle time is calculated below.
  638. */
  639. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  640. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  641. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  642. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  643. /*
  644. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  645. * the higher order nibble (bits 4-7) designates the cycle time
  646. * to a granularity of 1ns;
  647. * the value presented by the lower order nibble (bits 0-3)
  648. * has a granularity of .1ns and is added to the value designated
  649. * by the higher nibble. In addition, four lines of the lower order
  650. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  651. */
  652. /* Convert from hex to decimal */
  653. if ((tcyc_reg & 0x0F) == 0x0D)
  654. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  655. else if ((tcyc_reg & 0x0F) == 0x0C)
  656. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  657. else if ((tcyc_reg & 0x0F) == 0x0B)
  658. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  659. else if ((tcyc_reg & 0x0F) == 0x0A)
  660. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  661. else
  662. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  663. ((tcyc_reg & 0x0F)*10);
  664. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  665. if (cycle_time > (calc_cycle_time + 10)) {
  666. /*
  667. * the provided sdram cycle_time is too small
  668. * for the available DIMM cycle_time.
  669. * The additionnal 100ps is here to accept a small incertainty.
  670. */
  671. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  672. "slot %d \n while calculated cycle time is %d ps.\n",
  673. (unsigned int)(cycle_time*10),
  674. (unsigned int)dimm_num,
  675. (unsigned int)(calc_cycle_time*10));
  676. printf("Replace the DIMM, or change DDR frequency via "
  677. "strapping bits.\n\n");
  678. hang();
  679. }
  680. }
  681. }
  682. }
  683. /*------------------------------------------------------------------
  684. * For the memory DIMMs installed, this routine verifies two
  685. * ranks/banks maximum are availables.
  686. *-----------------------------------------------------------------*/
  687. static void check_rank_number(unsigned long *dimm_populated,
  688. unsigned char *iic0_dimm_addr,
  689. unsigned long num_dimm_banks)
  690. {
  691. unsigned long dimm_num;
  692. unsigned long dimm_rank;
  693. unsigned long total_rank = 0;
  694. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  695. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  696. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  697. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  698. dimm_rank = (dimm_rank & 0x0F) +1;
  699. else
  700. dimm_rank = dimm_rank & 0x0F;
  701. if (dimm_rank > MAXRANKS) {
  702. printf("ERROR: DRAM DIMM detected with %d ranks in "
  703. "slot %d is not supported.\n", dimm_rank, dimm_num);
  704. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  705. printf("Replace the DIMM module with a supported DIMM.\n\n");
  706. hang();
  707. } else
  708. total_rank += dimm_rank;
  709. }
  710. if (total_rank > MAXRANKS) {
  711. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  712. "for all slots.\n", (unsigned int)total_rank);
  713. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  714. printf("Remove one of the DIMM modules.\n\n");
  715. hang();
  716. }
  717. }
  718. }
  719. /*------------------------------------------------------------------
  720. * only support 2.5V modules.
  721. * This routine verifies this.
  722. *-----------------------------------------------------------------*/
  723. static void check_voltage_type(unsigned long *dimm_populated,
  724. unsigned char *iic0_dimm_addr,
  725. unsigned long num_dimm_banks)
  726. {
  727. unsigned long dimm_num;
  728. unsigned long voltage_type;
  729. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  730. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  731. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  732. switch (voltage_type) {
  733. case 0x00:
  734. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  735. printf("This DIMM is 5.0 Volt/TTL.\n");
  736. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  737. (unsigned int)dimm_num);
  738. hang();
  739. break;
  740. case 0x01:
  741. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  742. printf("This DIMM is LVTTL.\n");
  743. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  744. (unsigned int)dimm_num);
  745. hang();
  746. break;
  747. case 0x02:
  748. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  749. printf("This DIMM is 1.5 Volt.\n");
  750. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  751. (unsigned int)dimm_num);
  752. hang();
  753. break;
  754. case 0x03:
  755. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  756. printf("This DIMM is 3.3 Volt/TTL.\n");
  757. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  758. (unsigned int)dimm_num);
  759. hang();
  760. break;
  761. case 0x04:
  762. /* 2.5 Voltage only for DDR1 */
  763. break;
  764. case 0x05:
  765. /* 1.8 Voltage only for DDR2 */
  766. break;
  767. default:
  768. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  769. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  770. (unsigned int)dimm_num);
  771. hang();
  772. break;
  773. }
  774. }
  775. }
  776. }
  777. /*-----------------------------------------------------------------------------+
  778. * program_copt1.
  779. *-----------------------------------------------------------------------------*/
  780. static void program_copt1(unsigned long *dimm_populated,
  781. unsigned char *iic0_dimm_addr,
  782. unsigned long num_dimm_banks)
  783. {
  784. unsigned long dimm_num;
  785. unsigned long mcopt1;
  786. unsigned long ecc_enabled;
  787. unsigned long ecc = 0;
  788. unsigned long data_width = 0;
  789. unsigned long dimm_32bit;
  790. unsigned long dimm_64bit;
  791. unsigned long registered = 0;
  792. unsigned long attribute = 0;
  793. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  794. unsigned long bankcount;
  795. unsigned long ddrtype;
  796. unsigned long val;
  797. #ifdef CONFIG_DDR_ECC
  798. ecc_enabled = TRUE;
  799. #else
  800. ecc_enabled = FALSE;
  801. #endif
  802. dimm_32bit = FALSE;
  803. dimm_64bit = FALSE;
  804. buf0 = FALSE;
  805. buf1 = FALSE;
  806. /*------------------------------------------------------------------
  807. * Set memory controller options reg 1, SDRAM_MCOPT1.
  808. *-----------------------------------------------------------------*/
  809. mfsdram(SDRAM_MCOPT1, val);
  810. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  811. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  812. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  813. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  814. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  815. SDRAM_MCOPT1_DREF_MASK);
  816. mcopt1 |= SDRAM_MCOPT1_QDEP;
  817. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  818. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  819. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  820. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  821. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  822. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  823. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  824. /* test ecc support */
  825. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  826. if (ecc != 0x02) /* ecc not supported */
  827. ecc_enabled = FALSE;
  828. /* test bank count */
  829. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  830. if (bankcount == 0x04) /* bank count = 4 */
  831. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  832. else /* bank count = 8 */
  833. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  834. /* test DDR type */
  835. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  836. /* test for buffered/unbuffered, registered, differential clocks */
  837. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  838. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  839. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  840. if (dimm_num == 0) {
  841. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  842. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  843. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  844. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  845. if (registered == 1) { /* DDR2 always buffered */
  846. /* TODO: what about above comments ? */
  847. mcopt1 |= SDRAM_MCOPT1_RDEN;
  848. buf0 = TRUE;
  849. } else {
  850. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  851. if ((attribute & 0x02) == 0x00) {
  852. /* buffered not supported */
  853. buf0 = FALSE;
  854. } else {
  855. mcopt1 |= SDRAM_MCOPT1_RDEN;
  856. buf0 = TRUE;
  857. }
  858. }
  859. }
  860. else if (dimm_num == 1) {
  861. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  862. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  863. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  864. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  865. if (registered == 1) {
  866. /* DDR2 always buffered */
  867. mcopt1 |= SDRAM_MCOPT1_RDEN;
  868. buf1 = TRUE;
  869. } else {
  870. if ((attribute & 0x02) == 0x00) {
  871. /* buffered not supported */
  872. buf1 = FALSE;
  873. } else {
  874. mcopt1 |= SDRAM_MCOPT1_RDEN;
  875. buf1 = TRUE;
  876. }
  877. }
  878. }
  879. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  880. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  881. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  882. switch (data_width) {
  883. case 72:
  884. case 64:
  885. dimm_64bit = TRUE;
  886. break;
  887. case 40:
  888. case 32:
  889. dimm_32bit = TRUE;
  890. break;
  891. default:
  892. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  893. data_width);
  894. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  895. break;
  896. }
  897. }
  898. }
  899. /* verify matching properties */
  900. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  901. if (buf0 != buf1) {
  902. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  903. hang();
  904. }
  905. }
  906. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  907. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  908. hang();
  909. }
  910. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  911. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  912. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  913. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  914. } else {
  915. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  916. hang();
  917. }
  918. if (ecc_enabled == TRUE)
  919. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  920. else
  921. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  922. mtsdram(SDRAM_MCOPT1, mcopt1);
  923. }
  924. /*-----------------------------------------------------------------------------+
  925. * program_codt.
  926. *-----------------------------------------------------------------------------*/
  927. static void program_codt(unsigned long *dimm_populated,
  928. unsigned char *iic0_dimm_addr,
  929. unsigned long num_dimm_banks)
  930. {
  931. unsigned long codt;
  932. unsigned long modt0 = 0;
  933. unsigned long modt1 = 0;
  934. unsigned long modt2 = 0;
  935. unsigned long modt3 = 0;
  936. unsigned char dimm_num;
  937. unsigned char dimm_rank;
  938. unsigned char total_rank = 0;
  939. unsigned char total_dimm = 0;
  940. unsigned char dimm_type = 0;
  941. unsigned char firstSlot = 0;
  942. /*------------------------------------------------------------------
  943. * Set the SDRAM Controller On Die Termination Register
  944. *-----------------------------------------------------------------*/
  945. mfsdram(SDRAM_CODT, codt);
  946. codt |= (SDRAM_CODT_IO_NMODE
  947. & (~SDRAM_CODT_DQS_SINGLE_END
  948. & ~SDRAM_CODT_CKSE_SINGLE_END
  949. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  950. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  951. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  952. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  953. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  954. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  955. dimm_rank = (dimm_rank & 0x0F) + 1;
  956. dimm_type = SDRAM_DDR2;
  957. } else {
  958. dimm_rank = dimm_rank & 0x0F;
  959. dimm_type = SDRAM_DDR1;
  960. }
  961. total_rank += dimm_rank;
  962. total_dimm++;
  963. if ((dimm_num == 0) && (total_dimm == 1))
  964. firstSlot = TRUE;
  965. else
  966. firstSlot = FALSE;
  967. }
  968. }
  969. if (dimm_type == SDRAM_DDR2) {
  970. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  971. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  972. if (total_rank == 1) {
  973. codt |= CALC_ODT_R(0);
  974. modt0 = CALC_ODT_W(0);
  975. modt1 = 0x00000000;
  976. modt2 = 0x00000000;
  977. modt3 = 0x00000000;
  978. }
  979. if (total_rank == 2) {
  980. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  981. modt0 = CALC_ODT_W(0);
  982. modt1 = CALC_ODT_W(0);
  983. modt2 = 0x00000000;
  984. modt3 = 0x00000000;
  985. }
  986. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  987. if (total_rank == 1) {
  988. codt |= CALC_ODT_R(2);
  989. modt0 = 0x00000000;
  990. modt1 = 0x00000000;
  991. modt2 = CALC_ODT_W(2);
  992. modt3 = 0x00000000;
  993. }
  994. if (total_rank == 2) {
  995. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  996. modt0 = 0x00000000;
  997. modt1 = 0x00000000;
  998. modt2 = CALC_ODT_W(2);
  999. modt3 = CALC_ODT_W(2);
  1000. }
  1001. }
  1002. if (total_dimm == 2) {
  1003. if (total_rank == 2) {
  1004. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1005. modt0 = CALC_ODT_RW(2);
  1006. modt1 = 0x00000000;
  1007. modt2 = CALC_ODT_RW(0);
  1008. modt3 = 0x00000000;
  1009. }
  1010. if (total_rank == 4) {
  1011. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | CALC_ODT_R(2) | CALC_ODT_R(3);
  1012. modt0 = CALC_ODT_RW(2);
  1013. modt1 = 0x00000000;
  1014. modt2 = CALC_ODT_RW(0);
  1015. modt3 = 0x00000000;
  1016. }
  1017. }
  1018. } else {
  1019. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1020. modt0 = 0x00000000;
  1021. modt1 = 0x00000000;
  1022. modt2 = 0x00000000;
  1023. modt3 = 0x00000000;
  1024. if (total_dimm == 1) {
  1025. if (total_rank == 1)
  1026. codt |= 0x00800000;
  1027. if (total_rank == 2)
  1028. codt |= 0x02800000;
  1029. }
  1030. if (total_dimm == 2) {
  1031. if (total_rank == 2)
  1032. codt |= 0x08800000;
  1033. if (total_rank == 4)
  1034. codt |= 0x2a800000;
  1035. }
  1036. }
  1037. debug("nb of dimm %d\n", total_dimm);
  1038. debug("nb of rank %d\n", total_rank);
  1039. if (total_dimm == 1)
  1040. debug("dimm in slot %d\n", firstSlot);
  1041. mtsdram(SDRAM_CODT, codt);
  1042. mtsdram(SDRAM_MODT0, modt0);
  1043. mtsdram(SDRAM_MODT1, modt1);
  1044. mtsdram(SDRAM_MODT2, modt2);
  1045. mtsdram(SDRAM_MODT3, modt3);
  1046. }
  1047. /*-----------------------------------------------------------------------------+
  1048. * program_initplr.
  1049. *-----------------------------------------------------------------------------*/
  1050. static void program_initplr(unsigned long *dimm_populated,
  1051. unsigned char *iic0_dimm_addr,
  1052. unsigned long num_dimm_banks,
  1053. ddr_cas_id_t selected_cas,
  1054. int write_recovery)
  1055. {
  1056. u32 cas = 0;
  1057. u32 odt = 0;
  1058. u32 ods = 0;
  1059. u32 mr;
  1060. u32 wr;
  1061. u32 emr;
  1062. u32 emr2;
  1063. u32 emr3;
  1064. int dimm_num;
  1065. int total_dimm = 0;
  1066. /******************************************************
  1067. ** Assumption: if more than one DIMM, all DIMMs are the same
  1068. ** as already checked in check_memory_type
  1069. ******************************************************/
  1070. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1071. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1072. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1073. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1074. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1075. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1076. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1077. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1078. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1079. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1080. switch (selected_cas) {
  1081. case DDR_CAS_3:
  1082. cas = 3 << 4;
  1083. break;
  1084. case DDR_CAS_4:
  1085. cas = 4 << 4;
  1086. break;
  1087. case DDR_CAS_5:
  1088. cas = 5 << 4;
  1089. break;
  1090. default:
  1091. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1092. hang();
  1093. break;
  1094. }
  1095. #if 0
  1096. /*
  1097. * ToDo - Still a problem with the write recovery:
  1098. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1099. * in the INITPLR reg to the value calculated in program_mode()
  1100. * results in not correctly working DDR2 memory (crash after
  1101. * relocation).
  1102. *
  1103. * So for now, set the write recovery to 3. This seems to work
  1104. * on the Corair module too.
  1105. *
  1106. * 2007-03-01, sr
  1107. */
  1108. switch (write_recovery) {
  1109. case 3:
  1110. wr = WRITE_RECOV_3;
  1111. break;
  1112. case 4:
  1113. wr = WRITE_RECOV_4;
  1114. break;
  1115. case 5:
  1116. wr = WRITE_RECOV_5;
  1117. break;
  1118. case 6:
  1119. wr = WRITE_RECOV_6;
  1120. break;
  1121. default:
  1122. printf("ERROR: write recovery not support (%d)", write_recovery);
  1123. hang();
  1124. break;
  1125. }
  1126. #else
  1127. wr = WRITE_RECOV_3; /* test-only, see description above */
  1128. #endif
  1129. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1130. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1131. total_dimm++;
  1132. if (total_dimm == 1) {
  1133. odt = ODT_150_OHM;
  1134. ods = ODS_FULL;
  1135. } else if (total_dimm == 2) {
  1136. odt = ODT_75_OHM;
  1137. ods = ODS_REDUCED;
  1138. } else {
  1139. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1140. hang();
  1141. }
  1142. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1143. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1144. emr2 = CMD_EMR | SELECT_EMR2;
  1145. emr3 = CMD_EMR | SELECT_EMR3;
  1146. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1147. udelay(1000);
  1148. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1149. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1150. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1151. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1152. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1153. udelay(1000);
  1154. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1155. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1156. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1157. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1158. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1159. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1160. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1161. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1162. } else {
  1163. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1164. hang();
  1165. }
  1166. }
  1167. /*------------------------------------------------------------------
  1168. * This routine programs the SDRAM_MMODE register.
  1169. * the selected_cas is an output parameter, that will be passed
  1170. * by caller to call the above program_initplr( )
  1171. *-----------------------------------------------------------------*/
  1172. static void program_mode(unsigned long *dimm_populated,
  1173. unsigned char *iic0_dimm_addr,
  1174. unsigned long num_dimm_banks,
  1175. ddr_cas_id_t *selected_cas,
  1176. int *write_recovery)
  1177. {
  1178. unsigned long dimm_num;
  1179. unsigned long sdram_ddr1;
  1180. unsigned long t_wr_ns;
  1181. unsigned long t_wr_clk;
  1182. unsigned long cas_bit;
  1183. unsigned long cas_index;
  1184. unsigned long sdram_freq;
  1185. unsigned long ddr_check;
  1186. unsigned long mmode;
  1187. unsigned long tcyc_reg;
  1188. unsigned long cycle_2_0_clk;
  1189. unsigned long cycle_2_5_clk;
  1190. unsigned long cycle_3_0_clk;
  1191. unsigned long cycle_4_0_clk;
  1192. unsigned long cycle_5_0_clk;
  1193. unsigned long max_2_0_tcyc_ns_x_100;
  1194. unsigned long max_2_5_tcyc_ns_x_100;
  1195. unsigned long max_3_0_tcyc_ns_x_100;
  1196. unsigned long max_4_0_tcyc_ns_x_100;
  1197. unsigned long max_5_0_tcyc_ns_x_100;
  1198. unsigned long cycle_time_ns_x_100[3];
  1199. PPC440_SYS_INFO board_cfg;
  1200. unsigned char cas_2_0_available;
  1201. unsigned char cas_2_5_available;
  1202. unsigned char cas_3_0_available;
  1203. unsigned char cas_4_0_available;
  1204. unsigned char cas_5_0_available;
  1205. unsigned long sdr_ddrpll;
  1206. /*------------------------------------------------------------------
  1207. * Get the board configuration info.
  1208. *-----------------------------------------------------------------*/
  1209. get_sys_info(&board_cfg);
  1210. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1211. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1212. debug("sdram_freq=%d\n", sdram_freq);
  1213. /*------------------------------------------------------------------
  1214. * Handle the timing. We need to find the worst case timing of all
  1215. * the dimm modules installed.
  1216. *-----------------------------------------------------------------*/
  1217. t_wr_ns = 0;
  1218. cas_2_0_available = TRUE;
  1219. cas_2_5_available = TRUE;
  1220. cas_3_0_available = TRUE;
  1221. cas_4_0_available = TRUE;
  1222. cas_5_0_available = TRUE;
  1223. max_2_0_tcyc_ns_x_100 = 10;
  1224. max_2_5_tcyc_ns_x_100 = 10;
  1225. max_3_0_tcyc_ns_x_100 = 10;
  1226. max_4_0_tcyc_ns_x_100 = 10;
  1227. max_5_0_tcyc_ns_x_100 = 10;
  1228. sdram_ddr1 = TRUE;
  1229. /* loop through all the DIMM slots on the board */
  1230. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1231. /* If a dimm is installed in a particular slot ... */
  1232. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1233. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1234. sdram_ddr1 = TRUE;
  1235. else
  1236. sdram_ddr1 = FALSE;
  1237. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1238. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1239. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1240. /* For a particular DIMM, grab the three CAS values it supports */
  1241. for (cas_index = 0; cas_index < 3; cas_index++) {
  1242. switch (cas_index) {
  1243. case 0:
  1244. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1245. break;
  1246. case 1:
  1247. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1248. break;
  1249. default:
  1250. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1251. break;
  1252. }
  1253. if ((tcyc_reg & 0x0F) >= 10) {
  1254. if ((tcyc_reg & 0x0F) == 0x0D) {
  1255. /* Convert from hex to decimal */
  1256. cycle_time_ns_x_100[cas_index] =
  1257. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1258. } else {
  1259. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1260. "in slot %d\n", (unsigned int)dimm_num);
  1261. hang();
  1262. }
  1263. } else {
  1264. /* Convert from hex to decimal */
  1265. cycle_time_ns_x_100[cas_index] =
  1266. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1267. ((tcyc_reg & 0x0F)*10);
  1268. }
  1269. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1270. cycle_time_ns_x_100[cas_index]);
  1271. }
  1272. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1273. /* supported for a particular DIMM. */
  1274. cas_index = 0;
  1275. if (sdram_ddr1) {
  1276. /*
  1277. * DDR devices use the following bitmask for CAS latency:
  1278. * Bit 7 6 5 4 3 2 1 0
  1279. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1280. */
  1281. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1282. (cycle_time_ns_x_100[cas_index] != 0)) {
  1283. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1284. cycle_time_ns_x_100[cas_index]);
  1285. cas_index++;
  1286. } else {
  1287. if (cas_index != 0)
  1288. cas_index++;
  1289. cas_4_0_available = FALSE;
  1290. }
  1291. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1292. (cycle_time_ns_x_100[cas_index] != 0)) {
  1293. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1294. cycle_time_ns_x_100[cas_index]);
  1295. cas_index++;
  1296. } else {
  1297. if (cas_index != 0)
  1298. cas_index++;
  1299. cas_3_0_available = FALSE;
  1300. }
  1301. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1302. (cycle_time_ns_x_100[cas_index] != 0)) {
  1303. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1304. cycle_time_ns_x_100[cas_index]);
  1305. cas_index++;
  1306. } else {
  1307. if (cas_index != 0)
  1308. cas_index++;
  1309. cas_2_5_available = FALSE;
  1310. }
  1311. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1312. (cycle_time_ns_x_100[cas_index] != 0)) {
  1313. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1314. cycle_time_ns_x_100[cas_index]);
  1315. cas_index++;
  1316. } else {
  1317. if (cas_index != 0)
  1318. cas_index++;
  1319. cas_2_0_available = FALSE;
  1320. }
  1321. } else {
  1322. /*
  1323. * DDR2 devices use the following bitmask for CAS latency:
  1324. * Bit 7 6 5 4 3 2 1 0
  1325. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1326. */
  1327. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1328. (cycle_time_ns_x_100[cas_index] != 0)) {
  1329. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1330. cycle_time_ns_x_100[cas_index]);
  1331. cas_index++;
  1332. } else {
  1333. if (cas_index != 0)
  1334. cas_index++;
  1335. cas_5_0_available = FALSE;
  1336. }
  1337. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1338. (cycle_time_ns_x_100[cas_index] != 0)) {
  1339. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1340. cycle_time_ns_x_100[cas_index]);
  1341. cas_index++;
  1342. } else {
  1343. if (cas_index != 0)
  1344. cas_index++;
  1345. cas_4_0_available = FALSE;
  1346. }
  1347. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1348. (cycle_time_ns_x_100[cas_index] != 0)) {
  1349. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1350. cycle_time_ns_x_100[cas_index]);
  1351. cas_index++;
  1352. } else {
  1353. if (cas_index != 0)
  1354. cas_index++;
  1355. cas_3_0_available = FALSE;
  1356. }
  1357. }
  1358. }
  1359. }
  1360. /*------------------------------------------------------------------
  1361. * Set the SDRAM mode, SDRAM_MMODE
  1362. *-----------------------------------------------------------------*/
  1363. mfsdram(SDRAM_MMODE, mmode);
  1364. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1365. /* add 10 here because of rounding problems */
  1366. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1367. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1368. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1369. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1370. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1371. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1372. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1373. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1374. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1375. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1376. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1377. *selected_cas = DDR_CAS_2;
  1378. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1379. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1380. *selected_cas = DDR_CAS_2_5;
  1381. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1382. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1383. *selected_cas = DDR_CAS_3;
  1384. } else {
  1385. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1386. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1387. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1388. hang();
  1389. }
  1390. } else { /* DDR2 */
  1391. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1392. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1393. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1394. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1395. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1396. *selected_cas = DDR_CAS_3;
  1397. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1398. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1399. *selected_cas = DDR_CAS_4;
  1400. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1401. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1402. *selected_cas = DDR_CAS_5;
  1403. } else {
  1404. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1405. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1406. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1407. printf("cas3=%d cas4=%d cas5=%d\n",
  1408. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1409. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1410. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1411. hang();
  1412. }
  1413. }
  1414. if (sdram_ddr1 == TRUE)
  1415. mmode |= SDRAM_MMODE_WR_DDR1;
  1416. else {
  1417. /* loop through all the DIMM slots on the board */
  1418. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1419. /* If a dimm is installed in a particular slot ... */
  1420. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1421. t_wr_ns = max(t_wr_ns,
  1422. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1423. }
  1424. /*
  1425. * convert from nanoseconds to ddr clocks
  1426. * round up if necessary
  1427. */
  1428. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1429. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1430. if (sdram_freq != ddr_check)
  1431. t_wr_clk++;
  1432. switch (t_wr_clk) {
  1433. case 0:
  1434. case 1:
  1435. case 2:
  1436. case 3:
  1437. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1438. break;
  1439. case 4:
  1440. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1441. break;
  1442. case 5:
  1443. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1444. break;
  1445. default:
  1446. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1447. break;
  1448. }
  1449. *write_recovery = t_wr_clk;
  1450. }
  1451. debug("CAS latency = %d\n", *selected_cas);
  1452. debug("Write recovery = %d\n", *write_recovery);
  1453. mtsdram(SDRAM_MMODE, mmode);
  1454. }
  1455. /*-----------------------------------------------------------------------------+
  1456. * program_rtr.
  1457. *-----------------------------------------------------------------------------*/
  1458. static void program_rtr(unsigned long *dimm_populated,
  1459. unsigned char *iic0_dimm_addr,
  1460. unsigned long num_dimm_banks)
  1461. {
  1462. PPC440_SYS_INFO board_cfg;
  1463. unsigned long max_refresh_rate;
  1464. unsigned long dimm_num;
  1465. unsigned long refresh_rate_type;
  1466. unsigned long refresh_rate;
  1467. unsigned long rint;
  1468. unsigned long sdram_freq;
  1469. unsigned long sdr_ddrpll;
  1470. unsigned long val;
  1471. /*------------------------------------------------------------------
  1472. * Get the board configuration info.
  1473. *-----------------------------------------------------------------*/
  1474. get_sys_info(&board_cfg);
  1475. /*------------------------------------------------------------------
  1476. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1477. *-----------------------------------------------------------------*/
  1478. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1479. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1480. max_refresh_rate = 0;
  1481. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1482. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1483. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1484. refresh_rate_type &= 0x7F;
  1485. switch (refresh_rate_type) {
  1486. case 0:
  1487. refresh_rate = 15625;
  1488. break;
  1489. case 1:
  1490. refresh_rate = 3906;
  1491. break;
  1492. case 2:
  1493. refresh_rate = 7812;
  1494. break;
  1495. case 3:
  1496. refresh_rate = 31250;
  1497. break;
  1498. case 4:
  1499. refresh_rate = 62500;
  1500. break;
  1501. case 5:
  1502. refresh_rate = 125000;
  1503. break;
  1504. default:
  1505. refresh_rate = 0;
  1506. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1507. (unsigned int)dimm_num);
  1508. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1509. hang();
  1510. break;
  1511. }
  1512. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1513. }
  1514. }
  1515. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1516. mfsdram(SDRAM_RTR, val);
  1517. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1518. (SDRAM_RTR_RINT_ENCODE(rint)));
  1519. }
  1520. /*------------------------------------------------------------------
  1521. * This routine programs the SDRAM_TRx registers.
  1522. *-----------------------------------------------------------------*/
  1523. static void program_tr(unsigned long *dimm_populated,
  1524. unsigned char *iic0_dimm_addr,
  1525. unsigned long num_dimm_banks)
  1526. {
  1527. unsigned long dimm_num;
  1528. unsigned long sdram_ddr1;
  1529. unsigned long t_rp_ns;
  1530. unsigned long t_rcd_ns;
  1531. unsigned long t_rrd_ns;
  1532. unsigned long t_ras_ns;
  1533. unsigned long t_rc_ns;
  1534. unsigned long t_rfc_ns;
  1535. unsigned long t_wpc_ns;
  1536. unsigned long t_wtr_ns;
  1537. unsigned long t_rpc_ns;
  1538. unsigned long t_rp_clk;
  1539. unsigned long t_rcd_clk;
  1540. unsigned long t_rrd_clk;
  1541. unsigned long t_ras_clk;
  1542. unsigned long t_rc_clk;
  1543. unsigned long t_rfc_clk;
  1544. unsigned long t_wpc_clk;
  1545. unsigned long t_wtr_clk;
  1546. unsigned long t_rpc_clk;
  1547. unsigned long sdtr1, sdtr2, sdtr3;
  1548. unsigned long ddr_check;
  1549. unsigned long sdram_freq;
  1550. unsigned long sdr_ddrpll;
  1551. PPC440_SYS_INFO board_cfg;
  1552. /*------------------------------------------------------------------
  1553. * Get the board configuration info.
  1554. *-----------------------------------------------------------------*/
  1555. get_sys_info(&board_cfg);
  1556. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1557. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1558. /*------------------------------------------------------------------
  1559. * Handle the timing. We need to find the worst case timing of all
  1560. * the dimm modules installed.
  1561. *-----------------------------------------------------------------*/
  1562. t_rp_ns = 0;
  1563. t_rrd_ns = 0;
  1564. t_rcd_ns = 0;
  1565. t_ras_ns = 0;
  1566. t_rc_ns = 0;
  1567. t_rfc_ns = 0;
  1568. t_wpc_ns = 0;
  1569. t_wtr_ns = 0;
  1570. t_rpc_ns = 0;
  1571. sdram_ddr1 = TRUE;
  1572. /* loop through all the DIMM slots on the board */
  1573. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1574. /* If a dimm is installed in a particular slot ... */
  1575. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1576. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1577. sdram_ddr1 = TRUE;
  1578. else
  1579. sdram_ddr1 = FALSE;
  1580. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1581. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1582. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1583. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1584. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1585. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1586. }
  1587. }
  1588. /*------------------------------------------------------------------
  1589. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1590. *-----------------------------------------------------------------*/
  1591. mfsdram(SDRAM_SDTR1, sdtr1);
  1592. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1593. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1594. /* default values */
  1595. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1596. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1597. /* normal operations */
  1598. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1599. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1600. mtsdram(SDRAM_SDTR1, sdtr1);
  1601. /*------------------------------------------------------------------
  1602. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1603. *-----------------------------------------------------------------*/
  1604. mfsdram(SDRAM_SDTR2, sdtr2);
  1605. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1606. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1607. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1608. SDRAM_SDTR2_RRD_MASK);
  1609. /*
  1610. * convert t_rcd from nanoseconds to ddr clocks
  1611. * round up if necessary
  1612. */
  1613. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1614. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1615. if (sdram_freq != ddr_check)
  1616. t_rcd_clk++;
  1617. switch (t_rcd_clk) {
  1618. case 0:
  1619. case 1:
  1620. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1621. break;
  1622. case 2:
  1623. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1624. break;
  1625. case 3:
  1626. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1627. break;
  1628. case 4:
  1629. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1630. break;
  1631. default:
  1632. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1633. break;
  1634. }
  1635. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1636. if (sdram_freq < 200000000) {
  1637. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1638. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1639. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1640. } else {
  1641. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1642. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1643. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1644. }
  1645. } else { /* DDR2 */
  1646. /* loop through all the DIMM slots on the board */
  1647. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1648. /* If a dimm is installed in a particular slot ... */
  1649. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1650. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1651. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1652. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1653. }
  1654. }
  1655. /*
  1656. * convert from nanoseconds to ddr clocks
  1657. * round up if necessary
  1658. */
  1659. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1660. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1661. if (sdram_freq != ddr_check)
  1662. t_wpc_clk++;
  1663. switch (t_wpc_clk) {
  1664. case 0:
  1665. case 1:
  1666. case 2:
  1667. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1668. break;
  1669. case 3:
  1670. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1671. break;
  1672. case 4:
  1673. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1674. break;
  1675. case 5:
  1676. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1677. break;
  1678. default:
  1679. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1680. break;
  1681. }
  1682. /*
  1683. * convert from nanoseconds to ddr clocks
  1684. * round up if necessary
  1685. */
  1686. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1687. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1688. if (sdram_freq != ddr_check)
  1689. t_wtr_clk++;
  1690. switch (t_wtr_clk) {
  1691. case 0:
  1692. case 1:
  1693. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1694. break;
  1695. case 2:
  1696. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1697. break;
  1698. case 3:
  1699. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1700. break;
  1701. default:
  1702. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1703. break;
  1704. }
  1705. /*
  1706. * convert from nanoseconds to ddr clocks
  1707. * round up if necessary
  1708. */
  1709. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1710. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1711. if (sdram_freq != ddr_check)
  1712. t_rpc_clk++;
  1713. switch (t_rpc_clk) {
  1714. case 0:
  1715. case 1:
  1716. case 2:
  1717. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1718. break;
  1719. case 3:
  1720. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1721. break;
  1722. default:
  1723. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1724. break;
  1725. }
  1726. }
  1727. /* default value */
  1728. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1729. /*
  1730. * convert t_rrd from nanoseconds to ddr clocks
  1731. * round up if necessary
  1732. */
  1733. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1734. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1735. if (sdram_freq != ddr_check)
  1736. t_rrd_clk++;
  1737. if (t_rrd_clk == 3)
  1738. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1739. else
  1740. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1741. /*
  1742. * convert t_rp from nanoseconds to ddr clocks
  1743. * round up if necessary
  1744. */
  1745. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1746. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1747. if (sdram_freq != ddr_check)
  1748. t_rp_clk++;
  1749. switch (t_rp_clk) {
  1750. case 0:
  1751. case 1:
  1752. case 2:
  1753. case 3:
  1754. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1755. break;
  1756. case 4:
  1757. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1758. break;
  1759. case 5:
  1760. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1761. break;
  1762. case 6:
  1763. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1764. break;
  1765. default:
  1766. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1767. break;
  1768. }
  1769. mtsdram(SDRAM_SDTR2, sdtr2);
  1770. /*------------------------------------------------------------------
  1771. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1772. *-----------------------------------------------------------------*/
  1773. mfsdram(SDRAM_SDTR3, sdtr3);
  1774. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1775. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1776. /*
  1777. * convert t_ras from nanoseconds to ddr clocks
  1778. * round up if necessary
  1779. */
  1780. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1781. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1782. if (sdram_freq != ddr_check)
  1783. t_ras_clk++;
  1784. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1785. /*
  1786. * convert t_rc from nanoseconds to ddr clocks
  1787. * round up if necessary
  1788. */
  1789. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1790. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1791. if (sdram_freq != ddr_check)
  1792. t_rc_clk++;
  1793. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1794. /* default xcs value */
  1795. sdtr3 |= SDRAM_SDTR3_XCS;
  1796. /*
  1797. * convert t_rfc from nanoseconds to ddr clocks
  1798. * round up if necessary
  1799. */
  1800. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1801. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1802. if (sdram_freq != ddr_check)
  1803. t_rfc_clk++;
  1804. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1805. mtsdram(SDRAM_SDTR3, sdtr3);
  1806. }
  1807. /*-----------------------------------------------------------------------------+
  1808. * program_bxcf.
  1809. *-----------------------------------------------------------------------------*/
  1810. static void program_bxcf(unsigned long *dimm_populated,
  1811. unsigned char *iic0_dimm_addr,
  1812. unsigned long num_dimm_banks)
  1813. {
  1814. unsigned long dimm_num;
  1815. unsigned long num_col_addr;
  1816. unsigned long num_ranks;
  1817. unsigned long num_banks;
  1818. unsigned long mode;
  1819. unsigned long ind_rank;
  1820. unsigned long ind;
  1821. unsigned long ind_bank;
  1822. unsigned long bank_0_populated;
  1823. /*------------------------------------------------------------------
  1824. * Set the BxCF regs. First, wipe out the bank config registers.
  1825. *-----------------------------------------------------------------*/
  1826. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
  1827. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1828. mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
  1829. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1830. mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
  1831. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1832. mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
  1833. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1834. mode = SDRAM_BXCF_M_BE_ENABLE;
  1835. bank_0_populated = 0;
  1836. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1837. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1838. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1839. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1840. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1841. num_ranks = (num_ranks & 0x0F) +1;
  1842. else
  1843. num_ranks = num_ranks & 0x0F;
  1844. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1845. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1846. if (num_banks == 4)
  1847. ind = 0;
  1848. else
  1849. ind = 5;
  1850. switch (num_col_addr) {
  1851. case 0x08:
  1852. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1853. break;
  1854. case 0x09:
  1855. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1856. break;
  1857. case 0x0A:
  1858. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1859. break;
  1860. case 0x0B:
  1861. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1862. break;
  1863. case 0x0C:
  1864. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1865. break;
  1866. default:
  1867. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1868. (unsigned int)dimm_num);
  1869. printf("ERROR: Unsupported value for number of "
  1870. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1871. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1872. hang();
  1873. }
  1874. }
  1875. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1876. bank_0_populated = 1;
  1877. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1878. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
  1879. mtdcr(SDRAMC_CFGDATA, mode);
  1880. }
  1881. }
  1882. }
  1883. }
  1884. /*------------------------------------------------------------------
  1885. * program memory queue.
  1886. *-----------------------------------------------------------------*/
  1887. static void program_memory_queue(unsigned long *dimm_populated,
  1888. unsigned char *iic0_dimm_addr,
  1889. unsigned long num_dimm_banks)
  1890. {
  1891. unsigned long dimm_num;
  1892. unsigned long rank_base_addr;
  1893. unsigned long rank_reg;
  1894. unsigned long rank_size_bytes;
  1895. unsigned long rank_size_id;
  1896. unsigned long num_ranks;
  1897. unsigned long baseadd_size;
  1898. unsigned long i;
  1899. unsigned long bank_0_populated = 0;
  1900. /*------------------------------------------------------------------
  1901. * Reset the rank_base_address.
  1902. *-----------------------------------------------------------------*/
  1903. rank_reg = SDRAM_R0BAS;
  1904. rank_base_addr = 0x00000000;
  1905. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1906. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1907. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1908. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1909. num_ranks = (num_ranks & 0x0F) + 1;
  1910. else
  1911. num_ranks = num_ranks & 0x0F;
  1912. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1913. /*------------------------------------------------------------------
  1914. * Set the sizes
  1915. *-----------------------------------------------------------------*/
  1916. baseadd_size = 0;
  1917. rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
  1918. switch (rank_size_id) {
  1919. case 0x02:
  1920. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1921. break;
  1922. case 0x04:
  1923. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1924. break;
  1925. case 0x08:
  1926. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1927. break;
  1928. case 0x10:
  1929. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1930. break;
  1931. case 0x20:
  1932. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1933. break;
  1934. case 0x40:
  1935. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1936. break;
  1937. case 0x80:
  1938. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1939. break;
  1940. default:
  1941. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1942. (unsigned int)dimm_num);
  1943. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1944. (unsigned int)rank_size_id);
  1945. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1946. hang();
  1947. }
  1948. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1949. bank_0_populated = 1;
  1950. for (i = 0; i < num_ranks; i++) {
  1951. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1952. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  1953. baseadd_size));
  1954. rank_base_addr += rank_size_bytes;
  1955. }
  1956. }
  1957. }
  1958. }
  1959. /*-----------------------------------------------------------------------------+
  1960. * is_ecc_enabled.
  1961. *-----------------------------------------------------------------------------*/
  1962. static unsigned long is_ecc_enabled(void)
  1963. {
  1964. unsigned long dimm_num;
  1965. unsigned long ecc;
  1966. unsigned long val;
  1967. ecc = 0;
  1968. /* loop through all the DIMM slots on the board */
  1969. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1970. mfsdram(SDRAM_MCOPT1, val);
  1971. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  1972. }
  1973. return ecc;
  1974. }
  1975. static void blank_string(int size)
  1976. {
  1977. int i;
  1978. for (i=0; i<size; i++)
  1979. putc('\b');
  1980. for (i=0; i<size; i++)
  1981. putc(' ');
  1982. for (i=0; i<size; i++)
  1983. putc('\b');
  1984. }
  1985. #ifdef CONFIG_DDR_ECC
  1986. /*-----------------------------------------------------------------------------+
  1987. * program_ecc.
  1988. *-----------------------------------------------------------------------------*/
  1989. static void program_ecc(unsigned long *dimm_populated,
  1990. unsigned char *iic0_dimm_addr,
  1991. unsigned long num_dimm_banks,
  1992. unsigned long tlb_word2_i_value)
  1993. {
  1994. unsigned long mcopt1;
  1995. unsigned long mcopt2;
  1996. unsigned long mcstat;
  1997. unsigned long dimm_num;
  1998. unsigned long ecc;
  1999. ecc = 0;
  2000. /* loop through all the DIMM slots on the board */
  2001. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2002. /* If a dimm is installed in a particular slot ... */
  2003. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2004. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2005. }
  2006. if (ecc == 0)
  2007. return;
  2008. mfsdram(SDRAM_MCOPT1, mcopt1);
  2009. mfsdram(SDRAM_MCOPT2, mcopt2);
  2010. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2011. /* DDR controller must be enabled and not in self-refresh. */
  2012. mfsdram(SDRAM_MCSTAT, mcstat);
  2013. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2014. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2015. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2016. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2017. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2018. }
  2019. }
  2020. return;
  2021. }
  2022. #ifdef CONFIG_ECC_ERROR_RESET
  2023. /*
  2024. * Check for ECC errors and reset board upon any error here
  2025. *
  2026. * On the Katmai 440SPe eval board, from time to time, the first
  2027. * lword write access after DDR2 initializazion with ECC checking
  2028. * enabled, leads to an ECC error. I couldn't find a configuration
  2029. * without this happening. On my board with the current setup it
  2030. * happens about 1 from 10 times.
  2031. *
  2032. * The ECC modules used for testing are:
  2033. * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
  2034. *
  2035. * This has to get fixed for the Katmai and tested for the other
  2036. * board (440SP/440SPe) that will eventually use this code in the
  2037. * future.
  2038. *
  2039. * 2007-03-01, sr
  2040. */
  2041. static void check_ecc(void)
  2042. {
  2043. u32 val;
  2044. mfsdram(SDRAM_ECCCR, val);
  2045. if (val != 0) {
  2046. printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
  2047. val, mfdcr(0x4c), mfdcr(0x4e));
  2048. printf("ECC error occured, resetting board...\n");
  2049. do_reset(NULL, 0, 0, NULL);
  2050. }
  2051. }
  2052. #endif
  2053. static void wait_ddr_idle(void)
  2054. {
  2055. u32 val;
  2056. do {
  2057. mfsdram(SDRAM_MCSTAT, val);
  2058. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2059. }
  2060. /*-----------------------------------------------------------------------------+
  2061. * program_ecc_addr.
  2062. *-----------------------------------------------------------------------------*/
  2063. static void program_ecc_addr(unsigned long start_address,
  2064. unsigned long num_bytes,
  2065. unsigned long tlb_word2_i_value)
  2066. {
  2067. unsigned long current_address;
  2068. unsigned long end_address;
  2069. unsigned long address_increment;
  2070. unsigned long mcopt1;
  2071. char str[] = "ECC generation -";
  2072. char slash[] = "\\|/-\\|/-";
  2073. int loop = 0;
  2074. int loopi = 0;
  2075. current_address = start_address;
  2076. mfsdram(SDRAM_MCOPT1, mcopt1);
  2077. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2078. mtsdram(SDRAM_MCOPT1,
  2079. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2080. sync();
  2081. eieio();
  2082. wait_ddr_idle();
  2083. puts(str);
  2084. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2085. /* ECC bit set method for non-cached memory */
  2086. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2087. address_increment = 4;
  2088. else
  2089. address_increment = 8;
  2090. end_address = current_address + num_bytes;
  2091. while (current_address < end_address) {
  2092. *((unsigned long *)current_address) = 0x00000000;
  2093. current_address += address_increment;
  2094. if ((loop++ % (2 << 20)) == 0) {
  2095. putc('\b');
  2096. putc(slash[loopi++ % 8]);
  2097. }
  2098. }
  2099. } else {
  2100. /* ECC bit set method for cached memory */
  2101. dcbz_area(start_address, num_bytes);
  2102. dflush();
  2103. }
  2104. blank_string(strlen(str));
  2105. sync();
  2106. eieio();
  2107. wait_ddr_idle();
  2108. /* clear ECC error repoting registers */
  2109. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2110. mtdcr(0x4c, 0xffffffff);
  2111. mtsdram(SDRAM_MCOPT1,
  2112. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2113. sync();
  2114. eieio();
  2115. wait_ddr_idle();
  2116. #ifdef CONFIG_ECC_ERROR_RESET
  2117. /*
  2118. * One write to 0 is enough to trigger this ECC error
  2119. * (see description above)
  2120. */
  2121. out_be32(0, 0x12345678);
  2122. check_ecc();
  2123. #endif
  2124. }
  2125. }
  2126. #endif
  2127. /*-----------------------------------------------------------------------------+
  2128. * program_DQS_calibration.
  2129. *-----------------------------------------------------------------------------*/
  2130. static void program_DQS_calibration(unsigned long *dimm_populated,
  2131. unsigned char *iic0_dimm_addr,
  2132. unsigned long num_dimm_banks)
  2133. {
  2134. unsigned long val;
  2135. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2136. mtsdram(SDRAM_RQDC, 0x80000037);
  2137. mtsdram(SDRAM_RDCC, 0x40000000);
  2138. mtsdram(SDRAM_RFDC, 0x000001DF);
  2139. test();
  2140. #else
  2141. /*------------------------------------------------------------------
  2142. * Program RDCC register
  2143. * Read sample cycle auto-update enable
  2144. *-----------------------------------------------------------------*/
  2145. /*
  2146. * Modified for the Katmai platform: with some DIMMs, the DDR2
  2147. * controller automatically selects the T2 read cycle, but this
  2148. * proves unreliable. Go ahead and force the DDR2 controller
  2149. * to use the T4 sample and disable the automatic update of the
  2150. * RDSS field.
  2151. */
  2152. mfsdram(SDRAM_RDCC, val);
  2153. mtsdram(SDRAM_RDCC,
  2154. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2155. | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
  2156. /*------------------------------------------------------------------
  2157. * Program RQDC register
  2158. * Internal DQS delay mechanism enable
  2159. *-----------------------------------------------------------------*/
  2160. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2161. /*------------------------------------------------------------------
  2162. * Program RFDC register
  2163. * Set Feedback Fractional Oversample
  2164. * Auto-detect read sample cycle enable
  2165. *-----------------------------------------------------------------*/
  2166. mfsdram(SDRAM_RFDC, val);
  2167. mtsdram(SDRAM_RFDC,
  2168. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2169. SDRAM_RFDC_RFFD_MASK))
  2170. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2171. SDRAM_RFDC_RFFD_ENCODE(0)));
  2172. DQS_calibration_process();
  2173. #endif
  2174. }
  2175. static int short_mem_test(void)
  2176. {
  2177. u32 *membase;
  2178. u32 bxcr_num;
  2179. u32 bxcf;
  2180. int i;
  2181. int j;
  2182. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2183. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2184. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2185. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2186. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2187. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2188. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2189. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2190. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2191. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2192. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2193. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2194. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2195. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2196. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2197. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2198. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2199. int l;
  2200. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2201. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2202. /* Banks enabled */
  2203. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2204. /* Bank is enabled */
  2205. /*------------------------------------------------------------------
  2206. * Run the short memory test.
  2207. *-----------------------------------------------------------------*/
  2208. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2209. for (i = 0; i < NUMMEMTESTS; i++) {
  2210. for (j = 0; j < NUMMEMWORDS; j++) {
  2211. membase[j] = test[i][j];
  2212. ppcDcbf((u32)&(membase[j]));
  2213. }
  2214. sync();
  2215. for (l=0; l<NUMLOOPS; l++) {
  2216. for (j = 0; j < NUMMEMWORDS; j++) {
  2217. if (membase[j] != test[i][j]) {
  2218. ppcDcbf((u32)&(membase[j]));
  2219. return 0;
  2220. }
  2221. ppcDcbf((u32)&(membase[j]));
  2222. }
  2223. sync();
  2224. }
  2225. }
  2226. } /* if bank enabled */
  2227. } /* for bxcf_num */
  2228. return 1;
  2229. }
  2230. #ifndef HARD_CODED_DQS
  2231. /*-----------------------------------------------------------------------------+
  2232. * DQS_calibration_process.
  2233. *-----------------------------------------------------------------------------*/
  2234. static void DQS_calibration_process(void)
  2235. {
  2236. unsigned long rfdc_reg;
  2237. unsigned long rffd;
  2238. unsigned long rqdc_reg;
  2239. unsigned long rqfd;
  2240. unsigned long val;
  2241. long rqfd_average;
  2242. long rffd_average;
  2243. long max_start;
  2244. long min_end;
  2245. unsigned long begin_rqfd[MAXRANKS];
  2246. unsigned long begin_rffd[MAXRANKS];
  2247. unsigned long end_rqfd[MAXRANKS];
  2248. unsigned long end_rffd[MAXRANKS];
  2249. char window_found;
  2250. unsigned long dlycal;
  2251. unsigned long dly_val;
  2252. unsigned long max_pass_length;
  2253. unsigned long current_pass_length;
  2254. unsigned long current_fail_length;
  2255. unsigned long current_start;
  2256. long max_end;
  2257. unsigned char fail_found;
  2258. unsigned char pass_found;
  2259. u32 rqfd_start;
  2260. char str[] = "Auto calibration -";
  2261. char slash[] = "\\|/-\\|/-";
  2262. int loopi = 0;
  2263. /*------------------------------------------------------------------
  2264. * Test to determine the best read clock delay tuning bits.
  2265. *
  2266. * Before the DDR controller can be used, the read clock delay needs to be
  2267. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2268. * This value cannot be hardcoded into the program because it changes
  2269. * depending on the board's setup and environment.
  2270. * To do this, all delay values are tested to see if they
  2271. * work or not. By doing this, you get groups of fails with groups of
  2272. * passing values. The idea is to find the start and end of a passing
  2273. * window and take the center of it to use as the read clock delay.
  2274. *
  2275. * A failure has to be seen first so that when we hit a pass, we know
  2276. * that it is truely the start of the window. If we get passing values
  2277. * to start off with, we don't know if we are at the start of the window.
  2278. *
  2279. * The code assumes that a failure will always be found.
  2280. * If a failure is not found, there is no easy way to get the middle
  2281. * of the passing window. I guess we can pretty much pick any value
  2282. * but some values will be better than others. Since the lowest speed
  2283. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2284. * from experimentation it is safe to say you will always have a failure.
  2285. *-----------------------------------------------------------------*/
  2286. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2287. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2288. puts(str);
  2289. calibration_loop:
  2290. mfsdram(SDRAM_RQDC, rqdc_reg);
  2291. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2292. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2293. max_start = 0;
  2294. min_end = 0;
  2295. begin_rqfd[0] = 0;
  2296. begin_rffd[0] = 0;
  2297. begin_rqfd[1] = 0;
  2298. begin_rffd[1] = 0;
  2299. end_rqfd[0] = 0;
  2300. end_rffd[0] = 0;
  2301. end_rqfd[1] = 0;
  2302. end_rffd[1] = 0;
  2303. window_found = FALSE;
  2304. max_pass_length = 0;
  2305. max_start = 0;
  2306. max_end = 0;
  2307. current_pass_length = 0;
  2308. current_fail_length = 0;
  2309. current_start = 0;
  2310. window_found = FALSE;
  2311. fail_found = FALSE;
  2312. pass_found = FALSE;
  2313. /*
  2314. * get the delay line calibration register value
  2315. */
  2316. mfsdram(SDRAM_DLCR, dlycal);
  2317. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2318. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2319. mfsdram(SDRAM_RFDC, rfdc_reg);
  2320. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2321. /*------------------------------------------------------------------
  2322. * Set the timing reg for the test.
  2323. *-----------------------------------------------------------------*/
  2324. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2325. /*------------------------------------------------------------------
  2326. * See if the rffd value passed.
  2327. *-----------------------------------------------------------------*/
  2328. if (short_mem_test()) {
  2329. if (fail_found == TRUE) {
  2330. pass_found = TRUE;
  2331. if (current_pass_length == 0)
  2332. current_start = rffd;
  2333. current_fail_length = 0;
  2334. current_pass_length++;
  2335. if (current_pass_length > max_pass_length) {
  2336. max_pass_length = current_pass_length;
  2337. max_start = current_start;
  2338. max_end = rffd;
  2339. }
  2340. }
  2341. } else {
  2342. current_pass_length = 0;
  2343. current_fail_length++;
  2344. if (current_fail_length >= (dly_val >> 2)) {
  2345. if (fail_found == FALSE) {
  2346. fail_found = TRUE;
  2347. } else if (pass_found == TRUE) {
  2348. window_found = TRUE;
  2349. break;
  2350. }
  2351. }
  2352. }
  2353. } /* for rffd */
  2354. /*------------------------------------------------------------------
  2355. * Set the average RFFD value
  2356. *-----------------------------------------------------------------*/
  2357. rffd_average = ((max_start + max_end) >> 1);
  2358. if (rffd_average < 0)
  2359. rffd_average = 0;
  2360. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2361. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2362. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2363. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2364. max_pass_length = 0;
  2365. max_start = 0;
  2366. max_end = 0;
  2367. current_pass_length = 0;
  2368. current_fail_length = 0;
  2369. current_start = 0;
  2370. window_found = FALSE;
  2371. fail_found = FALSE;
  2372. pass_found = FALSE;
  2373. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2374. mfsdram(SDRAM_RQDC, rqdc_reg);
  2375. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2376. /*------------------------------------------------------------------
  2377. * Set the timing reg for the test.
  2378. *-----------------------------------------------------------------*/
  2379. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2380. /*------------------------------------------------------------------
  2381. * See if the rffd value passed.
  2382. *-----------------------------------------------------------------*/
  2383. if (short_mem_test()) {
  2384. if (fail_found == TRUE) {
  2385. pass_found = TRUE;
  2386. if (current_pass_length == 0)
  2387. current_start = rqfd;
  2388. current_fail_length = 0;
  2389. current_pass_length++;
  2390. if (current_pass_length > max_pass_length) {
  2391. max_pass_length = current_pass_length;
  2392. max_start = current_start;
  2393. max_end = rqfd;
  2394. }
  2395. }
  2396. } else {
  2397. current_pass_length = 0;
  2398. current_fail_length++;
  2399. if (fail_found == FALSE) {
  2400. fail_found = TRUE;
  2401. } else if (pass_found == TRUE) {
  2402. window_found = TRUE;
  2403. break;
  2404. }
  2405. }
  2406. }
  2407. rqfd_average = ((max_start + max_end) >> 1);
  2408. /*------------------------------------------------------------------
  2409. * Make sure we found the valid read passing window. Halt if not
  2410. *-----------------------------------------------------------------*/
  2411. if (window_found == FALSE) {
  2412. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2413. putc('\b');
  2414. putc(slash[loopi++ % 8]);
  2415. /* try again from with a different RQFD start value */
  2416. rqfd_start++;
  2417. goto calibration_loop;
  2418. }
  2419. printf("\nERROR: Cannot determine a common read delay for the "
  2420. "DIMM(s) installed.\n");
  2421. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2422. hang();
  2423. }
  2424. blank_string(strlen(str));
  2425. if (rqfd_average < 0)
  2426. rqfd_average = 0;
  2427. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2428. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2429. mtsdram(SDRAM_RQDC,
  2430. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2431. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2432. mfsdram(SDRAM_DLCR, val);
  2433. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2434. mfsdram(SDRAM_RQDC, val);
  2435. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2436. mfsdram(SDRAM_RFDC, val);
  2437. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2438. }
  2439. #else /* calibration test with hardvalues */
  2440. /*-----------------------------------------------------------------------------+
  2441. * DQS_calibration_process.
  2442. *-----------------------------------------------------------------------------*/
  2443. static void test(void)
  2444. {
  2445. unsigned long dimm_num;
  2446. unsigned long ecc_temp;
  2447. unsigned long i, j;
  2448. unsigned long *membase;
  2449. unsigned long bxcf[MAXRANKS];
  2450. unsigned long val;
  2451. char window_found;
  2452. char begin_found[MAXDIMMS];
  2453. char end_found[MAXDIMMS];
  2454. char search_end[MAXDIMMS];
  2455. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2456. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2457. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2458. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2459. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2460. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2461. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2462. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2463. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2464. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2465. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2466. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2467. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2468. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2469. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2470. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2471. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2472. /*------------------------------------------------------------------
  2473. * Test to determine the best read clock delay tuning bits.
  2474. *
  2475. * Before the DDR controller can be used, the read clock delay needs to be
  2476. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2477. * This value cannot be hardcoded into the program because it changes
  2478. * depending on the board's setup and environment.
  2479. * To do this, all delay values are tested to see if they
  2480. * work or not. By doing this, you get groups of fails with groups of
  2481. * passing values. The idea is to find the start and end of a passing
  2482. * window and take the center of it to use as the read clock delay.
  2483. *
  2484. * A failure has to be seen first so that when we hit a pass, we know
  2485. * that it is truely the start of the window. If we get passing values
  2486. * to start off with, we don't know if we are at the start of the window.
  2487. *
  2488. * The code assumes that a failure will always be found.
  2489. * If a failure is not found, there is no easy way to get the middle
  2490. * of the passing window. I guess we can pretty much pick any value
  2491. * but some values will be better than others. Since the lowest speed
  2492. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2493. * from experimentation it is safe to say you will always have a failure.
  2494. *-----------------------------------------------------------------*/
  2495. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2496. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2497. mfsdram(SDRAM_MCOPT1, val);
  2498. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2499. SDRAM_MCOPT1_MCHK_NON);
  2500. window_found = FALSE;
  2501. begin_found[0] = FALSE;
  2502. end_found[0] = FALSE;
  2503. search_end[0] = FALSE;
  2504. begin_found[1] = FALSE;
  2505. end_found[1] = FALSE;
  2506. search_end[1] = FALSE;
  2507. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2508. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2509. /* Banks enabled */
  2510. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2511. /* Bank is enabled */
  2512. membase =
  2513. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2514. /*------------------------------------------------------------------
  2515. * Run the short memory test.
  2516. *-----------------------------------------------------------------*/
  2517. for (i = 0; i < NUMMEMTESTS; i++) {
  2518. for (j = 0; j < NUMMEMWORDS; j++) {
  2519. membase[j] = test[i][j];
  2520. ppcDcbf((u32)&(membase[j]));
  2521. }
  2522. sync();
  2523. for (j = 0; j < NUMMEMWORDS; j++) {
  2524. if (membase[j] != test[i][j]) {
  2525. ppcDcbf((u32)&(membase[j]));
  2526. break;
  2527. }
  2528. ppcDcbf((u32)&(membase[j]));
  2529. }
  2530. sync();
  2531. if (j < NUMMEMWORDS)
  2532. break;
  2533. }
  2534. /*------------------------------------------------------------------
  2535. * See if the rffd value passed.
  2536. *-----------------------------------------------------------------*/
  2537. if (i < NUMMEMTESTS) {
  2538. if ((end_found[dimm_num] == FALSE) &&
  2539. (search_end[dimm_num] == TRUE)) {
  2540. end_found[dimm_num] = TRUE;
  2541. }
  2542. if ((end_found[0] == TRUE) &&
  2543. (end_found[1] == TRUE))
  2544. break;
  2545. } else {
  2546. if (begin_found[dimm_num] == FALSE) {
  2547. begin_found[dimm_num] = TRUE;
  2548. search_end[dimm_num] = TRUE;
  2549. }
  2550. }
  2551. } else {
  2552. begin_found[dimm_num] = TRUE;
  2553. end_found[dimm_num] = TRUE;
  2554. }
  2555. }
  2556. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2557. window_found = TRUE;
  2558. /*------------------------------------------------------------------
  2559. * Make sure we found the valid read passing window. Halt if not
  2560. *-----------------------------------------------------------------*/
  2561. if (window_found == FALSE) {
  2562. printf("ERROR: Cannot determine a common read delay for the "
  2563. "DIMM(s) installed.\n");
  2564. hang();
  2565. }
  2566. /*------------------------------------------------------------------
  2567. * Restore the ECC variable to what it originally was
  2568. *-----------------------------------------------------------------*/
  2569. mtsdram(SDRAM_MCOPT1,
  2570. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2571. | ecc_temp);
  2572. }
  2573. #endif
  2574. #if defined(DEBUG)
  2575. static void ppc440sp_sdram_register_dump(void)
  2576. {
  2577. unsigned int sdram_reg;
  2578. unsigned int sdram_data;
  2579. unsigned int dcr_data;
  2580. printf("\n Register Dump:\n");
  2581. sdram_reg = SDRAM_MCSTAT;
  2582. mfsdram(sdram_reg, sdram_data);
  2583. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2584. sdram_reg = SDRAM_MCOPT1;
  2585. mfsdram(sdram_reg, sdram_data);
  2586. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2587. sdram_reg = SDRAM_MCOPT2;
  2588. mfsdram(sdram_reg, sdram_data);
  2589. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2590. sdram_reg = SDRAM_MODT0;
  2591. mfsdram(sdram_reg, sdram_data);
  2592. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2593. sdram_reg = SDRAM_MODT1;
  2594. mfsdram(sdram_reg, sdram_data);
  2595. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2596. sdram_reg = SDRAM_MODT2;
  2597. mfsdram(sdram_reg, sdram_data);
  2598. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2599. sdram_reg = SDRAM_MODT3;
  2600. mfsdram(sdram_reg, sdram_data);
  2601. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2602. sdram_reg = SDRAM_CODT;
  2603. mfsdram(sdram_reg, sdram_data);
  2604. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2605. sdram_reg = SDRAM_VVPR;
  2606. mfsdram(sdram_reg, sdram_data);
  2607. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2608. sdram_reg = SDRAM_OPARS;
  2609. mfsdram(sdram_reg, sdram_data);
  2610. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2611. /*
  2612. * OPAR2 is only used as a trigger register.
  2613. * No data is contained in this register, and reading or writing
  2614. * to is can cause bad things to happen (hangs). Just skip it
  2615. * and report NA
  2616. * sdram_reg = SDRAM_OPAR2;
  2617. * mfsdram(sdram_reg, sdram_data);
  2618. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2619. */
  2620. printf(" SDRAM_OPART = N/A ");
  2621. sdram_reg = SDRAM_RTR;
  2622. mfsdram(sdram_reg, sdram_data);
  2623. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2624. sdram_reg = SDRAM_MB0CF;
  2625. mfsdram(sdram_reg, sdram_data);
  2626. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2627. sdram_reg = SDRAM_MB1CF;
  2628. mfsdram(sdram_reg, sdram_data);
  2629. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2630. sdram_reg = SDRAM_MB2CF;
  2631. mfsdram(sdram_reg, sdram_data);
  2632. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2633. sdram_reg = SDRAM_MB3CF;
  2634. mfsdram(sdram_reg, sdram_data);
  2635. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2636. sdram_reg = SDRAM_INITPLR0;
  2637. mfsdram(sdram_reg, sdram_data);
  2638. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2639. sdram_reg = SDRAM_INITPLR1;
  2640. mfsdram(sdram_reg, sdram_data);
  2641. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2642. sdram_reg = SDRAM_INITPLR2;
  2643. mfsdram(sdram_reg, sdram_data);
  2644. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2645. sdram_reg = SDRAM_INITPLR3;
  2646. mfsdram(sdram_reg, sdram_data);
  2647. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2648. sdram_reg = SDRAM_INITPLR4;
  2649. mfsdram(sdram_reg, sdram_data);
  2650. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2651. sdram_reg = SDRAM_INITPLR5;
  2652. mfsdram(sdram_reg, sdram_data);
  2653. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2654. sdram_reg = SDRAM_INITPLR6;
  2655. mfsdram(sdram_reg, sdram_data);
  2656. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2657. sdram_reg = SDRAM_INITPLR7;
  2658. mfsdram(sdram_reg, sdram_data);
  2659. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2660. sdram_reg = SDRAM_INITPLR8;
  2661. mfsdram(sdram_reg, sdram_data);
  2662. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2663. sdram_reg = SDRAM_INITPLR9;
  2664. mfsdram(sdram_reg, sdram_data);
  2665. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2666. sdram_reg = SDRAM_INITPLR10;
  2667. mfsdram(sdram_reg, sdram_data);
  2668. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2669. sdram_reg = SDRAM_INITPLR11;
  2670. mfsdram(sdram_reg, sdram_data);
  2671. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2672. sdram_reg = SDRAM_INITPLR12;
  2673. mfsdram(sdram_reg, sdram_data);
  2674. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2675. sdram_reg = SDRAM_INITPLR13;
  2676. mfsdram(sdram_reg, sdram_data);
  2677. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2678. sdram_reg = SDRAM_INITPLR14;
  2679. mfsdram(sdram_reg, sdram_data);
  2680. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2681. sdram_reg = SDRAM_INITPLR15;
  2682. mfsdram(sdram_reg, sdram_data);
  2683. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2684. sdram_reg = SDRAM_RQDC;
  2685. mfsdram(sdram_reg, sdram_data);
  2686. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2687. sdram_reg = SDRAM_RFDC;
  2688. mfsdram(sdram_reg, sdram_data);
  2689. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2690. sdram_reg = SDRAM_RDCC;
  2691. mfsdram(sdram_reg, sdram_data);
  2692. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2693. sdram_reg = SDRAM_DLCR;
  2694. mfsdram(sdram_reg, sdram_data);
  2695. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2696. sdram_reg = SDRAM_CLKTR;
  2697. mfsdram(sdram_reg, sdram_data);
  2698. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2699. sdram_reg = SDRAM_WRDTR;
  2700. mfsdram(sdram_reg, sdram_data);
  2701. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2702. sdram_reg = SDRAM_SDTR1;
  2703. mfsdram(sdram_reg, sdram_data);
  2704. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2705. sdram_reg = SDRAM_SDTR2;
  2706. mfsdram(sdram_reg, sdram_data);
  2707. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2708. sdram_reg = SDRAM_SDTR3;
  2709. mfsdram(sdram_reg, sdram_data);
  2710. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2711. sdram_reg = SDRAM_MMODE;
  2712. mfsdram(sdram_reg, sdram_data);
  2713. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2714. sdram_reg = SDRAM_MEMODE;
  2715. mfsdram(sdram_reg, sdram_data);
  2716. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2717. sdram_reg = SDRAM_ECCCR;
  2718. mfsdram(sdram_reg, sdram_data);
  2719. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2720. dcr_data = mfdcr(SDRAM_R0BAS);
  2721. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2722. dcr_data = mfdcr(SDRAM_R1BAS);
  2723. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2724. dcr_data = mfdcr(SDRAM_R2BAS);
  2725. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2726. dcr_data = mfdcr(SDRAM_R3BAS);
  2727. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2728. }
  2729. #endif
  2730. #endif /* CONFIG_SPD_EEPROM */