dc2114x.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. /*
  2. * See file CREDITS for list of people who contributed to this
  3. * project.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  18. * MA 02111-1307 USA
  19. */
  20. #include <common.h>
  21. #if defined(CONFIG_CMD_NET) \
  22. && defined(CONFIG_NET_MULTI) && defined(CONFIG_TULIP)
  23. #include <malloc.h>
  24. #include <net.h>
  25. #include <pci.h>
  26. #undef DEBUG_SROM
  27. #undef DEBUG_SROM2
  28. #undef UPDATE_SROM
  29. /* PCI Registers.
  30. */
  31. #define PCI_CFDA_PSM 0x43
  32. #define CFRV_RN 0x000000f0 /* Revision Number */
  33. #define WAKEUP 0x00 /* Power Saving Wakeup */
  34. #define SLEEP 0x80 /* Power Saving Sleep Mode */
  35. #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
  36. /* Ethernet chip registers.
  37. */
  38. #define DE4X5_BMR 0x000 /* Bus Mode Register */
  39. #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
  40. #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
  41. #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
  42. #define DE4X5_STS 0x028 /* Status Register */
  43. #define DE4X5_OMR 0x030 /* Operation Mode Register */
  44. #define DE4X5_SICR 0x068 /* SIA Connectivity Register */
  45. #define DE4X5_APROM 0x048 /* Ethernet Address PROM */
  46. /* Register bits.
  47. */
  48. #define BMR_SWR 0x00000001 /* Software Reset */
  49. #define STS_TS 0x00700000 /* Transmit Process State */
  50. #define STS_RS 0x000e0000 /* Receive Process State */
  51. #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
  52. #define OMR_SR 0x00000002 /* Start/Stop Receive */
  53. #define OMR_PS 0x00040000 /* Port Select */
  54. #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
  55. #define OMR_PM 0x00000080 /* Pass All Multicast */
  56. /* Descriptor bits.
  57. */
  58. #define R_OWN 0x80000000 /* Own Bit */
  59. #define RD_RER 0x02000000 /* Receive End Of Ring */
  60. #define RD_LS 0x00000100 /* Last Descriptor */
  61. #define RD_ES 0x00008000 /* Error Summary */
  62. #define TD_TER 0x02000000 /* Transmit End Of Ring */
  63. #define T_OWN 0x80000000 /* Own Bit */
  64. #define TD_LS 0x40000000 /* Last Segment */
  65. #define TD_FS 0x20000000 /* First Segment */
  66. #define TD_ES 0x00008000 /* Error Summary */
  67. #define TD_SET 0x08000000 /* Setup Packet */
  68. /* The EEPROM commands include the alway-set leading bit. */
  69. #define SROM_WRITE_CMD 5
  70. #define SROM_READ_CMD 6
  71. #define SROM_ERASE_CMD 7
  72. #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
  73. #define SROM_RD 0x00004000 /* Read from Boot ROM */
  74. #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
  75. #define EE_WRITE_0 0x4801
  76. #define EE_WRITE_1 0x4805
  77. #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
  78. #define SROM_SR 0x00000800 /* Select Serial ROM when set */
  79. #define DT_IN 0x00000004 /* Serial Data In */
  80. #define DT_CLK 0x00000002 /* Serial ROM Clock */
  81. #define DT_CS 0x00000001 /* Serial ROM Chip Select */
  82. #define POLL_DEMAND 1
  83. #ifdef CONFIG_TULIP_FIX_DAVICOM
  84. #define RESET_DM9102(dev) {\
  85. unsigned long i;\
  86. i=INL(dev, 0x0);\
  87. udelay(1000);\
  88. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  89. udelay(1000);\
  90. }
  91. #else
  92. #define RESET_DE4X5(dev) {\
  93. int i;\
  94. i=INL(dev, DE4X5_BMR);\
  95. udelay(1000);\
  96. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  97. udelay(1000);\
  98. OUTL(dev, i, DE4X5_BMR);\
  99. udelay(1000);\
  100. for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
  101. udelay(1000);\
  102. }
  103. #endif
  104. #define START_DE4X5(dev) {\
  105. s32 omr; \
  106. omr = INL(dev, DE4X5_OMR);\
  107. omr |= OMR_ST | OMR_SR;\
  108. OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
  109. }
  110. #define STOP_DE4X5(dev) {\
  111. s32 omr; \
  112. omr = INL(dev, DE4X5_OMR);\
  113. omr &= ~(OMR_ST|OMR_SR);\
  114. OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
  115. }
  116. #define NUM_RX_DESC PKTBUFSRX
  117. #ifndef CONFIG_TULIP_FIX_DAVICOM
  118. #define NUM_TX_DESC 1 /* Number of TX descriptors */
  119. #else
  120. #define NUM_TX_DESC 4
  121. #endif
  122. #define RX_BUFF_SZ PKTSIZE_ALIGN
  123. #define TOUT_LOOP 1000000
  124. #define SETUP_FRAME_LEN 192
  125. #define ETH_ALEN 6
  126. struct de4x5_desc {
  127. volatile s32 status;
  128. u32 des1;
  129. u32 buf;
  130. u32 next;
  131. };
  132. static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
  133. static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
  134. static int rx_new; /* RX descriptor ring pointer */
  135. static int tx_new; /* TX descriptor ring pointer */
  136. static char rxRingSize;
  137. static char txRingSize;
  138. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  139. static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
  140. static int getfrom_srom(struct eth_device* dev, u_long addr);
  141. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
  142. static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
  143. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  144. #ifdef UPDATE_SROM
  145. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
  146. static void update_srom(struct eth_device *dev, bd_t *bis);
  147. #endif
  148. #ifndef CONFIG_TULIP_FIX_DAVICOM
  149. static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
  150. static void read_hw_addr(struct eth_device* dev, bd_t * bis);
  151. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  152. static void send_setup_frame(struct eth_device* dev, bd_t * bis);
  153. static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
  154. static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
  155. static int dc21x4x_recv(struct eth_device* dev);
  156. static void dc21x4x_halt(struct eth_device* dev);
  157. #ifdef CONFIG_TULIP_SELECT_MEDIA
  158. extern void dc21x4x_select_media(struct eth_device* dev);
  159. #endif
  160. #if defined(CONFIG_E500)
  161. #define phys_to_bus(a) (a)
  162. #else
  163. #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
  164. #endif
  165. static int INL(struct eth_device* dev, u_long addr)
  166. {
  167. return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
  168. }
  169. static void OUTL(struct eth_device* dev, int command, u_long addr)
  170. {
  171. *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
  172. }
  173. static struct pci_device_id supported[] = {
  174. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
  175. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
  176. #ifdef CONFIG_TULIP_FIX_DAVICOM
  177. { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
  178. #endif
  179. { }
  180. };
  181. int dc21x4x_initialize(bd_t *bis)
  182. {
  183. int idx=0;
  184. int card_number = 0;
  185. unsigned int cfrv;
  186. unsigned char timer;
  187. pci_dev_t devbusfn;
  188. unsigned int iobase;
  189. unsigned short status;
  190. struct eth_device* dev;
  191. while(1) {
  192. devbusfn = pci_find_devices(supported, idx++);
  193. if (devbusfn == -1) {
  194. break;
  195. }
  196. /* Get the chip configuration revision register. */
  197. pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
  198. #ifndef CONFIG_TULIP_FIX_DAVICOM
  199. if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
  200. printf("Error: The chip is not DC21143.\n");
  201. continue;
  202. }
  203. #endif
  204. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  205. status |=
  206. #ifdef CONFIG_TULIP_USE_IO
  207. PCI_COMMAND_IO |
  208. #else
  209. PCI_COMMAND_MEMORY |
  210. #endif
  211. PCI_COMMAND_MASTER;
  212. pci_write_config_word(devbusfn, PCI_COMMAND, status);
  213. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  214. if (!(status & PCI_COMMAND_IO)) {
  215. printf("Error: Can not enable I/O access.\n");
  216. continue;
  217. }
  218. if (!(status & PCI_COMMAND_IO)) {
  219. printf("Error: Can not enable I/O access.\n");
  220. continue;
  221. }
  222. if (!(status & PCI_COMMAND_MASTER)) {
  223. printf("Error: Can not enable Bus Mastering.\n");
  224. continue;
  225. }
  226. /* Check the latency timer for values >= 0x60. */
  227. pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
  228. if (timer < 0x60) {
  229. pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
  230. }
  231. #ifdef CONFIG_TULIP_USE_IO
  232. /* read BAR for memory space access */
  233. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
  234. iobase &= PCI_BASE_ADDRESS_IO_MASK;
  235. #else
  236. /* read BAR for memory space access */
  237. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
  238. iobase &= PCI_BASE_ADDRESS_MEM_MASK;
  239. #endif
  240. debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
  241. dev = (struct eth_device*) malloc(sizeof *dev);
  242. #ifdef CONFIG_TULIP_FIX_DAVICOM
  243. sprintf(dev->name, "Davicom#%d", card_number);
  244. #else
  245. sprintf(dev->name, "dc21x4x#%d", card_number);
  246. #endif
  247. #ifdef CONFIG_TULIP_USE_IO
  248. dev->iobase = pci_io_to_phys(devbusfn, iobase);
  249. #else
  250. dev->iobase = pci_mem_to_phys(devbusfn, iobase);
  251. #endif
  252. dev->priv = (void*) devbusfn;
  253. dev->init = dc21x4x_init;
  254. dev->halt = dc21x4x_halt;
  255. dev->send = dc21x4x_send;
  256. dev->recv = dc21x4x_recv;
  257. /* Ensure we're not sleeping. */
  258. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  259. udelay(10 * 1000);
  260. #ifndef CONFIG_TULIP_FIX_DAVICOM
  261. read_hw_addr(dev, bis);
  262. #endif
  263. eth_register(dev);
  264. card_number++;
  265. }
  266. return card_number;
  267. }
  268. static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
  269. {
  270. int i;
  271. int devbusfn = (int) dev->priv;
  272. /* Ensure we're not sleeping. */
  273. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  274. #ifdef CONFIG_TULIP_FIX_DAVICOM
  275. RESET_DM9102(dev);
  276. #else
  277. RESET_DE4X5(dev);
  278. #endif
  279. if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
  280. printf("Error: Cannot reset ethernet controller.\n");
  281. return -1;
  282. }
  283. #ifdef CONFIG_TULIP_SELECT_MEDIA
  284. dc21x4x_select_media(dev);
  285. #else
  286. OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
  287. #endif
  288. for (i = 0; i < NUM_RX_DESC; i++) {
  289. rx_ring[i].status = cpu_to_le32(R_OWN);
  290. rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
  291. rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
  292. #ifdef CONFIG_TULIP_FIX_DAVICOM
  293. rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
  294. #else
  295. rx_ring[i].next = 0;
  296. #endif
  297. }
  298. for (i=0; i < NUM_TX_DESC; i++) {
  299. tx_ring[i].status = 0;
  300. tx_ring[i].des1 = 0;
  301. tx_ring[i].buf = 0;
  302. #ifdef CONFIG_TULIP_FIX_DAVICOM
  303. tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
  304. #else
  305. tx_ring[i].next = 0;
  306. #endif
  307. }
  308. rxRingSize = NUM_RX_DESC;
  309. txRingSize = NUM_TX_DESC;
  310. /* Write the end of list marker to the descriptor lists. */
  311. rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
  312. tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
  313. /* Tell the adapter where the TX/RX rings are located. */
  314. OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
  315. OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
  316. START_DE4X5(dev);
  317. tx_new = 0;
  318. rx_new = 0;
  319. send_setup_frame(dev, bis);
  320. return 0;
  321. }
  322. static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
  323. {
  324. int status = -1;
  325. int i;
  326. if (length <= 0) {
  327. printf("%s: bad packet size: %d\n", dev->name, length);
  328. goto Done;
  329. }
  330. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  331. if (i >= TOUT_LOOP) {
  332. printf("%s: tx error buffer not ready\n", dev->name);
  333. goto Done;
  334. }
  335. }
  336. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
  337. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
  338. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  339. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  340. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  341. if (i >= TOUT_LOOP) {
  342. printf(".%s: tx buffer not ready\n", dev->name);
  343. goto Done;
  344. }
  345. }
  346. if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
  347. #if 0 /* test-only */
  348. printf("TX error status = 0x%08X\n",
  349. le32_to_cpu(tx_ring[tx_new].status));
  350. #endif
  351. tx_ring[tx_new].status = 0x0;
  352. goto Done;
  353. }
  354. status = length;
  355. Done:
  356. tx_new = (tx_new+1) % NUM_TX_DESC;
  357. return status;
  358. }
  359. static int dc21x4x_recv(struct eth_device* dev)
  360. {
  361. s32 status;
  362. int length = 0;
  363. for ( ; ; ) {
  364. status = (s32)le32_to_cpu(rx_ring[rx_new].status);
  365. if (status & R_OWN) {
  366. break;
  367. }
  368. if (status & RD_LS) {
  369. /* Valid frame status.
  370. */
  371. if (status & RD_ES) {
  372. /* There was an error.
  373. */
  374. printf("RX error status = 0x%08X\n", status);
  375. } else {
  376. /* A valid frame received.
  377. */
  378. length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
  379. /* Pass the packet up to the protocol
  380. * layers.
  381. */
  382. NetReceive(NetRxPackets[rx_new], length - 4);
  383. }
  384. /* Change buffer ownership for this frame, back
  385. * to the adapter.
  386. */
  387. rx_ring[rx_new].status = cpu_to_le32(R_OWN);
  388. }
  389. /* Update entry information.
  390. */
  391. rx_new = (rx_new + 1) % rxRingSize;
  392. }
  393. return length;
  394. }
  395. static void dc21x4x_halt(struct eth_device* dev)
  396. {
  397. int devbusfn = (int) dev->priv;
  398. STOP_DE4X5(dev);
  399. OUTL(dev, 0, DE4X5_SICR);
  400. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
  401. }
  402. static void send_setup_frame(struct eth_device* dev, bd_t *bis)
  403. {
  404. int i;
  405. char setup_frame[SETUP_FRAME_LEN];
  406. char *pa = &setup_frame[0];
  407. memset(pa, 0xff, SETUP_FRAME_LEN);
  408. for (i = 0; i < ETH_ALEN; i++) {
  409. *(pa + (i & 1)) = dev->enetaddr[i];
  410. if (i & 0x01) {
  411. pa += 4;
  412. }
  413. }
  414. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  415. if (i >= TOUT_LOOP) {
  416. printf("%s: tx error buffer not ready\n", dev->name);
  417. goto Done;
  418. }
  419. }
  420. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
  421. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
  422. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  423. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  424. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  425. if (i >= TOUT_LOOP) {
  426. printf("%s: tx buffer not ready\n", dev->name);
  427. goto Done;
  428. }
  429. }
  430. if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
  431. printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
  432. }
  433. tx_new = (tx_new+1) % NUM_TX_DESC;
  434. Done:
  435. return;
  436. }
  437. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  438. /* SROM Read and write routines.
  439. */
  440. static void
  441. sendto_srom(struct eth_device* dev, u_int command, u_long addr)
  442. {
  443. OUTL(dev, command, addr);
  444. udelay(1);
  445. }
  446. static int
  447. getfrom_srom(struct eth_device* dev, u_long addr)
  448. {
  449. s32 tmp;
  450. tmp = INL(dev, addr);
  451. udelay(1);
  452. return tmp;
  453. }
  454. /* Note: this routine returns extra data bits for size detection. */
  455. static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
  456. {
  457. int i;
  458. unsigned retval = 0;
  459. int read_cmd = location | (SROM_READ_CMD << addr_len);
  460. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  461. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  462. #ifdef DEBUG_SROM
  463. printf(" EEPROM read at %d ", location);
  464. #endif
  465. /* Shift the read command bits out. */
  466. for (i = 4 + addr_len; i >= 0; i--) {
  467. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  468. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
  469. udelay(10);
  470. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
  471. udelay(10);
  472. #ifdef DEBUG_SROM2
  473. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  474. #endif
  475. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  476. }
  477. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  478. #ifdef DEBUG_SROM2
  479. printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
  480. #endif
  481. for (i = 16; i > 0; i--) {
  482. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  483. udelay(10);
  484. #ifdef DEBUG_SROM2
  485. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  486. #endif
  487. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  488. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  489. udelay(10);
  490. }
  491. /* Terminate the EEPROM access. */
  492. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  493. #ifdef DEBUG_SROM2
  494. printf(" EEPROM value at %d is %5.5x.\n", location, retval);
  495. #endif
  496. return retval;
  497. }
  498. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  499. /* This executes a generic EEPROM command, typically a write or write
  500. * enable. It returns the data output from the EEPROM, and thus may
  501. * also be used for reads.
  502. */
  503. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  504. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
  505. {
  506. unsigned retval = 0;
  507. #ifdef DEBUG_SROM
  508. printf(" EEPROM op 0x%x: ", cmd);
  509. #endif
  510. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  511. /* Shift the command bits out. */
  512. do {
  513. short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
  514. sendto_srom(dev,dataval, ioaddr);
  515. udelay(10);
  516. #ifdef DEBUG_SROM2
  517. printf("%X", getfrom_srom(dev,ioaddr) & 15);
  518. #endif
  519. sendto_srom(dev,dataval | DT_CLK, ioaddr);
  520. udelay(10);
  521. retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
  522. } while (--cmd_len >= 0);
  523. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
  524. /* Terminate the EEPROM access. */
  525. sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
  526. #ifdef DEBUG_SROM
  527. printf(" EEPROM result is 0x%5.5x.\n", retval);
  528. #endif
  529. return retval;
  530. }
  531. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  532. #ifndef CONFIG_TULIP_FIX_DAVICOM
  533. static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
  534. {
  535. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  536. return do_eeprom_cmd(dev, ioaddr,
  537. (((SROM_READ_CMD << ee_addr_size) | index) << 16)
  538. | 0xffff, 3 + ee_addr_size + 16);
  539. }
  540. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  541. #ifdef UPDATE_SROM
  542. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
  543. {
  544. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  545. int i;
  546. unsigned short newval;
  547. udelay(10*1000); /* test-only */
  548. #ifdef DEBUG_SROM
  549. printf("ee_addr_size=%d.\n", ee_addr_size);
  550. printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
  551. #endif
  552. /* Enable programming modes. */
  553. do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
  554. /* Do the actual write. */
  555. do_eeprom_cmd(dev, ioaddr,
  556. (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
  557. 3 + ee_addr_size + 16);
  558. /* Poll for write finished. */
  559. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  560. for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
  561. if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
  562. break;
  563. #ifdef DEBUG_SROM
  564. printf(" Write finished after %d ticks.\n", i);
  565. #endif
  566. /* Disable programming. */
  567. do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
  568. /* And read the result. */
  569. newval = do_eeprom_cmd(dev, ioaddr,
  570. (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
  571. | 0xffff, 3 + ee_addr_size + 16);
  572. #ifdef DEBUG_SROM
  573. printf(" New value at offset %d is %4.4x.\n", index, newval);
  574. #endif
  575. return 1;
  576. }
  577. #endif
  578. #ifndef CONFIG_TULIP_FIX_DAVICOM
  579. static void read_hw_addr(struct eth_device *dev, bd_t *bis)
  580. {
  581. u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
  582. int i, j = 0;
  583. for (i = 0; i < (ETH_ALEN >> 1); i++) {
  584. tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
  585. *p = le16_to_cpu(tmp);
  586. j += *p++;
  587. }
  588. if ((j == 0) || (j == 0x2fffd)) {
  589. memset (dev->enetaddr, 0, ETH_ALEN);
  590. debug ("Warning: can't read HW address from SROM.\n");
  591. goto Done;
  592. }
  593. return;
  594. Done:
  595. #ifdef UPDATE_SROM
  596. update_srom(dev, bis);
  597. #endif
  598. return;
  599. }
  600. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  601. #ifdef UPDATE_SROM
  602. static void update_srom(struct eth_device *dev, bd_t *bis)
  603. {
  604. int i;
  605. static unsigned short eeprom[0x40] = {
  606. 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
  607. 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
  608. 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
  609. 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
  610. 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
  611. 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
  612. 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
  613. 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
  614. 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
  615. 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
  616. 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
  617. 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
  618. 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
  619. 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
  620. 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
  621. 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
  622. };
  623. /* Ethernet Addr... */
  624. eeprom[0x0a] = ((bis->bi_enetaddr[1] & 0xff) << 8) | (bis->bi_enetaddr[0] & 0xff);
  625. eeprom[0x0b] = ((bis->bi_enetaddr[3] & 0xff) << 8) | (bis->bi_enetaddr[2] & 0xff);
  626. eeprom[0x0c] = ((bis->bi_enetaddr[5] & 0xff) << 8) | (bis->bi_enetaddr[4] & 0xff);
  627. for (i=0; i<0x40; i++)
  628. {
  629. write_srom(dev, DE4X5_APROM, i, eeprom[i]);
  630. }
  631. }
  632. #endif /* UPDATE_SROM */
  633. #endif