44x_spd_ddr2.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <ppc4xx.h>
  36. #include <i2c.h>
  37. #include <asm/io.h>
  38. #include <asm/processor.h>
  39. #include <asm/mmu.h>
  40. #if defined(CONFIG_SPD_EEPROM) && \
  41. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  42. #ifndef TRUE
  43. #define TRUE 1
  44. #endif
  45. #ifndef FALSE
  46. #define FALSE 0
  47. #endif
  48. #define SDRAM_DDR1 1
  49. #define SDRAM_DDR2 2
  50. #define SDRAM_NONE 0
  51. #define MAXDIMMS 2
  52. #define MAXRANKS 4
  53. #define MAXBXCF 4
  54. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  55. #define ONE_BILLION 1000000000
  56. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  57. #if defined(DEBUG)
  58. static void ppc440sp_sdram_register_dump(void);
  59. #endif
  60. /*-----------------------------------------------------------------------------+
  61. * Defines
  62. *-----------------------------------------------------------------------------*/
  63. /* Defines for the Read Cycle Delay test */
  64. #define NUMMEMTESTS 8
  65. #define NUMMEMWORDS 8
  66. /* Private Structure Definitions */
  67. /* enum only to ease code for cas latency setting */
  68. typedef enum ddr_cas_id {
  69. DDR_CAS_2 = 20,
  70. DDR_CAS_2_5 = 25,
  71. DDR_CAS_3 = 30,
  72. DDR_CAS_4 = 40,
  73. DDR_CAS_5 = 50
  74. } ddr_cas_id_t;
  75. /*-----------------------------------------------------------------------------+
  76. * Prototypes
  77. *-----------------------------------------------------------------------------*/
  78. static unsigned long sdram_memsize(void);
  79. void program_tlb(u32 start, u32 size);
  80. static void get_spd_info(unsigned long *dimm_populated,
  81. unsigned char *iic0_dimm_addr,
  82. unsigned long num_dimm_banks);
  83. static void check_mem_type(unsigned long *dimm_populated,
  84. unsigned char *iic0_dimm_addr,
  85. unsigned long num_dimm_banks);
  86. static void check_frequency(unsigned long *dimm_populated,
  87. unsigned char *iic0_dimm_addr,
  88. unsigned long num_dimm_banks);
  89. static void check_rank_number(unsigned long *dimm_populated,
  90. unsigned char *iic0_dimm_addr,
  91. unsigned long num_dimm_banks);
  92. static void check_voltage_type(unsigned long *dimm_populated,
  93. unsigned char *iic0_dimm_addr,
  94. unsigned long num_dimm_banks);
  95. static void program_memory_queue(unsigned long *dimm_populated,
  96. unsigned char *iic0_dimm_addr,
  97. unsigned long num_dimm_banks);
  98. static void program_codt(unsigned long *dimm_populated,
  99. unsigned char *iic0_dimm_addr,
  100. unsigned long num_dimm_banks);
  101. static void program_mode(unsigned long *dimm_populated,
  102. unsigned char *iic0_dimm_addr,
  103. unsigned long num_dimm_banks,
  104. ddr_cas_id_t *selected_cas);
  105. static void program_tr(unsigned long *dimm_populated,
  106. unsigned char *iic0_dimm_addr,
  107. unsigned long num_dimm_banks);
  108. static void program_rtr(unsigned long *dimm_populated,
  109. unsigned char *iic0_dimm_addr,
  110. unsigned long num_dimm_banks);
  111. static void program_bxcf(unsigned long *dimm_populated,
  112. unsigned char *iic0_dimm_addr,
  113. unsigned long num_dimm_banks);
  114. static void program_copt1(unsigned long *dimm_populated,
  115. unsigned char *iic0_dimm_addr,
  116. unsigned long num_dimm_banks);
  117. static void program_initplr(unsigned long *dimm_populated,
  118. unsigned char *iic0_dimm_addr,
  119. unsigned long num_dimm_banks,
  120. ddr_cas_id_t selected_cas);
  121. static unsigned long is_ecc_enabled(void);
  122. static void program_ecc(unsigned long *dimm_populated,
  123. unsigned char *iic0_dimm_addr,
  124. unsigned long num_dimm_banks);
  125. static void program_ecc_addr(unsigned long start_address,
  126. unsigned long num_bytes);
  127. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  128. static void test(void);
  129. #else
  130. static void DQS_calibration_process(void);
  131. #endif
  132. static void program_DQS_calibration(unsigned long *dimm_populated,
  133. unsigned char *iic0_dimm_addr,
  134. unsigned long num_dimm_banks);
  135. static u32 mfdcr_any(u32 dcr)
  136. {
  137. u32 val;
  138. switch (dcr) {
  139. case SDRAM_R0BAS + 0:
  140. val = mfdcr(SDRAM_R0BAS + 0);
  141. break;
  142. case SDRAM_R0BAS + 1:
  143. val = mfdcr(SDRAM_R0BAS + 1);
  144. break;
  145. case SDRAM_R0BAS + 2:
  146. val = mfdcr(SDRAM_R0BAS + 2);
  147. break;
  148. case SDRAM_R0BAS + 3:
  149. val = mfdcr(SDRAM_R0BAS + 3);
  150. break;
  151. default:
  152. printf("DCR %d not defined in case statement!!!\n", dcr);
  153. val = 0; /* just to satisfy the compiler */
  154. }
  155. return val;
  156. }
  157. static void mtdcr_any(u32 dcr, u32 val)
  158. {
  159. switch (dcr) {
  160. case SDRAM_R0BAS + 0:
  161. mtdcr(SDRAM_R0BAS + 0, val);
  162. break;
  163. case SDRAM_R0BAS + 1:
  164. mtdcr(SDRAM_R0BAS + 1, val);
  165. break;
  166. case SDRAM_R0BAS + 2:
  167. mtdcr(SDRAM_R0BAS + 2, val);
  168. break;
  169. case SDRAM_R0BAS + 3:
  170. mtdcr(SDRAM_R0BAS + 3, val);
  171. break;
  172. default:
  173. printf("DCR %d not defined in case statement!!!\n", dcr);
  174. }
  175. }
  176. static void wait_ddr_idle(void)
  177. {
  178. u32 val;
  179. do {
  180. mfsdram(SDRAM_MCSTAT, val);
  181. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  182. }
  183. static unsigned char spd_read(uchar chip, uint addr)
  184. {
  185. unsigned char data[2];
  186. if (i2c_probe(chip) == 0)
  187. if (i2c_read(chip, addr, 1, data, 1) == 0)
  188. return data[0];
  189. return 0;
  190. }
  191. /*-----------------------------------------------------------------------------+
  192. * sdram_memsize
  193. *-----------------------------------------------------------------------------*/
  194. static unsigned long sdram_memsize(void)
  195. {
  196. unsigned long mem_size;
  197. unsigned long mcopt2;
  198. unsigned long mcstat;
  199. unsigned long mb0cf;
  200. unsigned long sdsz;
  201. unsigned long i;
  202. mem_size = 0;
  203. mfsdram(SDRAM_MCOPT2, mcopt2);
  204. mfsdram(SDRAM_MCSTAT, mcstat);
  205. /* DDR controller must be enabled and not in self-refresh. */
  206. /* Otherwise memsize is zero. */
  207. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  208. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  209. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  210. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  211. for (i = 0; i < 4; i++) {
  212. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  213. /* Banks enabled */
  214. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  215. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  216. switch(sdsz) {
  217. case SDRAM_RXBAS_SDSZ_8:
  218. mem_size+=8;
  219. break;
  220. case SDRAM_RXBAS_SDSZ_16:
  221. mem_size+=16;
  222. break;
  223. case SDRAM_RXBAS_SDSZ_32:
  224. mem_size+=32;
  225. break;
  226. case SDRAM_RXBAS_SDSZ_64:
  227. mem_size+=64;
  228. break;
  229. case SDRAM_RXBAS_SDSZ_128:
  230. mem_size+=128;
  231. break;
  232. case SDRAM_RXBAS_SDSZ_256:
  233. mem_size+=256;
  234. break;
  235. case SDRAM_RXBAS_SDSZ_512:
  236. mem_size+=512;
  237. break;
  238. case SDRAM_RXBAS_SDSZ_1024:
  239. mem_size+=1024;
  240. break;
  241. case SDRAM_RXBAS_SDSZ_2048:
  242. mem_size+=2048;
  243. break;
  244. case SDRAM_RXBAS_SDSZ_4096:
  245. mem_size+=4096;
  246. break;
  247. default:
  248. mem_size=0;
  249. break;
  250. }
  251. }
  252. }
  253. }
  254. mem_size *= 1024 * 1024;
  255. return(mem_size);
  256. }
  257. /*-----------------------------------------------------------------------------+
  258. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  259. * Note: This routine runs from flash with a stack set up in the chip's
  260. * sram space. It is important that the routine does not require .sbss, .bss or
  261. * .data sections. It also cannot call routines that require these sections.
  262. *-----------------------------------------------------------------------------*/
  263. /*-----------------------------------------------------------------------------
  264. * Function: initdram
  265. * Description: Configures SDRAM memory banks for DDR operation.
  266. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  267. * via the IIC bus and then configures the DDR SDRAM memory
  268. * banks appropriately. If Auto Memory Configuration is
  269. * not used, it is assumed that no DIMM is plugged
  270. *-----------------------------------------------------------------------------*/
  271. long int initdram(int board_type)
  272. {
  273. unsigned char spd0[MAX_SPD_BYTES];
  274. unsigned char spd1[MAX_SPD_BYTES];
  275. unsigned char *dimm_spd[MAXDIMMS];
  276. unsigned long dimm_populated[MAXDIMMS];
  277. unsigned char iic0_dimm_addr[MAXDIMMS];
  278. unsigned long num_dimm_banks; /* on board dimm banks */
  279. unsigned long val;
  280. ddr_cas_id_t selected_cas;
  281. unsigned long dram_size = 0;
  282. num_dimm_banks = sizeof(iic0_dimm_addr);
  283. /*------------------------------------------------------------------
  284. * Set up an array of SPD matrixes.
  285. *-----------------------------------------------------------------*/
  286. dimm_spd[0] = spd0;
  287. dimm_spd[1] = spd1;
  288. /*------------------------------------------------------------------
  289. * Set up an array of iic0 dimm addresses.
  290. *-----------------------------------------------------------------*/
  291. iic0_dimm_addr[0] = IIC0_DIMM0_ADDR;
  292. iic0_dimm_addr[1] = IIC0_DIMM1_ADDR;
  293. /*------------------------------------------------------------------
  294. * Reset the DDR-SDRAM controller.
  295. *-----------------------------------------------------------------*/
  296. mtsdr(SDR0_SRST, 0x00200000);
  297. mtsdr(SDR0_SRST, 0x00000000);
  298. /*
  299. * Make sure I2C controller is initialized
  300. * before continuing.
  301. */
  302. /* switch to correct I2C bus */
  303. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  304. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  305. /*------------------------------------------------------------------
  306. * Clear out the serial presence detect buffers.
  307. * Perform IIC reads from the dimm. Fill in the spds.
  308. * Check to see if the dimm slots are populated
  309. *-----------------------------------------------------------------*/
  310. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  311. /*------------------------------------------------------------------
  312. * Check the memory type for the dimms plugged.
  313. *-----------------------------------------------------------------*/
  314. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  315. /*------------------------------------------------------------------
  316. * Check the frequency supported for the dimms plugged.
  317. *-----------------------------------------------------------------*/
  318. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  319. /*------------------------------------------------------------------
  320. * Check the total rank number.
  321. *-----------------------------------------------------------------*/
  322. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  323. /*------------------------------------------------------------------
  324. * Check the voltage type for the dimms plugged.
  325. *-----------------------------------------------------------------*/
  326. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  327. /*------------------------------------------------------------------
  328. * Program SDRAM controller options 2 register
  329. * Except Enabling of the memory controller.
  330. *-----------------------------------------------------------------*/
  331. mfsdram(SDRAM_MCOPT2, val);
  332. mtsdram(SDRAM_MCOPT2,
  333. (val &
  334. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  335. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  336. SDRAM_MCOPT2_ISIE_MASK))
  337. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  338. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  339. SDRAM_MCOPT2_ISIE_ENABLE));
  340. /*------------------------------------------------------------------
  341. * Program SDRAM controller options 1 register
  342. * Note: Does not enable the memory controller.
  343. *-----------------------------------------------------------------*/
  344. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  345. /*------------------------------------------------------------------
  346. * Set the SDRAM Controller On Die Termination Register
  347. *-----------------------------------------------------------------*/
  348. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  349. /*------------------------------------------------------------------
  350. * Program SDRAM refresh register.
  351. *-----------------------------------------------------------------*/
  352. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  353. /*------------------------------------------------------------------
  354. * Program SDRAM mode register.
  355. *-----------------------------------------------------------------*/
  356. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks, &selected_cas);
  357. /*------------------------------------------------------------------
  358. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  359. *-----------------------------------------------------------------*/
  360. mfsdram(SDRAM_WRDTR, val);
  361. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  362. (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  363. /*------------------------------------------------------------------
  364. * Set the SDRAM Clock Timing Register
  365. *-----------------------------------------------------------------*/
  366. mfsdram(SDRAM_CLKTR, val);
  367. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
  368. /*------------------------------------------------------------------
  369. * Program the BxCF registers.
  370. *-----------------------------------------------------------------*/
  371. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  372. /*------------------------------------------------------------------
  373. * Program SDRAM timing registers.
  374. *-----------------------------------------------------------------*/
  375. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  376. /*------------------------------------------------------------------
  377. * Set the Extended Mode register
  378. *-----------------------------------------------------------------*/
  379. mfsdram(SDRAM_MEMODE, val);
  380. mtsdram(SDRAM_MEMODE,
  381. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  382. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  383. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  384. | SDRAM_MEMODE_RTT_75OHM | SDRAM_MEMODE_DQS_ENABLE));
  385. /*------------------------------------------------------------------
  386. * Program Initialization preload registers.
  387. *-----------------------------------------------------------------*/
  388. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  389. selected_cas);
  390. /*------------------------------------------------------------------
  391. * Delay to ensure 200usec have elapsed since reset.
  392. *-----------------------------------------------------------------*/
  393. udelay(400);
  394. /*------------------------------------------------------------------
  395. * Set the memory queue core base addr.
  396. *-----------------------------------------------------------------*/
  397. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  398. /*------------------------------------------------------------------
  399. * Program SDRAM controller options 2 register
  400. * Enable the memory controller.
  401. *-----------------------------------------------------------------*/
  402. mfsdram(SDRAM_MCOPT2, val);
  403. mtsdram(SDRAM_MCOPT2,
  404. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  405. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  406. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  407. /*------------------------------------------------------------------
  408. * Wait for SDRAM_CFG0_DC_EN to complete.
  409. *-----------------------------------------------------------------*/
  410. do {
  411. mfsdram(SDRAM_MCSTAT, val);
  412. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  413. /* get installed memory size */
  414. dram_size = sdram_memsize();
  415. /* and program tlb entries for this size (dynamic) */
  416. program_tlb(0, dram_size);
  417. #if 1 /* TODO: ECC support will come later */
  418. /*------------------------------------------------------------------
  419. * If ecc is enabled, initialize the parity bits.
  420. *-----------------------------------------------------------------*/
  421. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  422. #endif
  423. /*------------------------------------------------------------------
  424. * DQS calibration.
  425. *-----------------------------------------------------------------*/
  426. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  427. #ifdef DEBUG
  428. ppc440sp_sdram_register_dump();
  429. #endif
  430. return dram_size;
  431. }
  432. static void get_spd_info(unsigned long *dimm_populated,
  433. unsigned char *iic0_dimm_addr,
  434. unsigned long num_dimm_banks)
  435. {
  436. unsigned long dimm_num;
  437. unsigned long dimm_found;
  438. unsigned char num_of_bytes;
  439. unsigned char total_size;
  440. dimm_found = FALSE;
  441. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  442. num_of_bytes = 0;
  443. total_size = 0;
  444. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  445. debug("\nspd_read(0x%x) returned %d\n",
  446. iic0_dimm_addr[dimm_num], num_of_bytes);
  447. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  448. debug("spd_read(0x%x) returned %d\n",
  449. iic0_dimm_addr[dimm_num], total_size);
  450. if ((num_of_bytes != 0) && (total_size != 0)) {
  451. dimm_populated[dimm_num] = TRUE;
  452. dimm_found = TRUE;
  453. debug("DIMM slot %lu: populated\n", dimm_num);
  454. } else {
  455. dimm_populated[dimm_num] = FALSE;
  456. debug("DIMM slot %lu: Not populated\n", dimm_num);
  457. }
  458. }
  459. if (dimm_found == FALSE) {
  460. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  461. hang();
  462. }
  463. }
  464. #ifdef CONFIG_ADD_RAM_INFO
  465. void board_add_ram_info(int use_default)
  466. {
  467. if (is_ecc_enabled())
  468. puts(" (ECC enabled)");
  469. else
  470. puts(" (ECC not enabled)");
  471. }
  472. #endif
  473. /*------------------------------------------------------------------
  474. * For the memory DIMMs installed, this routine verifies that they
  475. * really are DDR specific DIMMs.
  476. *-----------------------------------------------------------------*/
  477. static void check_mem_type(unsigned long *dimm_populated,
  478. unsigned char *iic0_dimm_addr,
  479. unsigned long num_dimm_banks)
  480. {
  481. unsigned long dimm_num;
  482. unsigned long dimm_type;
  483. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  484. if (dimm_populated[dimm_num] == TRUE) {
  485. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  486. switch (dimm_type) {
  487. case 1:
  488. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  489. "slot %d.\n", (unsigned int)dimm_num);
  490. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  491. printf("Replace the DIMM module with a supported DIMM.\n\n");
  492. hang();
  493. break;
  494. case 2:
  495. printf("ERROR: EDO DIMM detected in slot %d.\n",
  496. (unsigned int)dimm_num);
  497. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  498. printf("Replace the DIMM module with a supported DIMM.\n\n");
  499. hang();
  500. break;
  501. case 3:
  502. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  503. (unsigned int)dimm_num);
  504. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  505. printf("Replace the DIMM module with a supported DIMM.\n\n");
  506. hang();
  507. break;
  508. case 4:
  509. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  510. (unsigned int)dimm_num);
  511. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  512. printf("Replace the DIMM module with a supported DIMM.\n\n");
  513. hang();
  514. break;
  515. case 5:
  516. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  517. (unsigned int)dimm_num);
  518. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  519. printf("Replace the DIMM module with a supported DIMM.\n\n");
  520. hang();
  521. break;
  522. case 6:
  523. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  524. (unsigned int)dimm_num);
  525. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  526. printf("Replace the DIMM module with a supported DIMM.\n\n");
  527. hang();
  528. break;
  529. case 7:
  530. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  531. dimm_populated[dimm_num] = SDRAM_DDR1;
  532. break;
  533. case 8:
  534. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  535. dimm_populated[dimm_num] = SDRAM_DDR2;
  536. break;
  537. default:
  538. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  539. (unsigned int)dimm_num);
  540. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  541. printf("Replace the DIMM module with a supported DIMM.\n\n");
  542. hang();
  543. break;
  544. }
  545. }
  546. }
  547. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  548. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  549. && (dimm_populated[dimm_num] != SDRAM_NONE)
  550. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  551. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  552. hang();
  553. }
  554. }
  555. }
  556. /*------------------------------------------------------------------
  557. * For the memory DIMMs installed, this routine verifies that
  558. * frequency previously calculated is supported.
  559. *-----------------------------------------------------------------*/
  560. static void check_frequency(unsigned long *dimm_populated,
  561. unsigned char *iic0_dimm_addr,
  562. unsigned long num_dimm_banks)
  563. {
  564. unsigned long dimm_num;
  565. unsigned long tcyc_reg;
  566. unsigned long cycle_time;
  567. unsigned long calc_cycle_time;
  568. unsigned long sdram_freq;
  569. unsigned long sdr_ddrpll;
  570. PPC440_SYS_INFO board_cfg;
  571. /*------------------------------------------------------------------
  572. * Get the board configuration info.
  573. *-----------------------------------------------------------------*/
  574. get_sys_info(&board_cfg);
  575. mfsdr(sdr_ddr0, sdr_ddrpll);
  576. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  577. /*
  578. * calc_cycle_time is calculated from DDR frequency set by board/chip
  579. * and is expressed in multiple of 10 picoseconds
  580. * to match the way DIMM cycle time is calculated below.
  581. */
  582. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  583. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  584. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  585. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  586. /*
  587. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  588. * the higher order nibble (bits 4-7) designates the cycle time
  589. * to a granularity of 1ns;
  590. * the value presented by the lower order nibble (bits 0-3)
  591. * has a granularity of .1ns and is added to the value designated
  592. * by the higher nibble. In addition, four lines of the lower order
  593. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  594. */
  595. /* Convert from hex to decimal */
  596. if ((tcyc_reg & 0x0F) == 0x0D)
  597. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  598. else if ((tcyc_reg & 0x0F) == 0x0C)
  599. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  600. else if ((tcyc_reg & 0x0F) == 0x0B)
  601. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  602. else if ((tcyc_reg & 0x0F) == 0x0A)
  603. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  604. else
  605. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  606. ((tcyc_reg & 0x0F)*10);
  607. if (cycle_time > (calc_cycle_time + 10)) {
  608. /*
  609. * the provided sdram cycle_time is too small
  610. * for the available DIMM cycle_time.
  611. * The additionnal 100ps is here to accept a small incertainty.
  612. */
  613. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  614. "slot %d \n while calculated cycle time is %d ps.\n",
  615. (unsigned int)(cycle_time*10),
  616. (unsigned int)dimm_num,
  617. (unsigned int)(calc_cycle_time*10));
  618. printf("Replace the DIMM, or change DDR frequency via "
  619. "strapping bits.\n\n");
  620. hang();
  621. }
  622. }
  623. }
  624. }
  625. /*------------------------------------------------------------------
  626. * For the memory DIMMs installed, this routine verifies two
  627. * ranks/banks maximum are availables.
  628. *-----------------------------------------------------------------*/
  629. static void check_rank_number(unsigned long *dimm_populated,
  630. unsigned char *iic0_dimm_addr,
  631. unsigned long num_dimm_banks)
  632. {
  633. unsigned long dimm_num;
  634. unsigned long dimm_rank;
  635. unsigned long total_rank = 0;
  636. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  637. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  638. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  639. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  640. dimm_rank = (dimm_rank & 0x0F) +1;
  641. else
  642. dimm_rank = dimm_rank & 0x0F;
  643. if (dimm_rank > MAXRANKS) {
  644. printf("ERROR: DRAM DIMM detected with %d ranks in "
  645. "slot %d is not supported.\n", dimm_rank, dimm_num);
  646. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  647. printf("Replace the DIMM module with a supported DIMM.\n\n");
  648. hang();
  649. } else
  650. total_rank += dimm_rank;
  651. }
  652. if (total_rank > MAXRANKS) {
  653. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  654. "for all slots.\n", (unsigned int)total_rank);
  655. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  656. printf("Remove one of the DIMM modules.\n\n");
  657. hang();
  658. }
  659. }
  660. }
  661. /*------------------------------------------------------------------
  662. * only support 2.5V modules.
  663. * This routine verifies this.
  664. *-----------------------------------------------------------------*/
  665. static void check_voltage_type(unsigned long *dimm_populated,
  666. unsigned char *iic0_dimm_addr,
  667. unsigned long num_dimm_banks)
  668. {
  669. unsigned long dimm_num;
  670. unsigned long voltage_type;
  671. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  672. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  673. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  674. switch (voltage_type) {
  675. case 0x00:
  676. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  677. printf("This DIMM is 5.0 Volt/TTL.\n");
  678. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  679. (unsigned int)dimm_num);
  680. hang();
  681. break;
  682. case 0x01:
  683. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  684. printf("This DIMM is LVTTL.\n");
  685. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  686. (unsigned int)dimm_num);
  687. hang();
  688. break;
  689. case 0x02:
  690. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  691. printf("This DIMM is 1.5 Volt.\n");
  692. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  693. (unsigned int)dimm_num);
  694. hang();
  695. break;
  696. case 0x03:
  697. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  698. printf("This DIMM is 3.3 Volt/TTL.\n");
  699. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  700. (unsigned int)dimm_num);
  701. hang();
  702. break;
  703. case 0x04:
  704. /* 2.5 Voltage only for DDR1 */
  705. break;
  706. case 0x05:
  707. /* 1.8 Voltage only for DDR2 */
  708. break;
  709. default:
  710. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  711. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  712. (unsigned int)dimm_num);
  713. hang();
  714. break;
  715. }
  716. }
  717. }
  718. }
  719. /*-----------------------------------------------------------------------------+
  720. * program_copt1.
  721. *-----------------------------------------------------------------------------*/
  722. static void program_copt1(unsigned long *dimm_populated,
  723. unsigned char *iic0_dimm_addr,
  724. unsigned long num_dimm_banks)
  725. {
  726. unsigned long dimm_num;
  727. unsigned long mcopt1;
  728. unsigned long ecc_enabled;
  729. unsigned long ecc = 0;
  730. unsigned long data_width = 0;
  731. unsigned long dimm_32bit;
  732. unsigned long dimm_64bit;
  733. unsigned long registered = 0;
  734. unsigned long attribute = 0;
  735. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  736. unsigned long bankcount;
  737. unsigned long ddrtype;
  738. unsigned long val;
  739. ecc_enabled = TRUE;
  740. dimm_32bit = FALSE;
  741. dimm_64bit = FALSE;
  742. buf0 = FALSE;
  743. buf1 = FALSE;
  744. /*------------------------------------------------------------------
  745. * Set memory controller options reg 1, SDRAM_MCOPT1.
  746. *-----------------------------------------------------------------*/
  747. mfsdram(SDRAM_MCOPT1, val);
  748. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  749. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  750. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  751. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  752. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  753. SDRAM_MCOPT1_DREF_MASK);
  754. mcopt1 |= SDRAM_MCOPT1_QDEP;
  755. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  756. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  757. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  758. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  759. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  760. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  761. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  762. /* test ecc support */
  763. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  764. if (ecc != 0x02) /* ecc not supported */
  765. ecc_enabled = FALSE;
  766. /* test bank count */
  767. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  768. if (bankcount == 0x04) /* bank count = 4 */
  769. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  770. else /* bank count = 8 */
  771. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  772. /* test DDR type */
  773. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  774. /* test for buffered/unbuffered, registered, differential clocks */
  775. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  776. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  777. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  778. if (dimm_num == 0) {
  779. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  780. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  781. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  782. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  783. if (registered == 1) { /* DDR2 always buffered */
  784. /* TODO: what about above comments ? */
  785. mcopt1 |= SDRAM_MCOPT1_RDEN;
  786. buf0 = TRUE;
  787. } else {
  788. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  789. if ((attribute & 0x02) == 0x00) {
  790. /* buffered not supported */
  791. buf0 = FALSE;
  792. } else {
  793. mcopt1 |= SDRAM_MCOPT1_RDEN;
  794. buf0 = TRUE;
  795. }
  796. }
  797. }
  798. else if (dimm_num == 1) {
  799. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  800. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  801. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  802. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  803. if (registered == 1) {
  804. /* DDR2 always buffered */
  805. mcopt1 |= SDRAM_MCOPT1_RDEN;
  806. buf1 = TRUE;
  807. } else {
  808. if ((attribute & 0x02) == 0x00) {
  809. /* buffered not supported */
  810. buf1 = FALSE;
  811. } else {
  812. mcopt1 |= SDRAM_MCOPT1_RDEN;
  813. buf1 = TRUE;
  814. }
  815. }
  816. }
  817. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  818. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  819. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  820. switch (data_width) {
  821. case 72:
  822. case 64:
  823. dimm_64bit = TRUE;
  824. break;
  825. case 40:
  826. case 32:
  827. dimm_32bit = TRUE;
  828. break;
  829. default:
  830. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  831. data_width);
  832. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  833. break;
  834. }
  835. }
  836. }
  837. /* verify matching properties */
  838. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  839. if (buf0 != buf1) {
  840. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  841. hang();
  842. }
  843. }
  844. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  845. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  846. hang();
  847. }
  848. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  849. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  850. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  851. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  852. } else {
  853. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  854. hang();
  855. }
  856. if (ecc_enabled == TRUE)
  857. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  858. else
  859. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  860. mtsdram(SDRAM_MCOPT1, mcopt1);
  861. }
  862. /*-----------------------------------------------------------------------------+
  863. * program_codt.
  864. *-----------------------------------------------------------------------------*/
  865. static void program_codt(unsigned long *dimm_populated,
  866. unsigned char *iic0_dimm_addr,
  867. unsigned long num_dimm_banks)
  868. {
  869. unsigned long codt;
  870. unsigned long modt0 = 0;
  871. unsigned long modt1 = 0;
  872. unsigned long modt2 = 0;
  873. unsigned long modt3 = 0;
  874. unsigned char dimm_num;
  875. unsigned char dimm_rank;
  876. unsigned char total_rank = 0;
  877. unsigned char total_dimm = 0;
  878. unsigned char dimm_type = 0;
  879. unsigned char firstSlot = 0;
  880. /*------------------------------------------------------------------
  881. * Set the SDRAM Controller On Die Termination Register
  882. *-----------------------------------------------------------------*/
  883. mfsdram(SDRAM_CODT, codt);
  884. codt |= (SDRAM_CODT_IO_NMODE
  885. & (~SDRAM_CODT_DQS_SINGLE_END
  886. & ~SDRAM_CODT_CKSE_SINGLE_END
  887. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  888. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  889. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  890. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  891. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  892. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  893. dimm_rank = (dimm_rank & 0x0F) + 1;
  894. dimm_type = SDRAM_DDR2;
  895. } else {
  896. dimm_rank = dimm_rank & 0x0F;
  897. dimm_type = SDRAM_DDR1;
  898. }
  899. total_rank += dimm_rank;
  900. total_dimm ++;
  901. if ((dimm_num == 0) && (total_dimm == 1))
  902. firstSlot = TRUE;
  903. else
  904. firstSlot = FALSE;
  905. }
  906. }
  907. if (dimm_type == SDRAM_DDR2) {
  908. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  909. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  910. if (total_rank == 1) {
  911. codt |= 0x00800000;
  912. modt0 = 0x01000000;
  913. modt1 = 0x00000000;
  914. modt2 = 0x00000000;
  915. modt3 = 0x00000000;
  916. }
  917. if (total_rank == 2) {
  918. codt |= 0x02800000;
  919. modt0 = 0x06000000;
  920. modt1 = 0x01800000;
  921. modt2 = 0x00000000;
  922. modt3 = 0x00000000;
  923. }
  924. } else {
  925. if (total_rank == 1) {
  926. codt |= 0x00800000;
  927. modt0 = 0x01000000;
  928. modt1 = 0x00000000;
  929. modt2 = 0x00000000;
  930. modt3 = 0x00000000;
  931. }
  932. if (total_rank == 2) {
  933. codt |= 0x02800000;
  934. modt0 = 0x06000000;
  935. modt1 = 0x01800000;
  936. modt2 = 0x00000000;
  937. modt3 = 0x00000000;
  938. }
  939. }
  940. if (total_dimm == 2) {
  941. if (total_rank == 2) {
  942. codt |= 0x08800000;
  943. modt0 = 0x18000000;
  944. modt1 = 0x00000000;
  945. modt2 = 0x01800000;
  946. modt3 = 0x00000000;
  947. }
  948. if (total_rank == 4) {
  949. codt |= 0x2a800000;
  950. modt0 = 0x18000000;
  951. modt1 = 0x18000000;
  952. modt2 = 0x01800000;
  953. modt3 = 0x01800000;
  954. }
  955. }
  956. } else {
  957. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  958. modt0 = 0x00000000;
  959. modt1 = 0x00000000;
  960. modt2 = 0x00000000;
  961. modt3 = 0x00000000;
  962. if (total_dimm == 1) {
  963. if (total_rank == 1)
  964. codt |= 0x00800000;
  965. if (total_rank == 2)
  966. codt |= 0x02800000;
  967. }
  968. if (total_dimm == 2) {
  969. if (total_rank == 2)
  970. codt |= 0x08800000;
  971. if (total_rank == 4)
  972. codt |= 0x2a800000;
  973. }
  974. }
  975. debug("nb of dimm %d\n", total_dimm);
  976. debug("nb of rank %d\n", total_rank);
  977. if (total_dimm == 1)
  978. debug("dimm in slot %d\n", firstSlot);
  979. mtsdram(SDRAM_CODT, codt);
  980. mtsdram(SDRAM_MODT0, modt0);
  981. mtsdram(SDRAM_MODT1, modt1);
  982. mtsdram(SDRAM_MODT2, modt2);
  983. mtsdram(SDRAM_MODT3, modt3);
  984. }
  985. /*-----------------------------------------------------------------------------+
  986. * program_initplr.
  987. *-----------------------------------------------------------------------------*/
  988. static void program_initplr(unsigned long *dimm_populated,
  989. unsigned char *iic0_dimm_addr,
  990. unsigned long num_dimm_banks,
  991. ddr_cas_id_t selected_cas)
  992. {
  993. unsigned long MR_CAS_value = 0;
  994. /******************************************************
  995. ** Assumption: if more than one DIMM, all DIMMs are the same
  996. ** as already checked in check_memory_type
  997. ******************************************************/
  998. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  999. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1000. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1001. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1002. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1003. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1004. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1005. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1006. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1007. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1008. switch (selected_cas) {
  1009. /*
  1010. * The CAS latency is a field of the Mode Reg
  1011. * that need to be set from caller input.
  1012. * CAS bits in Mode Reg are starting at bit 4 at least for the Micron DDR2
  1013. * this is the reason of the shift.
  1014. */
  1015. case DDR_CAS_3:
  1016. MR_CAS_value = 3 << 4;
  1017. break;
  1018. case DDR_CAS_4:
  1019. MR_CAS_value = 4 << 4;
  1020. break;
  1021. case DDR_CAS_5:
  1022. MR_CAS_value = 5 << 4;
  1023. break;
  1024. default:
  1025. printf("ERROR: ucode error on selected_cas value %d", (unsigned char)selected_cas);
  1026. hang();
  1027. break;
  1028. }
  1029. mtsdram(SDRAM_INITPLR0, 0xB5380000); /* NOP */
  1030. mtsdram(SDRAM_INITPLR1, 0x82100400); /* precharge 8 DDR clock cycle */
  1031. mtsdram(SDRAM_INITPLR2, 0x80820000); /* EMR2 */
  1032. mtsdram(SDRAM_INITPLR3, 0x80830000); /* EMR3 */
  1033. mtsdram(SDRAM_INITPLR4, 0x80810000); /* EMR DLL ENABLE */
  1034. mtsdram(SDRAM_INITPLR5, 0x80800502 | MR_CAS_value); /* MR w/ DLL reset */
  1035. mtsdram(SDRAM_INITPLR6, 0x82100400); /* precharge 8 DDR clock cycle */
  1036. mtsdram(SDRAM_INITPLR7, 0x8a080000); /* Refresh 50 DDR clock cycle */
  1037. mtsdram(SDRAM_INITPLR8, 0x8a080000); /* Refresh 50 DDR clock cycle */
  1038. mtsdram(SDRAM_INITPLR9, 0x8a080000); /* Refresh 50 DDR clock cycle */
  1039. mtsdram(SDRAM_INITPLR10, 0x8a080000); /* Refresh 50 DDR clock cycle */
  1040. mtsdram(SDRAM_INITPLR11, 0x80800402 | MR_CAS_value); /* MR w/o DLL reset */
  1041. mtsdram(SDRAM_INITPLR12, 0x80810380); /* EMR OCD Default */
  1042. mtsdram(SDRAM_INITPLR13, 0x80810000); /* EMR OCD Exit */
  1043. } else {
  1044. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1045. hang();
  1046. }
  1047. }
  1048. /*------------------------------------------------------------------
  1049. * This routine programs the SDRAM_MMODE register.
  1050. * the selected_cas is an output parameter, that will be passed
  1051. * by caller to call the above program_initplr( )
  1052. *-----------------------------------------------------------------*/
  1053. static void program_mode(unsigned long *dimm_populated,
  1054. unsigned char *iic0_dimm_addr,
  1055. unsigned long num_dimm_banks,
  1056. ddr_cas_id_t *selected_cas)
  1057. {
  1058. unsigned long dimm_num;
  1059. unsigned long sdram_ddr1;
  1060. unsigned long t_wr_ns;
  1061. unsigned long t_wr_clk;
  1062. unsigned long cas_bit;
  1063. unsigned long cas_index;
  1064. unsigned long sdram_freq;
  1065. unsigned long ddr_check;
  1066. unsigned long mmode;
  1067. unsigned long tcyc_reg;
  1068. unsigned long cycle_2_0_clk;
  1069. unsigned long cycle_2_5_clk;
  1070. unsigned long cycle_3_0_clk;
  1071. unsigned long cycle_4_0_clk;
  1072. unsigned long cycle_5_0_clk;
  1073. unsigned long max_2_0_tcyc_ns_x_100;
  1074. unsigned long max_2_5_tcyc_ns_x_100;
  1075. unsigned long max_3_0_tcyc_ns_x_100;
  1076. unsigned long max_4_0_tcyc_ns_x_100;
  1077. unsigned long max_5_0_tcyc_ns_x_100;
  1078. unsigned long cycle_time_ns_x_100[3];
  1079. PPC440_SYS_INFO board_cfg;
  1080. unsigned char cas_2_0_available;
  1081. unsigned char cas_2_5_available;
  1082. unsigned char cas_3_0_available;
  1083. unsigned char cas_4_0_available;
  1084. unsigned char cas_5_0_available;
  1085. unsigned long sdr_ddrpll;
  1086. /*------------------------------------------------------------------
  1087. * Get the board configuration info.
  1088. *-----------------------------------------------------------------*/
  1089. get_sys_info(&board_cfg);
  1090. mfsdr(sdr_ddr0, sdr_ddrpll);
  1091. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1092. /*------------------------------------------------------------------
  1093. * Handle the timing. We need to find the worst case timing of all
  1094. * the dimm modules installed.
  1095. *-----------------------------------------------------------------*/
  1096. t_wr_ns = 0;
  1097. cas_2_0_available = TRUE;
  1098. cas_2_5_available = TRUE;
  1099. cas_3_0_available = TRUE;
  1100. cas_4_0_available = TRUE;
  1101. cas_5_0_available = TRUE;
  1102. max_2_0_tcyc_ns_x_100 = 10;
  1103. max_2_5_tcyc_ns_x_100 = 10;
  1104. max_3_0_tcyc_ns_x_100 = 10;
  1105. max_4_0_tcyc_ns_x_100 = 10;
  1106. max_5_0_tcyc_ns_x_100 = 10;
  1107. sdram_ddr1 = TRUE;
  1108. /* loop through all the DIMM slots on the board */
  1109. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1110. /* If a dimm is installed in a particular slot ... */
  1111. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1112. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1113. sdram_ddr1 = TRUE;
  1114. else
  1115. sdram_ddr1 = FALSE;
  1116. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1117. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1118. /* For a particular DIMM, grab the three CAS values it supports */
  1119. for (cas_index = 0; cas_index < 3; cas_index++) {
  1120. switch (cas_index) {
  1121. case 0:
  1122. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1123. break;
  1124. case 1:
  1125. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1126. break;
  1127. default:
  1128. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1129. break;
  1130. }
  1131. if ((tcyc_reg & 0x0F) >= 10) {
  1132. if ((tcyc_reg & 0x0F) == 0x0D) {
  1133. /* Convert from hex to decimal */
  1134. cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1135. } else {
  1136. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1137. "in slot %d\n", (unsigned int)dimm_num);
  1138. hang();
  1139. }
  1140. } else {
  1141. /* Convert from hex to decimal */
  1142. cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) +
  1143. ((tcyc_reg & 0x0F)*10);
  1144. }
  1145. }
  1146. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1147. /* supported for a particular DIMM. */
  1148. cas_index = 0;
  1149. if (sdram_ddr1) {
  1150. /*
  1151. * DDR devices use the following bitmask for CAS latency:
  1152. * Bit 7 6 5 4 3 2 1 0
  1153. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1154. */
  1155. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1156. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1157. cas_index++;
  1158. } else {
  1159. if (cas_index != 0)
  1160. cas_index++;
  1161. cas_4_0_available = FALSE;
  1162. }
  1163. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1164. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1165. cas_index++;
  1166. } else {
  1167. if (cas_index != 0)
  1168. cas_index++;
  1169. cas_3_0_available = FALSE;
  1170. }
  1171. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1172. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1173. cas_index++;
  1174. } else {
  1175. if (cas_index != 0)
  1176. cas_index++;
  1177. cas_2_5_available = FALSE;
  1178. }
  1179. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1180. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1181. cas_index++;
  1182. } else {
  1183. if (cas_index != 0)
  1184. cas_index++;
  1185. cas_2_0_available = FALSE;
  1186. }
  1187. } else {
  1188. /*
  1189. * DDR2 devices use the following bitmask for CAS latency:
  1190. * Bit 7 6 5 4 3 2 1 0
  1191. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1192. */
  1193. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1194. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1195. cas_index++;
  1196. } else {
  1197. if (cas_index != 0)
  1198. cas_index++;
  1199. cas_5_0_available = FALSE;
  1200. }
  1201. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1202. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1203. cas_index++;
  1204. } else {
  1205. if (cas_index != 0)
  1206. cas_index++;
  1207. cas_4_0_available = FALSE;
  1208. }
  1209. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1210. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1211. cas_index++;
  1212. } else {
  1213. if (cas_index != 0)
  1214. cas_index++;
  1215. cas_3_0_available = FALSE;
  1216. }
  1217. }
  1218. }
  1219. }
  1220. /*------------------------------------------------------------------
  1221. * Set the SDRAM mode, SDRAM_MMODE
  1222. *-----------------------------------------------------------------*/
  1223. mfsdram(SDRAM_MMODE, mmode);
  1224. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1225. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100);
  1226. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100);
  1227. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100);
  1228. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100);
  1229. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100);
  1230. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1231. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1232. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1233. *selected_cas = DDR_CAS_2;
  1234. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1235. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1236. *selected_cas = DDR_CAS_2_5;
  1237. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1238. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1239. *selected_cas = DDR_CAS_3;
  1240. } else {
  1241. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1242. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1243. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1244. hang();
  1245. }
  1246. } else { /* DDR2 */
  1247. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1248. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1249. *selected_cas = DDR_CAS_3;
  1250. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1251. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1252. *selected_cas = DDR_CAS_4;
  1253. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1254. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1255. *selected_cas = DDR_CAS_5;
  1256. } else {
  1257. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1258. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1259. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1260. hang();
  1261. }
  1262. }
  1263. if (sdram_ddr1 == TRUE)
  1264. mmode |= SDRAM_MMODE_WR_DDR1;
  1265. else {
  1266. /* loop through all the DIMM slots on the board */
  1267. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1268. /* If a dimm is installed in a particular slot ... */
  1269. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1270. t_wr_ns = max(t_wr_ns,
  1271. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1272. }
  1273. /*
  1274. * convert from nanoseconds to ddr clocks
  1275. * round up if necessary
  1276. */
  1277. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1278. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1279. if (sdram_freq != ddr_check)
  1280. t_wr_clk++;
  1281. switch (t_wr_clk) {
  1282. case 0:
  1283. case 1:
  1284. case 2:
  1285. case 3:
  1286. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1287. break;
  1288. case 4:
  1289. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1290. break;
  1291. case 5:
  1292. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1293. break;
  1294. default:
  1295. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1296. break;
  1297. }
  1298. }
  1299. mtsdram(SDRAM_MMODE, mmode);
  1300. }
  1301. /*-----------------------------------------------------------------------------+
  1302. * program_rtr.
  1303. *-----------------------------------------------------------------------------*/
  1304. static void program_rtr(unsigned long *dimm_populated,
  1305. unsigned char *iic0_dimm_addr,
  1306. unsigned long num_dimm_banks)
  1307. {
  1308. PPC440_SYS_INFO board_cfg;
  1309. unsigned long max_refresh_rate;
  1310. unsigned long dimm_num;
  1311. unsigned long refresh_rate_type;
  1312. unsigned long refresh_rate;
  1313. unsigned long rint;
  1314. unsigned long sdram_freq;
  1315. unsigned long sdr_ddrpll;
  1316. unsigned long val;
  1317. /*------------------------------------------------------------------
  1318. * Get the board configuration info.
  1319. *-----------------------------------------------------------------*/
  1320. get_sys_info(&board_cfg);
  1321. /*------------------------------------------------------------------
  1322. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1323. *-----------------------------------------------------------------*/
  1324. mfsdr(sdr_ddr0, sdr_ddrpll);
  1325. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1326. max_refresh_rate = 0;
  1327. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1328. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1329. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1330. refresh_rate_type &= 0x7F;
  1331. switch (refresh_rate_type) {
  1332. case 0:
  1333. refresh_rate = 15625;
  1334. break;
  1335. case 1:
  1336. refresh_rate = 3906;
  1337. break;
  1338. case 2:
  1339. refresh_rate = 7812;
  1340. break;
  1341. case 3:
  1342. refresh_rate = 31250;
  1343. break;
  1344. case 4:
  1345. refresh_rate = 62500;
  1346. break;
  1347. case 5:
  1348. refresh_rate = 125000;
  1349. break;
  1350. default:
  1351. refresh_rate = 0;
  1352. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1353. (unsigned int)dimm_num);
  1354. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1355. hang();
  1356. break;
  1357. }
  1358. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1359. }
  1360. }
  1361. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1362. mfsdram(SDRAM_RTR, val);
  1363. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1364. (SDRAM_RTR_RINT_ENCODE(rint)));
  1365. }
  1366. /*------------------------------------------------------------------
  1367. * This routine programs the SDRAM_TRx registers.
  1368. *-----------------------------------------------------------------*/
  1369. static void program_tr(unsigned long *dimm_populated,
  1370. unsigned char *iic0_dimm_addr,
  1371. unsigned long num_dimm_banks)
  1372. {
  1373. unsigned long dimm_num;
  1374. unsigned long sdram_ddr1;
  1375. unsigned long t_rp_ns;
  1376. unsigned long t_rcd_ns;
  1377. unsigned long t_rrd_ns;
  1378. unsigned long t_ras_ns;
  1379. unsigned long t_rc_ns;
  1380. unsigned long t_rfc_ns;
  1381. unsigned long t_wpc_ns;
  1382. unsigned long t_wtr_ns;
  1383. unsigned long t_rpc_ns;
  1384. unsigned long t_rp_clk;
  1385. unsigned long t_rcd_clk;
  1386. unsigned long t_rrd_clk;
  1387. unsigned long t_ras_clk;
  1388. unsigned long t_rc_clk;
  1389. unsigned long t_rfc_clk;
  1390. unsigned long t_wpc_clk;
  1391. unsigned long t_wtr_clk;
  1392. unsigned long t_rpc_clk;
  1393. unsigned long sdtr1, sdtr2, sdtr3;
  1394. unsigned long ddr_check;
  1395. unsigned long sdram_freq;
  1396. unsigned long sdr_ddrpll;
  1397. PPC440_SYS_INFO board_cfg;
  1398. /*------------------------------------------------------------------
  1399. * Get the board configuration info.
  1400. *-----------------------------------------------------------------*/
  1401. get_sys_info(&board_cfg);
  1402. mfsdr(sdr_ddr0, sdr_ddrpll);
  1403. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1404. /*------------------------------------------------------------------
  1405. * Handle the timing. We need to find the worst case timing of all
  1406. * the dimm modules installed.
  1407. *-----------------------------------------------------------------*/
  1408. t_rp_ns = 0;
  1409. t_rrd_ns = 0;
  1410. t_rcd_ns = 0;
  1411. t_ras_ns = 0;
  1412. t_rc_ns = 0;
  1413. t_rfc_ns = 0;
  1414. t_wpc_ns = 0;
  1415. t_wtr_ns = 0;
  1416. t_rpc_ns = 0;
  1417. sdram_ddr1 = TRUE;
  1418. /* loop through all the DIMM slots on the board */
  1419. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1420. /* If a dimm is installed in a particular slot ... */
  1421. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1422. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1423. sdram_ddr1 = TRUE;
  1424. else
  1425. sdram_ddr1 = FALSE;
  1426. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1427. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1428. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1429. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1430. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1431. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1432. }
  1433. }
  1434. /*------------------------------------------------------------------
  1435. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1436. *-----------------------------------------------------------------*/
  1437. mfsdram(SDRAM_SDTR1, sdtr1);
  1438. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1439. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1440. /* default values */
  1441. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1442. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1443. /* normal operations */
  1444. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1445. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1446. mtsdram(SDRAM_SDTR1, sdtr1);
  1447. /*------------------------------------------------------------------
  1448. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1449. *-----------------------------------------------------------------*/
  1450. mfsdram(SDRAM_SDTR2, sdtr2);
  1451. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1452. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1453. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1454. SDRAM_SDTR2_RRD_MASK);
  1455. /*
  1456. * convert t_rcd from nanoseconds to ddr clocks
  1457. * round up if necessary
  1458. */
  1459. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1460. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1461. if (sdram_freq != ddr_check)
  1462. t_rcd_clk++;
  1463. switch (t_rcd_clk) {
  1464. case 0:
  1465. case 1:
  1466. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1467. break;
  1468. case 2:
  1469. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1470. break;
  1471. case 3:
  1472. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1473. break;
  1474. case 4:
  1475. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1476. break;
  1477. default:
  1478. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1479. break;
  1480. }
  1481. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1482. if (sdram_freq < 200000000) {
  1483. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1484. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1485. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1486. } else {
  1487. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1488. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1489. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1490. }
  1491. } else { /* DDR2 */
  1492. /* loop through all the DIMM slots on the board */
  1493. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1494. /* If a dimm is installed in a particular slot ... */
  1495. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1496. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1497. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1498. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1499. }
  1500. }
  1501. /*
  1502. * convert from nanoseconds to ddr clocks
  1503. * round up if necessary
  1504. */
  1505. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1506. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1507. if (sdram_freq != ddr_check)
  1508. t_wpc_clk++;
  1509. switch (t_wpc_clk) {
  1510. case 0:
  1511. case 1:
  1512. case 2:
  1513. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1514. break;
  1515. case 3:
  1516. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1517. break;
  1518. case 4:
  1519. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1520. break;
  1521. case 5:
  1522. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1523. break;
  1524. default:
  1525. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1526. break;
  1527. }
  1528. /*
  1529. * convert from nanoseconds to ddr clocks
  1530. * round up if necessary
  1531. */
  1532. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1533. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1534. if (sdram_freq != ddr_check)
  1535. t_wtr_clk++;
  1536. switch (t_wtr_clk) {
  1537. case 0:
  1538. case 1:
  1539. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1540. break;
  1541. case 2:
  1542. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1543. break;
  1544. case 3:
  1545. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1546. break;
  1547. default:
  1548. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1549. break;
  1550. }
  1551. /*
  1552. * convert from nanoseconds to ddr clocks
  1553. * round up if necessary
  1554. */
  1555. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1556. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1557. if (sdram_freq != ddr_check)
  1558. t_rpc_clk++;
  1559. switch (t_rpc_clk) {
  1560. case 0:
  1561. case 1:
  1562. case 2:
  1563. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1564. break;
  1565. case 3:
  1566. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1567. break;
  1568. default:
  1569. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1570. break;
  1571. }
  1572. }
  1573. /* default value */
  1574. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1575. /*
  1576. * convert t_rrd from nanoseconds to ddr clocks
  1577. * round up if necessary
  1578. */
  1579. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1580. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1581. if (sdram_freq != ddr_check)
  1582. t_rrd_clk++;
  1583. if (t_rrd_clk == 3)
  1584. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1585. else
  1586. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1587. /*
  1588. * convert t_rp from nanoseconds to ddr clocks
  1589. * round up if necessary
  1590. */
  1591. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1592. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1593. if (sdram_freq != ddr_check)
  1594. t_rp_clk++;
  1595. switch (t_rp_clk) {
  1596. case 0:
  1597. case 1:
  1598. case 2:
  1599. case 3:
  1600. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1601. break;
  1602. case 4:
  1603. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1604. break;
  1605. case 5:
  1606. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1607. break;
  1608. case 6:
  1609. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1610. break;
  1611. default:
  1612. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1613. break;
  1614. }
  1615. mtsdram(SDRAM_SDTR2, sdtr2);
  1616. /*------------------------------------------------------------------
  1617. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1618. *-----------------------------------------------------------------*/
  1619. mfsdram(SDRAM_SDTR3, sdtr3);
  1620. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1621. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1622. /*
  1623. * convert t_ras from nanoseconds to ddr clocks
  1624. * round up if necessary
  1625. */
  1626. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1627. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1628. if (sdram_freq != ddr_check)
  1629. t_ras_clk++;
  1630. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1631. /*
  1632. * convert t_rc from nanoseconds to ddr clocks
  1633. * round up if necessary
  1634. */
  1635. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1636. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1637. if (sdram_freq != ddr_check)
  1638. t_rc_clk++;
  1639. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1640. /* default xcs value */
  1641. sdtr3 |= SDRAM_SDTR3_XCS;
  1642. /*
  1643. * convert t_rfc from nanoseconds to ddr clocks
  1644. * round up if necessary
  1645. */
  1646. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1647. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1648. if (sdram_freq != ddr_check)
  1649. t_rfc_clk++;
  1650. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1651. mtsdram(SDRAM_SDTR3, sdtr3);
  1652. }
  1653. /*-----------------------------------------------------------------------------+
  1654. * program_bxcf.
  1655. *-----------------------------------------------------------------------------*/
  1656. static void program_bxcf(unsigned long *dimm_populated,
  1657. unsigned char *iic0_dimm_addr,
  1658. unsigned long num_dimm_banks)
  1659. {
  1660. unsigned long dimm_num;
  1661. unsigned long num_col_addr;
  1662. unsigned long num_ranks;
  1663. unsigned long num_banks;
  1664. unsigned long mode;
  1665. unsigned long ind_rank;
  1666. unsigned long ind;
  1667. unsigned long ind_bank;
  1668. unsigned long bank_0_populated;
  1669. /*------------------------------------------------------------------
  1670. * Set the BxCF regs. First, wipe out the bank config registers.
  1671. *-----------------------------------------------------------------*/
  1672. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
  1673. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1674. mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
  1675. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1676. mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
  1677. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1678. mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
  1679. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1680. mode = SDRAM_BXCF_M_BE_ENABLE;
  1681. bank_0_populated = 0;
  1682. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1683. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1684. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1685. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1686. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1687. num_ranks = (num_ranks & 0x0F) +1;
  1688. else
  1689. num_ranks = num_ranks & 0x0F;
  1690. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1691. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1692. if (num_banks == 4)
  1693. ind = 0;
  1694. else
  1695. ind = 5;
  1696. switch (num_col_addr) {
  1697. case 0x08:
  1698. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1699. break;
  1700. case 0x09:
  1701. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1702. break;
  1703. case 0x0A:
  1704. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1705. break;
  1706. case 0x0B:
  1707. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1708. break;
  1709. case 0x0C:
  1710. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1711. break;
  1712. default:
  1713. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1714. (unsigned int)dimm_num);
  1715. printf("ERROR: Unsupported value for number of "
  1716. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1717. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1718. hang();
  1719. }
  1720. }
  1721. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1722. bank_0_populated = 1;
  1723. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1724. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
  1725. mtdcr(SDRAMC_CFGDATA, mode);
  1726. }
  1727. }
  1728. }
  1729. }
  1730. /*------------------------------------------------------------------
  1731. * program memory queue.
  1732. *-----------------------------------------------------------------*/
  1733. static void program_memory_queue(unsigned long *dimm_populated,
  1734. unsigned char *iic0_dimm_addr,
  1735. unsigned long num_dimm_banks)
  1736. {
  1737. unsigned long dimm_num;
  1738. unsigned long rank_base_addr;
  1739. unsigned long rank_reg;
  1740. unsigned long rank_size_bytes;
  1741. unsigned long rank_size_id;
  1742. unsigned long num_ranks;
  1743. unsigned long baseadd_size;
  1744. unsigned long i;
  1745. unsigned long bank_0_populated = 0;
  1746. /*------------------------------------------------------------------
  1747. * Reset the rank_base_address.
  1748. *-----------------------------------------------------------------*/
  1749. rank_reg = SDRAM_R0BAS;
  1750. rank_base_addr = 0x00000000;
  1751. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1752. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1753. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1754. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1755. num_ranks = (num_ranks & 0x0F) + 1;
  1756. else
  1757. num_ranks = num_ranks & 0x0F;
  1758. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1759. /*------------------------------------------------------------------
  1760. * Set the sizes
  1761. *-----------------------------------------------------------------*/
  1762. baseadd_size = 0;
  1763. rank_size_bytes = 1024 * 1024 * rank_size_id;
  1764. switch (rank_size_id) {
  1765. case 0x02:
  1766. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1767. break;
  1768. case 0x04:
  1769. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1770. break;
  1771. case 0x08:
  1772. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1773. break;
  1774. case 0x10:
  1775. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1776. break;
  1777. case 0x20:
  1778. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1779. break;
  1780. case 0x40:
  1781. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1782. break;
  1783. case 0x80:
  1784. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1785. break;
  1786. default:
  1787. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1788. (unsigned int)dimm_num);
  1789. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1790. (unsigned int)rank_size_id);
  1791. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1792. hang();
  1793. }
  1794. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1795. bank_0_populated = 1;
  1796. for (i = 0; i < num_ranks; i++) {
  1797. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1798. (rank_base_addr & SDRAM_RXBAS_SDBA_MASK) |
  1799. baseadd_size);
  1800. rank_base_addr += rank_size_bytes;
  1801. }
  1802. }
  1803. }
  1804. }
  1805. /*-----------------------------------------------------------------------------+
  1806. * is_ecc_enabled.
  1807. *-----------------------------------------------------------------------------*/
  1808. static unsigned long is_ecc_enabled(void)
  1809. {
  1810. unsigned long dimm_num;
  1811. unsigned long ecc;
  1812. unsigned long val;
  1813. ecc = 0;
  1814. /* loop through all the DIMM slots on the board */
  1815. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1816. mfsdram(SDRAM_MCOPT1, val);
  1817. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  1818. }
  1819. return(ecc);
  1820. }
  1821. /*-----------------------------------------------------------------------------+
  1822. * program_ecc.
  1823. *-----------------------------------------------------------------------------*/
  1824. static void program_ecc(unsigned long *dimm_populated,
  1825. unsigned char *iic0_dimm_addr,
  1826. unsigned long num_dimm_banks)
  1827. {
  1828. unsigned long mcopt1;
  1829. unsigned long mcopt2;
  1830. unsigned long mcstat;
  1831. unsigned long dimm_num;
  1832. unsigned long ecc;
  1833. ecc = 0;
  1834. /* loop through all the DIMM slots on the board */
  1835. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1836. /* If a dimm is installed in a particular slot ... */
  1837. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1838. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  1839. }
  1840. if (ecc == 0)
  1841. return;
  1842. mfsdram(SDRAM_MCOPT1, mcopt1);
  1843. mfsdram(SDRAM_MCOPT2, mcopt2);
  1844. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  1845. /* DDR controller must be enabled and not in self-refresh. */
  1846. mfsdram(SDRAM_MCSTAT, mcstat);
  1847. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  1848. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  1849. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  1850. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  1851. program_ecc_addr(0, sdram_memsize());
  1852. }
  1853. }
  1854. return;
  1855. }
  1856. /*-----------------------------------------------------------------------------+
  1857. * program_ecc_addr.
  1858. *-----------------------------------------------------------------------------*/
  1859. static void program_ecc_addr(unsigned long start_address,
  1860. unsigned long num_bytes)
  1861. {
  1862. unsigned long current_address;
  1863. unsigned long end_address;
  1864. unsigned long address_increment;
  1865. unsigned long mcopt1;
  1866. current_address = start_address;
  1867. mfsdram(SDRAM_MCOPT1, mcopt1);
  1868. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  1869. mtsdram(SDRAM_MCOPT1,
  1870. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  1871. sync();
  1872. eieio();
  1873. wait_ddr_idle();
  1874. /* ECC bit set method for non-cached memory */
  1875. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  1876. address_increment = 4;
  1877. else
  1878. address_increment = 8;
  1879. end_address = current_address + num_bytes;
  1880. while (current_address < end_address) {
  1881. *((unsigned long *)current_address) = 0x00000000;
  1882. current_address += address_increment;
  1883. }
  1884. sync();
  1885. eieio();
  1886. wait_ddr_idle();
  1887. mtsdram(SDRAM_MCOPT1,
  1888. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK);
  1889. sync();
  1890. eieio();
  1891. wait_ddr_idle();
  1892. }
  1893. }
  1894. /*-----------------------------------------------------------------------------+
  1895. * program_DQS_calibration.
  1896. *-----------------------------------------------------------------------------*/
  1897. static void program_DQS_calibration(unsigned long *dimm_populated,
  1898. unsigned char *iic0_dimm_addr,
  1899. unsigned long num_dimm_banks)
  1900. {
  1901. unsigned long val;
  1902. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  1903. mtsdram(SDRAM_RQDC, 0x80000037);
  1904. mtsdram(SDRAM_RDCC, 0x40000000);
  1905. mtsdram(SDRAM_RFDC, 0x000001DF);
  1906. test();
  1907. #else
  1908. /*------------------------------------------------------------------
  1909. * Program RDCC register
  1910. * Read sample cycle auto-update enable
  1911. *-----------------------------------------------------------------*/
  1912. /*
  1913. * Modified for the Katmai platform: with some DIMMs, the DDR2
  1914. * controller automatically selects the T2 read cycle, but this
  1915. * proves unreliable. Go ahead and force the DDR2 controller
  1916. * to use the T4 sample and disable the automatic update of the
  1917. * RDSS field.
  1918. */
  1919. mfsdram(SDRAM_RDCC, val);
  1920. mtsdram(SDRAM_RDCC,
  1921. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  1922. | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
  1923. /*------------------------------------------------------------------
  1924. * Program RQDC register
  1925. * Internal DQS delay mechanism enable
  1926. *-----------------------------------------------------------------*/
  1927. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  1928. /*------------------------------------------------------------------
  1929. * Program RFDC register
  1930. * Set Feedback Fractional Oversample
  1931. * Auto-detect read sample cycle enable
  1932. *-----------------------------------------------------------------*/
  1933. mfsdram(SDRAM_RFDC, val);
  1934. mtsdram(SDRAM_RFDC,
  1935. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  1936. SDRAM_RFDC_RFFD_MASK))
  1937. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  1938. SDRAM_RFDC_RFFD_ENCODE(0)));
  1939. DQS_calibration_process();
  1940. #endif
  1941. }
  1942. static u32 short_mem_test(void)
  1943. {
  1944. u32 *membase;
  1945. u32 bxcr_num;
  1946. u32 bxcf;
  1947. int i;
  1948. int j;
  1949. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  1950. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  1951. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  1952. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  1953. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  1954. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  1955. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  1956. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  1957. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  1958. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  1959. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  1960. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  1961. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  1962. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  1963. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  1964. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  1965. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  1966. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  1967. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  1968. /* Banks enabled */
  1969. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  1970. /* Bank is enabled */
  1971. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  1972. /*------------------------------------------------------------------
  1973. * Run the short memory test.
  1974. *-----------------------------------------------------------------*/
  1975. for (i = 0; i < NUMMEMTESTS; i++) {
  1976. for (j = 0; j < NUMMEMWORDS; j++) {
  1977. membase[j] = test[i][j];
  1978. ppcDcbf((u32)&(membase[j]));
  1979. }
  1980. sync();
  1981. for (j = 0; j < NUMMEMWORDS; j++) {
  1982. if (membase[j] != test[i][j]) {
  1983. ppcDcbf((u32)&(membase[j]));
  1984. break;
  1985. }
  1986. ppcDcbf((u32)&(membase[j]));
  1987. }
  1988. sync();
  1989. if (j < NUMMEMWORDS)
  1990. break;
  1991. }
  1992. if (i < NUMMEMTESTS)
  1993. break;
  1994. } /* if bank enabled */
  1995. } /* for bxcf_num */
  1996. return bxcr_num;
  1997. }
  1998. #ifndef HARD_CODED_DQS
  1999. /*-----------------------------------------------------------------------------+
  2000. * DQS_calibration_process.
  2001. *-----------------------------------------------------------------------------*/
  2002. static void DQS_calibration_process(void)
  2003. {
  2004. unsigned long ecc_temp;
  2005. unsigned long rfdc_reg;
  2006. unsigned long rffd;
  2007. unsigned long rqdc_reg;
  2008. unsigned long rqfd;
  2009. unsigned long bxcr_num;
  2010. unsigned long val;
  2011. long rqfd_average;
  2012. long rffd_average;
  2013. long max_start;
  2014. long min_end;
  2015. unsigned long begin_rqfd[MAXRANKS];
  2016. unsigned long begin_rffd[MAXRANKS];
  2017. unsigned long end_rqfd[MAXRANKS];
  2018. unsigned long end_rffd[MAXRANKS];
  2019. char window_found;
  2020. unsigned long dlycal;
  2021. unsigned long dly_val;
  2022. unsigned long max_pass_length;
  2023. unsigned long current_pass_length;
  2024. unsigned long current_fail_length;
  2025. unsigned long current_start;
  2026. long max_end;
  2027. unsigned char fail_found;
  2028. unsigned char pass_found;
  2029. /*------------------------------------------------------------------
  2030. * Test to determine the best read clock delay tuning bits.
  2031. *
  2032. * Before the DDR controller can be used, the read clock delay needs to be
  2033. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2034. * This value cannot be hardcoded into the program because it changes
  2035. * depending on the board's setup and environment.
  2036. * To do this, all delay values are tested to see if they
  2037. * work or not. By doing this, you get groups of fails with groups of
  2038. * passing values. The idea is to find the start and end of a passing
  2039. * window and take the center of it to use as the read clock delay.
  2040. *
  2041. * A failure has to be seen first so that when we hit a pass, we know
  2042. * that it is truely the start of the window. If we get passing values
  2043. * to start off with, we don't know if we are at the start of the window.
  2044. *
  2045. * The code assumes that a failure will always be found.
  2046. * If a failure is not found, there is no easy way to get the middle
  2047. * of the passing window. I guess we can pretty much pick any value
  2048. * but some values will be better than others. Since the lowest speed
  2049. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2050. * from experimentation it is safe to say you will always have a failure.
  2051. *-----------------------------------------------------------------*/
  2052. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2053. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2054. mfsdram(SDRAM_MCOPT1, val);
  2055. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2056. SDRAM_MCOPT1_MCHK_NON);
  2057. max_start = 0;
  2058. min_end = 0;
  2059. begin_rqfd[0] = 0;
  2060. begin_rffd[0] = 0;
  2061. begin_rqfd[1] = 0;
  2062. begin_rffd[1] = 0;
  2063. end_rqfd[0] = 0;
  2064. end_rffd[0] = 0;
  2065. end_rqfd[1] = 0;
  2066. end_rffd[1] = 0;
  2067. window_found = FALSE;
  2068. max_pass_length = 0;
  2069. max_start = 0;
  2070. max_end = 0;
  2071. current_pass_length = 0;
  2072. current_fail_length = 0;
  2073. current_start = 0;
  2074. window_found = FALSE;
  2075. fail_found = FALSE;
  2076. pass_found = FALSE;
  2077. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2078. /* rqdc_reg = mfsdram(SDRAM_RQDC) & ~(SDRAM_RQDC_RQFD_MASK); */
  2079. /*
  2080. * get the delay line calibration register value
  2081. */
  2082. mfsdram(SDRAM_DLCR, dlycal);
  2083. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2084. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2085. mfsdram(SDRAM_RFDC, rfdc_reg);
  2086. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2087. /*------------------------------------------------------------------
  2088. * Set the timing reg for the test.
  2089. *-----------------------------------------------------------------*/
  2090. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2091. /* do the small memory test */
  2092. bxcr_num = short_mem_test();
  2093. /*------------------------------------------------------------------
  2094. * See if the rffd value passed.
  2095. *-----------------------------------------------------------------*/
  2096. if (bxcr_num == MAXBXCF) {
  2097. if (fail_found == TRUE) {
  2098. pass_found = TRUE;
  2099. if (current_pass_length == 0)
  2100. current_start = rffd;
  2101. current_fail_length = 0;
  2102. current_pass_length++;
  2103. if (current_pass_length > max_pass_length) {
  2104. max_pass_length = current_pass_length;
  2105. max_start = current_start;
  2106. max_end = rffd;
  2107. }
  2108. }
  2109. } else {
  2110. current_pass_length = 0;
  2111. current_fail_length++;
  2112. if (current_fail_length >= (dly_val >> 2)) {
  2113. if (fail_found == FALSE) {
  2114. fail_found = TRUE;
  2115. } else if (pass_found == TRUE) {
  2116. window_found = TRUE;
  2117. break;
  2118. }
  2119. }
  2120. }
  2121. } /* for rffd */
  2122. /*------------------------------------------------------------------
  2123. * Set the average RFFD value
  2124. *-----------------------------------------------------------------*/
  2125. rffd_average = ((max_start + max_end) >> 1);
  2126. if (rffd_average < 0)
  2127. rffd_average = 0;
  2128. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2129. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2130. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2131. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2132. max_pass_length = 0;
  2133. max_start = 0;
  2134. max_end = 0;
  2135. current_pass_length = 0;
  2136. current_fail_length = 0;
  2137. current_start = 0;
  2138. window_found = FALSE;
  2139. fail_found = FALSE;
  2140. pass_found = FALSE;
  2141. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2142. mfsdram(SDRAM_RQDC, rqdc_reg);
  2143. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2144. /*------------------------------------------------------------------
  2145. * Set the timing reg for the test.
  2146. *-----------------------------------------------------------------*/
  2147. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2148. /* do the small memory test */
  2149. bxcr_num = short_mem_test();
  2150. /*------------------------------------------------------------------
  2151. * See if the rffd value passed.
  2152. *-----------------------------------------------------------------*/
  2153. if (bxcr_num == MAXBXCF) {
  2154. if (fail_found == TRUE) {
  2155. pass_found = TRUE;
  2156. if (current_pass_length == 0)
  2157. current_start = rqfd;
  2158. current_fail_length = 0;
  2159. current_pass_length++;
  2160. if (current_pass_length > max_pass_length) {
  2161. max_pass_length = current_pass_length;
  2162. max_start = current_start;
  2163. max_end = rqfd;
  2164. }
  2165. }
  2166. } else {
  2167. current_pass_length = 0;
  2168. current_fail_length++;
  2169. if (fail_found == FALSE) {
  2170. fail_found = TRUE;
  2171. } else if (pass_found == TRUE) {
  2172. window_found = TRUE;
  2173. break;
  2174. }
  2175. }
  2176. }
  2177. /*------------------------------------------------------------------
  2178. * Make sure we found the valid read passing window. Halt if not
  2179. *-----------------------------------------------------------------*/
  2180. if (window_found == FALSE) {
  2181. printf("ERROR: Cannot determine a common read delay for the "
  2182. "DIMM(s) installed.\n");
  2183. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2184. hang();
  2185. }
  2186. rqfd_average = ((max_start + max_end) >> 1);
  2187. if (rqfd_average < 0)
  2188. rqfd_average = 0;
  2189. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2190. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2191. /*------------------------------------------------------------------
  2192. * Restore the ECC variable to what it originally was
  2193. *-----------------------------------------------------------------*/
  2194. mfsdram(SDRAM_MCOPT1, val);
  2195. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | ecc_temp);
  2196. mtsdram(SDRAM_RQDC,
  2197. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2198. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2199. mfsdram(SDRAM_DLCR, val);
  2200. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2201. mfsdram(SDRAM_RQDC, val);
  2202. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2203. mfsdram(SDRAM_RFDC, val);
  2204. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2205. }
  2206. #else /* calibration test with hardvalues */
  2207. /*-----------------------------------------------------------------------------+
  2208. * DQS_calibration_process.
  2209. *-----------------------------------------------------------------------------*/
  2210. static void test(void)
  2211. {
  2212. unsigned long dimm_num;
  2213. unsigned long ecc_temp;
  2214. unsigned long i, j;
  2215. unsigned long *membase;
  2216. unsigned long bxcf[MAXRANKS];
  2217. unsigned long val;
  2218. char window_found;
  2219. char begin_found[MAXDIMMS];
  2220. char end_found[MAXDIMMS];
  2221. char search_end[MAXDIMMS];
  2222. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2223. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2224. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2225. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2226. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2227. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2228. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2229. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2230. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2231. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2232. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2233. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2234. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2235. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2236. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2237. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2238. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2239. /*------------------------------------------------------------------
  2240. * Test to determine the best read clock delay tuning bits.
  2241. *
  2242. * Before the DDR controller can be used, the read clock delay needs to be
  2243. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2244. * This value cannot be hardcoded into the program because it changes
  2245. * depending on the board's setup and environment.
  2246. * To do this, all delay values are tested to see if they
  2247. * work or not. By doing this, you get groups of fails with groups of
  2248. * passing values. The idea is to find the start and end of a passing
  2249. * window and take the center of it to use as the read clock delay.
  2250. *
  2251. * A failure has to be seen first so that when we hit a pass, we know
  2252. * that it is truely the start of the window. If we get passing values
  2253. * to start off with, we don't know if we are at the start of the window.
  2254. *
  2255. * The code assumes that a failure will always be found.
  2256. * If a failure is not found, there is no easy way to get the middle
  2257. * of the passing window. I guess we can pretty much pick any value
  2258. * but some values will be better than others. Since the lowest speed
  2259. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2260. * from experimentation it is safe to say you will always have a failure.
  2261. *-----------------------------------------------------------------*/
  2262. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2263. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2264. mfsdram(SDRAM_MCOPT1, val);
  2265. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2266. SDRAM_MCOPT1_MCHK_NON);
  2267. window_found = FALSE;
  2268. begin_found[0] = FALSE;
  2269. end_found[0] = FALSE;
  2270. search_end[0] = FALSE;
  2271. begin_found[1] = FALSE;
  2272. end_found[1] = FALSE;
  2273. search_end[1] = FALSE;
  2274. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2275. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2276. /* Banks enabled */
  2277. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2278. /* Bank is enabled */
  2279. membase =
  2280. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2281. /*------------------------------------------------------------------
  2282. * Run the short memory test.
  2283. *-----------------------------------------------------------------*/
  2284. for (i = 0; i < NUMMEMTESTS; i++) {
  2285. for (j = 0; j < NUMMEMWORDS; j++) {
  2286. membase[j] = test[i][j];
  2287. ppcDcbf((u32)&(membase[j]));
  2288. }
  2289. sync();
  2290. for (j = 0; j < NUMMEMWORDS; j++) {
  2291. if (membase[j] != test[i][j]) {
  2292. ppcDcbf((u32)&(membase[j]));
  2293. break;
  2294. }
  2295. ppcDcbf((u32)&(membase[j]));
  2296. }
  2297. sync();
  2298. if (j < NUMMEMWORDS)
  2299. break;
  2300. }
  2301. /*------------------------------------------------------------------
  2302. * See if the rffd value passed.
  2303. *-----------------------------------------------------------------*/
  2304. if (i < NUMMEMTESTS) {
  2305. if ((end_found[dimm_num] == FALSE) &&
  2306. (search_end[dimm_num] == TRUE)) {
  2307. end_found[dimm_num] = TRUE;
  2308. }
  2309. if ((end_found[0] == TRUE) &&
  2310. (end_found[1] == TRUE))
  2311. break;
  2312. } else {
  2313. if (begin_found[dimm_num] == FALSE) {
  2314. begin_found[dimm_num] = TRUE;
  2315. search_end[dimm_num] = TRUE;
  2316. }
  2317. }
  2318. } else {
  2319. begin_found[dimm_num] = TRUE;
  2320. end_found[dimm_num] = TRUE;
  2321. }
  2322. }
  2323. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2324. window_found = TRUE;
  2325. /*------------------------------------------------------------------
  2326. * Make sure we found the valid read passing window. Halt if not
  2327. *-----------------------------------------------------------------*/
  2328. if (window_found == FALSE) {
  2329. printf("ERROR: Cannot determine a common read delay for the "
  2330. "DIMM(s) installed.\n");
  2331. hang();
  2332. }
  2333. /*------------------------------------------------------------------
  2334. * Restore the ECC variable to what it originally was
  2335. *-----------------------------------------------------------------*/
  2336. mtsdram(SDRAM_MCOPT1,
  2337. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2338. | ecc_temp);
  2339. }
  2340. #endif
  2341. #if defined(DEBUG)
  2342. static void ppc440sp_sdram_register_dump(void)
  2343. {
  2344. unsigned int sdram_reg;
  2345. unsigned int sdram_data;
  2346. unsigned int dcr_data;
  2347. printf("\n Register Dump:\n");
  2348. sdram_reg = SDRAM_MCSTAT;
  2349. mfsdram(sdram_reg, sdram_data);
  2350. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2351. sdram_reg = SDRAM_MCOPT1;
  2352. mfsdram(sdram_reg, sdram_data);
  2353. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2354. sdram_reg = SDRAM_MCOPT2;
  2355. mfsdram(sdram_reg, sdram_data);
  2356. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2357. sdram_reg = SDRAM_MODT0;
  2358. mfsdram(sdram_reg, sdram_data);
  2359. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2360. sdram_reg = SDRAM_MODT1;
  2361. mfsdram(sdram_reg, sdram_data);
  2362. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2363. sdram_reg = SDRAM_MODT2;
  2364. mfsdram(sdram_reg, sdram_data);
  2365. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2366. sdram_reg = SDRAM_MODT3;
  2367. mfsdram(sdram_reg, sdram_data);
  2368. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2369. sdram_reg = SDRAM_CODT;
  2370. mfsdram(sdram_reg, sdram_data);
  2371. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2372. sdram_reg = SDRAM_VVPR;
  2373. mfsdram(sdram_reg, sdram_data);
  2374. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2375. sdram_reg = SDRAM_OPARS;
  2376. mfsdram(sdram_reg, sdram_data);
  2377. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2378. /*
  2379. * OPAR2 is only used as a trigger register.
  2380. * No data is contained in this register, and reading or writing
  2381. * to is can cause bad things to happen (hangs). Just skip it
  2382. * and report NA
  2383. * sdram_reg = SDRAM_OPAR2;
  2384. * mfsdram(sdram_reg, sdram_data);
  2385. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2386. */
  2387. printf(" SDRAM_OPART = N/A ");
  2388. sdram_reg = SDRAM_RTR;
  2389. mfsdram(sdram_reg, sdram_data);
  2390. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2391. sdram_reg = SDRAM_MB0CF;
  2392. mfsdram(sdram_reg, sdram_data);
  2393. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2394. sdram_reg = SDRAM_MB1CF;
  2395. mfsdram(sdram_reg, sdram_data);
  2396. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2397. sdram_reg = SDRAM_MB2CF;
  2398. mfsdram(sdram_reg, sdram_data);
  2399. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2400. sdram_reg = SDRAM_MB3CF;
  2401. mfsdram(sdram_reg, sdram_data);
  2402. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2403. sdram_reg = SDRAM_INITPLR0;
  2404. mfsdram(sdram_reg, sdram_data);
  2405. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2406. sdram_reg = SDRAM_INITPLR1;
  2407. mfsdram(sdram_reg, sdram_data);
  2408. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2409. sdram_reg = SDRAM_INITPLR2;
  2410. mfsdram(sdram_reg, sdram_data);
  2411. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2412. sdram_reg = SDRAM_INITPLR3;
  2413. mfsdram(sdram_reg, sdram_data);
  2414. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2415. sdram_reg = SDRAM_INITPLR4;
  2416. mfsdram(sdram_reg, sdram_data);
  2417. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2418. sdram_reg = SDRAM_INITPLR5;
  2419. mfsdram(sdram_reg, sdram_data);
  2420. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2421. sdram_reg = SDRAM_INITPLR6;
  2422. mfsdram(sdram_reg, sdram_data);
  2423. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2424. sdram_reg = SDRAM_INITPLR7;
  2425. mfsdram(sdram_reg, sdram_data);
  2426. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2427. sdram_reg = SDRAM_INITPLR8;
  2428. mfsdram(sdram_reg, sdram_data);
  2429. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2430. sdram_reg = SDRAM_INITPLR9;
  2431. mfsdram(sdram_reg, sdram_data);
  2432. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2433. sdram_reg = SDRAM_INITPLR10;
  2434. mfsdram(sdram_reg, sdram_data);
  2435. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2436. sdram_reg = SDRAM_INITPLR11;
  2437. mfsdram(sdram_reg, sdram_data);
  2438. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2439. sdram_reg = SDRAM_INITPLR12;
  2440. mfsdram(sdram_reg, sdram_data);
  2441. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2442. sdram_reg = SDRAM_INITPLR13;
  2443. mfsdram(sdram_reg, sdram_data);
  2444. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2445. sdram_reg = SDRAM_INITPLR14;
  2446. mfsdram(sdram_reg, sdram_data);
  2447. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2448. sdram_reg = SDRAM_INITPLR15;
  2449. mfsdram(sdram_reg, sdram_data);
  2450. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2451. sdram_reg = SDRAM_RQDC;
  2452. mfsdram(sdram_reg, sdram_data);
  2453. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2454. sdram_reg = SDRAM_RFDC;
  2455. mfsdram(sdram_reg, sdram_data);
  2456. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2457. sdram_reg = SDRAM_RDCC;
  2458. mfsdram(sdram_reg, sdram_data);
  2459. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2460. sdram_reg = SDRAM_DLCR;
  2461. mfsdram(sdram_reg, sdram_data);
  2462. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2463. sdram_reg = SDRAM_CLKTR;
  2464. mfsdram(sdram_reg, sdram_data);
  2465. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2466. sdram_reg = SDRAM_WRDTR;
  2467. mfsdram(sdram_reg, sdram_data);
  2468. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2469. sdram_reg = SDRAM_SDTR1;
  2470. mfsdram(sdram_reg, sdram_data);
  2471. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2472. sdram_reg = SDRAM_SDTR2;
  2473. mfsdram(sdram_reg, sdram_data);
  2474. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2475. sdram_reg = SDRAM_SDTR3;
  2476. mfsdram(sdram_reg, sdram_data);
  2477. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2478. sdram_reg = SDRAM_MMODE;
  2479. mfsdram(sdram_reg, sdram_data);
  2480. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2481. sdram_reg = SDRAM_MEMODE;
  2482. mfsdram(sdram_reg, sdram_data);
  2483. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2484. sdram_reg = SDRAM_ECCCR;
  2485. mfsdram(sdram_reg, sdram_data);
  2486. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2487. dcr_data = mfdcr(SDRAM_R0BAS);
  2488. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2489. dcr_data = mfdcr(SDRAM_R1BAS);
  2490. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2491. dcr_data = mfdcr(SDRAM_R2BAS);
  2492. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2493. dcr_data = mfdcr(SDRAM_R3BAS);
  2494. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2495. }
  2496. #endif
  2497. #endif /* CONFIG_SPD_EEPROM */