eepro100.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948
  1. /*
  2. * (C) Copyright 2002
  3. * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <malloc.h>
  25. #include <net.h>
  26. #include <netdev.h>
  27. #include <asm/io.h>
  28. #include <pci.h>
  29. #include <miiphy.h>
  30. #undef DEBUG
  31. /* Ethernet chip registers.
  32. */
  33. #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
  34. #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
  35. #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
  36. #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
  37. #define SCBPointer 4 /* General purpose pointer. */
  38. #define SCBPort 8 /* Misc. commands and operands. */
  39. #define SCBflash 12 /* Flash memory control. */
  40. #define SCBeeprom 14 /* EEPROM memory control. */
  41. #define SCBCtrlMDI 16 /* MDI interface control. */
  42. #define SCBEarlyRx 20 /* Early receive byte count. */
  43. #define SCBGenControl 28 /* 82559 General Control Register */
  44. #define SCBGenStatus 29 /* 82559 General Status register */
  45. /* 82559 SCB status word defnitions
  46. */
  47. #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
  48. #define SCB_STATUS_FR 0x4000 /* frame received */
  49. #define SCB_STATUS_CNA 0x2000 /* CU left active state */
  50. #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
  51. #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
  52. #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
  53. #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
  54. #define SCB_INTACK_MASK 0xFD00 /* all the above */
  55. #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
  56. #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
  57. /* System control block commands
  58. */
  59. /* CU Commands */
  60. #define CU_NOP 0x0000
  61. #define CU_START 0x0010
  62. #define CU_RESUME 0x0020
  63. #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
  64. #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
  65. #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
  66. #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
  67. /* RUC Commands */
  68. #define RUC_NOP 0x0000
  69. #define RUC_START 0x0001
  70. #define RUC_RESUME 0x0002
  71. #define RUC_ABORT 0x0004
  72. #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
  73. #define RUC_RESUMENR 0x0007
  74. #define CU_CMD_MASK 0x00f0
  75. #define RU_CMD_MASK 0x0007
  76. #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
  77. #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
  78. #define CU_STATUS_MASK 0x00C0
  79. #define RU_STATUS_MASK 0x003C
  80. #define RU_STATUS_IDLE (0<<2)
  81. #define RU_STATUS_SUS (1<<2)
  82. #define RU_STATUS_NORES (2<<2)
  83. #define RU_STATUS_READY (4<<2)
  84. #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
  85. #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
  86. #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
  87. /* 82559 Port interface commands.
  88. */
  89. #define I82559_RESET 0x00000000 /* Software reset */
  90. #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
  91. #define I82559_SELECTIVE_RESET 0x00000002
  92. #define I82559_DUMP 0x00000003
  93. #define I82559_DUMP_WAKEUP 0x00000007
  94. /* 82559 Eeprom interface.
  95. */
  96. #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
  97. #define EE_CS 0x02 /* EEPROM chip select. */
  98. #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
  99. #define EE_WRITE_0 0x01
  100. #define EE_WRITE_1 0x05
  101. #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
  102. #define EE_ENB (0x4800 | EE_CS)
  103. #define EE_CMD_BITS 3
  104. #define EE_DATA_BITS 16
  105. /* The EEPROM commands include the alway-set leading bit.
  106. */
  107. #define EE_EWENB_CMD (4 << addr_len)
  108. #define EE_WRITE_CMD (5 << addr_len)
  109. #define EE_READ_CMD (6 << addr_len)
  110. #define EE_ERASE_CMD (7 << addr_len)
  111. /* Receive frame descriptors.
  112. */
  113. struct RxFD {
  114. volatile u16 status;
  115. volatile u16 control;
  116. volatile u32 link; /* struct RxFD * */
  117. volatile u32 rx_buf_addr; /* void * */
  118. volatile u32 count;
  119. volatile u8 data[PKTSIZE_ALIGN];
  120. };
  121. #define RFD_STATUS_C 0x8000 /* completion of received frame */
  122. #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
  123. #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
  124. #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
  125. #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
  126. #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
  127. #define RFD_COUNT_MASK 0x3fff
  128. #define RFD_COUNT_F 0x4000
  129. #define RFD_COUNT_EOF 0x8000
  130. #define RFD_RX_CRC 0x0800 /* crc error */
  131. #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
  132. #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
  133. #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
  134. #define RFD_RX_SHORT 0x0080 /* short frame error */
  135. #define RFD_RX_LENGTH 0x0020
  136. #define RFD_RX_ERROR 0x0010 /* receive error */
  137. #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
  138. #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
  139. #define RFD_RX_TCO 0x0001 /* TCO indication */
  140. /* Transmit frame descriptors
  141. */
  142. struct TxFD { /* Transmit frame descriptor set. */
  143. volatile u16 status;
  144. volatile u16 command;
  145. volatile u32 link; /* void * */
  146. volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
  147. volatile s32 count;
  148. volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
  149. volatile s32 tx_buf_size0; /* Length of Tx frame. */
  150. volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
  151. volatile s32 tx_buf_size1; /* Length of Tx frame. */
  152. };
  153. #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
  154. #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
  155. #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
  156. #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
  157. #define TxCB_CMD_S 0x4000 /* suspend on completion */
  158. #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
  159. #define TxCB_COUNT_MASK 0x3fff
  160. #define TxCB_COUNT_EOF 0x8000
  161. /* The Speedo3 Rx and Tx frame/buffer descriptors.
  162. */
  163. struct descriptor { /* A generic descriptor. */
  164. volatile u16 status;
  165. volatile u16 command;
  166. volatile u32 link; /* struct descriptor * */
  167. unsigned char params[0];
  168. };
  169. #define CONFIG_SYS_CMD_EL 0x8000
  170. #define CONFIG_SYS_CMD_SUSPEND 0x4000
  171. #define CONFIG_SYS_CMD_INT 0x2000
  172. #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
  173. #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
  174. #define CONFIG_SYS_STATUS_C 0x8000
  175. #define CONFIG_SYS_STATUS_OK 0x2000
  176. /* Misc.
  177. */
  178. #define NUM_RX_DESC PKTBUFSRX
  179. #define NUM_TX_DESC 1 /* Number of TX descriptors */
  180. #define TOUT_LOOP 1000000
  181. #define ETH_ALEN 6
  182. static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
  183. static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
  184. static int rx_next; /* RX descriptor ring pointer */
  185. static int tx_next; /* TX descriptor ring pointer */
  186. static int tx_threshold;
  187. /*
  188. * The parameters for a CmdConfigure operation.
  189. * There are so many options that it would be difficult to document
  190. * each bit. We mostly use the default or recommended settings.
  191. */
  192. static const char i82557_config_cmd[] = {
  193. 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
  194. 0, 0x2E, 0, 0x60, 0,
  195. 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
  196. 0x3f, 0x05,
  197. };
  198. static const char i82558_config_cmd[] = {
  199. 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
  200. 0, 0x2E, 0, 0x60, 0x08, 0x88,
  201. 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
  202. 0x31, 0x05,
  203. };
  204. static void init_rx_ring (struct eth_device *dev);
  205. static void purge_tx_ring (struct eth_device *dev);
  206. static void read_hw_addr (struct eth_device *dev, bd_t * bis);
  207. static int eepro100_init (struct eth_device *dev, bd_t * bis);
  208. static int eepro100_send (struct eth_device *dev, volatile void *packet,
  209. int length);
  210. static int eepro100_recv (struct eth_device *dev);
  211. static void eepro100_halt (struct eth_device *dev);
  212. #if defined(CONFIG_E500) || defined(CONFIG_DB64360) || defined(CONFIG_DB64460)
  213. #define bus_to_phys(a) (a)
  214. #define phys_to_bus(a) (a)
  215. #else
  216. #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
  217. #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
  218. #endif
  219. static inline int INW (struct eth_device *dev, u_long addr)
  220. {
  221. return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
  222. }
  223. static inline void OUTW (struct eth_device *dev, int command, u_long addr)
  224. {
  225. *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
  226. }
  227. static inline void OUTL (struct eth_device *dev, int command, u_long addr)
  228. {
  229. *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
  230. }
  231. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
  232. static inline int INL (struct eth_device *dev, u_long addr)
  233. {
  234. return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
  235. }
  236. static int get_phyreg (struct eth_device *dev, unsigned char addr,
  237. unsigned char reg, unsigned short *value)
  238. {
  239. int cmd;
  240. int timeout = 50;
  241. /* read requested data */
  242. cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
  243. OUTL (dev, cmd, SCBCtrlMDI);
  244. do {
  245. udelay(1000);
  246. cmd = INL (dev, SCBCtrlMDI);
  247. } while (!(cmd & (1 << 28)) && (--timeout));
  248. if (timeout == 0)
  249. return -1;
  250. *value = (unsigned short) (cmd & 0xffff);
  251. return 0;
  252. }
  253. static int set_phyreg (struct eth_device *dev, unsigned char addr,
  254. unsigned char reg, unsigned short value)
  255. {
  256. int cmd;
  257. int timeout = 50;
  258. /* write requested data */
  259. cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
  260. OUTL (dev, cmd | value, SCBCtrlMDI);
  261. while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
  262. udelay(1000);
  263. if (timeout == 0)
  264. return -1;
  265. return 0;
  266. }
  267. /* Check if given phyaddr is valid, i.e. there is a PHY connected.
  268. * Do this by checking model value field from ID2 register.
  269. */
  270. static struct eth_device* verify_phyaddr (const char *devname,
  271. unsigned char addr)
  272. {
  273. struct eth_device *dev;
  274. unsigned short value;
  275. unsigned char model;
  276. dev = eth_get_dev_by_name(devname);
  277. if (dev == NULL) {
  278. printf("%s: no such device\n", devname);
  279. return NULL;
  280. }
  281. /* read id2 register */
  282. if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
  283. printf("%s: mii read timeout!\n", devname);
  284. return NULL;
  285. }
  286. /* get model */
  287. model = (unsigned char)((value >> 4) & 0x003f);
  288. if (model == 0) {
  289. printf("%s: no PHY at address %d\n", devname, addr);
  290. return NULL;
  291. }
  292. return dev;
  293. }
  294. static int eepro100_miiphy_read(const char *devname, unsigned char addr,
  295. unsigned char reg, unsigned short *value)
  296. {
  297. struct eth_device *dev;
  298. dev = verify_phyaddr(devname, addr);
  299. if (dev == NULL)
  300. return -1;
  301. if (get_phyreg(dev, addr, reg, value) != 0) {
  302. printf("%s: mii read timeout!\n", devname);
  303. return -1;
  304. }
  305. return 0;
  306. }
  307. static int eepro100_miiphy_write(const char *devname, unsigned char addr,
  308. unsigned char reg, unsigned short value)
  309. {
  310. struct eth_device *dev;
  311. dev = verify_phyaddr(devname, addr);
  312. if (dev == NULL)
  313. return -1;
  314. if (set_phyreg(dev, addr, reg, value) != 0) {
  315. printf("%s: mii write timeout!\n", devname);
  316. return -1;
  317. }
  318. return 0;
  319. }
  320. #endif
  321. /* Wait for the chip get the command.
  322. */
  323. static int wait_for_eepro100 (struct eth_device *dev)
  324. {
  325. int i;
  326. for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
  327. if (i >= TOUT_LOOP) {
  328. return 0;
  329. }
  330. }
  331. return 1;
  332. }
  333. static struct pci_device_id supported[] = {
  334. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
  335. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
  336. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
  337. {}
  338. };
  339. int eepro100_initialize (bd_t * bis)
  340. {
  341. pci_dev_t devno;
  342. int card_number = 0;
  343. struct eth_device *dev;
  344. u32 iobase, status;
  345. int idx = 0;
  346. while (1) {
  347. /* Find PCI device
  348. */
  349. if ((devno = pci_find_devices (supported, idx++)) < 0) {
  350. break;
  351. }
  352. pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
  353. iobase &= ~0xf;
  354. #ifdef DEBUG
  355. printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
  356. iobase);
  357. #endif
  358. pci_write_config_dword (devno,
  359. PCI_COMMAND,
  360. PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
  361. /* Check if I/O accesses and Bus Mastering are enabled.
  362. */
  363. pci_read_config_dword (devno, PCI_COMMAND, &status);
  364. if (!(status & PCI_COMMAND_MEMORY)) {
  365. printf ("Error: Can not enable MEM access.\n");
  366. continue;
  367. }
  368. if (!(status & PCI_COMMAND_MASTER)) {
  369. printf ("Error: Can not enable Bus Mastering.\n");
  370. continue;
  371. }
  372. dev = (struct eth_device *) malloc (sizeof *dev);
  373. if (!dev) {
  374. printf("eepro100: Can not allocate memory\n");
  375. break;
  376. }
  377. memset(dev, 0, sizeof(*dev));
  378. sprintf (dev->name, "i82559#%d", card_number);
  379. dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
  380. dev->iobase = bus_to_phys (iobase);
  381. dev->init = eepro100_init;
  382. dev->halt = eepro100_halt;
  383. dev->send = eepro100_send;
  384. dev->recv = eepro100_recv;
  385. eth_register (dev);
  386. #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
  387. /* register mii command access routines */
  388. miiphy_register(dev->name,
  389. eepro100_miiphy_read, eepro100_miiphy_write);
  390. #endif
  391. card_number++;
  392. /* Set the latency timer for value.
  393. */
  394. pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
  395. udelay (10 * 1000);
  396. read_hw_addr (dev, bis);
  397. }
  398. return card_number;
  399. }
  400. static int eepro100_init (struct eth_device *dev, bd_t * bis)
  401. {
  402. int i, status = -1;
  403. int tx_cur;
  404. struct descriptor *ias_cmd, *cfg_cmd;
  405. /* Reset the ethernet controller
  406. */
  407. OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
  408. udelay (20);
  409. OUTL (dev, I82559_RESET, SCBPort);
  410. udelay (20);
  411. if (!wait_for_eepro100 (dev)) {
  412. printf ("Error: Can not reset ethernet controller.\n");
  413. goto Done;
  414. }
  415. OUTL (dev, 0, SCBPointer);
  416. OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
  417. if (!wait_for_eepro100 (dev)) {
  418. printf ("Error: Can not reset ethernet controller.\n");
  419. goto Done;
  420. }
  421. OUTL (dev, 0, SCBPointer);
  422. OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
  423. /* Initialize Rx and Tx rings.
  424. */
  425. init_rx_ring (dev);
  426. purge_tx_ring (dev);
  427. /* Tell the adapter where the RX ring is located.
  428. */
  429. if (!wait_for_eepro100 (dev)) {
  430. printf ("Error: Can not reset ethernet controller.\n");
  431. goto Done;
  432. }
  433. OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
  434. OUTW (dev, SCB_M | RUC_START, SCBCmd);
  435. /* Send the Configure frame */
  436. tx_cur = tx_next;
  437. tx_next = ((tx_next + 1) % NUM_TX_DESC);
  438. cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
  439. cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
  440. cfg_cmd->status = 0;
  441. cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  442. memcpy (cfg_cmd->params, i82558_config_cmd,
  443. sizeof (i82558_config_cmd));
  444. if (!wait_for_eepro100 (dev)) {
  445. printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
  446. goto Done;
  447. }
  448. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  449. OUTW (dev, SCB_M | CU_START, SCBCmd);
  450. for (i = 0;
  451. !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  452. i++) {
  453. if (i >= TOUT_LOOP) {
  454. printf ("%s: Tx error buffer not ready\n", dev->name);
  455. goto Done;
  456. }
  457. }
  458. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  459. printf ("TX error status = 0x%08X\n",
  460. le16_to_cpu (tx_ring[tx_cur].status));
  461. goto Done;
  462. }
  463. /* Send the Individual Address Setup frame
  464. */
  465. tx_cur = tx_next;
  466. tx_next = ((tx_next + 1) % NUM_TX_DESC);
  467. ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
  468. ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
  469. ias_cmd->status = 0;
  470. ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  471. memcpy (ias_cmd->params, dev->enetaddr, 6);
  472. /* Tell the adapter where the TX ring is located.
  473. */
  474. if (!wait_for_eepro100 (dev)) {
  475. printf ("Error: Can not reset ethernet controller.\n");
  476. goto Done;
  477. }
  478. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  479. OUTW (dev, SCB_M | CU_START, SCBCmd);
  480. for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  481. i++) {
  482. if (i >= TOUT_LOOP) {
  483. printf ("%s: Tx error buffer not ready\n",
  484. dev->name);
  485. goto Done;
  486. }
  487. }
  488. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  489. printf ("TX error status = 0x%08X\n",
  490. le16_to_cpu (tx_ring[tx_cur].status));
  491. goto Done;
  492. }
  493. status = 0;
  494. Done:
  495. return status;
  496. }
  497. static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
  498. {
  499. int i, status = -1;
  500. int tx_cur;
  501. if (length <= 0) {
  502. printf ("%s: bad packet size: %d\n", dev->name, length);
  503. goto Done;
  504. }
  505. tx_cur = tx_next;
  506. tx_next = (tx_next + 1) % NUM_TX_DESC;
  507. tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
  508. TxCB_CMD_SF |
  509. TxCB_CMD_S |
  510. TxCB_CMD_EL );
  511. tx_ring[tx_cur].status = 0;
  512. tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
  513. tx_ring[tx_cur].link =
  514. cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  515. tx_ring[tx_cur].tx_desc_addr =
  516. cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
  517. tx_ring[tx_cur].tx_buf_addr0 =
  518. cpu_to_le32 (phys_to_bus ((u_long) packet));
  519. tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
  520. if (!wait_for_eepro100 (dev)) {
  521. printf ("%s: Tx error ethernet controller not ready.\n",
  522. dev->name);
  523. goto Done;
  524. }
  525. /* Send the packet.
  526. */
  527. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  528. OUTW (dev, SCB_M | CU_START, SCBCmd);
  529. for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  530. i++) {
  531. if (i >= TOUT_LOOP) {
  532. printf ("%s: Tx error buffer not ready\n", dev->name);
  533. goto Done;
  534. }
  535. }
  536. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  537. printf ("TX error status = 0x%08X\n",
  538. le16_to_cpu (tx_ring[tx_cur].status));
  539. goto Done;
  540. }
  541. status = length;
  542. Done:
  543. return status;
  544. }
  545. static int eepro100_recv (struct eth_device *dev)
  546. {
  547. u16 status, stat;
  548. int rx_prev, length = 0;
  549. stat = INW (dev, SCBStatus);
  550. OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
  551. for (;;) {
  552. status = le16_to_cpu (rx_ring[rx_next].status);
  553. if (!(status & RFD_STATUS_C)) {
  554. break;
  555. }
  556. /* Valid frame status.
  557. */
  558. if ((status & RFD_STATUS_OK)) {
  559. /* A valid frame received.
  560. */
  561. length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
  562. /* Pass the packet up to the protocol
  563. * layers.
  564. */
  565. NetReceive (rx_ring[rx_next].data, length);
  566. } else {
  567. /* There was an error.
  568. */
  569. printf ("RX error status = 0x%08X\n", status);
  570. }
  571. rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
  572. rx_ring[rx_next].status = 0;
  573. rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
  574. rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
  575. rx_ring[rx_prev].control = 0;
  576. /* Update entry information.
  577. */
  578. rx_next = (rx_next + 1) % NUM_RX_DESC;
  579. }
  580. if (stat & SCB_STATUS_RNR) {
  581. printf ("%s: Receiver is not ready, restart it !\n", dev->name);
  582. /* Reinitialize Rx ring.
  583. */
  584. init_rx_ring (dev);
  585. if (!wait_for_eepro100 (dev)) {
  586. printf ("Error: Can not restart ethernet controller.\n");
  587. goto Done;
  588. }
  589. OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
  590. OUTW (dev, SCB_M | RUC_START, SCBCmd);
  591. }
  592. Done:
  593. return length;
  594. }
  595. static void eepro100_halt (struct eth_device *dev)
  596. {
  597. /* Reset the ethernet controller
  598. */
  599. OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
  600. udelay (20);
  601. OUTL (dev, I82559_RESET, SCBPort);
  602. udelay (20);
  603. if (!wait_for_eepro100 (dev)) {
  604. printf ("Error: Can not reset ethernet controller.\n");
  605. goto Done;
  606. }
  607. OUTL (dev, 0, SCBPointer);
  608. OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
  609. if (!wait_for_eepro100 (dev)) {
  610. printf ("Error: Can not reset ethernet controller.\n");
  611. goto Done;
  612. }
  613. OUTL (dev, 0, SCBPointer);
  614. OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
  615. Done:
  616. return;
  617. }
  618. /* SROM Read.
  619. */
  620. static int read_eeprom (struct eth_device *dev, int location, int addr_len)
  621. {
  622. unsigned short retval = 0;
  623. int read_cmd = location | EE_READ_CMD;
  624. int i;
  625. OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
  626. OUTW (dev, EE_ENB, SCBeeprom);
  627. /* Shift the read command bits out. */
  628. for (i = 12; i >= 0; i--) {
  629. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  630. OUTW (dev, EE_ENB | dataval, SCBeeprom);
  631. udelay (1);
  632. OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  633. udelay (1);
  634. }
  635. OUTW (dev, EE_ENB, SCBeeprom);
  636. for (i = 15; i >= 0; i--) {
  637. OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
  638. udelay (1);
  639. retval = (retval << 1) |
  640. ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
  641. OUTW (dev, EE_ENB, SCBeeprom);
  642. udelay (1);
  643. }
  644. /* Terminate the EEPROM access. */
  645. OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
  646. return retval;
  647. }
  648. #ifdef CONFIG_EEPRO100_SROM_WRITE
  649. int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
  650. {
  651. unsigned short dataval;
  652. int enable_cmd = 0x3f | EE_EWENB_CMD;
  653. int write_cmd = location | EE_WRITE_CMD;
  654. int i;
  655. unsigned long datalong, tmplong;
  656. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  657. udelay(1);
  658. OUTW(dev, EE_ENB, SCBeeprom);
  659. /* Shift the enable command bits out. */
  660. for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
  661. {
  662. dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  663. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  664. udelay(1);
  665. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  666. udelay(1);
  667. }
  668. OUTW(dev, EE_ENB, SCBeeprom);
  669. udelay(1);
  670. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  671. udelay(1);
  672. OUTW(dev, EE_ENB, SCBeeprom);
  673. /* Shift the write command bits out. */
  674. for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
  675. {
  676. dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  677. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  678. udelay(1);
  679. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  680. udelay(1);
  681. }
  682. /* Write the data */
  683. datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
  684. for (i = 0; i< EE_DATA_BITS; i++)
  685. {
  686. /* Extract and move data bit to bit DI */
  687. dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
  688. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  689. udelay(1);
  690. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  691. udelay(1);
  692. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  693. udelay(1);
  694. datalong = datalong << 1; /* Adjust significant data bit*/
  695. }
  696. /* Finish up command (toggle CS) */
  697. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  698. udelay(1); /* delay for more than 250 ns */
  699. OUTW(dev, EE_ENB, SCBeeprom);
  700. /* Wait for programming ready (D0 = 1) */
  701. tmplong = 10;
  702. do
  703. {
  704. dataval = INW(dev, SCBeeprom);
  705. if (dataval & EE_DATA_READ)
  706. break;
  707. udelay(10000);
  708. }
  709. while (-- tmplong);
  710. if (tmplong == 0)
  711. {
  712. printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
  713. return -1;
  714. }
  715. /* Terminate the EEPROM access. */
  716. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  717. return 0;
  718. }
  719. #endif
  720. static void init_rx_ring (struct eth_device *dev)
  721. {
  722. int i;
  723. for (i = 0; i < NUM_RX_DESC; i++) {
  724. rx_ring[i].status = 0;
  725. rx_ring[i].control =
  726. (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
  727. rx_ring[i].link =
  728. cpu_to_le32 (phys_to_bus
  729. ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
  730. rx_ring[i].rx_buf_addr = 0xffffffff;
  731. rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
  732. }
  733. rx_next = 0;
  734. }
  735. static void purge_tx_ring (struct eth_device *dev)
  736. {
  737. int i;
  738. tx_next = 0;
  739. tx_threshold = 0x01208000;
  740. for (i = 0; i < NUM_TX_DESC; i++) {
  741. tx_ring[i].status = 0;
  742. tx_ring[i].command = 0;
  743. tx_ring[i].link = 0;
  744. tx_ring[i].tx_desc_addr = 0;
  745. tx_ring[i].count = 0;
  746. tx_ring[i].tx_buf_addr0 = 0;
  747. tx_ring[i].tx_buf_size0 = 0;
  748. tx_ring[i].tx_buf_addr1 = 0;
  749. tx_ring[i].tx_buf_size1 = 0;
  750. }
  751. }
  752. static void read_hw_addr (struct eth_device *dev, bd_t * bis)
  753. {
  754. u16 sum = 0;
  755. int i, j;
  756. int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
  757. for (j = 0, i = 0; i < 0x40; i++) {
  758. u16 value = read_eeprom (dev, i, addr_len);
  759. sum += value;
  760. if (i < 3) {
  761. dev->enetaddr[j++] = value;
  762. dev->enetaddr[j++] = value >> 8;
  763. }
  764. }
  765. if (sum != 0xBABA) {
  766. memset (dev->enetaddr, 0, ETH_ALEN);
  767. #ifdef DEBUG
  768. printf ("%s: Invalid EEPROM checksum %#4.4x, "
  769. "check settings before activating this device!\n",
  770. dev->name, sum);
  771. #endif
  772. }
  773. }