44x_spd_ddr2.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  43. /*-----------------------------------------------------------------------------+
  44. * Defines
  45. *-----------------------------------------------------------------------------*/
  46. #ifndef TRUE
  47. #define TRUE 1
  48. #endif
  49. #ifndef FALSE
  50. #define FALSE 0
  51. #endif
  52. #define SDRAM_DDR1 1
  53. #define SDRAM_DDR2 2
  54. #define SDRAM_NONE 0
  55. #define MAXDIMMS 2
  56. #define MAXRANKS 4
  57. #define MAXBXCF 4
  58. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  59. #define ONE_BILLION 1000000000
  60. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  61. #define CMD_NOP (7 << 19)
  62. #define CMD_PRECHARGE (2 << 19)
  63. #define CMD_REFRESH (1 << 19)
  64. #define CMD_EMR (0 << 19)
  65. #define CMD_READ (5 << 19)
  66. #define CMD_WRITE (4 << 19)
  67. #define SELECT_MR (0 << 16)
  68. #define SELECT_EMR (1 << 16)
  69. #define SELECT_EMR2 (2 << 16)
  70. #define SELECT_EMR3 (3 << 16)
  71. /* MR */
  72. #define DLL_RESET 0x00000100
  73. #define WRITE_RECOV_2 (1 << 9)
  74. #define WRITE_RECOV_3 (2 << 9)
  75. #define WRITE_RECOV_4 (3 << 9)
  76. #define WRITE_RECOV_5 (4 << 9)
  77. #define WRITE_RECOV_6 (5 << 9)
  78. #define BURST_LEN_4 0x00000002
  79. /* EMR */
  80. #define ODT_0_OHM 0x00000000
  81. #define ODT_50_OHM 0x00000044
  82. #define ODT_75_OHM 0x00000004
  83. #define ODT_150_OHM 0x00000040
  84. #define ODS_FULL 0x00000000
  85. #define ODS_REDUCED 0x00000002
  86. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  87. #define ODT_EB0R (0x80000000 >> 8)
  88. #define ODT_EB0W (0x80000000 >> 7)
  89. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  90. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  91. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  92. /* Defines for the Read Cycle Delay test */
  93. #define NUMMEMTESTS 8
  94. #define NUMMEMWORDS 8
  95. #define NUMLOOPS 64 /* memory test loops */
  96. #undef CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
  97. /*
  98. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  99. * region. Right now the cache should still be disabled in U-Boot because of the
  100. * EMAC driver, that need it's buffer descriptor to be located in non cached
  101. * memory.
  102. *
  103. * If at some time this restriction doesn't apply anymore, just define
  104. * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
  105. * everything correctly.
  106. */
  107. #ifdef CFG_ENABLE_SDRAM_CACHE
  108. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  109. #else
  110. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  111. #endif
  112. /*
  113. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  114. */
  115. void __spd_ddr_init_hang (void)
  116. {
  117. hang ();
  118. }
  119. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  120. /*
  121. * To provide an interface for board specific config values in this common
  122. * DDR setup code, we implement he "weak" default functions here. They return
  123. * the default value back to the caller.
  124. *
  125. * Please see include/configs/yucca.h for an example fora board specific
  126. * implementation.
  127. */
  128. u32 __ddr_wrdtr(u32 default_val)
  129. {
  130. return default_val;
  131. }
  132. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  133. u32 __ddr_clktr(u32 default_val)
  134. {
  135. return default_val;
  136. }
  137. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  138. /* Private Structure Definitions */
  139. /* enum only to ease code for cas latency setting */
  140. typedef enum ddr_cas_id {
  141. DDR_CAS_2 = 20,
  142. DDR_CAS_2_5 = 25,
  143. DDR_CAS_3 = 30,
  144. DDR_CAS_4 = 40,
  145. DDR_CAS_5 = 50
  146. } ddr_cas_id_t;
  147. /*-----------------------------------------------------------------------------+
  148. * Prototypes
  149. *-----------------------------------------------------------------------------*/
  150. static unsigned long sdram_memsize(void);
  151. static void get_spd_info(unsigned long *dimm_populated,
  152. unsigned char *iic0_dimm_addr,
  153. unsigned long num_dimm_banks);
  154. static void check_mem_type(unsigned long *dimm_populated,
  155. unsigned char *iic0_dimm_addr,
  156. unsigned long num_dimm_banks);
  157. static void check_frequency(unsigned long *dimm_populated,
  158. unsigned char *iic0_dimm_addr,
  159. unsigned long num_dimm_banks);
  160. static void check_rank_number(unsigned long *dimm_populated,
  161. unsigned char *iic0_dimm_addr,
  162. unsigned long num_dimm_banks);
  163. static void check_voltage_type(unsigned long *dimm_populated,
  164. unsigned char *iic0_dimm_addr,
  165. unsigned long num_dimm_banks);
  166. static void program_memory_queue(unsigned long *dimm_populated,
  167. unsigned char *iic0_dimm_addr,
  168. unsigned long num_dimm_banks);
  169. static void program_codt(unsigned long *dimm_populated,
  170. unsigned char *iic0_dimm_addr,
  171. unsigned long num_dimm_banks);
  172. static void program_mode(unsigned long *dimm_populated,
  173. unsigned char *iic0_dimm_addr,
  174. unsigned long num_dimm_banks,
  175. ddr_cas_id_t *selected_cas,
  176. int *write_recovery);
  177. static void program_tr(unsigned long *dimm_populated,
  178. unsigned char *iic0_dimm_addr,
  179. unsigned long num_dimm_banks);
  180. static void program_rtr(unsigned long *dimm_populated,
  181. unsigned char *iic0_dimm_addr,
  182. unsigned long num_dimm_banks);
  183. static void program_bxcf(unsigned long *dimm_populated,
  184. unsigned char *iic0_dimm_addr,
  185. unsigned long num_dimm_banks);
  186. static void program_copt1(unsigned long *dimm_populated,
  187. unsigned char *iic0_dimm_addr,
  188. unsigned long num_dimm_banks);
  189. static void program_initplr(unsigned long *dimm_populated,
  190. unsigned char *iic0_dimm_addr,
  191. unsigned long num_dimm_banks,
  192. ddr_cas_id_t selected_cas,
  193. int write_recovery);
  194. static unsigned long is_ecc_enabled(void);
  195. #ifdef CONFIG_DDR_ECC
  196. static void program_ecc(unsigned long *dimm_populated,
  197. unsigned char *iic0_dimm_addr,
  198. unsigned long num_dimm_banks,
  199. unsigned long tlb_word2_i_value);
  200. static void program_ecc_addr(unsigned long start_address,
  201. unsigned long num_bytes,
  202. unsigned long tlb_word2_i_value);
  203. #endif
  204. static void program_DQS_calibration(unsigned long *dimm_populated,
  205. unsigned char *iic0_dimm_addr,
  206. unsigned long num_dimm_banks);
  207. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  208. static void test(void);
  209. #else
  210. static void DQS_calibration_process(void);
  211. #endif
  212. static void ppc440sp_sdram_register_dump(void);
  213. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  214. void dcbz_area(u32 start_address, u32 num_bytes);
  215. void dflush(void);
  216. static u32 mfdcr_any(u32 dcr)
  217. {
  218. u32 val;
  219. switch (dcr) {
  220. case SDRAM_R0BAS + 0:
  221. val = mfdcr(SDRAM_R0BAS + 0);
  222. break;
  223. case SDRAM_R0BAS + 1:
  224. val = mfdcr(SDRAM_R0BAS + 1);
  225. break;
  226. case SDRAM_R0BAS + 2:
  227. val = mfdcr(SDRAM_R0BAS + 2);
  228. break;
  229. case SDRAM_R0BAS + 3:
  230. val = mfdcr(SDRAM_R0BAS + 3);
  231. break;
  232. default:
  233. printf("DCR %d not defined in case statement!!!\n", dcr);
  234. val = 0; /* just to satisfy the compiler */
  235. }
  236. return val;
  237. }
  238. static void mtdcr_any(u32 dcr, u32 val)
  239. {
  240. switch (dcr) {
  241. case SDRAM_R0BAS + 0:
  242. mtdcr(SDRAM_R0BAS + 0, val);
  243. break;
  244. case SDRAM_R0BAS + 1:
  245. mtdcr(SDRAM_R0BAS + 1, val);
  246. break;
  247. case SDRAM_R0BAS + 2:
  248. mtdcr(SDRAM_R0BAS + 2, val);
  249. break;
  250. case SDRAM_R0BAS + 3:
  251. mtdcr(SDRAM_R0BAS + 3, val);
  252. break;
  253. default:
  254. printf("DCR %d not defined in case statement!!!\n", dcr);
  255. }
  256. }
  257. static unsigned char spd_read(uchar chip, uint addr)
  258. {
  259. unsigned char data[2];
  260. if (i2c_probe(chip) == 0)
  261. if (i2c_read(chip, addr, 1, data, 1) == 0)
  262. return data[0];
  263. return 0;
  264. }
  265. /*-----------------------------------------------------------------------------+
  266. * sdram_memsize
  267. *-----------------------------------------------------------------------------*/
  268. static unsigned long sdram_memsize(void)
  269. {
  270. unsigned long mem_size;
  271. unsigned long mcopt2;
  272. unsigned long mcstat;
  273. unsigned long mb0cf;
  274. unsigned long sdsz;
  275. unsigned long i;
  276. mem_size = 0;
  277. mfsdram(SDRAM_MCOPT2, mcopt2);
  278. mfsdram(SDRAM_MCSTAT, mcstat);
  279. /* DDR controller must be enabled and not in self-refresh. */
  280. /* Otherwise memsize is zero. */
  281. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  282. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  283. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  284. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  285. for (i = 0; i < MAXBXCF; i++) {
  286. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  287. /* Banks enabled */
  288. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  289. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  290. switch(sdsz) {
  291. case SDRAM_RXBAS_SDSZ_8:
  292. mem_size+=8;
  293. break;
  294. case SDRAM_RXBAS_SDSZ_16:
  295. mem_size+=16;
  296. break;
  297. case SDRAM_RXBAS_SDSZ_32:
  298. mem_size+=32;
  299. break;
  300. case SDRAM_RXBAS_SDSZ_64:
  301. mem_size+=64;
  302. break;
  303. case SDRAM_RXBAS_SDSZ_128:
  304. mem_size+=128;
  305. break;
  306. case SDRAM_RXBAS_SDSZ_256:
  307. mem_size+=256;
  308. break;
  309. case SDRAM_RXBAS_SDSZ_512:
  310. mem_size+=512;
  311. break;
  312. case SDRAM_RXBAS_SDSZ_1024:
  313. mem_size+=1024;
  314. break;
  315. case SDRAM_RXBAS_SDSZ_2048:
  316. mem_size+=2048;
  317. break;
  318. case SDRAM_RXBAS_SDSZ_4096:
  319. mem_size+=4096;
  320. break;
  321. default:
  322. mem_size=0;
  323. break;
  324. }
  325. }
  326. }
  327. }
  328. mem_size *= 1024 * 1024;
  329. return(mem_size);
  330. }
  331. /*-----------------------------------------------------------------------------+
  332. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  333. * Note: This routine runs from flash with a stack set up in the chip's
  334. * sram space. It is important that the routine does not require .sbss, .bss or
  335. * .data sections. It also cannot call routines that require these sections.
  336. *-----------------------------------------------------------------------------*/
  337. /*-----------------------------------------------------------------------------
  338. * Function: initdram
  339. * Description: Configures SDRAM memory banks for DDR operation.
  340. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  341. * via the IIC bus and then configures the DDR SDRAM memory
  342. * banks appropriately. If Auto Memory Configuration is
  343. * not used, it is assumed that no DIMM is plugged
  344. *-----------------------------------------------------------------------------*/
  345. long int initdram(int board_type)
  346. {
  347. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  348. unsigned char spd0[MAX_SPD_BYTES];
  349. unsigned char spd1[MAX_SPD_BYTES];
  350. unsigned char *dimm_spd[MAXDIMMS];
  351. unsigned long dimm_populated[MAXDIMMS];
  352. unsigned long num_dimm_banks; /* on board dimm banks */
  353. unsigned long val;
  354. ddr_cas_id_t selected_cas;
  355. int write_recovery;
  356. unsigned long dram_size = 0;
  357. num_dimm_banks = sizeof(iic0_dimm_addr);
  358. /*------------------------------------------------------------------
  359. * Set up an array of SPD matrixes.
  360. *-----------------------------------------------------------------*/
  361. dimm_spd[0] = spd0;
  362. dimm_spd[1] = spd1;
  363. /*------------------------------------------------------------------
  364. * Reset the DDR-SDRAM controller.
  365. *-----------------------------------------------------------------*/
  366. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  367. mtsdr(SDR0_SRST, 0x00000000);
  368. /*
  369. * Make sure I2C controller is initialized
  370. * before continuing.
  371. */
  372. /* switch to correct I2C bus */
  373. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  374. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  375. /*------------------------------------------------------------------
  376. * Clear out the serial presence detect buffers.
  377. * Perform IIC reads from the dimm. Fill in the spds.
  378. * Check to see if the dimm slots are populated
  379. *-----------------------------------------------------------------*/
  380. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  381. /*------------------------------------------------------------------
  382. * Check the memory type for the dimms plugged.
  383. *-----------------------------------------------------------------*/
  384. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  385. /*------------------------------------------------------------------
  386. * Check the frequency supported for the dimms plugged.
  387. *-----------------------------------------------------------------*/
  388. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  389. /*------------------------------------------------------------------
  390. * Check the total rank number.
  391. *-----------------------------------------------------------------*/
  392. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  393. /*------------------------------------------------------------------
  394. * Check the voltage type for the dimms plugged.
  395. *-----------------------------------------------------------------*/
  396. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  397. /*------------------------------------------------------------------
  398. * Program SDRAM controller options 2 register
  399. * Except Enabling of the memory controller.
  400. *-----------------------------------------------------------------*/
  401. mfsdram(SDRAM_MCOPT2, val);
  402. mtsdram(SDRAM_MCOPT2,
  403. (val &
  404. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  405. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  406. SDRAM_MCOPT2_ISIE_MASK))
  407. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  408. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  409. SDRAM_MCOPT2_ISIE_ENABLE));
  410. /*------------------------------------------------------------------
  411. * Program SDRAM controller options 1 register
  412. * Note: Does not enable the memory controller.
  413. *-----------------------------------------------------------------*/
  414. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  415. /*------------------------------------------------------------------
  416. * Set the SDRAM Controller On Die Termination Register
  417. *-----------------------------------------------------------------*/
  418. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  419. /*------------------------------------------------------------------
  420. * Program SDRAM refresh register.
  421. *-----------------------------------------------------------------*/
  422. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  423. /*------------------------------------------------------------------
  424. * Program SDRAM mode register.
  425. *-----------------------------------------------------------------*/
  426. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  427. &selected_cas, &write_recovery);
  428. /*------------------------------------------------------------------
  429. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  430. *-----------------------------------------------------------------*/
  431. mfsdram(SDRAM_WRDTR, val);
  432. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  433. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  434. /*------------------------------------------------------------------
  435. * Set the SDRAM Clock Timing Register
  436. *-----------------------------------------------------------------*/
  437. mfsdram(SDRAM_CLKTR, val);
  438. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  439. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  440. /*------------------------------------------------------------------
  441. * Program the BxCF registers.
  442. *-----------------------------------------------------------------*/
  443. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  444. /*------------------------------------------------------------------
  445. * Program SDRAM timing registers.
  446. *-----------------------------------------------------------------*/
  447. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  448. /*------------------------------------------------------------------
  449. * Set the Extended Mode register
  450. *-----------------------------------------------------------------*/
  451. mfsdram(SDRAM_MEMODE, val);
  452. mtsdram(SDRAM_MEMODE,
  453. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  454. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  455. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  456. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  457. /*------------------------------------------------------------------
  458. * Program Initialization preload registers.
  459. *-----------------------------------------------------------------*/
  460. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  461. selected_cas, write_recovery);
  462. /*------------------------------------------------------------------
  463. * Delay to ensure 200usec have elapsed since reset.
  464. *-----------------------------------------------------------------*/
  465. udelay(400);
  466. /*------------------------------------------------------------------
  467. * Set the memory queue core base addr.
  468. *-----------------------------------------------------------------*/
  469. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  470. /*------------------------------------------------------------------
  471. * Program SDRAM controller options 2 register
  472. * Enable the memory controller.
  473. *-----------------------------------------------------------------*/
  474. mfsdram(SDRAM_MCOPT2, val);
  475. mtsdram(SDRAM_MCOPT2,
  476. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  477. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  478. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  479. /*------------------------------------------------------------------
  480. * Wait for SDRAM_CFG0_DC_EN to complete.
  481. *-----------------------------------------------------------------*/
  482. do {
  483. mfsdram(SDRAM_MCSTAT, val);
  484. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  485. /* get installed memory size */
  486. dram_size = sdram_memsize();
  487. /* and program tlb entries for this size (dynamic) */
  488. /*
  489. * Program TLB entries with caches enabled, for best performace
  490. * while auto-calibrating and ECC generation
  491. */
  492. program_tlb(0, 0, dram_size, 0);
  493. /*------------------------------------------------------------------
  494. * DQS calibration.
  495. *-----------------------------------------------------------------*/
  496. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  497. #ifdef CONFIG_DDR_ECC
  498. /*------------------------------------------------------------------
  499. * If ecc is enabled, initialize the parity bits.
  500. *-----------------------------------------------------------------*/
  501. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  502. #endif
  503. /*
  504. * Now after initialization (auto-calibration and ECC generation)
  505. * remove the TLB entries with caches enabled and program again with
  506. * desired cache functionality
  507. */
  508. remove_tlb(0, dram_size);
  509. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  510. ppc440sp_sdram_register_dump();
  511. return dram_size;
  512. }
  513. static void get_spd_info(unsigned long *dimm_populated,
  514. unsigned char *iic0_dimm_addr,
  515. unsigned long num_dimm_banks)
  516. {
  517. unsigned long dimm_num;
  518. unsigned long dimm_found;
  519. unsigned char num_of_bytes;
  520. unsigned char total_size;
  521. dimm_found = FALSE;
  522. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  523. num_of_bytes = 0;
  524. total_size = 0;
  525. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  526. debug("\nspd_read(0x%x) returned %d\n",
  527. iic0_dimm_addr[dimm_num], num_of_bytes);
  528. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  529. debug("spd_read(0x%x) returned %d\n",
  530. iic0_dimm_addr[dimm_num], total_size);
  531. if ((num_of_bytes != 0) && (total_size != 0)) {
  532. dimm_populated[dimm_num] = TRUE;
  533. dimm_found = TRUE;
  534. debug("DIMM slot %lu: populated\n", dimm_num);
  535. } else {
  536. dimm_populated[dimm_num] = FALSE;
  537. debug("DIMM slot %lu: Not populated\n", dimm_num);
  538. }
  539. }
  540. if (dimm_found == FALSE) {
  541. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  542. spd_ddr_init_hang ();
  543. }
  544. }
  545. #ifdef CONFIG_ADD_RAM_INFO
  546. void board_add_ram_info(int use_default)
  547. {
  548. PPC440_SYS_INFO board_cfg;
  549. u32 val;
  550. if (is_ecc_enabled())
  551. puts(" (ECC");
  552. else
  553. puts(" (ECC not");
  554. get_sys_info(&board_cfg);
  555. mfsdr(SDR0_DDR0, val);
  556. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  557. printf(" enabled, %d MHz", (val * 2) / 1000000);
  558. mfsdram(SDRAM_MMODE, val);
  559. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  560. printf(", CL%d)", val);
  561. }
  562. #endif
  563. /*------------------------------------------------------------------
  564. * For the memory DIMMs installed, this routine verifies that they
  565. * really are DDR specific DIMMs.
  566. *-----------------------------------------------------------------*/
  567. static void check_mem_type(unsigned long *dimm_populated,
  568. unsigned char *iic0_dimm_addr,
  569. unsigned long num_dimm_banks)
  570. {
  571. unsigned long dimm_num;
  572. unsigned long dimm_type;
  573. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  574. if (dimm_populated[dimm_num] == TRUE) {
  575. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  576. switch (dimm_type) {
  577. case 1:
  578. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  579. "slot %d.\n", (unsigned int)dimm_num);
  580. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  581. printf("Replace the DIMM module with a supported DIMM.\n\n");
  582. spd_ddr_init_hang ();
  583. break;
  584. case 2:
  585. printf("ERROR: EDO DIMM detected in slot %d.\n",
  586. (unsigned int)dimm_num);
  587. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  588. printf("Replace the DIMM module with a supported DIMM.\n\n");
  589. spd_ddr_init_hang ();
  590. break;
  591. case 3:
  592. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  593. (unsigned int)dimm_num);
  594. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  595. printf("Replace the DIMM module with a supported DIMM.\n\n");
  596. spd_ddr_init_hang ();
  597. break;
  598. case 4:
  599. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  600. (unsigned int)dimm_num);
  601. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  602. printf("Replace the DIMM module with a supported DIMM.\n\n");
  603. spd_ddr_init_hang ();
  604. break;
  605. case 5:
  606. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  607. (unsigned int)dimm_num);
  608. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  609. printf("Replace the DIMM module with a supported DIMM.\n\n");
  610. spd_ddr_init_hang ();
  611. break;
  612. case 6:
  613. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  614. (unsigned int)dimm_num);
  615. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  616. printf("Replace the DIMM module with a supported DIMM.\n\n");
  617. spd_ddr_init_hang ();
  618. break;
  619. case 7:
  620. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  621. dimm_populated[dimm_num] = SDRAM_DDR1;
  622. break;
  623. case 8:
  624. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  625. dimm_populated[dimm_num] = SDRAM_DDR2;
  626. break;
  627. default:
  628. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  629. (unsigned int)dimm_num);
  630. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  631. printf("Replace the DIMM module with a supported DIMM.\n\n");
  632. spd_ddr_init_hang ();
  633. break;
  634. }
  635. }
  636. }
  637. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  638. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  639. && (dimm_populated[dimm_num] != SDRAM_NONE)
  640. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  641. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  642. spd_ddr_init_hang ();
  643. }
  644. }
  645. }
  646. /*------------------------------------------------------------------
  647. * For the memory DIMMs installed, this routine verifies that
  648. * frequency previously calculated is supported.
  649. *-----------------------------------------------------------------*/
  650. static void check_frequency(unsigned long *dimm_populated,
  651. unsigned char *iic0_dimm_addr,
  652. unsigned long num_dimm_banks)
  653. {
  654. unsigned long dimm_num;
  655. unsigned long tcyc_reg;
  656. unsigned long cycle_time;
  657. unsigned long calc_cycle_time;
  658. unsigned long sdram_freq;
  659. unsigned long sdr_ddrpll;
  660. PPC440_SYS_INFO board_cfg;
  661. /*------------------------------------------------------------------
  662. * Get the board configuration info.
  663. *-----------------------------------------------------------------*/
  664. get_sys_info(&board_cfg);
  665. mfsdr(SDR0_DDR0, sdr_ddrpll);
  666. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  667. /*
  668. * calc_cycle_time is calculated from DDR frequency set by board/chip
  669. * and is expressed in multiple of 10 picoseconds
  670. * to match the way DIMM cycle time is calculated below.
  671. */
  672. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  673. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  674. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  675. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  676. /*
  677. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  678. * the higher order nibble (bits 4-7) designates the cycle time
  679. * to a granularity of 1ns;
  680. * the value presented by the lower order nibble (bits 0-3)
  681. * has a granularity of .1ns and is added to the value designated
  682. * by the higher nibble. In addition, four lines of the lower order
  683. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  684. */
  685. /* Convert from hex to decimal */
  686. if ((tcyc_reg & 0x0F) == 0x0D)
  687. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  688. else if ((tcyc_reg & 0x0F) == 0x0C)
  689. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  690. else if ((tcyc_reg & 0x0F) == 0x0B)
  691. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  692. else if ((tcyc_reg & 0x0F) == 0x0A)
  693. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  694. else
  695. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  696. ((tcyc_reg & 0x0F)*10);
  697. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  698. if (cycle_time > (calc_cycle_time + 10)) {
  699. /*
  700. * the provided sdram cycle_time is too small
  701. * for the available DIMM cycle_time.
  702. * The additionnal 100ps is here to accept a small incertainty.
  703. */
  704. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  705. "slot %d \n while calculated cycle time is %d ps.\n",
  706. (unsigned int)(cycle_time*10),
  707. (unsigned int)dimm_num,
  708. (unsigned int)(calc_cycle_time*10));
  709. printf("Replace the DIMM, or change DDR frequency via "
  710. "strapping bits.\n\n");
  711. spd_ddr_init_hang ();
  712. }
  713. }
  714. }
  715. }
  716. /*------------------------------------------------------------------
  717. * For the memory DIMMs installed, this routine verifies two
  718. * ranks/banks maximum are availables.
  719. *-----------------------------------------------------------------*/
  720. static void check_rank_number(unsigned long *dimm_populated,
  721. unsigned char *iic0_dimm_addr,
  722. unsigned long num_dimm_banks)
  723. {
  724. unsigned long dimm_num;
  725. unsigned long dimm_rank;
  726. unsigned long total_rank = 0;
  727. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  728. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  729. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  730. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  731. dimm_rank = (dimm_rank & 0x0F) +1;
  732. else
  733. dimm_rank = dimm_rank & 0x0F;
  734. if (dimm_rank > MAXRANKS) {
  735. printf("ERROR: DRAM DIMM detected with %d ranks in "
  736. "slot %d is not supported.\n", dimm_rank, dimm_num);
  737. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  738. printf("Replace the DIMM module with a supported DIMM.\n\n");
  739. spd_ddr_init_hang ();
  740. } else
  741. total_rank += dimm_rank;
  742. }
  743. if (total_rank > MAXRANKS) {
  744. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  745. "for all slots.\n", (unsigned int)total_rank);
  746. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  747. printf("Remove one of the DIMM modules.\n\n");
  748. spd_ddr_init_hang ();
  749. }
  750. }
  751. }
  752. /*------------------------------------------------------------------
  753. * only support 2.5V modules.
  754. * This routine verifies this.
  755. *-----------------------------------------------------------------*/
  756. static void check_voltage_type(unsigned long *dimm_populated,
  757. unsigned char *iic0_dimm_addr,
  758. unsigned long num_dimm_banks)
  759. {
  760. unsigned long dimm_num;
  761. unsigned long voltage_type;
  762. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  763. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  764. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  765. switch (voltage_type) {
  766. case 0x00:
  767. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  768. printf("This DIMM is 5.0 Volt/TTL.\n");
  769. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  770. (unsigned int)dimm_num);
  771. spd_ddr_init_hang ();
  772. break;
  773. case 0x01:
  774. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  775. printf("This DIMM is LVTTL.\n");
  776. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  777. (unsigned int)dimm_num);
  778. spd_ddr_init_hang ();
  779. break;
  780. case 0x02:
  781. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  782. printf("This DIMM is 1.5 Volt.\n");
  783. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  784. (unsigned int)dimm_num);
  785. spd_ddr_init_hang ();
  786. break;
  787. case 0x03:
  788. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  789. printf("This DIMM is 3.3 Volt/TTL.\n");
  790. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  791. (unsigned int)dimm_num);
  792. spd_ddr_init_hang ();
  793. break;
  794. case 0x04:
  795. /* 2.5 Voltage only for DDR1 */
  796. break;
  797. case 0x05:
  798. /* 1.8 Voltage only for DDR2 */
  799. break;
  800. default:
  801. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  802. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  803. (unsigned int)dimm_num);
  804. spd_ddr_init_hang ();
  805. break;
  806. }
  807. }
  808. }
  809. }
  810. /*-----------------------------------------------------------------------------+
  811. * program_copt1.
  812. *-----------------------------------------------------------------------------*/
  813. static void program_copt1(unsigned long *dimm_populated,
  814. unsigned char *iic0_dimm_addr,
  815. unsigned long num_dimm_banks)
  816. {
  817. unsigned long dimm_num;
  818. unsigned long mcopt1;
  819. unsigned long ecc_enabled;
  820. unsigned long ecc = 0;
  821. unsigned long data_width = 0;
  822. unsigned long dimm_32bit;
  823. unsigned long dimm_64bit;
  824. unsigned long registered = 0;
  825. unsigned long attribute = 0;
  826. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  827. unsigned long bankcount;
  828. unsigned long ddrtype;
  829. unsigned long val;
  830. #ifdef CONFIG_DDR_ECC
  831. ecc_enabled = TRUE;
  832. #else
  833. ecc_enabled = FALSE;
  834. #endif
  835. dimm_32bit = FALSE;
  836. dimm_64bit = FALSE;
  837. buf0 = FALSE;
  838. buf1 = FALSE;
  839. /*------------------------------------------------------------------
  840. * Set memory controller options reg 1, SDRAM_MCOPT1.
  841. *-----------------------------------------------------------------*/
  842. mfsdram(SDRAM_MCOPT1, val);
  843. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  844. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  845. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  846. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  847. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  848. SDRAM_MCOPT1_DREF_MASK);
  849. mcopt1 |= SDRAM_MCOPT1_QDEP;
  850. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  851. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  852. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  853. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  854. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  855. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  856. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  857. /* test ecc support */
  858. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  859. if (ecc != 0x02) /* ecc not supported */
  860. ecc_enabled = FALSE;
  861. /* test bank count */
  862. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  863. if (bankcount == 0x04) /* bank count = 4 */
  864. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  865. else /* bank count = 8 */
  866. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  867. /* test DDR type */
  868. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  869. /* test for buffered/unbuffered, registered, differential clocks */
  870. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  871. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  872. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  873. if (dimm_num == 0) {
  874. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  875. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  876. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  877. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  878. if (registered == 1) { /* DDR2 always buffered */
  879. /* TODO: what about above comments ? */
  880. mcopt1 |= SDRAM_MCOPT1_RDEN;
  881. buf0 = TRUE;
  882. } else {
  883. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  884. if ((attribute & 0x02) == 0x00) {
  885. /* buffered not supported */
  886. buf0 = FALSE;
  887. } else {
  888. mcopt1 |= SDRAM_MCOPT1_RDEN;
  889. buf0 = TRUE;
  890. }
  891. }
  892. }
  893. else if (dimm_num == 1) {
  894. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  895. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  896. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  897. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  898. if (registered == 1) {
  899. /* DDR2 always buffered */
  900. mcopt1 |= SDRAM_MCOPT1_RDEN;
  901. buf1 = TRUE;
  902. } else {
  903. if ((attribute & 0x02) == 0x00) {
  904. /* buffered not supported */
  905. buf1 = FALSE;
  906. } else {
  907. mcopt1 |= SDRAM_MCOPT1_RDEN;
  908. buf1 = TRUE;
  909. }
  910. }
  911. }
  912. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  913. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  914. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  915. switch (data_width) {
  916. case 72:
  917. case 64:
  918. dimm_64bit = TRUE;
  919. break;
  920. case 40:
  921. case 32:
  922. dimm_32bit = TRUE;
  923. break;
  924. default:
  925. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  926. data_width);
  927. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  928. break;
  929. }
  930. }
  931. }
  932. /* verify matching properties */
  933. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  934. if (buf0 != buf1) {
  935. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  936. spd_ddr_init_hang ();
  937. }
  938. }
  939. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  940. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  941. spd_ddr_init_hang ();
  942. }
  943. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  944. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  945. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  946. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  947. } else {
  948. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  949. spd_ddr_init_hang ();
  950. }
  951. if (ecc_enabled == TRUE)
  952. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  953. else
  954. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  955. mtsdram(SDRAM_MCOPT1, mcopt1);
  956. }
  957. /*-----------------------------------------------------------------------------+
  958. * program_codt.
  959. *-----------------------------------------------------------------------------*/
  960. static void program_codt(unsigned long *dimm_populated,
  961. unsigned char *iic0_dimm_addr,
  962. unsigned long num_dimm_banks)
  963. {
  964. unsigned long codt;
  965. unsigned long modt0 = 0;
  966. unsigned long modt1 = 0;
  967. unsigned long modt2 = 0;
  968. unsigned long modt3 = 0;
  969. unsigned char dimm_num;
  970. unsigned char dimm_rank;
  971. unsigned char total_rank = 0;
  972. unsigned char total_dimm = 0;
  973. unsigned char dimm_type = 0;
  974. unsigned char firstSlot = 0;
  975. /*------------------------------------------------------------------
  976. * Set the SDRAM Controller On Die Termination Register
  977. *-----------------------------------------------------------------*/
  978. mfsdram(SDRAM_CODT, codt);
  979. codt |= (SDRAM_CODT_IO_NMODE
  980. & (~SDRAM_CODT_DQS_SINGLE_END
  981. & ~SDRAM_CODT_CKSE_SINGLE_END
  982. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  983. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  984. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  985. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  986. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  987. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  988. dimm_rank = (dimm_rank & 0x0F) + 1;
  989. dimm_type = SDRAM_DDR2;
  990. } else {
  991. dimm_rank = dimm_rank & 0x0F;
  992. dimm_type = SDRAM_DDR1;
  993. }
  994. total_rank += dimm_rank;
  995. total_dimm++;
  996. if ((dimm_num == 0) && (total_dimm == 1))
  997. firstSlot = TRUE;
  998. else
  999. firstSlot = FALSE;
  1000. }
  1001. }
  1002. if (dimm_type == SDRAM_DDR2) {
  1003. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1004. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1005. if (total_rank == 1) {
  1006. codt |= CALC_ODT_R(0);
  1007. modt0 = CALC_ODT_W(0);
  1008. modt1 = 0x00000000;
  1009. modt2 = 0x00000000;
  1010. modt3 = 0x00000000;
  1011. }
  1012. if (total_rank == 2) {
  1013. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1014. modt0 = CALC_ODT_W(0);
  1015. modt1 = CALC_ODT_W(0);
  1016. modt2 = 0x00000000;
  1017. modt3 = 0x00000000;
  1018. }
  1019. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1020. if (total_rank == 1) {
  1021. codt |= CALC_ODT_R(2);
  1022. modt0 = 0x00000000;
  1023. modt1 = 0x00000000;
  1024. modt2 = CALC_ODT_W(2);
  1025. modt3 = 0x00000000;
  1026. }
  1027. if (total_rank == 2) {
  1028. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1029. modt0 = 0x00000000;
  1030. modt1 = 0x00000000;
  1031. modt2 = CALC_ODT_W(2);
  1032. modt3 = CALC_ODT_W(2);
  1033. }
  1034. }
  1035. if (total_dimm == 2) {
  1036. if (total_rank == 2) {
  1037. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1038. modt0 = CALC_ODT_RW(2);
  1039. modt1 = 0x00000000;
  1040. modt2 = CALC_ODT_RW(0);
  1041. modt3 = 0x00000000;
  1042. }
  1043. if (total_rank == 4) {
  1044. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1045. CALC_ODT_R(2) | CALC_ODT_R(3);
  1046. modt0 = CALC_ODT_RW(2);
  1047. modt1 = 0x00000000;
  1048. modt2 = CALC_ODT_RW(0);
  1049. modt3 = 0x00000000;
  1050. }
  1051. }
  1052. } else {
  1053. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1054. modt0 = 0x00000000;
  1055. modt1 = 0x00000000;
  1056. modt2 = 0x00000000;
  1057. modt3 = 0x00000000;
  1058. if (total_dimm == 1) {
  1059. if (total_rank == 1)
  1060. codt |= 0x00800000;
  1061. if (total_rank == 2)
  1062. codt |= 0x02800000;
  1063. }
  1064. if (total_dimm == 2) {
  1065. if (total_rank == 2)
  1066. codt |= 0x08800000;
  1067. if (total_rank == 4)
  1068. codt |= 0x2a800000;
  1069. }
  1070. }
  1071. debug("nb of dimm %d\n", total_dimm);
  1072. debug("nb of rank %d\n", total_rank);
  1073. if (total_dimm == 1)
  1074. debug("dimm in slot %d\n", firstSlot);
  1075. mtsdram(SDRAM_CODT, codt);
  1076. mtsdram(SDRAM_MODT0, modt0);
  1077. mtsdram(SDRAM_MODT1, modt1);
  1078. mtsdram(SDRAM_MODT2, modt2);
  1079. mtsdram(SDRAM_MODT3, modt3);
  1080. }
  1081. /*-----------------------------------------------------------------------------+
  1082. * program_initplr.
  1083. *-----------------------------------------------------------------------------*/
  1084. static void program_initplr(unsigned long *dimm_populated,
  1085. unsigned char *iic0_dimm_addr,
  1086. unsigned long num_dimm_banks,
  1087. ddr_cas_id_t selected_cas,
  1088. int write_recovery)
  1089. {
  1090. u32 cas = 0;
  1091. u32 odt = 0;
  1092. u32 ods = 0;
  1093. u32 mr;
  1094. u32 wr;
  1095. u32 emr;
  1096. u32 emr2;
  1097. u32 emr3;
  1098. int dimm_num;
  1099. int total_dimm = 0;
  1100. /******************************************************
  1101. ** Assumption: if more than one DIMM, all DIMMs are the same
  1102. ** as already checked in check_memory_type
  1103. ******************************************************/
  1104. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1105. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1106. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1107. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1108. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1109. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1110. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1111. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1112. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1113. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1114. switch (selected_cas) {
  1115. case DDR_CAS_3:
  1116. cas = 3 << 4;
  1117. break;
  1118. case DDR_CAS_4:
  1119. cas = 4 << 4;
  1120. break;
  1121. case DDR_CAS_5:
  1122. cas = 5 << 4;
  1123. break;
  1124. default:
  1125. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1126. spd_ddr_init_hang ();
  1127. break;
  1128. }
  1129. #if 0
  1130. /*
  1131. * ToDo - Still a problem with the write recovery:
  1132. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1133. * in the INITPLR reg to the value calculated in program_mode()
  1134. * results in not correctly working DDR2 memory (crash after
  1135. * relocation).
  1136. *
  1137. * So for now, set the write recovery to 3. This seems to work
  1138. * on the Corair module too.
  1139. *
  1140. * 2007-03-01, sr
  1141. */
  1142. switch (write_recovery) {
  1143. case 3:
  1144. wr = WRITE_RECOV_3;
  1145. break;
  1146. case 4:
  1147. wr = WRITE_RECOV_4;
  1148. break;
  1149. case 5:
  1150. wr = WRITE_RECOV_5;
  1151. break;
  1152. case 6:
  1153. wr = WRITE_RECOV_6;
  1154. break;
  1155. default:
  1156. printf("ERROR: write recovery not support (%d)", write_recovery);
  1157. spd_ddr_init_hang ();
  1158. break;
  1159. }
  1160. #else
  1161. wr = WRITE_RECOV_3; /* test-only, see description above */
  1162. #endif
  1163. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1164. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1165. total_dimm++;
  1166. if (total_dimm == 1) {
  1167. odt = ODT_150_OHM;
  1168. ods = ODS_FULL;
  1169. } else if (total_dimm == 2) {
  1170. odt = ODT_75_OHM;
  1171. ods = ODS_REDUCED;
  1172. } else {
  1173. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1174. spd_ddr_init_hang ();
  1175. }
  1176. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1177. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1178. emr2 = CMD_EMR | SELECT_EMR2;
  1179. emr3 = CMD_EMR | SELECT_EMR3;
  1180. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1181. udelay(1000);
  1182. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1183. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1184. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1185. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1186. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1187. udelay(1000);
  1188. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1189. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1190. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1191. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1192. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1193. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1194. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1195. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1196. } else {
  1197. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1198. spd_ddr_init_hang ();
  1199. }
  1200. }
  1201. /*------------------------------------------------------------------
  1202. * This routine programs the SDRAM_MMODE register.
  1203. * the selected_cas is an output parameter, that will be passed
  1204. * by caller to call the above program_initplr( )
  1205. *-----------------------------------------------------------------*/
  1206. static void program_mode(unsigned long *dimm_populated,
  1207. unsigned char *iic0_dimm_addr,
  1208. unsigned long num_dimm_banks,
  1209. ddr_cas_id_t *selected_cas,
  1210. int *write_recovery)
  1211. {
  1212. unsigned long dimm_num;
  1213. unsigned long sdram_ddr1;
  1214. unsigned long t_wr_ns;
  1215. unsigned long t_wr_clk;
  1216. unsigned long cas_bit;
  1217. unsigned long cas_index;
  1218. unsigned long sdram_freq;
  1219. unsigned long ddr_check;
  1220. unsigned long mmode;
  1221. unsigned long tcyc_reg;
  1222. unsigned long cycle_2_0_clk;
  1223. unsigned long cycle_2_5_clk;
  1224. unsigned long cycle_3_0_clk;
  1225. unsigned long cycle_4_0_clk;
  1226. unsigned long cycle_5_0_clk;
  1227. unsigned long max_2_0_tcyc_ns_x_100;
  1228. unsigned long max_2_5_tcyc_ns_x_100;
  1229. unsigned long max_3_0_tcyc_ns_x_100;
  1230. unsigned long max_4_0_tcyc_ns_x_100;
  1231. unsigned long max_5_0_tcyc_ns_x_100;
  1232. unsigned long cycle_time_ns_x_100[3];
  1233. PPC440_SYS_INFO board_cfg;
  1234. unsigned char cas_2_0_available;
  1235. unsigned char cas_2_5_available;
  1236. unsigned char cas_3_0_available;
  1237. unsigned char cas_4_0_available;
  1238. unsigned char cas_5_0_available;
  1239. unsigned long sdr_ddrpll;
  1240. /*------------------------------------------------------------------
  1241. * Get the board configuration info.
  1242. *-----------------------------------------------------------------*/
  1243. get_sys_info(&board_cfg);
  1244. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1245. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1246. debug("sdram_freq=%d\n", sdram_freq);
  1247. /*------------------------------------------------------------------
  1248. * Handle the timing. We need to find the worst case timing of all
  1249. * the dimm modules installed.
  1250. *-----------------------------------------------------------------*/
  1251. t_wr_ns = 0;
  1252. cas_2_0_available = TRUE;
  1253. cas_2_5_available = TRUE;
  1254. cas_3_0_available = TRUE;
  1255. cas_4_0_available = TRUE;
  1256. cas_5_0_available = TRUE;
  1257. max_2_0_tcyc_ns_x_100 = 10;
  1258. max_2_5_tcyc_ns_x_100 = 10;
  1259. max_3_0_tcyc_ns_x_100 = 10;
  1260. max_4_0_tcyc_ns_x_100 = 10;
  1261. max_5_0_tcyc_ns_x_100 = 10;
  1262. sdram_ddr1 = TRUE;
  1263. /* loop through all the DIMM slots on the board */
  1264. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1265. /* If a dimm is installed in a particular slot ... */
  1266. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1267. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1268. sdram_ddr1 = TRUE;
  1269. else
  1270. sdram_ddr1 = FALSE;
  1271. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1272. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1273. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1274. /* For a particular DIMM, grab the three CAS values it supports */
  1275. for (cas_index = 0; cas_index < 3; cas_index++) {
  1276. switch (cas_index) {
  1277. case 0:
  1278. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1279. break;
  1280. case 1:
  1281. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1282. break;
  1283. default:
  1284. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1285. break;
  1286. }
  1287. if ((tcyc_reg & 0x0F) >= 10) {
  1288. if ((tcyc_reg & 0x0F) == 0x0D) {
  1289. /* Convert from hex to decimal */
  1290. cycle_time_ns_x_100[cas_index] =
  1291. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1292. } else {
  1293. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1294. "in slot %d\n", (unsigned int)dimm_num);
  1295. spd_ddr_init_hang ();
  1296. }
  1297. } else {
  1298. /* Convert from hex to decimal */
  1299. cycle_time_ns_x_100[cas_index] =
  1300. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1301. ((tcyc_reg & 0x0F)*10);
  1302. }
  1303. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1304. cycle_time_ns_x_100[cas_index]);
  1305. }
  1306. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1307. /* supported for a particular DIMM. */
  1308. cas_index = 0;
  1309. if (sdram_ddr1) {
  1310. /*
  1311. * DDR devices use the following bitmask for CAS latency:
  1312. * Bit 7 6 5 4 3 2 1 0
  1313. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1314. */
  1315. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1316. (cycle_time_ns_x_100[cas_index] != 0)) {
  1317. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1318. cycle_time_ns_x_100[cas_index]);
  1319. cas_index++;
  1320. } else {
  1321. if (cas_index != 0)
  1322. cas_index++;
  1323. cas_4_0_available = FALSE;
  1324. }
  1325. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1326. (cycle_time_ns_x_100[cas_index] != 0)) {
  1327. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1328. cycle_time_ns_x_100[cas_index]);
  1329. cas_index++;
  1330. } else {
  1331. if (cas_index != 0)
  1332. cas_index++;
  1333. cas_3_0_available = FALSE;
  1334. }
  1335. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1336. (cycle_time_ns_x_100[cas_index] != 0)) {
  1337. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1338. cycle_time_ns_x_100[cas_index]);
  1339. cas_index++;
  1340. } else {
  1341. if (cas_index != 0)
  1342. cas_index++;
  1343. cas_2_5_available = FALSE;
  1344. }
  1345. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1346. (cycle_time_ns_x_100[cas_index] != 0)) {
  1347. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1348. cycle_time_ns_x_100[cas_index]);
  1349. cas_index++;
  1350. } else {
  1351. if (cas_index != 0)
  1352. cas_index++;
  1353. cas_2_0_available = FALSE;
  1354. }
  1355. } else {
  1356. /*
  1357. * DDR2 devices use the following bitmask for CAS latency:
  1358. * Bit 7 6 5 4 3 2 1 0
  1359. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1360. */
  1361. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1362. (cycle_time_ns_x_100[cas_index] != 0)) {
  1363. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1364. cycle_time_ns_x_100[cas_index]);
  1365. cas_index++;
  1366. } else {
  1367. if (cas_index != 0)
  1368. cas_index++;
  1369. cas_5_0_available = FALSE;
  1370. }
  1371. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1372. (cycle_time_ns_x_100[cas_index] != 0)) {
  1373. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1374. cycle_time_ns_x_100[cas_index]);
  1375. cas_index++;
  1376. } else {
  1377. if (cas_index != 0)
  1378. cas_index++;
  1379. cas_4_0_available = FALSE;
  1380. }
  1381. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1382. (cycle_time_ns_x_100[cas_index] != 0)) {
  1383. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1384. cycle_time_ns_x_100[cas_index]);
  1385. cas_index++;
  1386. } else {
  1387. if (cas_index != 0)
  1388. cas_index++;
  1389. cas_3_0_available = FALSE;
  1390. }
  1391. }
  1392. }
  1393. }
  1394. /*------------------------------------------------------------------
  1395. * Set the SDRAM mode, SDRAM_MMODE
  1396. *-----------------------------------------------------------------*/
  1397. mfsdram(SDRAM_MMODE, mmode);
  1398. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1399. /* add 10 here because of rounding problems */
  1400. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1401. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1402. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1403. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1404. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1405. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1406. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1407. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1408. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1409. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1410. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1411. *selected_cas = DDR_CAS_2;
  1412. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1413. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1414. *selected_cas = DDR_CAS_2_5;
  1415. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1416. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1417. *selected_cas = DDR_CAS_3;
  1418. } else {
  1419. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1420. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1421. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1422. spd_ddr_init_hang ();
  1423. }
  1424. } else { /* DDR2 */
  1425. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1426. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1427. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1428. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1429. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1430. *selected_cas = DDR_CAS_3;
  1431. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1432. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1433. *selected_cas = DDR_CAS_4;
  1434. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1435. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1436. *selected_cas = DDR_CAS_5;
  1437. } else {
  1438. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1439. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1440. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1441. printf("cas3=%d cas4=%d cas5=%d\n",
  1442. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1443. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1444. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1445. spd_ddr_init_hang ();
  1446. }
  1447. }
  1448. if (sdram_ddr1 == TRUE)
  1449. mmode |= SDRAM_MMODE_WR_DDR1;
  1450. else {
  1451. /* loop through all the DIMM slots on the board */
  1452. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1453. /* If a dimm is installed in a particular slot ... */
  1454. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1455. t_wr_ns = max(t_wr_ns,
  1456. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1457. }
  1458. /*
  1459. * convert from nanoseconds to ddr clocks
  1460. * round up if necessary
  1461. */
  1462. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1463. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1464. if (sdram_freq != ddr_check)
  1465. t_wr_clk++;
  1466. switch (t_wr_clk) {
  1467. case 0:
  1468. case 1:
  1469. case 2:
  1470. case 3:
  1471. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1472. break;
  1473. case 4:
  1474. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1475. break;
  1476. case 5:
  1477. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1478. break;
  1479. default:
  1480. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1481. break;
  1482. }
  1483. *write_recovery = t_wr_clk;
  1484. }
  1485. debug("CAS latency = %d\n", *selected_cas);
  1486. debug("Write recovery = %d\n", *write_recovery);
  1487. mtsdram(SDRAM_MMODE, mmode);
  1488. }
  1489. /*-----------------------------------------------------------------------------+
  1490. * program_rtr.
  1491. *-----------------------------------------------------------------------------*/
  1492. static void program_rtr(unsigned long *dimm_populated,
  1493. unsigned char *iic0_dimm_addr,
  1494. unsigned long num_dimm_banks)
  1495. {
  1496. PPC440_SYS_INFO board_cfg;
  1497. unsigned long max_refresh_rate;
  1498. unsigned long dimm_num;
  1499. unsigned long refresh_rate_type;
  1500. unsigned long refresh_rate;
  1501. unsigned long rint;
  1502. unsigned long sdram_freq;
  1503. unsigned long sdr_ddrpll;
  1504. unsigned long val;
  1505. /*------------------------------------------------------------------
  1506. * Get the board configuration info.
  1507. *-----------------------------------------------------------------*/
  1508. get_sys_info(&board_cfg);
  1509. /*------------------------------------------------------------------
  1510. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1511. *-----------------------------------------------------------------*/
  1512. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1513. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1514. max_refresh_rate = 0;
  1515. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1516. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1517. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1518. refresh_rate_type &= 0x7F;
  1519. switch (refresh_rate_type) {
  1520. case 0:
  1521. refresh_rate = 15625;
  1522. break;
  1523. case 1:
  1524. refresh_rate = 3906;
  1525. break;
  1526. case 2:
  1527. refresh_rate = 7812;
  1528. break;
  1529. case 3:
  1530. refresh_rate = 31250;
  1531. break;
  1532. case 4:
  1533. refresh_rate = 62500;
  1534. break;
  1535. case 5:
  1536. refresh_rate = 125000;
  1537. break;
  1538. default:
  1539. refresh_rate = 0;
  1540. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1541. (unsigned int)dimm_num);
  1542. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1543. spd_ddr_init_hang ();
  1544. break;
  1545. }
  1546. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1547. }
  1548. }
  1549. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1550. mfsdram(SDRAM_RTR, val);
  1551. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1552. (SDRAM_RTR_RINT_ENCODE(rint)));
  1553. }
  1554. /*------------------------------------------------------------------
  1555. * This routine programs the SDRAM_TRx registers.
  1556. *-----------------------------------------------------------------*/
  1557. static void program_tr(unsigned long *dimm_populated,
  1558. unsigned char *iic0_dimm_addr,
  1559. unsigned long num_dimm_banks)
  1560. {
  1561. unsigned long dimm_num;
  1562. unsigned long sdram_ddr1;
  1563. unsigned long t_rp_ns;
  1564. unsigned long t_rcd_ns;
  1565. unsigned long t_rrd_ns;
  1566. unsigned long t_ras_ns;
  1567. unsigned long t_rc_ns;
  1568. unsigned long t_rfc_ns;
  1569. unsigned long t_wpc_ns;
  1570. unsigned long t_wtr_ns;
  1571. unsigned long t_rpc_ns;
  1572. unsigned long t_rp_clk;
  1573. unsigned long t_rcd_clk;
  1574. unsigned long t_rrd_clk;
  1575. unsigned long t_ras_clk;
  1576. unsigned long t_rc_clk;
  1577. unsigned long t_rfc_clk;
  1578. unsigned long t_wpc_clk;
  1579. unsigned long t_wtr_clk;
  1580. unsigned long t_rpc_clk;
  1581. unsigned long sdtr1, sdtr2, sdtr3;
  1582. unsigned long ddr_check;
  1583. unsigned long sdram_freq;
  1584. unsigned long sdr_ddrpll;
  1585. PPC440_SYS_INFO board_cfg;
  1586. /*------------------------------------------------------------------
  1587. * Get the board configuration info.
  1588. *-----------------------------------------------------------------*/
  1589. get_sys_info(&board_cfg);
  1590. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1591. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1592. /*------------------------------------------------------------------
  1593. * Handle the timing. We need to find the worst case timing of all
  1594. * the dimm modules installed.
  1595. *-----------------------------------------------------------------*/
  1596. t_rp_ns = 0;
  1597. t_rrd_ns = 0;
  1598. t_rcd_ns = 0;
  1599. t_ras_ns = 0;
  1600. t_rc_ns = 0;
  1601. t_rfc_ns = 0;
  1602. t_wpc_ns = 0;
  1603. t_wtr_ns = 0;
  1604. t_rpc_ns = 0;
  1605. sdram_ddr1 = TRUE;
  1606. /* loop through all the DIMM slots on the board */
  1607. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1608. /* If a dimm is installed in a particular slot ... */
  1609. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1610. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1611. sdram_ddr1 = TRUE;
  1612. else
  1613. sdram_ddr1 = FALSE;
  1614. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1615. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1616. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1617. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1618. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1619. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1620. }
  1621. }
  1622. /*------------------------------------------------------------------
  1623. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1624. *-----------------------------------------------------------------*/
  1625. mfsdram(SDRAM_SDTR1, sdtr1);
  1626. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1627. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1628. /* default values */
  1629. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1630. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1631. /* normal operations */
  1632. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1633. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1634. mtsdram(SDRAM_SDTR1, sdtr1);
  1635. /*------------------------------------------------------------------
  1636. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1637. *-----------------------------------------------------------------*/
  1638. mfsdram(SDRAM_SDTR2, sdtr2);
  1639. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1640. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1641. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1642. SDRAM_SDTR2_RRD_MASK);
  1643. /*
  1644. * convert t_rcd from nanoseconds to ddr clocks
  1645. * round up if necessary
  1646. */
  1647. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1648. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1649. if (sdram_freq != ddr_check)
  1650. t_rcd_clk++;
  1651. switch (t_rcd_clk) {
  1652. case 0:
  1653. case 1:
  1654. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1655. break;
  1656. case 2:
  1657. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1658. break;
  1659. case 3:
  1660. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1661. break;
  1662. case 4:
  1663. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1664. break;
  1665. default:
  1666. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1667. break;
  1668. }
  1669. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1670. if (sdram_freq < 200000000) {
  1671. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1672. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1673. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1674. } else {
  1675. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1676. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1677. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1678. }
  1679. } else { /* DDR2 */
  1680. /* loop through all the DIMM slots on the board */
  1681. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1682. /* If a dimm is installed in a particular slot ... */
  1683. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1684. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1685. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1686. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1687. }
  1688. }
  1689. /*
  1690. * convert from nanoseconds to ddr clocks
  1691. * round up if necessary
  1692. */
  1693. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1694. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1695. if (sdram_freq != ddr_check)
  1696. t_wpc_clk++;
  1697. switch (t_wpc_clk) {
  1698. case 0:
  1699. case 1:
  1700. case 2:
  1701. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1702. break;
  1703. case 3:
  1704. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1705. break;
  1706. case 4:
  1707. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1708. break;
  1709. case 5:
  1710. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1711. break;
  1712. default:
  1713. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1714. break;
  1715. }
  1716. /*
  1717. * convert from nanoseconds to ddr clocks
  1718. * round up if necessary
  1719. */
  1720. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1721. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1722. if (sdram_freq != ddr_check)
  1723. t_wtr_clk++;
  1724. switch (t_wtr_clk) {
  1725. case 0:
  1726. case 1:
  1727. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1728. break;
  1729. case 2:
  1730. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1731. break;
  1732. case 3:
  1733. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1734. break;
  1735. default:
  1736. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1737. break;
  1738. }
  1739. /*
  1740. * convert from nanoseconds to ddr clocks
  1741. * round up if necessary
  1742. */
  1743. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1744. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1745. if (sdram_freq != ddr_check)
  1746. t_rpc_clk++;
  1747. switch (t_rpc_clk) {
  1748. case 0:
  1749. case 1:
  1750. case 2:
  1751. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1752. break;
  1753. case 3:
  1754. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1755. break;
  1756. default:
  1757. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1758. break;
  1759. }
  1760. }
  1761. /* default value */
  1762. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1763. /*
  1764. * convert t_rrd from nanoseconds to ddr clocks
  1765. * round up if necessary
  1766. */
  1767. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1768. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1769. if (sdram_freq != ddr_check)
  1770. t_rrd_clk++;
  1771. if (t_rrd_clk == 3)
  1772. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1773. else
  1774. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1775. /*
  1776. * convert t_rp from nanoseconds to ddr clocks
  1777. * round up if necessary
  1778. */
  1779. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1780. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1781. if (sdram_freq != ddr_check)
  1782. t_rp_clk++;
  1783. switch (t_rp_clk) {
  1784. case 0:
  1785. case 1:
  1786. case 2:
  1787. case 3:
  1788. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1789. break;
  1790. case 4:
  1791. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1792. break;
  1793. case 5:
  1794. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1795. break;
  1796. case 6:
  1797. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1798. break;
  1799. default:
  1800. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1801. break;
  1802. }
  1803. mtsdram(SDRAM_SDTR2, sdtr2);
  1804. /*------------------------------------------------------------------
  1805. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1806. *-----------------------------------------------------------------*/
  1807. mfsdram(SDRAM_SDTR3, sdtr3);
  1808. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1809. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1810. /*
  1811. * convert t_ras from nanoseconds to ddr clocks
  1812. * round up if necessary
  1813. */
  1814. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1815. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1816. if (sdram_freq != ddr_check)
  1817. t_ras_clk++;
  1818. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1819. /*
  1820. * convert t_rc from nanoseconds to ddr clocks
  1821. * round up if necessary
  1822. */
  1823. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1824. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1825. if (sdram_freq != ddr_check)
  1826. t_rc_clk++;
  1827. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1828. /* default xcs value */
  1829. sdtr3 |= SDRAM_SDTR3_XCS;
  1830. /*
  1831. * convert t_rfc from nanoseconds to ddr clocks
  1832. * round up if necessary
  1833. */
  1834. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1835. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1836. if (sdram_freq != ddr_check)
  1837. t_rfc_clk++;
  1838. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1839. mtsdram(SDRAM_SDTR3, sdtr3);
  1840. }
  1841. /*-----------------------------------------------------------------------------+
  1842. * program_bxcf.
  1843. *-----------------------------------------------------------------------------*/
  1844. static void program_bxcf(unsigned long *dimm_populated,
  1845. unsigned char *iic0_dimm_addr,
  1846. unsigned long num_dimm_banks)
  1847. {
  1848. unsigned long dimm_num;
  1849. unsigned long num_col_addr;
  1850. unsigned long num_ranks;
  1851. unsigned long num_banks;
  1852. unsigned long mode;
  1853. unsigned long ind_rank;
  1854. unsigned long ind;
  1855. unsigned long ind_bank;
  1856. unsigned long bank_0_populated;
  1857. /*------------------------------------------------------------------
  1858. * Set the BxCF regs. First, wipe out the bank config registers.
  1859. *-----------------------------------------------------------------*/
  1860. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
  1861. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1862. mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
  1863. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1864. mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
  1865. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1866. mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
  1867. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1868. mode = SDRAM_BXCF_M_BE_ENABLE;
  1869. bank_0_populated = 0;
  1870. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1871. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1872. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1873. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1874. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1875. num_ranks = (num_ranks & 0x0F) +1;
  1876. else
  1877. num_ranks = num_ranks & 0x0F;
  1878. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1879. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1880. if (num_banks == 4)
  1881. ind = 0;
  1882. else
  1883. ind = 5;
  1884. switch (num_col_addr) {
  1885. case 0x08:
  1886. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1887. break;
  1888. case 0x09:
  1889. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1890. break;
  1891. case 0x0A:
  1892. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1893. break;
  1894. case 0x0B:
  1895. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1896. break;
  1897. case 0x0C:
  1898. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1899. break;
  1900. default:
  1901. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1902. (unsigned int)dimm_num);
  1903. printf("ERROR: Unsupported value for number of "
  1904. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1905. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1906. spd_ddr_init_hang ();
  1907. }
  1908. }
  1909. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1910. bank_0_populated = 1;
  1911. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1912. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
  1913. mtdcr(SDRAMC_CFGDATA, mode);
  1914. }
  1915. }
  1916. }
  1917. }
  1918. /*------------------------------------------------------------------
  1919. * program memory queue.
  1920. *-----------------------------------------------------------------*/
  1921. static void program_memory_queue(unsigned long *dimm_populated,
  1922. unsigned char *iic0_dimm_addr,
  1923. unsigned long num_dimm_banks)
  1924. {
  1925. unsigned long dimm_num;
  1926. unsigned long rank_base_addr;
  1927. unsigned long rank_reg;
  1928. unsigned long rank_size_bytes;
  1929. unsigned long rank_size_id;
  1930. unsigned long num_ranks;
  1931. unsigned long baseadd_size;
  1932. unsigned long i;
  1933. unsigned long bank_0_populated = 0;
  1934. /*------------------------------------------------------------------
  1935. * Reset the rank_base_address.
  1936. *-----------------------------------------------------------------*/
  1937. rank_reg = SDRAM_R0BAS;
  1938. rank_base_addr = 0x00000000;
  1939. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1940. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1941. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1942. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1943. num_ranks = (num_ranks & 0x0F) + 1;
  1944. else
  1945. num_ranks = num_ranks & 0x0F;
  1946. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1947. /*------------------------------------------------------------------
  1948. * Set the sizes
  1949. *-----------------------------------------------------------------*/
  1950. baseadd_size = 0;
  1951. rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
  1952. switch (rank_size_id) {
  1953. case 0x02:
  1954. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1955. break;
  1956. case 0x04:
  1957. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1958. break;
  1959. case 0x08:
  1960. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1961. break;
  1962. case 0x10:
  1963. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1964. break;
  1965. case 0x20:
  1966. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1967. break;
  1968. case 0x40:
  1969. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1970. break;
  1971. case 0x80:
  1972. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1973. break;
  1974. default:
  1975. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1976. (unsigned int)dimm_num);
  1977. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1978. (unsigned int)rank_size_id);
  1979. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1980. spd_ddr_init_hang ();
  1981. }
  1982. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1983. bank_0_populated = 1;
  1984. for (i = 0; i < num_ranks; i++) {
  1985. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1986. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  1987. baseadd_size));
  1988. rank_base_addr += rank_size_bytes;
  1989. }
  1990. }
  1991. }
  1992. }
  1993. /*-----------------------------------------------------------------------------+
  1994. * is_ecc_enabled.
  1995. *-----------------------------------------------------------------------------*/
  1996. static unsigned long is_ecc_enabled(void)
  1997. {
  1998. unsigned long dimm_num;
  1999. unsigned long ecc;
  2000. unsigned long val;
  2001. ecc = 0;
  2002. /* loop through all the DIMM slots on the board */
  2003. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2004. mfsdram(SDRAM_MCOPT1, val);
  2005. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  2006. }
  2007. return ecc;
  2008. }
  2009. static void blank_string(int size)
  2010. {
  2011. int i;
  2012. for (i=0; i<size; i++)
  2013. putc('\b');
  2014. for (i=0; i<size; i++)
  2015. putc(' ');
  2016. for (i=0; i<size; i++)
  2017. putc('\b');
  2018. }
  2019. #ifdef CONFIG_DDR_ECC
  2020. /*-----------------------------------------------------------------------------+
  2021. * program_ecc.
  2022. *-----------------------------------------------------------------------------*/
  2023. static void program_ecc(unsigned long *dimm_populated,
  2024. unsigned char *iic0_dimm_addr,
  2025. unsigned long num_dimm_banks,
  2026. unsigned long tlb_word2_i_value)
  2027. {
  2028. unsigned long mcopt1;
  2029. unsigned long mcopt2;
  2030. unsigned long mcstat;
  2031. unsigned long dimm_num;
  2032. unsigned long ecc;
  2033. ecc = 0;
  2034. /* loop through all the DIMM slots on the board */
  2035. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2036. /* If a dimm is installed in a particular slot ... */
  2037. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2038. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2039. }
  2040. if (ecc == 0)
  2041. return;
  2042. mfsdram(SDRAM_MCOPT1, mcopt1);
  2043. mfsdram(SDRAM_MCOPT2, mcopt2);
  2044. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2045. /* DDR controller must be enabled and not in self-refresh. */
  2046. mfsdram(SDRAM_MCSTAT, mcstat);
  2047. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2048. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2049. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2050. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2051. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2052. }
  2053. }
  2054. return;
  2055. }
  2056. #ifdef CONFIG_ECC_ERROR_RESET
  2057. /*
  2058. * Check for ECC errors and reset board upon any error here
  2059. *
  2060. * On the Katmai 440SPe eval board, from time to time, the first
  2061. * lword write access after DDR2 initializazion with ECC checking
  2062. * enabled, leads to an ECC error. I couldn't find a configuration
  2063. * without this happening. On my board with the current setup it
  2064. * happens about 1 from 10 times.
  2065. *
  2066. * The ECC modules used for testing are:
  2067. * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
  2068. *
  2069. * This has to get fixed for the Katmai and tested for the other
  2070. * board (440SP/440SPe) that will eventually use this code in the
  2071. * future.
  2072. *
  2073. * 2007-03-01, sr
  2074. */
  2075. static void check_ecc(void)
  2076. {
  2077. u32 val;
  2078. mfsdram(SDRAM_ECCCR, val);
  2079. if (val != 0) {
  2080. printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
  2081. val, mfdcr(0x4c), mfdcr(0x4e));
  2082. printf("ECC error occured, resetting board...\n");
  2083. do_reset(NULL, 0, 0, NULL);
  2084. }
  2085. }
  2086. #endif
  2087. static void wait_ddr_idle(void)
  2088. {
  2089. u32 val;
  2090. do {
  2091. mfsdram(SDRAM_MCSTAT, val);
  2092. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2093. }
  2094. /*-----------------------------------------------------------------------------+
  2095. * program_ecc_addr.
  2096. *-----------------------------------------------------------------------------*/
  2097. static void program_ecc_addr(unsigned long start_address,
  2098. unsigned long num_bytes,
  2099. unsigned long tlb_word2_i_value)
  2100. {
  2101. unsigned long current_address;
  2102. unsigned long end_address;
  2103. unsigned long address_increment;
  2104. unsigned long mcopt1;
  2105. char str[] = "ECC generation -";
  2106. char slash[] = "\\|/-\\|/-";
  2107. int loop = 0;
  2108. int loopi = 0;
  2109. current_address = start_address;
  2110. mfsdram(SDRAM_MCOPT1, mcopt1);
  2111. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2112. mtsdram(SDRAM_MCOPT1,
  2113. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2114. sync();
  2115. eieio();
  2116. wait_ddr_idle();
  2117. puts(str);
  2118. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2119. /* ECC bit set method for non-cached memory */
  2120. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2121. address_increment = 4;
  2122. else
  2123. address_increment = 8;
  2124. end_address = current_address + num_bytes;
  2125. while (current_address < end_address) {
  2126. *((unsigned long *)current_address) = 0x00000000;
  2127. current_address += address_increment;
  2128. if ((loop++ % (2 << 20)) == 0) {
  2129. putc('\b');
  2130. putc(slash[loopi++ % 8]);
  2131. }
  2132. }
  2133. } else {
  2134. /* ECC bit set method for cached memory */
  2135. dcbz_area(start_address, num_bytes);
  2136. dflush();
  2137. }
  2138. blank_string(strlen(str));
  2139. sync();
  2140. eieio();
  2141. wait_ddr_idle();
  2142. /* clear ECC error repoting registers */
  2143. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2144. mtdcr(0x4c, 0xffffffff);
  2145. mtsdram(SDRAM_MCOPT1,
  2146. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2147. sync();
  2148. eieio();
  2149. wait_ddr_idle();
  2150. #ifdef CONFIG_ECC_ERROR_RESET
  2151. /*
  2152. * One write to 0 is enough to trigger this ECC error
  2153. * (see description above)
  2154. */
  2155. out_be32(0, 0x12345678);
  2156. check_ecc();
  2157. #endif
  2158. }
  2159. }
  2160. #endif
  2161. /*-----------------------------------------------------------------------------+
  2162. * program_DQS_calibration.
  2163. *-----------------------------------------------------------------------------*/
  2164. static void program_DQS_calibration(unsigned long *dimm_populated,
  2165. unsigned char *iic0_dimm_addr,
  2166. unsigned long num_dimm_banks)
  2167. {
  2168. unsigned long val;
  2169. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2170. mtsdram(SDRAM_RQDC, 0x80000037);
  2171. mtsdram(SDRAM_RDCC, 0x40000000);
  2172. mtsdram(SDRAM_RFDC, 0x000001DF);
  2173. test();
  2174. #else
  2175. /*------------------------------------------------------------------
  2176. * Program RDCC register
  2177. * Read sample cycle auto-update enable
  2178. *-----------------------------------------------------------------*/
  2179. /*
  2180. * Modified for the Katmai platform: with some DIMMs, the DDR2
  2181. * controller automatically selects the T2 read cycle, but this
  2182. * proves unreliable. Go ahead and force the DDR2 controller
  2183. * to use the T4 sample and disable the automatic update of the
  2184. * RDSS field.
  2185. */
  2186. mfsdram(SDRAM_RDCC, val);
  2187. mtsdram(SDRAM_RDCC,
  2188. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2189. | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
  2190. /*------------------------------------------------------------------
  2191. * Program RQDC register
  2192. * Internal DQS delay mechanism enable
  2193. *-----------------------------------------------------------------*/
  2194. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2195. /*------------------------------------------------------------------
  2196. * Program RFDC register
  2197. * Set Feedback Fractional Oversample
  2198. * Auto-detect read sample cycle enable
  2199. *-----------------------------------------------------------------*/
  2200. mfsdram(SDRAM_RFDC, val);
  2201. mtsdram(SDRAM_RFDC,
  2202. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2203. SDRAM_RFDC_RFFD_MASK))
  2204. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2205. SDRAM_RFDC_RFFD_ENCODE(0)));
  2206. DQS_calibration_process();
  2207. #endif
  2208. }
  2209. static int short_mem_test(void)
  2210. {
  2211. u32 *membase;
  2212. u32 bxcr_num;
  2213. u32 bxcf;
  2214. int i;
  2215. int j;
  2216. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2217. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2218. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2219. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2220. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2221. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2222. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2223. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2224. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2225. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2226. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2227. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2228. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2229. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2230. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2231. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2232. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2233. int l;
  2234. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2235. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2236. /* Banks enabled */
  2237. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2238. /* Bank is enabled */
  2239. /*------------------------------------------------------------------
  2240. * Run the short memory test.
  2241. *-----------------------------------------------------------------*/
  2242. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2243. for (i = 0; i < NUMMEMTESTS; i++) {
  2244. for (j = 0; j < NUMMEMWORDS; j++) {
  2245. membase[j] = test[i][j];
  2246. ppcDcbf((u32)&(membase[j]));
  2247. }
  2248. sync();
  2249. for (l=0; l<NUMLOOPS; l++) {
  2250. for (j = 0; j < NUMMEMWORDS; j++) {
  2251. if (membase[j] != test[i][j]) {
  2252. ppcDcbf((u32)&(membase[j]));
  2253. return 0;
  2254. }
  2255. ppcDcbf((u32)&(membase[j]));
  2256. }
  2257. sync();
  2258. }
  2259. }
  2260. } /* if bank enabled */
  2261. } /* for bxcf_num */
  2262. return 1;
  2263. }
  2264. #ifndef HARD_CODED_DQS
  2265. /*-----------------------------------------------------------------------------+
  2266. * DQS_calibration_process.
  2267. *-----------------------------------------------------------------------------*/
  2268. static void DQS_calibration_process(void)
  2269. {
  2270. unsigned long rfdc_reg;
  2271. unsigned long rffd;
  2272. unsigned long rqdc_reg;
  2273. unsigned long rqfd;
  2274. unsigned long val;
  2275. long rqfd_average;
  2276. long rffd_average;
  2277. long max_start;
  2278. long min_end;
  2279. unsigned long begin_rqfd[MAXRANKS];
  2280. unsigned long begin_rffd[MAXRANKS];
  2281. unsigned long end_rqfd[MAXRANKS];
  2282. unsigned long end_rffd[MAXRANKS];
  2283. char window_found;
  2284. unsigned long dlycal;
  2285. unsigned long dly_val;
  2286. unsigned long max_pass_length;
  2287. unsigned long current_pass_length;
  2288. unsigned long current_fail_length;
  2289. unsigned long current_start;
  2290. long max_end;
  2291. unsigned char fail_found;
  2292. unsigned char pass_found;
  2293. u32 rqfd_start;
  2294. char str[] = "Auto calibration -";
  2295. char slash[] = "\\|/-\\|/-";
  2296. int loopi = 0;
  2297. /*------------------------------------------------------------------
  2298. * Test to determine the best read clock delay tuning bits.
  2299. *
  2300. * Before the DDR controller can be used, the read clock delay needs to be
  2301. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2302. * This value cannot be hardcoded into the program because it changes
  2303. * depending on the board's setup and environment.
  2304. * To do this, all delay values are tested to see if they
  2305. * work or not. By doing this, you get groups of fails with groups of
  2306. * passing values. The idea is to find the start and end of a passing
  2307. * window and take the center of it to use as the read clock delay.
  2308. *
  2309. * A failure has to be seen first so that when we hit a pass, we know
  2310. * that it is truely the start of the window. If we get passing values
  2311. * to start off with, we don't know if we are at the start of the window.
  2312. *
  2313. * The code assumes that a failure will always be found.
  2314. * If a failure is not found, there is no easy way to get the middle
  2315. * of the passing window. I guess we can pretty much pick any value
  2316. * but some values will be better than others. Since the lowest speed
  2317. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2318. * from experimentation it is safe to say you will always have a failure.
  2319. *-----------------------------------------------------------------*/
  2320. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2321. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2322. puts(str);
  2323. calibration_loop:
  2324. mfsdram(SDRAM_RQDC, rqdc_reg);
  2325. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2326. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2327. max_start = 0;
  2328. min_end = 0;
  2329. begin_rqfd[0] = 0;
  2330. begin_rffd[0] = 0;
  2331. begin_rqfd[1] = 0;
  2332. begin_rffd[1] = 0;
  2333. end_rqfd[0] = 0;
  2334. end_rffd[0] = 0;
  2335. end_rqfd[1] = 0;
  2336. end_rffd[1] = 0;
  2337. window_found = FALSE;
  2338. max_pass_length = 0;
  2339. max_start = 0;
  2340. max_end = 0;
  2341. current_pass_length = 0;
  2342. current_fail_length = 0;
  2343. current_start = 0;
  2344. window_found = FALSE;
  2345. fail_found = FALSE;
  2346. pass_found = FALSE;
  2347. /*
  2348. * get the delay line calibration register value
  2349. */
  2350. mfsdram(SDRAM_DLCR, dlycal);
  2351. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2352. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2353. mfsdram(SDRAM_RFDC, rfdc_reg);
  2354. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2355. /*------------------------------------------------------------------
  2356. * Set the timing reg for the test.
  2357. *-----------------------------------------------------------------*/
  2358. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2359. /*------------------------------------------------------------------
  2360. * See if the rffd value passed.
  2361. *-----------------------------------------------------------------*/
  2362. if (short_mem_test()) {
  2363. if (fail_found == TRUE) {
  2364. pass_found = TRUE;
  2365. if (current_pass_length == 0)
  2366. current_start = rffd;
  2367. current_fail_length = 0;
  2368. current_pass_length++;
  2369. if (current_pass_length > max_pass_length) {
  2370. max_pass_length = current_pass_length;
  2371. max_start = current_start;
  2372. max_end = rffd;
  2373. }
  2374. }
  2375. } else {
  2376. current_pass_length = 0;
  2377. current_fail_length++;
  2378. if (current_fail_length >= (dly_val >> 2)) {
  2379. if (fail_found == FALSE) {
  2380. fail_found = TRUE;
  2381. } else if (pass_found == TRUE) {
  2382. window_found = TRUE;
  2383. break;
  2384. }
  2385. }
  2386. }
  2387. } /* for rffd */
  2388. /*------------------------------------------------------------------
  2389. * Set the average RFFD value
  2390. *-----------------------------------------------------------------*/
  2391. rffd_average = ((max_start + max_end) >> 1);
  2392. if (rffd_average < 0)
  2393. rffd_average = 0;
  2394. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2395. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2396. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2397. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2398. max_pass_length = 0;
  2399. max_start = 0;
  2400. max_end = 0;
  2401. current_pass_length = 0;
  2402. current_fail_length = 0;
  2403. current_start = 0;
  2404. window_found = FALSE;
  2405. fail_found = FALSE;
  2406. pass_found = FALSE;
  2407. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2408. mfsdram(SDRAM_RQDC, rqdc_reg);
  2409. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2410. /*------------------------------------------------------------------
  2411. * Set the timing reg for the test.
  2412. *-----------------------------------------------------------------*/
  2413. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2414. /*------------------------------------------------------------------
  2415. * See if the rffd value passed.
  2416. *-----------------------------------------------------------------*/
  2417. if (short_mem_test()) {
  2418. if (fail_found == TRUE) {
  2419. pass_found = TRUE;
  2420. if (current_pass_length == 0)
  2421. current_start = rqfd;
  2422. current_fail_length = 0;
  2423. current_pass_length++;
  2424. if (current_pass_length > max_pass_length) {
  2425. max_pass_length = current_pass_length;
  2426. max_start = current_start;
  2427. max_end = rqfd;
  2428. }
  2429. }
  2430. } else {
  2431. current_pass_length = 0;
  2432. current_fail_length++;
  2433. if (fail_found == FALSE) {
  2434. fail_found = TRUE;
  2435. } else if (pass_found == TRUE) {
  2436. window_found = TRUE;
  2437. break;
  2438. }
  2439. }
  2440. }
  2441. rqfd_average = ((max_start + max_end) >> 1);
  2442. /*------------------------------------------------------------------
  2443. * Make sure we found the valid read passing window. Halt if not
  2444. *-----------------------------------------------------------------*/
  2445. if (window_found == FALSE) {
  2446. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2447. putc('\b');
  2448. putc(slash[loopi++ % 8]);
  2449. /* try again from with a different RQFD start value */
  2450. rqfd_start++;
  2451. goto calibration_loop;
  2452. }
  2453. printf("\nERROR: Cannot determine a common read delay for the "
  2454. "DIMM(s) installed.\n");
  2455. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2456. ppc440sp_sdram_register_dump();
  2457. spd_ddr_init_hang ();
  2458. }
  2459. blank_string(strlen(str));
  2460. if (rqfd_average < 0)
  2461. rqfd_average = 0;
  2462. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2463. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2464. mtsdram(SDRAM_RQDC,
  2465. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2466. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2467. mfsdram(SDRAM_DLCR, val);
  2468. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2469. mfsdram(SDRAM_RQDC, val);
  2470. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2471. mfsdram(SDRAM_RFDC, val);
  2472. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2473. }
  2474. #else /* calibration test with hardvalues */
  2475. /*-----------------------------------------------------------------------------+
  2476. * DQS_calibration_process.
  2477. *-----------------------------------------------------------------------------*/
  2478. static void test(void)
  2479. {
  2480. unsigned long dimm_num;
  2481. unsigned long ecc_temp;
  2482. unsigned long i, j;
  2483. unsigned long *membase;
  2484. unsigned long bxcf[MAXRANKS];
  2485. unsigned long val;
  2486. char window_found;
  2487. char begin_found[MAXDIMMS];
  2488. char end_found[MAXDIMMS];
  2489. char search_end[MAXDIMMS];
  2490. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2491. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2492. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2493. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2494. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2495. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2496. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2497. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2498. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2499. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2500. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2501. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2502. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2503. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2504. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2505. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2506. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2507. /*------------------------------------------------------------------
  2508. * Test to determine the best read clock delay tuning bits.
  2509. *
  2510. * Before the DDR controller can be used, the read clock delay needs to be
  2511. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2512. * This value cannot be hardcoded into the program because it changes
  2513. * depending on the board's setup and environment.
  2514. * To do this, all delay values are tested to see if they
  2515. * work or not. By doing this, you get groups of fails with groups of
  2516. * passing values. The idea is to find the start and end of a passing
  2517. * window and take the center of it to use as the read clock delay.
  2518. *
  2519. * A failure has to be seen first so that when we hit a pass, we know
  2520. * that it is truely the start of the window. If we get passing values
  2521. * to start off with, we don't know if we are at the start of the window.
  2522. *
  2523. * The code assumes that a failure will always be found.
  2524. * If a failure is not found, there is no easy way to get the middle
  2525. * of the passing window. I guess we can pretty much pick any value
  2526. * but some values will be better than others. Since the lowest speed
  2527. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2528. * from experimentation it is safe to say you will always have a failure.
  2529. *-----------------------------------------------------------------*/
  2530. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2531. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2532. mfsdram(SDRAM_MCOPT1, val);
  2533. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2534. SDRAM_MCOPT1_MCHK_NON);
  2535. window_found = FALSE;
  2536. begin_found[0] = FALSE;
  2537. end_found[0] = FALSE;
  2538. search_end[0] = FALSE;
  2539. begin_found[1] = FALSE;
  2540. end_found[1] = FALSE;
  2541. search_end[1] = FALSE;
  2542. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2543. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2544. /* Banks enabled */
  2545. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2546. /* Bank is enabled */
  2547. membase =
  2548. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2549. /*------------------------------------------------------------------
  2550. * Run the short memory test.
  2551. *-----------------------------------------------------------------*/
  2552. for (i = 0; i < NUMMEMTESTS; i++) {
  2553. for (j = 0; j < NUMMEMWORDS; j++) {
  2554. membase[j] = test[i][j];
  2555. ppcDcbf((u32)&(membase[j]));
  2556. }
  2557. sync();
  2558. for (j = 0; j < NUMMEMWORDS; j++) {
  2559. if (membase[j] != test[i][j]) {
  2560. ppcDcbf((u32)&(membase[j]));
  2561. break;
  2562. }
  2563. ppcDcbf((u32)&(membase[j]));
  2564. }
  2565. sync();
  2566. if (j < NUMMEMWORDS)
  2567. break;
  2568. }
  2569. /*------------------------------------------------------------------
  2570. * See if the rffd value passed.
  2571. *-----------------------------------------------------------------*/
  2572. if (i < NUMMEMTESTS) {
  2573. if ((end_found[dimm_num] == FALSE) &&
  2574. (search_end[dimm_num] == TRUE)) {
  2575. end_found[dimm_num] = TRUE;
  2576. }
  2577. if ((end_found[0] == TRUE) &&
  2578. (end_found[1] == TRUE))
  2579. break;
  2580. } else {
  2581. if (begin_found[dimm_num] == FALSE) {
  2582. begin_found[dimm_num] = TRUE;
  2583. search_end[dimm_num] = TRUE;
  2584. }
  2585. }
  2586. } else {
  2587. begin_found[dimm_num] = TRUE;
  2588. end_found[dimm_num] = TRUE;
  2589. }
  2590. }
  2591. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2592. window_found = TRUE;
  2593. /*------------------------------------------------------------------
  2594. * Make sure we found the valid read passing window. Halt if not
  2595. *-----------------------------------------------------------------*/
  2596. if (window_found == FALSE) {
  2597. printf("ERROR: Cannot determine a common read delay for the "
  2598. "DIMM(s) installed.\n");
  2599. spd_ddr_init_hang ();
  2600. }
  2601. /*------------------------------------------------------------------
  2602. * Restore the ECC variable to what it originally was
  2603. *-----------------------------------------------------------------*/
  2604. mtsdram(SDRAM_MCOPT1,
  2605. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2606. | ecc_temp);
  2607. }
  2608. #endif
  2609. #if defined(DEBUG)
  2610. static void ppc440sp_sdram_register_dump(void)
  2611. {
  2612. unsigned int sdram_reg;
  2613. unsigned int sdram_data;
  2614. unsigned int dcr_data;
  2615. printf("\n Register Dump:\n");
  2616. sdram_reg = SDRAM_MCSTAT;
  2617. mfsdram(sdram_reg, sdram_data);
  2618. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2619. sdram_reg = SDRAM_MCOPT1;
  2620. mfsdram(sdram_reg, sdram_data);
  2621. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2622. sdram_reg = SDRAM_MCOPT2;
  2623. mfsdram(sdram_reg, sdram_data);
  2624. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2625. sdram_reg = SDRAM_MODT0;
  2626. mfsdram(sdram_reg, sdram_data);
  2627. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2628. sdram_reg = SDRAM_MODT1;
  2629. mfsdram(sdram_reg, sdram_data);
  2630. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2631. sdram_reg = SDRAM_MODT2;
  2632. mfsdram(sdram_reg, sdram_data);
  2633. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2634. sdram_reg = SDRAM_MODT3;
  2635. mfsdram(sdram_reg, sdram_data);
  2636. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2637. sdram_reg = SDRAM_CODT;
  2638. mfsdram(sdram_reg, sdram_data);
  2639. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2640. sdram_reg = SDRAM_VVPR;
  2641. mfsdram(sdram_reg, sdram_data);
  2642. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2643. sdram_reg = SDRAM_OPARS;
  2644. mfsdram(sdram_reg, sdram_data);
  2645. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2646. /*
  2647. * OPAR2 is only used as a trigger register.
  2648. * No data is contained in this register, and reading or writing
  2649. * to is can cause bad things to happen (hangs). Just skip it
  2650. * and report NA
  2651. * sdram_reg = SDRAM_OPAR2;
  2652. * mfsdram(sdram_reg, sdram_data);
  2653. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2654. */
  2655. printf(" SDRAM_OPART = N/A ");
  2656. sdram_reg = SDRAM_RTR;
  2657. mfsdram(sdram_reg, sdram_data);
  2658. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2659. sdram_reg = SDRAM_MB0CF;
  2660. mfsdram(sdram_reg, sdram_data);
  2661. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2662. sdram_reg = SDRAM_MB1CF;
  2663. mfsdram(sdram_reg, sdram_data);
  2664. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2665. sdram_reg = SDRAM_MB2CF;
  2666. mfsdram(sdram_reg, sdram_data);
  2667. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2668. sdram_reg = SDRAM_MB3CF;
  2669. mfsdram(sdram_reg, sdram_data);
  2670. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2671. sdram_reg = SDRAM_INITPLR0;
  2672. mfsdram(sdram_reg, sdram_data);
  2673. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2674. sdram_reg = SDRAM_INITPLR1;
  2675. mfsdram(sdram_reg, sdram_data);
  2676. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2677. sdram_reg = SDRAM_INITPLR2;
  2678. mfsdram(sdram_reg, sdram_data);
  2679. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2680. sdram_reg = SDRAM_INITPLR3;
  2681. mfsdram(sdram_reg, sdram_data);
  2682. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2683. sdram_reg = SDRAM_INITPLR4;
  2684. mfsdram(sdram_reg, sdram_data);
  2685. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2686. sdram_reg = SDRAM_INITPLR5;
  2687. mfsdram(sdram_reg, sdram_data);
  2688. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2689. sdram_reg = SDRAM_INITPLR6;
  2690. mfsdram(sdram_reg, sdram_data);
  2691. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2692. sdram_reg = SDRAM_INITPLR7;
  2693. mfsdram(sdram_reg, sdram_data);
  2694. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2695. sdram_reg = SDRAM_INITPLR8;
  2696. mfsdram(sdram_reg, sdram_data);
  2697. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2698. sdram_reg = SDRAM_INITPLR9;
  2699. mfsdram(sdram_reg, sdram_data);
  2700. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2701. sdram_reg = SDRAM_INITPLR10;
  2702. mfsdram(sdram_reg, sdram_data);
  2703. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2704. sdram_reg = SDRAM_INITPLR11;
  2705. mfsdram(sdram_reg, sdram_data);
  2706. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2707. sdram_reg = SDRAM_INITPLR12;
  2708. mfsdram(sdram_reg, sdram_data);
  2709. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2710. sdram_reg = SDRAM_INITPLR13;
  2711. mfsdram(sdram_reg, sdram_data);
  2712. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2713. sdram_reg = SDRAM_INITPLR14;
  2714. mfsdram(sdram_reg, sdram_data);
  2715. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2716. sdram_reg = SDRAM_INITPLR15;
  2717. mfsdram(sdram_reg, sdram_data);
  2718. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2719. sdram_reg = SDRAM_RQDC;
  2720. mfsdram(sdram_reg, sdram_data);
  2721. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2722. sdram_reg = SDRAM_RFDC;
  2723. mfsdram(sdram_reg, sdram_data);
  2724. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2725. sdram_reg = SDRAM_RDCC;
  2726. mfsdram(sdram_reg, sdram_data);
  2727. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2728. sdram_reg = SDRAM_DLCR;
  2729. mfsdram(sdram_reg, sdram_data);
  2730. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2731. sdram_reg = SDRAM_CLKTR;
  2732. mfsdram(sdram_reg, sdram_data);
  2733. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2734. sdram_reg = SDRAM_WRDTR;
  2735. mfsdram(sdram_reg, sdram_data);
  2736. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2737. sdram_reg = SDRAM_SDTR1;
  2738. mfsdram(sdram_reg, sdram_data);
  2739. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2740. sdram_reg = SDRAM_SDTR2;
  2741. mfsdram(sdram_reg, sdram_data);
  2742. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2743. sdram_reg = SDRAM_SDTR3;
  2744. mfsdram(sdram_reg, sdram_data);
  2745. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2746. sdram_reg = SDRAM_MMODE;
  2747. mfsdram(sdram_reg, sdram_data);
  2748. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2749. sdram_reg = SDRAM_MEMODE;
  2750. mfsdram(sdram_reg, sdram_data);
  2751. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2752. sdram_reg = SDRAM_ECCCR;
  2753. mfsdram(sdram_reg, sdram_data);
  2754. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2755. dcr_data = mfdcr(SDRAM_R0BAS);
  2756. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2757. dcr_data = mfdcr(SDRAM_R1BAS);
  2758. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2759. dcr_data = mfdcr(SDRAM_R2BAS);
  2760. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2761. dcr_data = mfdcr(SDRAM_R3BAS);
  2762. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2763. }
  2764. #else
  2765. static void ppc440sp_sdram_register_dump(void)
  2766. {
  2767. }
  2768. #endif
  2769. #endif /* CONFIG_SPD_EEPROM */