dc2114x.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765
  1. /*
  2. * See file CREDITS for list of people who contributed to this
  3. * project.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  18. * MA 02111-1307 USA
  19. */
  20. #include <common.h>
  21. #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \
  22. && defined(CONFIG_TULIP)
  23. #include <malloc.h>
  24. #include <net.h>
  25. #include <pci.h>
  26. #undef DEBUG
  27. #undef DEBUG_SROM
  28. #undef DEBUG_SROM2
  29. #undef UPDATE_SROM
  30. /* PCI Registers.
  31. */
  32. #define PCI_CFDA_PSM 0x43
  33. #define CFRV_RN 0x000000f0 /* Revision Number */
  34. #define WAKEUP 0x00 /* Power Saving Wakeup */
  35. #define SLEEP 0x80 /* Power Saving Sleep Mode */
  36. #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
  37. /* Ethernet chip registers.
  38. */
  39. #define DE4X5_BMR 0x000 /* Bus Mode Register */
  40. #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
  41. #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
  42. #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
  43. #define DE4X5_STS 0x028 /* Status Register */
  44. #define DE4X5_OMR 0x030 /* Operation Mode Register */
  45. #define DE4X5_SICR 0x068 /* SIA Connectivity Register */
  46. #define DE4X5_APROM 0x048 /* Ethernet Address PROM */
  47. /* Register bits.
  48. */
  49. #define BMR_SWR 0x00000001 /* Software Reset */
  50. #define STS_TS 0x00700000 /* Transmit Process State */
  51. #define STS_RS 0x000e0000 /* Receive Process State */
  52. #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
  53. #define OMR_SR 0x00000002 /* Start/Stop Receive */
  54. #define OMR_PS 0x00040000 /* Port Select */
  55. #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
  56. #define OMR_PM 0x00000080 /* Pass All Multicast */
  57. /* Descriptor bits.
  58. */
  59. #define R_OWN 0x80000000 /* Own Bit */
  60. #define RD_RER 0x02000000 /* Receive End Of Ring */
  61. #define RD_LS 0x00000100 /* Last Descriptor */
  62. #define RD_ES 0x00008000 /* Error Summary */
  63. #define TD_TER 0x02000000 /* Transmit End Of Ring */
  64. #define T_OWN 0x80000000 /* Own Bit */
  65. #define TD_LS 0x40000000 /* Last Segment */
  66. #define TD_FS 0x20000000 /* First Segment */
  67. #define TD_ES 0x00008000 /* Error Summary */
  68. #define TD_SET 0x08000000 /* Setup Packet */
  69. /* The EEPROM commands include the alway-set leading bit. */
  70. #define SROM_WRITE_CMD 5
  71. #define SROM_READ_CMD 6
  72. #define SROM_ERASE_CMD 7
  73. #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
  74. #define SROM_RD 0x00004000 /* Read from Boot ROM */
  75. #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
  76. #define EE_WRITE_0 0x4801
  77. #define EE_WRITE_1 0x4805
  78. #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
  79. #define SROM_SR 0x00000800 /* Select Serial ROM when set */
  80. #define DT_IN 0x00000004 /* Serial Data In */
  81. #define DT_CLK 0x00000002 /* Serial ROM Clock */
  82. #define DT_CS 0x00000001 /* Serial ROM Chip Select */
  83. #define POLL_DEMAND 1
  84. #ifdef CONFIG_TULIP_FIX_DAVICOM
  85. #define RESET_DM9102(dev) {\
  86. unsigned long i;\
  87. i=INL(dev, 0x0);\
  88. udelay(1000);\
  89. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  90. udelay(1000);\
  91. }
  92. #else
  93. #define RESET_DE4X5(dev) {\
  94. int i;\
  95. i=INL(dev, DE4X5_BMR);\
  96. udelay(1000);\
  97. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  98. udelay(1000);\
  99. OUTL(dev, i, DE4X5_BMR);\
  100. udelay(1000);\
  101. for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
  102. udelay(1000);\
  103. }
  104. #endif
  105. #define START_DE4X5(dev) {\
  106. s32 omr; \
  107. omr = INL(dev, DE4X5_OMR);\
  108. omr |= OMR_ST | OMR_SR;\
  109. OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
  110. }
  111. #define STOP_DE4X5(dev) {\
  112. s32 omr; \
  113. omr = INL(dev, DE4X5_OMR);\
  114. omr &= ~(OMR_ST|OMR_SR);\
  115. OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
  116. }
  117. #define NUM_RX_DESC PKTBUFSRX
  118. #ifndef CONFIG_TULIP_FIX_DAVICOM
  119. #define NUM_TX_DESC 1 /* Number of TX descriptors */
  120. #else
  121. #define NUM_TX_DESC 4
  122. #endif
  123. #define RX_BUFF_SZ PKTSIZE_ALIGN
  124. #define TOUT_LOOP 1000000
  125. #define SETUP_FRAME_LEN 192
  126. #define ETH_ALEN 6
  127. struct de4x5_desc {
  128. volatile s32 status;
  129. u32 des1;
  130. u32 buf;
  131. u32 next;
  132. };
  133. static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
  134. static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
  135. static int rx_new; /* RX descriptor ring pointer */
  136. static int tx_new; /* TX descriptor ring pointer */
  137. static char rxRingSize;
  138. static char txRingSize;
  139. static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
  140. static int getfrom_srom(struct eth_device* dev, u_long addr);
  141. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len);
  142. static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len);
  143. static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
  144. #ifdef UPDATE_SROM
  145. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
  146. static void update_srom(struct eth_device *dev, bd_t *bis);
  147. #endif
  148. static void read_hw_addr(struct eth_device* dev, bd_t * bis);
  149. static void send_setup_frame(struct eth_device* dev, bd_t * bis);
  150. static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
  151. static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
  152. static int dc21x4x_recv(struct eth_device* dev);
  153. static void dc21x4x_halt(struct eth_device* dev);
  154. #ifdef CONFIG_TULIP_SELECT_MEDIA
  155. extern void dc21x4x_select_media(struct eth_device* dev);
  156. #endif
  157. #if defined(CONFIG_E500)
  158. #define phys_to_bus(a) (a)
  159. #else
  160. #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
  161. #endif
  162. static int INL(struct eth_device* dev, u_long addr)
  163. {
  164. return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
  165. }
  166. static void OUTL(struct eth_device* dev, int command, u_long addr)
  167. {
  168. *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
  169. }
  170. static struct pci_device_id supported[] = {
  171. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
  172. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
  173. #ifdef CONFIG_TULIP_FIX_DAVICOM
  174. { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
  175. #endif
  176. { }
  177. };
  178. int dc21x4x_initialize(bd_t *bis)
  179. {
  180. int idx=0;
  181. int card_number = 0;
  182. int cfrv;
  183. unsigned char timer;
  184. pci_dev_t devbusfn;
  185. unsigned int iobase;
  186. unsigned short status;
  187. struct eth_device* dev;
  188. while(1) {
  189. devbusfn = pci_find_devices(supported, idx++);
  190. if (devbusfn == -1) {
  191. break;
  192. }
  193. /* Get the chip configuration revision register. */
  194. pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
  195. #ifndef CONFIG_TULIP_FIX_DAVICOM
  196. if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
  197. printf("Error: The chip is not DC21143.\n");
  198. continue;
  199. }
  200. #endif
  201. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  202. status |=
  203. #ifdef CONFIG_TULIP_USE_IO
  204. PCI_COMMAND_IO |
  205. #else
  206. PCI_COMMAND_MEMORY |
  207. #endif
  208. PCI_COMMAND_MASTER;
  209. pci_write_config_word(devbusfn, PCI_COMMAND, status);
  210. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  211. if (!(status & PCI_COMMAND_IO)) {
  212. printf("Error: Can not enable I/O access.\n");
  213. continue;
  214. }
  215. if (!(status & PCI_COMMAND_IO)) {
  216. printf("Error: Can not enable I/O access.\n");
  217. continue;
  218. }
  219. if (!(status & PCI_COMMAND_MASTER)) {
  220. printf("Error: Can not enable Bus Mastering.\n");
  221. continue;
  222. }
  223. /* Check the latency timer for values >= 0x60. */
  224. pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
  225. if (timer < 0x60) {
  226. pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
  227. }
  228. #ifdef CONFIG_TULIP_USE_IO
  229. /* read BAR for memory space access */
  230. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
  231. iobase &= PCI_BASE_ADDRESS_IO_MASK;
  232. #else
  233. /* read BAR for memory space access */
  234. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
  235. iobase &= PCI_BASE_ADDRESS_MEM_MASK;
  236. #endif
  237. #ifdef DEBUG
  238. printf("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
  239. #endif
  240. dev = (struct eth_device*) malloc(sizeof *dev);
  241. #ifdef CONFIG_TULIP_FIX_DAVICOM
  242. sprintf(dev->name, "Davicom#%d", card_number);
  243. #else
  244. sprintf(dev->name, "dc21x4x#%d", card_number);
  245. #endif
  246. #ifdef CONFIG_TULIP_USE_IO
  247. dev->iobase = pci_io_to_phys(devbusfn, iobase);
  248. #else
  249. dev->iobase = pci_mem_to_phys(devbusfn, iobase);
  250. #endif
  251. dev->priv = (void*) devbusfn;
  252. dev->init = dc21x4x_init;
  253. dev->halt = dc21x4x_halt;
  254. dev->send = dc21x4x_send;
  255. dev->recv = dc21x4x_recv;
  256. /* Ensure we're not sleeping. */
  257. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  258. udelay(10 * 1000);
  259. #ifndef CONFIG_TULIP_FIX_DAVICOM
  260. read_hw_addr(dev, bis);
  261. #endif
  262. eth_register(dev);
  263. card_number++;
  264. }
  265. return card_number;
  266. }
  267. static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
  268. {
  269. int i;
  270. int devbusfn = (int) dev->priv;
  271. /* Ensure we're not sleeping. */
  272. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  273. #ifdef CONFIG_TULIP_FIX_DAVICOM
  274. RESET_DM9102(dev);
  275. #else
  276. RESET_DE4X5(dev);
  277. #endif
  278. if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
  279. printf("Error: Cannot reset ethernet controller.\n");
  280. return 0;
  281. }
  282. #ifdef CONFIG_TULIP_SELECT_MEDIA
  283. dc21x4x_select_media(dev);
  284. #else
  285. OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
  286. #endif
  287. for (i = 0; i < NUM_RX_DESC; i++) {
  288. rx_ring[i].status = cpu_to_le32(R_OWN);
  289. rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
  290. rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
  291. #ifdef CONFIG_TULIP_FIX_DAVICOM
  292. rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
  293. #else
  294. rx_ring[i].next = 0;
  295. #endif
  296. }
  297. for (i=0; i < NUM_TX_DESC; i++) {
  298. tx_ring[i].status = 0;
  299. tx_ring[i].des1 = 0;
  300. tx_ring[i].buf = 0;
  301. #ifdef CONFIG_TULIP_FIX_DAVICOM
  302. tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
  303. #else
  304. tx_ring[i].next = 0;
  305. #endif
  306. }
  307. rxRingSize = NUM_RX_DESC;
  308. txRingSize = NUM_TX_DESC;
  309. /* Write the end of list marker to the descriptor lists. */
  310. rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
  311. tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
  312. /* Tell the adapter where the TX/RX rings are located. */
  313. OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
  314. OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
  315. START_DE4X5(dev);
  316. tx_new = 0;
  317. rx_new = 0;
  318. send_setup_frame(dev, bis);
  319. return 1;
  320. }
  321. static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
  322. {
  323. int status = -1;
  324. int i;
  325. if (length <= 0) {
  326. printf("%s: bad packet size: %d\n", dev->name, length);
  327. goto Done;
  328. }
  329. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  330. if (i >= TOUT_LOOP) {
  331. printf("%s: tx error buffer not ready\n", dev->name);
  332. goto Done;
  333. }
  334. }
  335. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
  336. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
  337. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  338. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  339. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  340. if (i >= TOUT_LOOP) {
  341. printf(".%s: tx buffer not ready\n", dev->name);
  342. goto Done;
  343. }
  344. }
  345. if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
  346. #if 0 /* test-only */
  347. printf("TX error status = 0x%08X\n",
  348. le32_to_cpu(tx_ring[tx_new].status));
  349. #endif
  350. tx_ring[tx_new].status = 0x0;
  351. goto Done;
  352. }
  353. status = length;
  354. Done:
  355. tx_new = (tx_new+1) % NUM_TX_DESC;
  356. return status;
  357. }
  358. static int dc21x4x_recv(struct eth_device* dev)
  359. {
  360. s32 status;
  361. int length = 0;
  362. for ( ; ; ) {
  363. status = (s32)le32_to_cpu(rx_ring[rx_new].status);
  364. if (status & R_OWN) {
  365. break;
  366. }
  367. if (status & RD_LS) {
  368. /* Valid frame status.
  369. */
  370. if (status & RD_ES) {
  371. /* There was an error.
  372. */
  373. printf("RX error status = 0x%08X\n", status);
  374. } else {
  375. /* A valid frame received.
  376. */
  377. length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
  378. /* Pass the packet up to the protocol
  379. * layers.
  380. */
  381. NetReceive(NetRxPackets[rx_new], length - 4);
  382. }
  383. /* Change buffer ownership for this frame, back
  384. * to the adapter.
  385. */
  386. rx_ring[rx_new].status = cpu_to_le32(R_OWN);
  387. }
  388. /* Update entry information.
  389. */
  390. rx_new = (rx_new + 1) % rxRingSize;
  391. }
  392. return length;
  393. }
  394. static void dc21x4x_halt(struct eth_device* dev)
  395. {
  396. int devbusfn = (int) dev->priv;
  397. STOP_DE4X5(dev);
  398. OUTL(dev, 0, DE4X5_SICR);
  399. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
  400. }
  401. static void send_setup_frame(struct eth_device* dev, bd_t *bis)
  402. {
  403. int i;
  404. char setup_frame[SETUP_FRAME_LEN];
  405. char *pa = &setup_frame[0];
  406. memset(pa, 0xff, SETUP_FRAME_LEN);
  407. for (i = 0; i < ETH_ALEN; i++) {
  408. *(pa + (i & 1)) = dev->enetaddr[i];
  409. if (i & 0x01) {
  410. pa += 4;
  411. }
  412. }
  413. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  414. if (i >= TOUT_LOOP) {
  415. printf("%s: tx error buffer not ready\n", dev->name);
  416. goto Done;
  417. }
  418. }
  419. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
  420. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
  421. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  422. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  423. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  424. if (i >= TOUT_LOOP) {
  425. printf("%s: tx buffer not ready\n", dev->name);
  426. goto Done;
  427. }
  428. }
  429. if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
  430. printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
  431. }
  432. tx_new = (tx_new+1) % NUM_TX_DESC;
  433. Done:
  434. return;
  435. }
  436. /* SROM Read and write routines.
  437. */
  438. static void
  439. sendto_srom(struct eth_device* dev, u_int command, u_long addr)
  440. {
  441. OUTL(dev, command, addr);
  442. udelay(1);
  443. }
  444. static int
  445. getfrom_srom(struct eth_device* dev, u_long addr)
  446. {
  447. s32 tmp;
  448. tmp = INL(dev, addr);
  449. udelay(1);
  450. return tmp;
  451. }
  452. /* Note: this routine returns extra data bits for size detection. */
  453. static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
  454. {
  455. int i;
  456. unsigned retval = 0;
  457. int read_cmd = location | (SROM_READ_CMD << addr_len);
  458. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  459. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  460. #ifdef DEBUG_SROM
  461. printf(" EEPROM read at %d ", location);
  462. #endif
  463. /* Shift the read command bits out. */
  464. for (i = 4 + addr_len; i >= 0; i--) {
  465. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  466. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
  467. udelay(10);
  468. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
  469. udelay(10);
  470. #ifdef DEBUG_SROM2
  471. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  472. #endif
  473. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  474. }
  475. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  476. #ifdef DEBUG_SROM2
  477. printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
  478. #endif
  479. for (i = 16; i > 0; i--) {
  480. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  481. udelay(10);
  482. #ifdef DEBUG_SROM2
  483. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  484. #endif
  485. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  486. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  487. udelay(10);
  488. }
  489. /* Terminate the EEPROM access. */
  490. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  491. #ifdef DEBUG_SROM2
  492. printf(" EEPROM value at %d is %5.5x.\n", location, retval);
  493. #endif
  494. return retval;
  495. }
  496. /* This executes a generic EEPROM command, typically a write or write enable.
  497. It returns the data output from the EEPROM, and thus may also be used for
  498. reads. */
  499. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
  500. {
  501. unsigned retval = 0;
  502. #ifdef DEBUG_SROM
  503. printf(" EEPROM op 0x%x: ", cmd);
  504. #endif
  505. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  506. /* Shift the command bits out. */
  507. do {
  508. short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
  509. sendto_srom(dev,dataval, ioaddr);
  510. udelay(10);
  511. #ifdef DEBUG_SROM2
  512. printf("%X", getfrom_srom(dev,ioaddr) & 15);
  513. #endif
  514. sendto_srom(dev,dataval | DT_CLK, ioaddr);
  515. udelay(10);
  516. retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
  517. } while (--cmd_len >= 0);
  518. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
  519. /* Terminate the EEPROM access. */
  520. sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
  521. #ifdef DEBUG_SROM
  522. printf(" EEPROM result is 0x%5.5x.\n", retval);
  523. #endif
  524. return retval;
  525. }
  526. static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
  527. {
  528. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  529. return do_eeprom_cmd(dev, ioaddr,
  530. (((SROM_READ_CMD << ee_addr_size) | index) << 16)
  531. | 0xffff, 3 + ee_addr_size + 16);
  532. }
  533. #ifdef UPDATE_SROM
  534. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
  535. {
  536. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  537. int i;
  538. unsigned short newval;
  539. udelay(10*1000); /* test-only */
  540. #ifdef DEBUG_SROM
  541. printf("ee_addr_size=%d.\n", ee_addr_size);
  542. printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
  543. #endif
  544. /* Enable programming modes. */
  545. do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
  546. /* Do the actual write. */
  547. do_eeprom_cmd(dev, ioaddr,
  548. (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
  549. 3 + ee_addr_size + 16);
  550. /* Poll for write finished. */
  551. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  552. for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
  553. if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
  554. break;
  555. #ifdef DEBUG_SROM
  556. printf(" Write finished after %d ticks.\n", i);
  557. #endif
  558. /* Disable programming. */
  559. do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
  560. /* And read the result. */
  561. newval = do_eeprom_cmd(dev, ioaddr,
  562. (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
  563. | 0xffff, 3 + ee_addr_size + 16);
  564. #ifdef DEBUG_SROM
  565. printf(" New value at offset %d is %4.4x.\n", index, newval);
  566. #endif
  567. return 1;
  568. }
  569. #endif
  570. static void read_hw_addr(struct eth_device *dev, bd_t *bis)
  571. {
  572. u_short tmp, *p = (short *)(&dev->enetaddr[0]);
  573. int i, j = 0;
  574. for (i = 0; i < (ETH_ALEN >> 1); i++) {
  575. tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
  576. *p = le16_to_cpu(tmp);
  577. j += *p++;
  578. }
  579. if ((j == 0) || (j == 0x2fffd)) {
  580. memset (dev->enetaddr, 0, ETH_ALEN);
  581. #ifdef DEBUG
  582. printf("Warning: can't read HW address from SROM.\n");
  583. #endif
  584. goto Done;
  585. }
  586. return;
  587. Done:
  588. #ifdef UPDATE_SROM
  589. update_srom(dev, bis);
  590. #endif
  591. return;
  592. }
  593. #ifdef UPDATE_SROM
  594. static void update_srom(struct eth_device *dev, bd_t *bis)
  595. {
  596. int i;
  597. static unsigned short eeprom[0x40] = {
  598. 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
  599. 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
  600. 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
  601. 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
  602. 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
  603. 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
  604. 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
  605. 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
  606. 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
  607. 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
  608. 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
  609. 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
  610. 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
  611. 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
  612. 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
  613. 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
  614. };
  615. /* Ethernet Addr... */
  616. eeprom[0x0a] = ((bis->bi_enetaddr[1] & 0xff) << 8) | (bis->bi_enetaddr[0] & 0xff);
  617. eeprom[0x0b] = ((bis->bi_enetaddr[3] & 0xff) << 8) | (bis->bi_enetaddr[2] & 0xff);
  618. eeprom[0x0c] = ((bis->bi_enetaddr[5] & 0xff) << 8) | (bis->bi_enetaddr[4] & 0xff);
  619. for (i=0; i<0x40; i++)
  620. {
  621. write_srom(dev, DE4X5_APROM, i, eeprom[i]);
  622. }
  623. }
  624. #endif
  625. #endif