spl_power_init.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923
  1. /*
  2. * Freescale i.MX28 Boot PMIC init
  3. *
  4. * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
  5. * on behalf of DENX Software Engineering GmbH
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <config.h>
  27. #include <asm/io.h>
  28. #include <asm/arch/imx-regs.h>
  29. #include "mx28_init.h"
  30. void mx28_power_clock2xtal(void)
  31. {
  32. struct mx28_clkctrl_regs *clkctrl_regs =
  33. (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE;
  34. /* Set XTAL as CPU reference clock */
  35. writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
  36. &clkctrl_regs->hw_clkctrl_clkseq_set);
  37. }
  38. void mx28_power_clock2pll(void)
  39. {
  40. struct mx28_clkctrl_regs *clkctrl_regs =
  41. (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE;
  42. writel(CLKCTRL_PLL0CTRL0_POWER,
  43. &clkctrl_regs->hw_clkctrl_pll0ctrl0_set);
  44. early_delay(100);
  45. writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
  46. &clkctrl_regs->hw_clkctrl_clkseq_clr);
  47. }
  48. void mx28_power_clear_auto_restart(void)
  49. {
  50. struct mx28_rtc_regs *rtc_regs =
  51. (struct mx28_rtc_regs *)MXS_RTC_BASE;
  52. writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr);
  53. while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST)
  54. ;
  55. writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr);
  56. while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE)
  57. ;
  58. /*
  59. * Due to the hardware design bug of mx28 EVK-A
  60. * we need to set the AUTO_RESTART bit.
  61. */
  62. if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART)
  63. return;
  64. while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
  65. ;
  66. setbits_le32(&rtc_regs->hw_rtc_persistent0,
  67. RTC_PERSISTENT0_AUTO_RESTART);
  68. writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set);
  69. writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr);
  70. while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
  71. ;
  72. while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK)
  73. ;
  74. }
  75. void mx28_power_set_linreg(void)
  76. {
  77. struct mx28_power_regs *power_regs =
  78. (struct mx28_power_regs *)MXS_POWER_BASE;
  79. /* Set linear regulator 25mV below switching converter */
  80. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  81. POWER_VDDDCTRL_LINREG_OFFSET_MASK,
  82. POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
  83. clrsetbits_le32(&power_regs->hw_power_vddactrl,
  84. POWER_VDDACTRL_LINREG_OFFSET_MASK,
  85. POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW);
  86. clrsetbits_le32(&power_regs->hw_power_vddioctrl,
  87. POWER_VDDIOCTRL_LINREG_OFFSET_MASK,
  88. POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW);
  89. }
  90. int mx28_get_batt_volt(void)
  91. {
  92. struct mx28_power_regs *power_regs =
  93. (struct mx28_power_regs *)MXS_POWER_BASE;
  94. uint32_t volt = readl(&power_regs->hw_power_battmonitor);
  95. volt &= POWER_BATTMONITOR_BATT_VAL_MASK;
  96. volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET;
  97. volt *= 8;
  98. return volt;
  99. }
  100. int mx28_is_batt_ready(void)
  101. {
  102. return (mx28_get_batt_volt() >= 3600);
  103. }
  104. int mx28_is_batt_good(void)
  105. {
  106. struct mx28_power_regs *power_regs =
  107. (struct mx28_power_regs *)MXS_POWER_BASE;
  108. uint32_t volt = mx28_get_batt_volt();
  109. if ((volt >= 2400) && (volt <= 4300))
  110. return 1;
  111. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  112. POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
  113. 0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
  114. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  115. &power_regs->hw_power_5vctrl_clr);
  116. clrsetbits_le32(&power_regs->hw_power_charge,
  117. POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
  118. POWER_CHARGE_STOP_ILIMIT_10MA | 0x3);
  119. writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr);
  120. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  121. &power_regs->hw_power_5vctrl_clr);
  122. early_delay(500000);
  123. volt = mx28_get_batt_volt();
  124. if (volt >= 3500)
  125. return 0;
  126. if (volt >= 2400)
  127. return 1;
  128. writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
  129. &power_regs->hw_power_charge_clr);
  130. writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set);
  131. return 0;
  132. }
  133. void mx28_power_setup_5v_detect(void)
  134. {
  135. struct mx28_power_regs *power_regs =
  136. (struct mx28_power_regs *)MXS_POWER_BASE;
  137. /* Start 5V detection */
  138. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  139. POWER_5VCTRL_VBUSVALID_TRSH_MASK,
  140. POWER_5VCTRL_VBUSVALID_TRSH_4V4 |
  141. POWER_5VCTRL_PWRUP_VBUS_CMPS);
  142. }
  143. void mx28_src_power_init(void)
  144. {
  145. struct mx28_power_regs *power_regs =
  146. (struct mx28_power_regs *)MXS_POWER_BASE;
  147. /* Improve efficieny and reduce transient ripple */
  148. writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST |
  149. POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set);
  150. clrsetbits_le32(&power_regs->hw_power_dclimits,
  151. POWER_DCLIMITS_POSLIMIT_BUCK_MASK,
  152. 0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET);
  153. setbits_le32(&power_regs->hw_power_battmonitor,
  154. POWER_BATTMONITOR_EN_BATADJ);
  155. /* Increase the RCSCALE level for quick DCDC response to dynamic load */
  156. clrsetbits_le32(&power_regs->hw_power_loopctrl,
  157. POWER_LOOPCTRL_EN_RCSCALE_MASK,
  158. POWER_LOOPCTRL_RCSCALE_THRESH |
  159. POWER_LOOPCTRL_EN_RCSCALE_8X);
  160. clrsetbits_le32(&power_regs->hw_power_minpwr,
  161. POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
  162. /* 5V to battery handoff ... FIXME */
  163. setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
  164. early_delay(30);
  165. clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
  166. }
  167. void mx28_power_init_4p2_params(void)
  168. {
  169. struct mx28_power_regs *power_regs =
  170. (struct mx28_power_regs *)MXS_POWER_BASE;
  171. /* Setup 4P2 parameters */
  172. clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
  173. POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK,
  174. POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET));
  175. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  176. POWER_5VCTRL_HEADROOM_ADJ_MASK,
  177. 0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET);
  178. clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
  179. POWER_DCDC4P2_DROPOUT_CTRL_MASK,
  180. POWER_DCDC4P2_DROPOUT_CTRL_100MV |
  181. POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL);
  182. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  183. POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
  184. 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
  185. }
  186. void mx28_enable_4p2_dcdc_input(int xfer)
  187. {
  188. struct mx28_power_regs *power_regs =
  189. (struct mx28_power_regs *)MXS_POWER_BASE;
  190. uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo;
  191. uint32_t prev_5v_brnout, prev_5v_droop;
  192. prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) &
  193. POWER_5VCTRL_PWDN_5VBRNOUT;
  194. prev_5v_droop = readl(&power_regs->hw_power_ctrl) &
  195. POWER_CTRL_ENIRQ_VDD5V_DROOP;
  196. clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
  197. writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
  198. &power_regs->hw_power_reset);
  199. clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP);
  200. if (xfer && (readl(&power_regs->hw_power_5vctrl) &
  201. POWER_5VCTRL_ENABLE_DCDC)) {
  202. return;
  203. }
  204. /*
  205. * Recording orignal values that will be modified temporarlily
  206. * to handle a chip bug. See chip errata for CQ ENGR00115837
  207. */
  208. tmp = readl(&power_regs->hw_power_5vctrl);
  209. vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK;
  210. vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT;
  211. pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO;
  212. /*
  213. * Disable mechanisms that get erroneously tripped by when setting
  214. * the DCDC4P2 EN_DCDC
  215. */
  216. clrbits_le32(&power_regs->hw_power_5vctrl,
  217. POWER_5VCTRL_VBUSVALID_5VDETECT |
  218. POWER_5VCTRL_VBUSVALID_TRSH_MASK);
  219. writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set);
  220. if (xfer) {
  221. setbits_le32(&power_regs->hw_power_5vctrl,
  222. POWER_5VCTRL_DCDC_XFER);
  223. early_delay(20);
  224. clrbits_le32(&power_regs->hw_power_5vctrl,
  225. POWER_5VCTRL_DCDC_XFER);
  226. setbits_le32(&power_regs->hw_power_5vctrl,
  227. POWER_5VCTRL_ENABLE_DCDC);
  228. } else {
  229. setbits_le32(&power_regs->hw_power_dcdc4p2,
  230. POWER_DCDC4P2_ENABLE_DCDC);
  231. }
  232. early_delay(25);
  233. clrsetbits_le32(&power_regs->hw_power_5vctrl,
  234. POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh);
  235. if (vbus_5vdetect)
  236. writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set);
  237. if (!pwd_bo)
  238. clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO);
  239. while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ)
  240. writel(POWER_CTRL_VBUS_VALID_IRQ,
  241. &power_regs->hw_power_ctrl_clr);
  242. if (prev_5v_brnout) {
  243. writel(POWER_5VCTRL_PWDN_5VBRNOUT,
  244. &power_regs->hw_power_5vctrl_set);
  245. writel(POWER_RESET_UNLOCK_KEY,
  246. &power_regs->hw_power_reset);
  247. } else {
  248. writel(POWER_5VCTRL_PWDN_5VBRNOUT,
  249. &power_regs->hw_power_5vctrl_clr);
  250. writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
  251. &power_regs->hw_power_reset);
  252. }
  253. while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ)
  254. writel(POWER_CTRL_VDD5V_DROOP_IRQ,
  255. &power_regs->hw_power_ctrl_clr);
  256. if (prev_5v_droop)
  257. clrbits_le32(&power_regs->hw_power_ctrl,
  258. POWER_CTRL_ENIRQ_VDD5V_DROOP);
  259. else
  260. setbits_le32(&power_regs->hw_power_ctrl,
  261. POWER_CTRL_ENIRQ_VDD5V_DROOP);
  262. }
  263. void mx28_power_init_4p2_regulator(void)
  264. {
  265. struct mx28_power_regs *power_regs =
  266. (struct mx28_power_regs *)MXS_POWER_BASE;
  267. uint32_t tmp, tmp2;
  268. setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2);
  269. writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set);
  270. writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
  271. &power_regs->hw_power_5vctrl_clr);
  272. clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK);
  273. /* Power up the 4p2 rail and logic/control */
  274. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  275. &power_regs->hw_power_5vctrl_clr);
  276. /*
  277. * Start charging up the 4p2 capacitor. We ramp of this charge
  278. * gradually to avoid large inrush current from the 5V cable which can
  279. * cause transients/problems
  280. */
  281. mx28_enable_4p2_dcdc_input(0);
  282. if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
  283. /*
  284. * If we arrived here, we were unable to recover from mx23 chip
  285. * errata 5837. 4P2 is disabled and sufficient battery power is
  286. * not present. Exiting to not enable DCDC power during 5V
  287. * connected state.
  288. */
  289. clrbits_le32(&power_regs->hw_power_dcdc4p2,
  290. POWER_DCDC4P2_ENABLE_DCDC);
  291. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  292. &power_regs->hw_power_5vctrl_set);
  293. hang();
  294. }
  295. /*
  296. * Here we set the 4p2 brownout level to something very close to 4.2V.
  297. * We then check the brownout status. If the brownout status is false,
  298. * the voltage is already close to the target voltage of 4.2V so we
  299. * can go ahead and set the 4P2 current limit to our max target limit.
  300. * If the brownout status is true, we need to ramp us the current limit
  301. * so that we don't cause large inrush current issues. We step up the
  302. * current limit until the brownout status is false or until we've
  303. * reached our maximum defined 4p2 current limit.
  304. */
  305. clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
  306. POWER_DCDC4P2_BO_MASK,
  307. 22 << POWER_DCDC4P2_BO_OFFSET); /* 4.15V */
  308. if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) {
  309. setbits_le32(&power_regs->hw_power_5vctrl,
  310. 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
  311. } else {
  312. tmp = (readl(&power_regs->hw_power_5vctrl) &
  313. POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >>
  314. POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
  315. while (tmp < 0x3f) {
  316. if (!(readl(&power_regs->hw_power_sts) &
  317. POWER_STS_DCDC_4P2_BO)) {
  318. tmp = readl(&power_regs->hw_power_5vctrl);
  319. tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
  320. early_delay(100);
  321. writel(tmp, &power_regs->hw_power_5vctrl);
  322. break;
  323. } else {
  324. tmp++;
  325. tmp2 = readl(&power_regs->hw_power_5vctrl);
  326. tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
  327. tmp2 |= tmp <<
  328. POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
  329. writel(tmp2, &power_regs->hw_power_5vctrl);
  330. early_delay(100);
  331. }
  332. }
  333. }
  334. clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK);
  335. writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
  336. }
  337. void mx28_power_init_dcdc_4p2_source(void)
  338. {
  339. struct mx28_power_regs *power_regs =
  340. (struct mx28_power_regs *)MXS_POWER_BASE;
  341. if (!(readl(&power_regs->hw_power_dcdc4p2) &
  342. POWER_DCDC4P2_ENABLE_DCDC)) {
  343. hang();
  344. }
  345. mx28_enable_4p2_dcdc_input(1);
  346. if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
  347. clrbits_le32(&power_regs->hw_power_dcdc4p2,
  348. POWER_DCDC4P2_ENABLE_DCDC);
  349. writel(POWER_5VCTRL_ENABLE_DCDC,
  350. &power_regs->hw_power_5vctrl_clr);
  351. writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
  352. &power_regs->hw_power_5vctrl_set);
  353. }
  354. }
  355. void mx28_power_enable_4p2(void)
  356. {
  357. struct mx28_power_regs *power_regs =
  358. (struct mx28_power_regs *)MXS_POWER_BASE;
  359. uint32_t vdddctrl, vddactrl, vddioctrl;
  360. uint32_t tmp;
  361. vdddctrl = readl(&power_regs->hw_power_vdddctrl);
  362. vddactrl = readl(&power_regs->hw_power_vddactrl);
  363. vddioctrl = readl(&power_regs->hw_power_vddioctrl);
  364. setbits_le32(&power_regs->hw_power_vdddctrl,
  365. POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
  366. POWER_VDDDCTRL_PWDN_BRNOUT);
  367. setbits_le32(&power_regs->hw_power_vddactrl,
  368. POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG |
  369. POWER_VDDACTRL_PWDN_BRNOUT);
  370. setbits_le32(&power_regs->hw_power_vddioctrl,
  371. POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT);
  372. mx28_power_init_4p2_params();
  373. mx28_power_init_4p2_regulator();
  374. /* Shutdown battery (none present) */
  375. clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK);
  376. writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
  377. writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr);
  378. mx28_power_init_dcdc_4p2_source();
  379. writel(vdddctrl, &power_regs->hw_power_vdddctrl);
  380. early_delay(20);
  381. writel(vddactrl, &power_regs->hw_power_vddactrl);
  382. early_delay(20);
  383. writel(vddioctrl, &power_regs->hw_power_vddioctrl);
  384. /*
  385. * Check if FET is enabled on either powerout and if so,
  386. * disable load.
  387. */
  388. tmp = 0;
  389. tmp |= !(readl(&power_regs->hw_power_vdddctrl) &
  390. POWER_VDDDCTRL_DISABLE_FET);
  391. tmp |= !(readl(&power_regs->hw_power_vddactrl) &
  392. POWER_VDDACTRL_DISABLE_FET);
  393. tmp |= !(readl(&power_regs->hw_power_vddioctrl) &
  394. POWER_VDDIOCTRL_DISABLE_FET);
  395. if (tmp)
  396. writel(POWER_CHARGE_ENABLE_LOAD,
  397. &power_regs->hw_power_charge_clr);
  398. }
  399. void mx28_boot_valid_5v(void)
  400. {
  401. struct mx28_power_regs *power_regs =
  402. (struct mx28_power_regs *)MXS_POWER_BASE;
  403. /*
  404. * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V
  405. * disconnect event. FIXME
  406. */
  407. writel(POWER_5VCTRL_VBUSVALID_5VDETECT,
  408. &power_regs->hw_power_5vctrl_set);
  409. /* Configure polarity to check for 5V disconnection. */
  410. writel(POWER_CTRL_POLARITY_VBUSVALID |
  411. POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
  412. &power_regs->hw_power_ctrl_clr);
  413. writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
  414. &power_regs->hw_power_ctrl_clr);
  415. mx28_power_enable_4p2();
  416. }
  417. void mx28_powerdown(void)
  418. {
  419. struct mx28_power_regs *power_regs =
  420. (struct mx28_power_regs *)MXS_POWER_BASE;
  421. writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset);
  422. writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
  423. &power_regs->hw_power_reset);
  424. }
  425. void mx28_handle_5v_conflict(void)
  426. {
  427. struct mx28_power_regs *power_regs =
  428. (struct mx28_power_regs *)MXS_POWER_BASE;
  429. uint32_t tmp;
  430. setbits_le32(&power_regs->hw_power_vddioctrl,
  431. POWER_VDDIOCTRL_BO_OFFSET_MASK);
  432. for (;;) {
  433. tmp = readl(&power_regs->hw_power_sts);
  434. if (tmp & POWER_STS_VDDIO_BO) {
  435. mx28_powerdown();
  436. break;
  437. }
  438. if (tmp & POWER_STS_VDD5V_GT_VDDIO) {
  439. mx28_boot_valid_5v();
  440. break;
  441. } else {
  442. mx28_powerdown();
  443. break;
  444. }
  445. }
  446. }
  447. void mx28_5v_boot(void)
  448. {
  449. struct mx28_power_regs *power_regs =
  450. (struct mx28_power_regs *)MXS_POWER_BASE;
  451. /*
  452. * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID,
  453. * but their implementation always returns 1 so we omit it here.
  454. */
  455. if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
  456. mx28_boot_valid_5v();
  457. return;
  458. }
  459. early_delay(1000);
  460. if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
  461. mx28_boot_valid_5v();
  462. return;
  463. }
  464. mx28_handle_5v_conflict();
  465. }
  466. void mx28_init_batt_bo(void)
  467. {
  468. struct mx28_power_regs *power_regs =
  469. (struct mx28_power_regs *)MXS_POWER_BASE;
  470. /* Brownout at 3V */
  471. clrsetbits_le32(&power_regs->hw_power_battmonitor,
  472. POWER_BATTMONITOR_BRWNOUT_LVL_MASK,
  473. 15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET);
  474. writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr);
  475. writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr);
  476. }
  477. void mx28_switch_vddd_to_dcdc_source(void)
  478. {
  479. struct mx28_power_regs *power_regs =
  480. (struct mx28_power_regs *)MXS_POWER_BASE;
  481. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  482. POWER_VDDDCTRL_LINREG_OFFSET_MASK,
  483. POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
  484. clrbits_le32(&power_regs->hw_power_vdddctrl,
  485. POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
  486. POWER_VDDDCTRL_DISABLE_STEPPING);
  487. }
  488. void mx28_power_configure_power_source(void)
  489. {
  490. mx28_src_power_init();
  491. mx28_5v_boot();
  492. mx28_power_clock2pll();
  493. mx28_init_batt_bo();
  494. mx28_switch_vddd_to_dcdc_source();
  495. }
  496. void mx28_enable_output_rail_protection(void)
  497. {
  498. struct mx28_power_regs *power_regs =
  499. (struct mx28_power_regs *)MXS_POWER_BASE;
  500. writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
  501. POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr);
  502. setbits_le32(&power_regs->hw_power_vdddctrl,
  503. POWER_VDDDCTRL_PWDN_BRNOUT);
  504. setbits_le32(&power_regs->hw_power_vddactrl,
  505. POWER_VDDACTRL_PWDN_BRNOUT);
  506. setbits_le32(&power_regs->hw_power_vddioctrl,
  507. POWER_VDDIOCTRL_PWDN_BRNOUT);
  508. }
  509. int mx28_get_vddio_power_source_off(void)
  510. {
  511. struct mx28_power_regs *power_regs =
  512. (struct mx28_power_regs *)MXS_POWER_BASE;
  513. uint32_t tmp;
  514. if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
  515. tmp = readl(&power_regs->hw_power_vddioctrl);
  516. if (tmp & POWER_VDDIOCTRL_DISABLE_FET) {
  517. if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
  518. POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
  519. return 1;
  520. }
  521. }
  522. if (!(readl(&power_regs->hw_power_5vctrl) &
  523. POWER_5VCTRL_ENABLE_DCDC)) {
  524. if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
  525. POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
  526. return 1;
  527. }
  528. }
  529. }
  530. return 0;
  531. }
  532. int mx28_get_vddd_power_source_off(void)
  533. {
  534. struct mx28_power_regs *power_regs =
  535. (struct mx28_power_regs *)MXS_POWER_BASE;
  536. uint32_t tmp;
  537. tmp = readl(&power_regs->hw_power_vdddctrl);
  538. if (tmp & POWER_VDDDCTRL_DISABLE_FET) {
  539. if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
  540. POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
  541. return 1;
  542. }
  543. }
  544. if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
  545. if (!(readl(&power_regs->hw_power_5vctrl) &
  546. POWER_5VCTRL_ENABLE_DCDC)) {
  547. return 1;
  548. }
  549. }
  550. if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) {
  551. if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
  552. POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) {
  553. return 1;
  554. }
  555. }
  556. return 0;
  557. }
  558. void mx28_power_set_vddio(uint32_t new_target, uint32_t new_brownout)
  559. {
  560. struct mx28_power_regs *power_regs =
  561. (struct mx28_power_regs *)MXS_POWER_BASE;
  562. uint32_t cur_target, diff, bo_int = 0;
  563. uint32_t powered_by_linreg = 0;
  564. new_brownout = new_target - new_brownout;
  565. cur_target = readl(&power_regs->hw_power_vddioctrl);
  566. cur_target &= POWER_VDDIOCTRL_TRG_MASK;
  567. cur_target *= 50; /* 50 mV step*/
  568. cur_target += 2800; /* 2800 mV lowest */
  569. powered_by_linreg = mx28_get_vddio_power_source_off();
  570. if (new_target > cur_target) {
  571. if (powered_by_linreg) {
  572. bo_int = readl(&power_regs->hw_power_vddioctrl);
  573. clrbits_le32(&power_regs->hw_power_vddioctrl,
  574. POWER_CTRL_ENIRQ_VDDIO_BO);
  575. }
  576. setbits_le32(&power_regs->hw_power_vddioctrl,
  577. POWER_VDDIOCTRL_BO_OFFSET_MASK);
  578. do {
  579. if (new_target - cur_target > 100)
  580. diff = cur_target + 100;
  581. else
  582. diff = new_target;
  583. diff -= 2800;
  584. diff /= 50;
  585. clrsetbits_le32(&power_regs->hw_power_vddioctrl,
  586. POWER_VDDIOCTRL_TRG_MASK, diff);
  587. if (powered_by_linreg ||
  588. (readl(&power_regs->hw_power_sts) &
  589. POWER_STS_VDD5V_GT_VDDIO))
  590. early_delay(500);
  591. else {
  592. while (!(readl(&power_regs->hw_power_sts) &
  593. POWER_STS_DC_OK))
  594. ;
  595. }
  596. cur_target = readl(&power_regs->hw_power_vddioctrl);
  597. cur_target &= POWER_VDDIOCTRL_TRG_MASK;
  598. cur_target *= 50; /* 50 mV step*/
  599. cur_target += 2800; /* 2800 mV lowest */
  600. } while (new_target > cur_target);
  601. if (powered_by_linreg) {
  602. writel(POWER_CTRL_VDDIO_BO_IRQ,
  603. &power_regs->hw_power_ctrl_clr);
  604. if (bo_int & POWER_CTRL_ENIRQ_VDDIO_BO)
  605. setbits_le32(&power_regs->hw_power_vddioctrl,
  606. POWER_CTRL_ENIRQ_VDDIO_BO);
  607. }
  608. } else {
  609. do {
  610. if (cur_target - new_target > 100)
  611. diff = cur_target - 100;
  612. else
  613. diff = new_target;
  614. diff -= 2800;
  615. diff /= 50;
  616. clrsetbits_le32(&power_regs->hw_power_vddioctrl,
  617. POWER_VDDIOCTRL_TRG_MASK, diff);
  618. if (powered_by_linreg ||
  619. (readl(&power_regs->hw_power_sts) &
  620. POWER_STS_VDD5V_GT_VDDIO))
  621. early_delay(500);
  622. else {
  623. while (!(readl(&power_regs->hw_power_sts) &
  624. POWER_STS_DC_OK))
  625. ;
  626. }
  627. cur_target = readl(&power_regs->hw_power_vddioctrl);
  628. cur_target &= POWER_VDDIOCTRL_TRG_MASK;
  629. cur_target *= 50; /* 50 mV step*/
  630. cur_target += 2800; /* 2800 mV lowest */
  631. } while (new_target < cur_target);
  632. }
  633. clrsetbits_le32(&power_regs->hw_power_vddioctrl,
  634. POWER_VDDDCTRL_BO_OFFSET_MASK,
  635. new_brownout << POWER_VDDDCTRL_BO_OFFSET_OFFSET);
  636. }
  637. void mx28_power_set_vddd(uint32_t new_target, uint32_t new_brownout)
  638. {
  639. struct mx28_power_regs *power_regs =
  640. (struct mx28_power_regs *)MXS_POWER_BASE;
  641. uint32_t cur_target, diff, bo_int = 0;
  642. uint32_t powered_by_linreg = 0;
  643. new_brownout = new_target - new_brownout;
  644. cur_target = readl(&power_regs->hw_power_vdddctrl);
  645. cur_target &= POWER_VDDDCTRL_TRG_MASK;
  646. cur_target *= 25; /* 25 mV step*/
  647. cur_target += 800; /* 800 mV lowest */
  648. powered_by_linreg = mx28_get_vddd_power_source_off();
  649. if (new_target > cur_target) {
  650. if (powered_by_linreg) {
  651. bo_int = readl(&power_regs->hw_power_vdddctrl);
  652. clrbits_le32(&power_regs->hw_power_vdddctrl,
  653. POWER_CTRL_ENIRQ_VDDD_BO);
  654. }
  655. setbits_le32(&power_regs->hw_power_vdddctrl,
  656. POWER_VDDDCTRL_BO_OFFSET_MASK);
  657. do {
  658. if (new_target - cur_target > 100)
  659. diff = cur_target + 100;
  660. else
  661. diff = new_target;
  662. diff -= 800;
  663. diff /= 25;
  664. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  665. POWER_VDDDCTRL_TRG_MASK, diff);
  666. if (powered_by_linreg ||
  667. (readl(&power_regs->hw_power_sts) &
  668. POWER_STS_VDD5V_GT_VDDIO))
  669. early_delay(500);
  670. else {
  671. while (!(readl(&power_regs->hw_power_sts) &
  672. POWER_STS_DC_OK))
  673. ;
  674. }
  675. cur_target = readl(&power_regs->hw_power_vdddctrl);
  676. cur_target &= POWER_VDDDCTRL_TRG_MASK;
  677. cur_target *= 25; /* 25 mV step*/
  678. cur_target += 800; /* 800 mV lowest */
  679. } while (new_target > cur_target);
  680. if (powered_by_linreg) {
  681. writel(POWER_CTRL_VDDD_BO_IRQ,
  682. &power_regs->hw_power_ctrl_clr);
  683. if (bo_int & POWER_CTRL_ENIRQ_VDDD_BO)
  684. setbits_le32(&power_regs->hw_power_vdddctrl,
  685. POWER_CTRL_ENIRQ_VDDD_BO);
  686. }
  687. } else {
  688. do {
  689. if (cur_target - new_target > 100)
  690. diff = cur_target - 100;
  691. else
  692. diff = new_target;
  693. diff -= 800;
  694. diff /= 25;
  695. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  696. POWER_VDDDCTRL_TRG_MASK, diff);
  697. if (powered_by_linreg ||
  698. (readl(&power_regs->hw_power_sts) &
  699. POWER_STS_VDD5V_GT_VDDIO))
  700. early_delay(500);
  701. else {
  702. while (!(readl(&power_regs->hw_power_sts) &
  703. POWER_STS_DC_OK))
  704. ;
  705. }
  706. cur_target = readl(&power_regs->hw_power_vdddctrl);
  707. cur_target &= POWER_VDDDCTRL_TRG_MASK;
  708. cur_target *= 25; /* 25 mV step*/
  709. cur_target += 800; /* 800 mV lowest */
  710. } while (new_target < cur_target);
  711. }
  712. clrsetbits_le32(&power_regs->hw_power_vdddctrl,
  713. POWER_VDDDCTRL_BO_OFFSET_MASK,
  714. new_brownout << POWER_VDDDCTRL_BO_OFFSET_OFFSET);
  715. }
  716. void mx28_setup_batt_detect(void)
  717. {
  718. mx28_lradc_init();
  719. mx28_lradc_enable_batt_measurement();
  720. early_delay(10);
  721. }
  722. void mx28_power_init(void)
  723. {
  724. struct mx28_power_regs *power_regs =
  725. (struct mx28_power_regs *)MXS_POWER_BASE;
  726. mx28_power_clock2xtal();
  727. mx28_power_clear_auto_restart();
  728. mx28_power_set_linreg();
  729. mx28_power_setup_5v_detect();
  730. mx28_setup_batt_detect();
  731. mx28_power_configure_power_source();
  732. mx28_enable_output_rail_protection();
  733. mx28_power_set_vddio(3300, 3150);
  734. mx28_power_set_vddd(1350, 1200);
  735. writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
  736. POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ |
  737. POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ |
  738. POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
  739. writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set);
  740. early_delay(1000);
  741. }
  742. #ifdef CONFIG_SPL_MX28_PSWITCH_WAIT
  743. void mx28_power_wait_pswitch(void)
  744. {
  745. struct mx28_power_regs *power_regs =
  746. (struct mx28_power_regs *)MXS_POWER_BASE;
  747. while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK))
  748. ;
  749. }
  750. #endif