mip405.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709
  1. /*
  2. * (C) Copyright 2001
  3. * Denis Peter, MPL AG Switzerland, d.peter@mpl.ch
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. *
  23. *
  24. * TODO: clean-up
  25. */
  26. /*
  27. * How do I program the SDRAM Timing Register (SDRAM0_TR) for a specific SDRAM or DIMM?
  28. *
  29. * As an example, consider a case where PC133 memory with CAS Latency equal to 2 is being
  30. * used with a 200MHz 405GP. For a typical 128Mb, PC133 SDRAM, the relevant minimum
  31. * parameters from the datasheet are:
  32. * Tclk = 7.5ns (CL = 2)
  33. * Trp = 15ns
  34. * Trc = 60ns
  35. * Trcd = 15ns
  36. * Trfc = 66ns
  37. *
  38. * If we are operating the 405GP with the MemClk output frequency set to 100 MHZ, the clock
  39. * period is 10ns and the parameters needed for the Timing Register are:
  40. * CASL = CL = 2 clock cycles
  41. * PTA = Trp = 15ns / 10ns = 2 clock cycles
  42. * CTP = Trc - Trcd - Trp = (60ns - 15ns - 15ns) / 10ns= 3 clock cycles
  43. * LDF = 2 clock cycles (but can be extended to meet board-level timing)
  44. * RFTA = Trfc = 66ns / 10ns= 7 clock cycles
  45. * RCD = Trcd = 15ns / 10ns= 2 clock cycles
  46. *
  47. * The actual bit settings in the register would be:
  48. *
  49. * CASL = 0b01
  50. * PTA = 0b01
  51. * CTP = 0b10
  52. * LDF = 0b01
  53. * RFTA = 0b011
  54. * RCD = 0b01
  55. *
  56. * If Trfc is not specified in the datasheet for PC100 or PC133 memory, set RFTA = Trc
  57. * instead. Figure 24 in the PC SDRAM Specification Rev. 1.7 shows refresh to active delay
  58. * defined as Trc rather than Trfc.
  59. * When using DIMM modules, most but not all of the required timing parameters can be read
  60. * from the Serial Presence Detect (SPD) EEPROM on the module. Specifically, Trc and Trfc
  61. * are not available from the EEPROM
  62. */
  63. #include <common.h>
  64. #include "mip405.h"
  65. #include <asm/processor.h>
  66. #include <405gp_i2c.h>
  67. #include <miiphy.h>
  68. #include "../common/common_util.h"
  69. #include <i2c.h>
  70. extern block_dev_desc_t * scsi_get_dev(int dev);
  71. extern block_dev_desc_t * ide_get_dev(int dev);
  72. #undef SDRAM_DEBUG
  73. #define FALSE 0
  74. #define TRUE 1
  75. /* stdlib.h causes some compatibility problems; should fixe these! -- wd */
  76. #ifndef __ldiv_t_defined
  77. typedef struct {
  78. long int quot; /* Quotient */
  79. long int rem; /* Remainder */
  80. } ldiv_t;
  81. extern ldiv_t ldiv (long int __numer, long int __denom);
  82. # define __ldiv_t_defined 1
  83. #endif
  84. #define PLD_PART_REG PER_PLD_ADDR + 0
  85. #define PLD_VERS_REG PER_PLD_ADDR + 1
  86. #define PLD_BOARD_CFG_REG PER_PLD_ADDR + 2
  87. #define PLD_IRQ_REG PER_PLD_ADDR + 3
  88. #define PLD_COM_MODE_REG PER_PLD_ADDR + 4
  89. #define PLD_EXT_CONF_REG PER_PLD_ADDR + 5
  90. #define MEGA_BYTE (1024*1024)
  91. typedef struct {
  92. unsigned char boardtype; /* Board revision and Population Options */
  93. unsigned char cal; /* cas Latency (will be programmend as cal-1) */
  94. unsigned char trp; /* datain27 in clocks */
  95. unsigned char trcd; /* datain29 in clocks */
  96. unsigned char tras; /* datain30 in clocks */
  97. unsigned char tctp; /* tras - trcd in clocks */
  98. unsigned char am; /* Address Mod (will be programmed as am-1) */
  99. unsigned char sz; /* log binary => Size = (4MByte<<sz) 5 = 128, 4 = 64, 3 = 32, 2 = 16, 1=8 */
  100. unsigned char ecc; /* if true, ecc is enabled */
  101. } sdram_t;
  102. const sdram_t sdram_table[] = {
  103. { 0x0f, /* Rev A, 128MByte -1 Board */
  104. 3, /* Case Latenty = 3 */
  105. 3, /* trp 20ns / 7.5 ns datain[27] */
  106. 3, /* trcd 20ns /7.5 ns (datain[29]) */
  107. 6, /* tras 44ns /7.5 ns (datain[30]) */
  108. 4, /* tcpt 44 - 20ns = 24ns */
  109. 3, /* Address Mode = 3 */
  110. 5, /* size value */
  111. 1}, /* ECC enabled */
  112. { 0x07, /* Rev A, 64MByte -2 Board */
  113. 3, /* Case Latenty = 3 */
  114. 3, /* trp 20ns / 7.5 ns datain[27] */
  115. 3, /* trcd 20ns /7.5 ns (datain[29]) */
  116. 6, /* tras 44ns /7.5 ns (datain[30]) */
  117. 4, /* tcpt 44 - 20ns = 24ns */
  118. 2, /* Address Mode = 2 */
  119. 4, /* size value */
  120. 1}, /* ECC enabled */
  121. { 0x03, /* Rev A, 128MByte -4 Board */
  122. 3, /* Case Latenty = 3 */
  123. 3, /* trp 20ns / 7.5 ns datain[27] */
  124. 3, /* trcd 20ns /7.5 ns (datain[29]) */
  125. 6, /* tras 44ns /7.5 ns (datain[30]) */
  126. 4, /* tcpt 44 - 20ns = 24ns */
  127. 3, /* Address Mode = 3 */
  128. 5, /* size value */
  129. 1}, /* ECC enabled */
  130. { 0x1f, /* Rev B, 128MByte -3 Board */
  131. 3, /* Case Latenty = 3 */
  132. 3, /* trp 20ns / 7.5 ns datain[27] */
  133. 3, /* trcd 20ns /7.5 ns (datain[29]) */
  134. 6, /* tras 44ns /7.5 ns (datain[30]) */
  135. 4, /* tcpt 44 - 20ns = 24ns */
  136. 3, /* Address Mode = 3 */
  137. 5, /* size value */
  138. 1}, /* ECC enabled */
  139. { 0xff, /* terminator */
  140. 0xff,
  141. 0xff,
  142. 0xff,
  143. 0xff,
  144. 0xff,
  145. 0xff,
  146. 0xff }
  147. };
  148. void SDRAM_err (const char *s)
  149. {
  150. #ifndef SDRAM_DEBUG
  151. DECLARE_GLOBAL_DATA_PTR;
  152. (void) get_clocks ();
  153. gd->baudrate = 9600;
  154. serial_init ();
  155. #endif
  156. serial_puts ("\n");
  157. serial_puts (s);
  158. serial_puts ("\n enable SDRAM_DEBUG for more info\n");
  159. for (;;);
  160. }
  161. unsigned char get_board_revcfg (void)
  162. {
  163. out8 (PER_BOARD_ADDR, 0);
  164. return (in8 (PER_BOARD_ADDR));
  165. }
  166. #ifdef SDRAM_DEBUG
  167. void write_hex (unsigned char i)
  168. {
  169. char cc;
  170. cc = i >> 4;
  171. cc &= 0xf;
  172. if (cc > 9)
  173. serial_putc (cc + 55);
  174. else
  175. serial_putc (cc + 48);
  176. cc = i & 0xf;
  177. if (cc > 9)
  178. serial_putc (cc + 55);
  179. else
  180. serial_putc (cc + 48);
  181. }
  182. void write_4hex (unsigned long val)
  183. {
  184. write_hex ((unsigned char) (val >> 24));
  185. write_hex ((unsigned char) (val >> 16));
  186. write_hex ((unsigned char) (val >> 8));
  187. write_hex ((unsigned char) val);
  188. }
  189. #endif
  190. int init_sdram (void)
  191. {
  192. DECLARE_GLOBAL_DATA_PTR;
  193. unsigned long tmp, baseaddr;
  194. unsigned short i;
  195. unsigned char trp_clocks,
  196. trcd_clocks,
  197. tras_clocks,
  198. trc_clocks,
  199. tctp_clocks;
  200. unsigned char cal_val;
  201. unsigned char bc;
  202. unsigned long pbcr, sdram_tim, sdram_bank;
  203. unsigned long *p;
  204. i2c_init (CFG_I2C_SPEED, CFG_I2C_SLAVE);
  205. (void) get_clocks ();
  206. gd->baudrate = 9600;
  207. serial_init ();
  208. serial_puts ("\nInitializing SDRAM, Please stand by");
  209. mtdcr (ebccfga, pb0cr); /* get cs0 config reg */
  210. pbcr = mfdcr (ebccfgd);
  211. if ((pbcr & 0x00002000) == 0) {
  212. /* MPS Boot, set up the flash */
  213. mtdcr (ebccfga, pb1ap);
  214. mtdcr (ebccfgd, FLASH_AP);
  215. mtdcr (ebccfga, pb1cr);
  216. mtdcr (ebccfgd, FLASH_CR);
  217. } else {
  218. /* Flash boot, set up the MPS */
  219. mtdcr (ebccfga, pb1ap);
  220. mtdcr (ebccfgd, MPS_AP);
  221. mtdcr (ebccfga, pb1cr);
  222. mtdcr (ebccfgd, MPS_CR);
  223. }
  224. /* set up UART0 (CS2) and UART1 (CS3) */
  225. mtdcr (ebccfga, pb2ap);
  226. mtdcr (ebccfgd, UART0_AP);
  227. mtdcr (ebccfga, pb2cr);
  228. mtdcr (ebccfgd, UART0_CR);
  229. mtdcr (ebccfga, pb3ap);
  230. mtdcr (ebccfgd, UART1_AP);
  231. mtdcr (ebccfga, pb3cr);
  232. mtdcr (ebccfgd, UART1_CR);
  233. /* set up the pld */
  234. mtdcr (ebccfga, pb7ap);
  235. mtdcr (ebccfgd, PLD_AP);
  236. mtdcr (ebccfga, pb7cr);
  237. mtdcr (ebccfgd, PLD_CR);
  238. /* set up the board rev reg */
  239. mtdcr (ebccfga, pb5ap);
  240. mtdcr (ebccfgd, BOARD_AP);
  241. mtdcr (ebccfga, pb5cr);
  242. mtdcr (ebccfgd, BOARD_CR);
  243. #ifdef SDRAM_DEBUG
  244. out8 (PER_BOARD_ADDR, 0);
  245. bc = in8 (PER_BOARD_ADDR);
  246. serial_puts ("\nBoard Rev: ");
  247. write_hex (bc);
  248. serial_puts (" (PLD=");
  249. bc = in8 (PLD_BOARD_CFG_REG);
  250. write_hex (bc);
  251. serial_puts (")\n");
  252. #endif
  253. bc = get_board_revcfg ();
  254. #ifdef SDRAM_DEBUG
  255. serial_puts ("\nstart SDRAM Setup\n");
  256. serial_puts ("\nBoard Rev: ");
  257. write_hex (bc);
  258. serial_puts ("\n");
  259. #endif
  260. i = 0;
  261. baseaddr = CFG_SDRAM_BASE;
  262. while (sdram_table[i].sz != 0xff) {
  263. if (sdram_table[i].boardtype == bc)
  264. break;
  265. i++;
  266. }
  267. if (sdram_table[i].boardtype != bc)
  268. SDRAM_err ("No SDRAM table found for this board!!!\n");
  269. #ifdef SDRAM_DEBUG
  270. serial_puts (" found table ");
  271. write_hex (i);
  272. serial_puts (" \n");
  273. #endif
  274. cal_val = sdram_table[i].cal - 1; /* Cas Latency */
  275. trp_clocks = sdram_table[i].trp; /* 20ns / 7.5 ns datain[27] */
  276. trcd_clocks = sdram_table[i].trcd; /* 20ns /7.5 ns (datain[29]) */
  277. tras_clocks = sdram_table[i].tras; /* 44ns /7.5 ns (datain[30]) */
  278. /* ctp = ((trp + tras) - trp - trcd) => tras - trcd */
  279. tctp_clocks = sdram_table[i].tctp; /* 44 - 20ns = 24ns */
  280. /* trc_clocks is sum of trp_clocks + tras_clocks */
  281. trc_clocks = trp_clocks + tras_clocks;
  282. /* get SDRAM timing register */
  283. mtdcr (memcfga, mem_sdtr1);
  284. sdram_tim = mfdcr (memcfgd) & ~0x018FC01F;
  285. /* insert CASL value */
  286. sdram_tim |= ((unsigned long) (cal_val)) << 23;
  287. /* insert PTA value */
  288. sdram_tim |= ((unsigned long) (trp_clocks - 1)) << 18;
  289. /* insert CTP value */
  290. sdram_tim |=
  291. ((unsigned long) (trc_clocks - trp_clocks -
  292. trcd_clocks)) << 16;
  293. /* insert LDF (always 01) */
  294. sdram_tim |= ((unsigned long) 0x01) << 14;
  295. /* insert RFTA value */
  296. sdram_tim |= ((unsigned long) (trc_clocks - 4)) << 2;
  297. /* insert RCD value */
  298. sdram_tim |= ((unsigned long) (trcd_clocks - 1)) << 0;
  299. tmp = ((unsigned long) (sdram_table[i].am - 1) << 13); /* AM = 3 */
  300. /* insert SZ value; */
  301. tmp |= ((unsigned long) sdram_table[i].sz << 17);
  302. /* get SDRAM bank 0 register */
  303. mtdcr (memcfga, mem_mb0cf);
  304. sdram_bank = mfdcr (memcfgd) & ~0xFFCEE001;
  305. sdram_bank |= (baseaddr | tmp | 0x01);
  306. #ifdef SDRAM_DEBUG
  307. serial_puts ("sdtr: ");
  308. write_4hex (sdram_tim);
  309. serial_puts ("\n");
  310. #endif
  311. /* write SDRAM timing register */
  312. mtdcr (memcfga, mem_sdtr1);
  313. mtdcr (memcfgd, sdram_tim);
  314. #ifdef SDRAM_DEBUG
  315. serial_puts ("mb0cf: ");
  316. write_4hex (sdram_bank);
  317. serial_puts ("\n");
  318. #endif
  319. /* write SDRAM bank 0 register */
  320. mtdcr (memcfga, mem_mb0cf);
  321. mtdcr (memcfgd, sdram_bank);
  322. if (get_bus_freq (tmp) > 110000000) { /* > 110MHz */
  323. /* get SDRAM refresh interval register */
  324. mtdcr (memcfga, mem_rtr);
  325. tmp = mfdcr (memcfgd) & ~0x3FF80000;
  326. tmp |= 0x07F00000;
  327. } else {
  328. /* get SDRAM refresh interval register */
  329. mtdcr (memcfga, mem_rtr);
  330. tmp = mfdcr (memcfgd) & ~0x3FF80000;
  331. tmp |= 0x05F00000;
  332. }
  333. /* write SDRAM refresh interval register */
  334. mtdcr (memcfga, mem_rtr);
  335. mtdcr (memcfgd, tmp);
  336. /* enable ECC if used */
  337. #if 1
  338. if (sdram_table[i].ecc) {
  339. /* disable checking for all banks */
  340. #ifdef SDRAM_DEBUG
  341. serial_puts ("disable ECC.. ");
  342. #endif
  343. mtdcr (memcfga, mem_ecccf);
  344. tmp = mfdcr (memcfgd);
  345. tmp &= 0xff0fffff; /* disable all banks */
  346. mtdcr (memcfga, mem_ecccf);
  347. /* set up SDRAM Controller with ECC enabled */
  348. #ifdef SDRAM_DEBUG
  349. serial_puts ("setup SDRAM Controller.. ");
  350. #endif
  351. mtdcr (memcfgd, tmp);
  352. mtdcr (memcfga, mem_mcopt1);
  353. tmp = (mfdcr (memcfgd) & ~0xFFE00000) | 0x90800000;
  354. mtdcr (memcfga, mem_mcopt1);
  355. mtdcr (memcfgd, tmp);
  356. udelay (600);
  357. #ifdef SDRAM_DEBUG
  358. serial_puts ("fill the memory..\n");
  359. #endif
  360. serial_puts (".");
  361. /* now, fill all the memory */
  362. tmp = ((4 * MEGA_BYTE) << sdram_table[i].sz);
  363. p = (unsigned long) 0;
  364. while ((unsigned long) p < tmp) {
  365. *p++ = 0L;
  366. if (!((unsigned long) p % 0x00800000)) /* every 8MByte */
  367. serial_puts (".");
  368. }
  369. /* enable bank 0 */
  370. serial_puts (".");
  371. #ifdef SDRAM_DEBUG
  372. serial_puts ("enable ECC\n");
  373. #endif
  374. udelay (400);
  375. mtdcr (memcfga, mem_ecccf);
  376. tmp = mfdcr (memcfgd);
  377. tmp |= 0x00800000; /* enable bank 0 */
  378. mtdcr (memcfgd, tmp);
  379. udelay (400);
  380. } else
  381. #endif
  382. {
  383. /* enable SDRAM controller with no ECC, 32-bit SDRAM width, 16 byte burst */
  384. mtdcr (memcfga, mem_mcopt1);
  385. tmp = (mfdcr (memcfgd) & ~0xFFE00000) | 0x80C00000;
  386. mtdcr (memcfga, mem_mcopt1);
  387. mtdcr (memcfgd, tmp);
  388. udelay (400);
  389. }
  390. serial_puts ("\n");
  391. return (0);
  392. }
  393. int board_pre_init (void)
  394. {
  395. init_sdram ();
  396. /*-------------------------------------------------------------------------+
  397. | Interrupt controller setup for the PIP405 board.
  398. | Note: IRQ 0-15 405GP internally generated; active high; level sensitive
  399. | IRQ 16 405GP internally generated; active low; level sensitive
  400. | IRQ 17-24 RESERVED
  401. | IRQ 25 (EXT IRQ 0) SouthBridge; active low; level sensitive
  402. | IRQ 26 (EXT IRQ 1) NMI: active low; level sensitive
  403. | IRQ 27 (EXT IRQ 2) SMI: active Low; level sensitive
  404. | IRQ 28 (EXT IRQ 3) PCI SLOT 3; active low; level sensitive
  405. | IRQ 29 (EXT IRQ 4) PCI SLOT 2; active low; level sensitive
  406. | IRQ 30 (EXT IRQ 5) PCI SLOT 1; active low; level sensitive
  407. | IRQ 31 (EXT IRQ 6) PCI SLOT 0; active low; level sensitive
  408. | Note for MIP405 board:
  409. | An interrupt taken for the SouthBridge (IRQ 25) indicates that
  410. | the Interrupt Controller in the South Bridge has caused the
  411. | interrupt. The IC must be read to determine which device
  412. | caused the interrupt.
  413. |
  414. +-------------------------------------------------------------------------*/
  415. mtdcr (uicsr, 0xFFFFFFFF); /* clear all ints */
  416. mtdcr (uicer, 0x00000000); /* disable all ints */
  417. mtdcr (uiccr, 0x00000000); /* set all to be non-critical (for now) */
  418. mtdcr (uicpr, 0xFFFFFF80); /* set int polarities */
  419. mtdcr (uictr, 0x10000000); /* set int trigger levels */
  420. mtdcr (uicvcr, 0x00000001); /* set vect base=0,INT0 highest priority */
  421. mtdcr (uicsr, 0xFFFFFFFF); /* clear all ints */
  422. return 0;
  423. }
  424. /*
  425. * Get some PLD Registers
  426. */
  427. unsigned short get_pld_parvers (void)
  428. {
  429. unsigned short result;
  430. unsigned char rc;
  431. rc = in8 (PLD_PART_REG);
  432. result = (unsigned short) rc << 8;
  433. rc = in8 (PLD_VERS_REG);
  434. result |= rc;
  435. return result;
  436. }
  437. void user_led0 (unsigned char on)
  438. {
  439. if (on)
  440. out8 (PLD_COM_MODE_REG, (in8 (PLD_COM_MODE_REG) | 0x4));
  441. else
  442. out8 (PLD_COM_MODE_REG, (in8 (PLD_COM_MODE_REG) & 0xfb));
  443. }
  444. void ide_set_reset (int idereset)
  445. {
  446. /* if reset = 1 IDE reset will be asserted */
  447. if (idereset)
  448. out8 (PLD_COM_MODE_REG, (in8 (PLD_COM_MODE_REG) | 0x1));
  449. else {
  450. udelay (10000);
  451. out8 (PLD_COM_MODE_REG, (in8 (PLD_COM_MODE_REG) & 0xfe));
  452. }
  453. }
  454. /* ------------------------------------------------------------------------- */
  455. /*
  456. * Check Board Identity:
  457. */
  458. int checkboard (void)
  459. {
  460. unsigned char s[50];
  461. unsigned char bc, var, rc;
  462. int i;
  463. backup_t *b = (backup_t *) s;
  464. puts ("Board: ");
  465. bc = get_board_revcfg ();
  466. var = ~bc;
  467. var &= 0xf;
  468. rc = 0;
  469. for (i = 0; i < 4; i++) {
  470. rc <<= 1;
  471. rc += (var & 0x1);
  472. var >>= 1;
  473. }
  474. rc++;
  475. if((((bc>>4) & 0xf)==0x1) /* Rev B PCB with */
  476. && (rc==0x1)) /* Population Option 1 is a -3 */
  477. rc=3;
  478. i = getenv_r ("serial#", s, 32);
  479. if ((i == 0) || strncmp (s, "MIP405", 6)) {
  480. get_backup_values (b);
  481. if (strncmp (b->signature, "MPL\0", 4) != 0) {
  482. puts ("### No HW ID - assuming MIP405");
  483. printf ("-%d Rev %c", rc, 'A' + ((bc >> 4) & 0xf));
  484. } else {
  485. b->serial_name[6] = 0;
  486. printf ("%s-%d Rev %c SN: %s", b->serial_name, rc,
  487. 'A' + ((bc >> 4) & 0xf), &b->serial_name[7]);
  488. }
  489. } else {
  490. s[6] = 0;
  491. printf ("%s-%d Rev %c SN: %s", s, rc, 'A' + ((bc >> 4) & 0xf),
  492. &s[7]);
  493. }
  494. bc = in8 (PLD_EXT_CONF_REG);
  495. printf (" Boot Config: 0x%x\n", bc);
  496. return (0);
  497. }
  498. /* ------------------------------------------------------------------------- */
  499. /* ------------------------------------------------------------------------- */
  500. /*
  501. initdram(int board_type) reads EEPROM via I2c. EEPROM contains all of
  502. the necessary info for SDRAM controller configuration
  503. */
  504. /* ------------------------------------------------------------------------- */
  505. /* ------------------------------------------------------------------------- */
  506. static int test_dram (unsigned long ramsize);
  507. long int initdram (int board_type)
  508. {
  509. unsigned long bank_reg[4], tmp, bank_size;
  510. int i, ds;
  511. unsigned long TotalSize;
  512. ds = 0;
  513. /* since the DRAM controller is allready set up, calculate the size with the
  514. bank registers */
  515. mtdcr (memcfga, mem_mb0cf);
  516. bank_reg[0] = mfdcr (memcfgd);
  517. mtdcr (memcfga, mem_mb1cf);
  518. bank_reg[1] = mfdcr (memcfgd);
  519. mtdcr (memcfga, mem_mb2cf);
  520. bank_reg[2] = mfdcr (memcfgd);
  521. mtdcr (memcfga, mem_mb3cf);
  522. bank_reg[3] = mfdcr (memcfgd);
  523. TotalSize = 0;
  524. for (i = 0; i < 4; i++) {
  525. if ((bank_reg[i] & 0x1) == 0x1) {
  526. tmp = (bank_reg[i] >> 17) & 0x7;
  527. bank_size = 4 << tmp;
  528. TotalSize += bank_size;
  529. } else
  530. ds = 1;
  531. }
  532. mtdcr (memcfga, mem_ecccf);
  533. tmp = mfdcr (memcfgd);
  534. if (!tmp)
  535. printf ("No ");
  536. printf ("ECC ");
  537. test_dram (TotalSize * MEGA_BYTE);
  538. return (TotalSize * MEGA_BYTE);
  539. }
  540. /* ------------------------------------------------------------------------- */
  541. extern int mem_test (unsigned long start, unsigned long ramsize,
  542. int quiet);
  543. static int test_dram (unsigned long ramsize)
  544. {
  545. #ifdef SDRAM_DEBUG
  546. mem_test (0L, ramsize, 1);
  547. #endif
  548. /* not yet implemented */
  549. return (1);
  550. }
  551. int misc_init_r (void)
  552. {
  553. return (0);
  554. }
  555. void print_mip405_rev (void)
  556. {
  557. unsigned char part, vers, cfg, rev;
  558. cfg = get_board_revcfg ();
  559. vers = cfg;
  560. vers &= 0xf;
  561. rev = (((vers & 0x1) ? 0x8 : 0) |
  562. ((vers & 0x2) ? 0x4 : 0) |
  563. ((vers & 0x4) ? 0x2 : 0) |
  564. ((vers & 0x8) ? 0x1 : 0));
  565. vers=16-rev;
  566. rev=vers;
  567. if((rev==1) && ((cfg >> 4)==1)) /* Rev B PCB and -1 is a -3 */
  568. rev=3;
  569. part = in8 (PLD_PART_REG);
  570. vers = in8 (PLD_VERS_REG);
  571. printf ("Rev: MIP405-%d Rev %c PLD%d Vers %d\n",
  572. rev, ((cfg >> 4) & 0xf) + 'A', part, vers);
  573. }
  574. extern void mem_test_reloc(void);
  575. int last_stage_init (void)
  576. {
  577. mem_test_reloc();
  578. /* write correct LED configuration */
  579. if (miiphy_write (0x1, 0x14, 0x2402) != 0) {
  580. printf ("Error writing to the PHY\n");
  581. }
  582. /* since LED/CFG2 is not connected on the -2,
  583. * write to correct capability information */
  584. if (miiphy_write (0x1, 0x4, 0x01E1) != 0) {
  585. printf ("Error writing to the PHY\n");
  586. }
  587. print_mip405_rev ();
  588. show_stdio_dev ();
  589. check_env ();
  590. return 0;
  591. }
  592. /***************************************************************************
  593. * some helping routines
  594. */
  595. int overwrite_console (void)
  596. {
  597. return ((in8 (PLD_EXT_CONF_REG) & 0x1)==0); /* return TRUE if console should be overwritten */
  598. }
  599. /************************************************************************
  600. * Print MIP405 Info
  601. ************************************************************************/
  602. void print_mip405_info (void)
  603. {
  604. unsigned char part, vers, cfg, irq_reg, com_mode, ext;
  605. part = in8 (PLD_PART_REG);
  606. vers = in8 (PLD_VERS_REG);
  607. cfg = in8 (PLD_BOARD_CFG_REG);
  608. irq_reg = in8 (PLD_IRQ_REG);
  609. com_mode = in8 (PLD_COM_MODE_REG);
  610. ext = in8 (PLD_EXT_CONF_REG);
  611. printf ("PLD Part %d version %d\n", part, vers);
  612. printf ("Board Revision %c\n", ((cfg >> 4) & 0xf) + 'A');
  613. printf ("Population Options %d %d %d %d\n", (cfg) & 0x1,
  614. (cfg >> 1) & 0x1, (cfg >> 2) & 0x1, (cfg >> 3) & 0x1);
  615. printf ("User LED %s\n", (com_mode & 0x4) ? "on" : "off");
  616. printf ("UART Clocks %d\n", (com_mode >> 4) & 0x3);
  617. printf ("Test ist %x\n", com_mode);
  618. printf ("User Config Switch %d %d %d %d %d %d %d %d\n",
  619. (ext) & 0x1, (ext >> 1) & 0x1, (ext >> 2) & 0x1,
  620. (ext >> 3) & 0x1, (ext >> 4) & 0x1, (ext >> 5) & 0x1,
  621. (ext >> 6) & 0x1, (ext >> 7) & 0x1);
  622. printf ("SER1 uses handshakes %s\n",
  623. (ext & 0x80) ? "DTR/DSR" : "RTS/CTS");
  624. printf ("IDE Reset %s\n", (ext & 0x01) ? "asserted" : "not asserted");
  625. printf ("IRQs:\n");
  626. printf (" PIIX INTR: %s\n", (irq_reg & 0x80) ? "inactive" : "active");
  627. printf (" UART0 IRQ: %s\n", (irq_reg & 0x40) ? "inactive" : "active");
  628. printf (" UART1 IRQ: %s\n", (irq_reg & 0x20) ? "inactive" : "active");
  629. printf (" PIIX SMI: %s\n", (irq_reg & 0x10) ? "inactive" : "active");
  630. printf (" PIIX INIT: %s\n", (irq_reg & 0x8) ? "inactive" : "active");
  631. printf (" PIIX NMI: %s\n", (irq_reg & 0x4) ? "inactive" : "active");
  632. }