mxs_spi.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. /*
  2. * Freescale i.MX28 SPI driver
  3. *
  4. * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
  5. * on behalf of DENX Software Engineering GmbH
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License as
  9. * published by the Free Software Foundation; either version 2 of
  10. * the License, or (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  20. * MA 02111-1307 USA
  21. *
  22. * NOTE: This driver only supports the SPI-controller chipselects,
  23. * GPIO driven chipselects are not supported.
  24. */
  25. #include <common.h>
  26. #include <malloc.h>
  27. #include <spi.h>
  28. #include <asm/errno.h>
  29. #include <asm/io.h>
  30. #include <asm/arch/clock.h>
  31. #include <asm/arch/imx-regs.h>
  32. #include <asm/arch/sys_proto.h>
  33. #include <asm/arch/dma.h>
  34. #define MXS_SPI_MAX_TIMEOUT 1000000
  35. #define MXS_SPI_PORT_OFFSET 0x2000
  36. #define MXS_SSP_CHIPSELECT_MASK 0x00300000
  37. #define MXS_SSP_CHIPSELECT_SHIFT 20
  38. #define MXSSSP_SMALL_TRANSFER 512
  39. /*
  40. * CONFIG_MXS_SPI_DMA_ENABLE: Experimental mixed PIO/DMA support for MXS SPI
  41. * host. Use with utmost caution!
  42. *
  43. * Enabling this is not yet recommended since this
  44. * still doesn't support transfers to/from unaligned
  45. * addresses. Therefore this driver will not work
  46. * for example with saving environment. This is
  47. * caused by DMA alignment constraints on MXS.
  48. */
  49. struct mxs_spi_slave {
  50. struct spi_slave slave;
  51. uint32_t max_khz;
  52. uint32_t mode;
  53. struct mxs_ssp_regs *regs;
  54. };
  55. static inline struct mxs_spi_slave *to_mxs_slave(struct spi_slave *slave)
  56. {
  57. return container_of(slave, struct mxs_spi_slave, slave);
  58. }
  59. void spi_init(void)
  60. {
  61. }
  62. int spi_cs_is_valid(unsigned int bus, unsigned int cs)
  63. {
  64. /* MXS SPI: 4 ports and 3 chip selects maximum */
  65. if (bus > 3 || cs > 2)
  66. return 0;
  67. else
  68. return 1;
  69. }
  70. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  71. unsigned int max_hz, unsigned int mode)
  72. {
  73. struct mxs_spi_slave *mxs_slave;
  74. uint32_t addr;
  75. struct mxs_ssp_regs *ssp_regs;
  76. int reg;
  77. if (!spi_cs_is_valid(bus, cs)) {
  78. printf("mxs_spi: invalid bus %d / chip select %d\n", bus, cs);
  79. return NULL;
  80. }
  81. mxs_slave = calloc(sizeof(struct mxs_spi_slave), 1);
  82. if (!mxs_slave)
  83. return NULL;
  84. if (mxs_dma_init_channel(bus))
  85. goto err_init;
  86. addr = MXS_SSP0_BASE + (bus * MXS_SPI_PORT_OFFSET);
  87. mxs_slave->slave.bus = bus;
  88. mxs_slave->slave.cs = cs;
  89. mxs_slave->max_khz = max_hz / 1000;
  90. mxs_slave->mode = mode;
  91. mxs_slave->regs = (struct mxs_ssp_regs *)addr;
  92. ssp_regs = mxs_slave->regs;
  93. reg = readl(&ssp_regs->hw_ssp_ctrl0);
  94. reg &= ~(MXS_SSP_CHIPSELECT_MASK);
  95. reg |= cs << MXS_SSP_CHIPSELECT_SHIFT;
  96. writel(reg, &ssp_regs->hw_ssp_ctrl0);
  97. return &mxs_slave->slave;
  98. err_init:
  99. free(mxs_slave);
  100. return NULL;
  101. }
  102. void spi_free_slave(struct spi_slave *slave)
  103. {
  104. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  105. free(mxs_slave);
  106. }
  107. int spi_claim_bus(struct spi_slave *slave)
  108. {
  109. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  110. struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
  111. uint32_t reg = 0;
  112. mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg);
  113. writel(SSP_CTRL0_BUS_WIDTH_ONE_BIT, &ssp_regs->hw_ssp_ctrl0);
  114. reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS;
  115. reg |= (mxs_slave->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0;
  116. reg |= (mxs_slave->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0;
  117. writel(reg, &ssp_regs->hw_ssp_ctrl1);
  118. writel(0, &ssp_regs->hw_ssp_cmd0);
  119. mx28_set_ssp_busclock(slave->bus, mxs_slave->max_khz);
  120. return 0;
  121. }
  122. void spi_release_bus(struct spi_slave *slave)
  123. {
  124. }
  125. static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs)
  126. {
  127. writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set);
  128. writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr);
  129. }
  130. static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs)
  131. {
  132. writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr);
  133. writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set);
  134. }
  135. static int mxs_spi_xfer_pio(struct mxs_spi_slave *slave,
  136. char *data, int length, int write, unsigned long flags)
  137. {
  138. struct mxs_ssp_regs *ssp_regs = slave->regs;
  139. if (flags & SPI_XFER_BEGIN)
  140. mxs_spi_start_xfer(ssp_regs);
  141. while (length--) {
  142. /* We transfer 1 byte */
  143. writel(1, &ssp_regs->hw_ssp_xfer_size);
  144. if ((flags & SPI_XFER_END) && !length)
  145. mxs_spi_end_xfer(ssp_regs);
  146. if (write)
  147. writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr);
  148. else
  149. writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set);
  150. writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set);
  151. if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg,
  152. SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
  153. printf("MXS SPI: Timeout waiting for start\n");
  154. return -ETIMEDOUT;
  155. }
  156. if (write)
  157. writel(*data++, &ssp_regs->hw_ssp_data);
  158. writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set);
  159. if (!write) {
  160. if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg,
  161. SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) {
  162. printf("MXS SPI: Timeout waiting for data\n");
  163. return -ETIMEDOUT;
  164. }
  165. *data = readl(&ssp_regs->hw_ssp_data);
  166. data++;
  167. }
  168. if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg,
  169. SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
  170. printf("MXS SPI: Timeout waiting for finish\n");
  171. return -ETIMEDOUT;
  172. }
  173. }
  174. return 0;
  175. }
  176. static int mxs_spi_xfer_dma(struct mxs_spi_slave *slave,
  177. char *data, int length, int write, unsigned long flags)
  178. {
  179. const int xfer_max_sz = 0xff00;
  180. const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1;
  181. struct mxs_ssp_regs *ssp_regs = slave->regs;
  182. struct mxs_dma_desc *dp;
  183. uint32_t ctrl0;
  184. uint32_t cache_data_count;
  185. int dmach;
  186. int tl;
  187. ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count);
  188. memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count);
  189. ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0);
  190. ctrl0 |= SSP_CTRL0_DATA_XFER;
  191. if (flags & SPI_XFER_BEGIN)
  192. ctrl0 |= SSP_CTRL0_LOCK_CS;
  193. if (!write)
  194. ctrl0 |= SSP_CTRL0_READ;
  195. writel(length, &ssp_regs->hw_ssp_xfer_size);
  196. if (length % ARCH_DMA_MINALIGN)
  197. cache_data_count = roundup(length, ARCH_DMA_MINALIGN);
  198. else
  199. cache_data_count = length;
  200. if (write)
  201. /* Flush data to DRAM so DMA can pick them up */
  202. flush_dcache_range((uint32_t)data,
  203. (uint32_t)(data + cache_data_count));
  204. dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + slave->slave.bus;
  205. dp = desc;
  206. while (length) {
  207. dp->address = (dma_addr_t)dp;
  208. dp->cmd.address = (dma_addr_t)data;
  209. /*
  210. * This is correct, even though it does indeed look insane.
  211. * I hereby have to, wholeheartedly, thank Freescale Inc.,
  212. * for always inventing insane hardware and keeping me busy
  213. * and employed ;-)
  214. */
  215. if (write)
  216. dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
  217. else
  218. dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
  219. /*
  220. * The DMA controller can transfer large chunks (64kB) at
  221. * time by setting the transfer length to 0. Setting tl to
  222. * 0x10000 will overflow below and make .data contain 0.
  223. * Otherwise, 0xff00 is the transfer maximum.
  224. */
  225. if (length >= 0x10000)
  226. tl = 0x10000;
  227. else
  228. tl = min(length, xfer_max_sz);
  229. dp->cmd.data |=
  230. (tl << MXS_DMA_DESC_BYTES_OFFSET) |
  231. (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
  232. MXS_DMA_DESC_HALT_ON_TERMINATE |
  233. MXS_DMA_DESC_TERMINATE_FLUSH;
  234. dp->cmd.pio_words[0] = ctrl0;
  235. data += tl;
  236. length -= tl;
  237. mxs_dma_desc_append(dmach, dp);
  238. dp++;
  239. }
  240. dp->address = (dma_addr_t)dp;
  241. dp->cmd.address = (dma_addr_t)0;
  242. dp->cmd.data = MXS_DMA_DESC_COMMAND_NO_DMAXFER |
  243. (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
  244. MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM;
  245. if (flags & SPI_XFER_END) {
  246. ctrl0 &= ~SSP_CTRL0_LOCK_CS;
  247. dp->cmd.pio_words[0] = ctrl0 | SSP_CTRL0_IGNORE_CRC;
  248. }
  249. mxs_dma_desc_append(dmach, dp);
  250. if (mxs_dma_go(dmach))
  251. return -EINVAL;
  252. /* The data arrived into DRAM, invalidate cache over them */
  253. if (!write) {
  254. invalidate_dcache_range((uint32_t)data,
  255. (uint32_t)(data + cache_data_count));
  256. }
  257. return 0;
  258. }
  259. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  260. const void *dout, void *din, unsigned long flags)
  261. {
  262. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  263. struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
  264. int len = bitlen / 8;
  265. char dummy;
  266. int write = 0;
  267. char *data = NULL;
  268. #ifdef CONFIG_MXS_SPI_DMA_ENABLE
  269. int dma = 1;
  270. #else
  271. int dma = 0;
  272. #endif
  273. if (bitlen == 0) {
  274. if (flags & SPI_XFER_END) {
  275. din = (void *)&dummy;
  276. len = 1;
  277. } else
  278. return 0;
  279. }
  280. /* Half-duplex only */
  281. if (din && dout)
  282. return -EINVAL;
  283. /* No data */
  284. if (!din && !dout)
  285. return 0;
  286. if (dout) {
  287. data = (char *)dout;
  288. write = 1;
  289. } else if (din) {
  290. data = (char *)din;
  291. write = 0;
  292. }
  293. /*
  294. * Check for alignment, if the buffer is aligned, do DMA transfer,
  295. * PIO otherwise. This is a temporary workaround until proper bounce
  296. * buffer is in place.
  297. */
  298. if (dma) {
  299. if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1))
  300. dma = 0;
  301. if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1))
  302. dma = 0;
  303. }
  304. if (!dma || (len < MXSSSP_SMALL_TRANSFER)) {
  305. writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
  306. return mxs_spi_xfer_pio(mxs_slave, data, len, write, flags);
  307. } else {
  308. writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
  309. return mxs_spi_xfer_dma(mxs_slave, data, len, write, flags);
  310. }
  311. }