tigon3.c 174 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200
  1. /******************************************************************************/
  2. /* */
  3. /* Broadcom BCM5700 Linux Network Driver, Copyright (c) 2000 Broadcom */
  4. /* Corporation. */
  5. /* All rights reserved. */
  6. /* */
  7. /* This program is free software; you can redistribute it and/or modify */
  8. /* it under the terms of the GNU General Public License as published by */
  9. /* the Free Software Foundation, located in the file LICENSE. */
  10. /* */
  11. /* History: */
  12. /******************************************************************************/
  13. #include <common.h>
  14. #include <asm/types.h>
  15. #if defined(CONFIG_CMD_NET) && !defined(CONFIG_NET_MULTI) && \
  16. defined(CONFIG_TIGON3)
  17. #ifdef CONFIG_BMW
  18. #include <mpc824x.h>
  19. #endif
  20. #include <malloc.h>
  21. #include <linux/byteorder/big_endian.h>
  22. #include "bcm570x_mm.h"
  23. #define EMBEDDED 1
  24. /******************************************************************************/
  25. /* Local functions. */
  26. /******************************************************************************/
  27. LM_STATUS LM_Abort(PLM_DEVICE_BLOCK pDevice);
  28. LM_STATUS LM_QueueRxPackets(PLM_DEVICE_BLOCK pDevice);
  29. static LM_STATUS LM_TranslateRequestedMediaType(
  30. LM_REQUESTED_MEDIA_TYPE RequestedMediaType,
  31. PLM_MEDIA_TYPE pMediaType, PLM_LINE_SPEED pLineSpeed,
  32. PLM_DUPLEX_MODE pDuplexMode);
  33. static LM_STATUS LM_InitBcm540xPhy(PLM_DEVICE_BLOCK pDevice);
  34. __inline static LM_VOID LM_ServiceRxInterrupt(PLM_DEVICE_BLOCK pDevice);
  35. __inline static LM_VOID LM_ServiceTxInterrupt(PLM_DEVICE_BLOCK pDevice);
  36. static LM_STATUS LM_ForceAutoNegBcm540xPhy(PLM_DEVICE_BLOCK pDevice,
  37. LM_REQUESTED_MEDIA_TYPE RequestedMediaType);
  38. static LM_STATUS LM_ForceAutoNeg(PLM_DEVICE_BLOCK pDevice,
  39. LM_REQUESTED_MEDIA_TYPE RequestedMediaType);
  40. static LM_UINT32 GetPhyAdFlowCntrlSettings(PLM_DEVICE_BLOCK pDevice);
  41. STATIC LM_STATUS LM_SetFlowControl(PLM_DEVICE_BLOCK pDevice,
  42. LM_UINT32 LocalPhyAd, LM_UINT32 RemotePhyAd);
  43. #if INCLUDE_TBI_SUPPORT
  44. STATIC LM_STATUS LM_SetupFiberPhy(PLM_DEVICE_BLOCK pDevice);
  45. STATIC LM_STATUS LM_InitBcm800xPhy(PLM_DEVICE_BLOCK pDevice);
  46. #endif
  47. STATIC LM_STATUS LM_SetupCopperPhy(PLM_DEVICE_BLOCK pDevice);
  48. STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid(LM_UINT16 Svid, LM_UINT16 Ssid);
  49. STATIC LM_STATUS LM_DmaTest(PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
  50. LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize);
  51. STATIC LM_STATUS LM_HaltCpu(PLM_DEVICE_BLOCK pDevice,LM_UINT32 cpu_number);
  52. STATIC LM_STATUS LM_ResetChip(PLM_DEVICE_BLOCK pDevice);
  53. STATIC LM_STATUS LM_Test4GBoundary(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
  54. PT3_SND_BD pSendBd);
  55. /******************************************************************************/
  56. /* External functions. */
  57. /******************************************************************************/
  58. LM_STATUS LM_LoadRlsFirmware(PLM_DEVICE_BLOCK pDevice);
  59. /******************************************************************************/
  60. /* Description: */
  61. /* */
  62. /* Return: */
  63. /******************************************************************************/
  64. LM_UINT32
  65. LM_RegRdInd(
  66. PLM_DEVICE_BLOCK pDevice,
  67. LM_UINT32 Register) {
  68. LM_UINT32 Value32;
  69. #if PCIX_TARGET_WORKAROUND
  70. MM_ACQUIRE_UNDI_LOCK(pDevice);
  71. #endif
  72. MM_WriteConfig32(pDevice, T3_PCI_REG_ADDR_REG, Register);
  73. MM_ReadConfig32(pDevice, T3_PCI_REG_DATA_REG, &Value32);
  74. #if PCIX_TARGET_WORKAROUND
  75. MM_RELEASE_UNDI_LOCK(pDevice);
  76. #endif
  77. return Value32;
  78. } /* LM_RegRdInd */
  79. /******************************************************************************/
  80. /* Description: */
  81. /* */
  82. /* Return: */
  83. /******************************************************************************/
  84. LM_VOID
  85. LM_RegWrInd(
  86. PLM_DEVICE_BLOCK pDevice,
  87. LM_UINT32 Register,
  88. LM_UINT32 Value32) {
  89. #if PCIX_TARGET_WORKAROUND
  90. MM_ACQUIRE_UNDI_LOCK(pDevice);
  91. #endif
  92. MM_WriteConfig32(pDevice, T3_PCI_REG_ADDR_REG, Register);
  93. MM_WriteConfig32(pDevice, T3_PCI_REG_DATA_REG, Value32);
  94. #if PCIX_TARGET_WORKAROUND
  95. MM_RELEASE_UNDI_LOCK(pDevice);
  96. #endif
  97. } /* LM_RegWrInd */
  98. /******************************************************************************/
  99. /* Description: */
  100. /* */
  101. /* Return: */
  102. /******************************************************************************/
  103. LM_UINT32
  104. LM_MemRdInd(
  105. PLM_DEVICE_BLOCK pDevice,
  106. LM_UINT32 MemAddr) {
  107. LM_UINT32 Value32;
  108. MM_ACQUIRE_UNDI_LOCK(pDevice);
  109. #ifdef BIG_ENDIAN_HOST
  110. MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
  111. Value32 = REG_RD(pDevice, PciCfg.MemWindowData);
  112. /* Value32 = REG_RD(pDevice,uIntMem.Mbuf[(MemAddr & 0x7fff)/4]); */
  113. #else
  114. MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
  115. MM_ReadConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, &Value32);
  116. #endif
  117. MM_RELEASE_UNDI_LOCK(pDevice);
  118. return Value32;
  119. } /* LM_MemRdInd */
  120. /******************************************************************************/
  121. /* Description: */
  122. /* */
  123. /* Return: */
  124. /******************************************************************************/
  125. LM_VOID
  126. LM_MemWrInd(
  127. PLM_DEVICE_BLOCK pDevice,
  128. LM_UINT32 MemAddr,
  129. LM_UINT32 Value32) {
  130. MM_ACQUIRE_UNDI_LOCK(pDevice);
  131. #ifdef BIG_ENDIAN_HOST
  132. REG_WR(pDevice,PciCfg.MemWindowBaseAddr,MemAddr);
  133. REG_WR(pDevice,uIntMem.Mbuf[(MemAddr & 0x7fff)/4],Value32);
  134. #else
  135. MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
  136. MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, Value32);
  137. #endif
  138. MM_RELEASE_UNDI_LOCK(pDevice);
  139. } /* LM_MemWrInd */
  140. /******************************************************************************/
  141. /* Description: */
  142. /* */
  143. /* Return: */
  144. /******************************************************************************/
  145. LM_STATUS
  146. LM_QueueRxPackets(
  147. PLM_DEVICE_BLOCK pDevice) {
  148. LM_STATUS Lmstatus;
  149. PLM_PACKET pPacket;
  150. PT3_RCV_BD pRcvBd;
  151. LM_UINT32 StdBdAdded = 0;
  152. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  153. LM_UINT32 JumboBdAdded = 0;
  154. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  155. Lmstatus = LM_STATUS_SUCCESS;
  156. pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
  157. while(pPacket) {
  158. switch(pPacket->u.Rx.RcvProdRing) {
  159. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  160. case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */
  161. /* Initialize the buffer descriptor. */
  162. pRcvBd =
  163. &pDevice->pRxJumboBdVirt[pDevice->RxJumboProdIdx];
  164. pRcvBd->Flags = RCV_BD_FLAG_END | RCV_BD_FLAG_JUMBO_RING;
  165. pRcvBd->Len = (LM_UINT16) pDevice->RxJumboBufferSize;
  166. /* Initialize the receive buffer pointer */
  167. #if 0 /* Jimmy, deleted in new */
  168. pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
  169. pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
  170. #endif
  171. MM_MapRxDma(pDevice, pPacket, &pRcvBd->HostAddr);
  172. /* The opaque field may point to an offset from a fix addr. */
  173. pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR(pPacket) -
  174. MM_UINT_PTR(pDevice->pPacketDescBase));
  175. /* Update the producer index. */
  176. pDevice->RxJumboProdIdx = (pDevice->RxJumboProdIdx + 1) &
  177. T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
  178. JumboBdAdded++;
  179. break;
  180. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  181. case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */
  182. /* Initialize the buffer descriptor. */
  183. pRcvBd = &pDevice->pRxStdBdVirt[pDevice->RxStdProdIdx];
  184. pRcvBd->Flags = RCV_BD_FLAG_END;
  185. pRcvBd->Len = MAX_STD_RCV_BUFFER_SIZE;
  186. /* Initialize the receive buffer pointer */
  187. #if 0 /* Jimmy, deleted in new replaced with MM_MapRxDma */
  188. pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
  189. pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
  190. #endif
  191. MM_MapRxDma(pDevice, pPacket, &pRcvBd->HostAddr);
  192. /* The opaque field may point to an offset from a fix addr. */
  193. pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR(pPacket) -
  194. MM_UINT_PTR(pDevice->pPacketDescBase));
  195. /* Update the producer index. */
  196. pDevice->RxStdProdIdx = (pDevice->RxStdProdIdx + 1) &
  197. T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
  198. StdBdAdded++;
  199. break;
  200. case T3_UNKNOWN_RCV_PROD_RING:
  201. default:
  202. Lmstatus = LM_STATUS_FAILURE;
  203. break;
  204. } /* switch */
  205. /* Bail out if there is any error. */
  206. if(Lmstatus != LM_STATUS_SUCCESS)
  207. {
  208. break;
  209. }
  210. pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
  211. } /* while */
  212. wmb();
  213. /* Update the procedure index. */
  214. if(StdBdAdded)
  215. {
  216. MB_REG_WR(pDevice, Mailbox.RcvStdProdIdx.Low, pDevice->RxStdProdIdx);
  217. }
  218. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  219. if(JumboBdAdded)
  220. {
  221. MB_REG_WR(pDevice, Mailbox.RcvJumboProdIdx.Low,
  222. pDevice->RxJumboProdIdx);
  223. }
  224. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  225. return Lmstatus;
  226. } /* LM_QueueRxPackets */
  227. /******************************************************************************/
  228. /* Description: */
  229. /* */
  230. /* Return: */
  231. /******************************************************************************/
  232. STATIC LM_VOID
  233. LM_NvramInit(
  234. PLM_DEVICE_BLOCK pDevice)
  235. {
  236. LM_UINT32 Value32;
  237. LM_UINT32 j;
  238. /* Intialize clock period and state machine. */
  239. Value32 = SEEPROM_ADDR_CLK_PERD(SEEPROM_CLOCK_PERIOD) |
  240. SEEPROM_ADDR_FSM_RESET;
  241. REG_WR(pDevice, Grc.EepromAddr, Value32);
  242. for(j = 0; j < 100; j++)
  243. {
  244. MM_Wait(10);
  245. }
  246. /* Serial eeprom access using the Grc.EepromAddr/EepromData registers. */
  247. Value32 = REG_RD(pDevice, Grc.LocalCtrl);
  248. REG_WR(pDevice, Grc.LocalCtrl, Value32 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM);
  249. /* Set the 5701 compatibility mode if we are using EEPROM. */
  250. if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  251. T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)
  252. {
  253. Value32 = REG_RD(pDevice, Nvram.Config1);
  254. if((Value32 & FLASH_INTERFACE_ENABLE) == 0)
  255. {
  256. /* Use the new interface to read EEPROM. */
  257. Value32 &= ~FLASH_COMPAT_BYPASS;
  258. REG_WR(pDevice, Nvram.Config1, Value32);
  259. }
  260. }
  261. } /* LM_NvRamInit */
  262. /******************************************************************************/
  263. /* Description: */
  264. /* */
  265. /* Return: */
  266. /******************************************************************************/
  267. STATIC LM_STATUS
  268. LM_EepromRead(
  269. PLM_DEVICE_BLOCK pDevice,
  270. LM_UINT32 Offset,
  271. LM_UINT32 *pData)
  272. {
  273. LM_UINT32 Value32;
  274. LM_UINT32 Addr;
  275. LM_UINT32 Dev;
  276. LM_UINT32 j;
  277. if(Offset > SEEPROM_CHIP_SIZE)
  278. {
  279. return LM_STATUS_FAILURE;
  280. }
  281. Dev = Offset / SEEPROM_CHIP_SIZE;
  282. Addr = Offset % SEEPROM_CHIP_SIZE;
  283. Value32 = REG_RD(pDevice, Grc.EepromAddr);
  284. Value32 &= ~(SEEPROM_ADDR_ADDRESS_MASK | SEEPROM_ADDR_DEV_ID_MASK |
  285. SEEPROM_ADDR_RW_MASK);
  286. REG_WR(pDevice, Grc.EepromAddr, Value32 | SEEPROM_ADDR_DEV_ID(Dev) |
  287. SEEPROM_ADDR_ADDRESS(Addr) | SEEPROM_ADDR_START | SEEPROM_ADDR_READ);
  288. for(j = 0; j < 1000; j++)
  289. {
  290. Value32 = REG_RD(pDevice, Grc.EepromAddr);
  291. if(Value32 & SEEPROM_ADDR_COMPLETE)
  292. {
  293. break;
  294. }
  295. MM_Wait(10);
  296. }
  297. if(Value32 & SEEPROM_ADDR_COMPLETE)
  298. {
  299. Value32 = REG_RD(pDevice, Grc.EepromData);
  300. *pData = Value32;
  301. return LM_STATUS_SUCCESS;
  302. }
  303. return LM_STATUS_FAILURE;
  304. } /* LM_EepromRead */
  305. /******************************************************************************/
  306. /* Description: */
  307. /* */
  308. /* Return: */
  309. /******************************************************************************/
  310. STATIC LM_STATUS
  311. LM_NvramRead(
  312. PLM_DEVICE_BLOCK pDevice,
  313. LM_UINT32 Offset,
  314. LM_UINT32 *pData)
  315. {
  316. LM_UINT32 Value32;
  317. LM_STATUS Status;
  318. LM_UINT32 j;
  319. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  320. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  321. {
  322. Status = LM_EepromRead(pDevice, Offset, pData);
  323. }
  324. else
  325. {
  326. /* Determine if we have flash or EEPROM. */
  327. Value32 = REG_RD(pDevice, Nvram.Config1);
  328. if(Value32 & FLASH_INTERFACE_ENABLE)
  329. {
  330. if(Value32 & FLASH_SSRAM_BUFFERRED_MODE)
  331. {
  332. Offset = ((Offset/BUFFERED_FLASH_PAGE_SIZE) <<
  333. BUFFERED_FLASH_PAGE_POS) +
  334. (Offset % BUFFERED_FLASH_PAGE_SIZE);
  335. }
  336. }
  337. REG_WR(pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
  338. for (j = 0; j < 1000; j++)
  339. {
  340. if (REG_RD(pDevice, Nvram.SwArb) & SW_ARB_GNT1)
  341. {
  342. break;
  343. }
  344. MM_Wait(20);
  345. }
  346. if (j == 1000)
  347. {
  348. return LM_STATUS_FAILURE;
  349. }
  350. /* Read from flash or EEPROM with the new 5703/02 interface. */
  351. REG_WR(pDevice, Nvram.Addr, Offset & NVRAM_ADDRESS_MASK);
  352. REG_WR(pDevice, Nvram.Cmd, NVRAM_CMD_RD | NVRAM_CMD_DO_IT |
  353. NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE);
  354. /* Wait for the done bit to clear. */
  355. for(j = 0; j < 500; j++)
  356. {
  357. MM_Wait(10);
  358. Value32 = REG_RD(pDevice, Nvram.Cmd);
  359. if(!(Value32 & NVRAM_CMD_DONE))
  360. {
  361. break;
  362. }
  363. }
  364. /* Wait for the done bit. */
  365. if(!(Value32 & NVRAM_CMD_DONE))
  366. {
  367. for(j = 0; j < 500; j++)
  368. {
  369. MM_Wait(10);
  370. Value32 = REG_RD(pDevice, Nvram.Cmd);
  371. if(Value32 & NVRAM_CMD_DONE)
  372. {
  373. MM_Wait(10);
  374. *pData = REG_RD(pDevice, Nvram.ReadData);
  375. /* Change the endianess. */
  376. *pData = ((*pData & 0xff) << 24)| ((*pData & 0xff00) << 8)|
  377. ((*pData & 0xff0000) >> 8) | ((*pData >> 24) & 0xff);
  378. break;
  379. }
  380. }
  381. }
  382. REG_WR(pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1);
  383. if(Value32 & NVRAM_CMD_DONE)
  384. {
  385. Status = LM_STATUS_SUCCESS;
  386. }
  387. else
  388. {
  389. Status = LM_STATUS_FAILURE;
  390. }
  391. }
  392. return Status;
  393. } /* LM_NvramRead */
  394. STATIC void
  395. LM_ReadVPD(PLM_DEVICE_BLOCK pDevice)
  396. {
  397. LM_UINT32 Vpd_arr[256/4];
  398. LM_UINT8 *Vpd = (LM_UINT8 *) &Vpd_arr[0];
  399. LM_UINT32 *Vpd_dptr = &Vpd_arr[0];
  400. LM_UINT32 Value32;
  401. unsigned int j;
  402. /* Read PN from VPD */
  403. for (j = 0; j < 256; j += 4, Vpd_dptr++ )
  404. {
  405. if (LM_NvramRead(pDevice, 0x100 + j, &Value32) != LM_STATUS_SUCCESS) {
  406. printf("BCM570x: LM_ReadVPD: VPD read failed"
  407. " (no EEPROM onboard)\n");
  408. return;
  409. }
  410. *Vpd_dptr = cpu_to_le32(Value32);
  411. }
  412. for (j = 0; j < 256; )
  413. {
  414. unsigned int Vpd_r_len;
  415. unsigned int Vpd_r_end;
  416. if ((Vpd[j] == 0x82) || (Vpd[j] == 0x91))
  417. {
  418. j = j + 3 + Vpd[j + 1] + (Vpd[j + 2] << 8);
  419. }
  420. else if (Vpd[j] == 0x90)
  421. {
  422. Vpd_r_len = Vpd[j + 1] + (Vpd[j + 2] << 8);
  423. j += 3;
  424. Vpd_r_end = Vpd_r_len + j;
  425. while (j < Vpd_r_end)
  426. {
  427. if ((Vpd[j] == 'P') && (Vpd[j + 1] == 'N'))
  428. {
  429. unsigned int len = Vpd[j + 2];
  430. if (len <= 24)
  431. {
  432. memcpy(pDevice->PartNo, &Vpd[j + 3], len);
  433. }
  434. break;
  435. }
  436. else
  437. {
  438. if (Vpd[j + 2] == 0)
  439. {
  440. break;
  441. }
  442. j = j + Vpd[j + 2];
  443. }
  444. }
  445. break;
  446. }
  447. else {
  448. break;
  449. }
  450. }
  451. }
  452. STATIC void
  453. LM_ReadBootCodeVersion(PLM_DEVICE_BLOCK pDevice)
  454. {
  455. LM_UINT32 Value32, offset, ver_offset;
  456. int i;
  457. if (LM_NvramRead(pDevice, 0x0, &Value32) != LM_STATUS_SUCCESS)
  458. return;
  459. if (Value32 != 0xaa559966)
  460. return;
  461. if (LM_NvramRead(pDevice, 0xc, &offset) != LM_STATUS_SUCCESS)
  462. return;
  463. offset = ((offset & 0xff) << 24)| ((offset & 0xff00) << 8)|
  464. ((offset & 0xff0000) >> 8) | ((offset >> 24) & 0xff);
  465. if (LM_NvramRead(pDevice, offset, &Value32) != LM_STATUS_SUCCESS)
  466. return;
  467. if ((Value32 == 0x0300000e) &&
  468. (LM_NvramRead(pDevice, offset + 4, &Value32) == LM_STATUS_SUCCESS) &&
  469. (Value32 == 0)) {
  470. if (LM_NvramRead(pDevice, offset + 8, &ver_offset) != LM_STATUS_SUCCESS)
  471. return;
  472. ver_offset = ((ver_offset & 0xff0000) >> 8) |
  473. ((ver_offset >> 24) & 0xff);
  474. for (i = 0; i < 16; i += 4) {
  475. if (LM_NvramRead(pDevice, offset + ver_offset + i, &Value32) !=
  476. LM_STATUS_SUCCESS)
  477. {
  478. return;
  479. }
  480. *((LM_UINT32 *) &pDevice->BootCodeVer[i]) = cpu_to_le32(Value32);
  481. }
  482. }
  483. else {
  484. char c;
  485. if (LM_NvramRead(pDevice, 0x94, &Value32) != LM_STATUS_SUCCESS)
  486. return;
  487. i = 0;
  488. c = ((Value32 & 0xff0000) >> 16);
  489. if (c < 10) {
  490. pDevice->BootCodeVer[i++] = c + '0';
  491. }
  492. else {
  493. pDevice->BootCodeVer[i++] = (c / 10) + '0';
  494. pDevice->BootCodeVer[i++] = (c % 10) + '0';
  495. }
  496. pDevice->BootCodeVer[i++] = '.';
  497. c = (Value32 & 0xff000000) >> 24;
  498. if (c < 10) {
  499. pDevice->BootCodeVer[i++] = c + '0';
  500. }
  501. else {
  502. pDevice->BootCodeVer[i++] = (c / 10) + '0';
  503. pDevice->BootCodeVer[i++] = (c % 10) + '0';
  504. }
  505. pDevice->BootCodeVer[i] = 0;
  506. }
  507. }
  508. STATIC void
  509. LM_GetBusSpeed(PLM_DEVICE_BLOCK pDevice)
  510. {
  511. LM_UINT32 PciState = pDevice->PciState;
  512. LM_UINT32 ClockCtrl;
  513. char *SpeedStr = "";
  514. if (PciState & T3_PCI_STATE_32BIT_PCI_BUS)
  515. {
  516. strcpy(pDevice->BusSpeedStr, "32-bit ");
  517. }
  518. else
  519. {
  520. strcpy(pDevice->BusSpeedStr, "64-bit ");
  521. }
  522. if (PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)
  523. {
  524. strcat(pDevice->BusSpeedStr, "PCI ");
  525. if (PciState & T3_PCI_STATE_HIGH_BUS_SPEED)
  526. {
  527. SpeedStr = "66MHz";
  528. }
  529. else
  530. {
  531. SpeedStr = "33MHz";
  532. }
  533. }
  534. else
  535. {
  536. strcat(pDevice->BusSpeedStr, "PCIX ");
  537. if (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE)
  538. {
  539. SpeedStr = "133MHz";
  540. }
  541. else
  542. {
  543. ClockCtrl = REG_RD(pDevice, PciCfg.ClockCtrl) & 0x1f;
  544. switch (ClockCtrl)
  545. {
  546. case 0:
  547. SpeedStr = "33MHz";
  548. break;
  549. case 2:
  550. SpeedStr = "50MHz";
  551. break;
  552. case 4:
  553. SpeedStr = "66MHz";
  554. break;
  555. case 6:
  556. SpeedStr = "100MHz";
  557. break;
  558. case 7:
  559. SpeedStr = "133MHz";
  560. break;
  561. }
  562. }
  563. }
  564. strcat(pDevice->BusSpeedStr, SpeedStr);
  565. }
  566. /******************************************************************************/
  567. /* Description: */
  568. /* This routine initializes default parameters and reads the PCI */
  569. /* configurations. */
  570. /* */
  571. /* Return: */
  572. /* LM_STATUS_SUCCESS */
  573. /******************************************************************************/
  574. LM_STATUS
  575. LM_GetAdapterInfo(
  576. PLM_DEVICE_BLOCK pDevice)
  577. {
  578. PLM_ADAPTER_INFO pAdapterInfo;
  579. LM_UINT32 Value32;
  580. LM_STATUS Status;
  581. LM_UINT32 j;
  582. LM_UINT32 EeSigFound;
  583. LM_UINT32 EePhyTypeSerdes = 0;
  584. LM_UINT32 EePhyLedMode = 0;
  585. LM_UINT32 EePhyId = 0;
  586. /* Get Device Id and Vendor Id */
  587. Status = MM_ReadConfig32(pDevice, PCI_VENDOR_ID_REG, &Value32);
  588. if(Status != LM_STATUS_SUCCESS)
  589. {
  590. return Status;
  591. }
  592. pDevice->PciVendorId = (LM_UINT16) Value32;
  593. pDevice->PciDeviceId = (LM_UINT16) (Value32 >> 16);
  594. /* If we are not getting the write adapter, exit. */
  595. if((Value32 != T3_PCI_ID_BCM5700) &&
  596. (Value32 != T3_PCI_ID_BCM5701) &&
  597. (Value32 != T3_PCI_ID_BCM5702) &&
  598. (Value32 != T3_PCI_ID_BCM5702x) &&
  599. (Value32 != T3_PCI_ID_BCM5702FE) &&
  600. (Value32 != T3_PCI_ID_BCM5703) &&
  601. (Value32 != T3_PCI_ID_BCM5703x) &&
  602. (Value32 != T3_PCI_ID_BCM5704))
  603. {
  604. return LM_STATUS_FAILURE;
  605. }
  606. Status = MM_ReadConfig32(pDevice, PCI_REV_ID_REG, &Value32);
  607. if(Status != LM_STATUS_SUCCESS)
  608. {
  609. return Status;
  610. }
  611. pDevice->PciRevId = (LM_UINT8) Value32;
  612. /* Get IRQ. */
  613. Status = MM_ReadConfig32(pDevice, PCI_INT_LINE_REG, &Value32);
  614. if(Status != LM_STATUS_SUCCESS)
  615. {
  616. return Status;
  617. }
  618. pDevice->Irq = (LM_UINT8) Value32;
  619. /* Get interrupt pin. */
  620. pDevice->IntPin = (LM_UINT8) (Value32 >> 8);
  621. /* Get chip revision id. */
  622. Status = MM_ReadConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32);
  623. pDevice->ChipRevId = Value32 >> 16;
  624. /* Get subsystem vendor. */
  625. Status = MM_ReadConfig32(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, &Value32);
  626. if(Status != LM_STATUS_SUCCESS)
  627. {
  628. return Status;
  629. }
  630. pDevice->SubsystemVendorId = (LM_UINT16) Value32;
  631. /* Get PCI subsystem id. */
  632. pDevice->SubsystemId = (LM_UINT16) (Value32 >> 16);
  633. /* Get the cache line size. */
  634. MM_ReadConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG, &Value32);
  635. pDevice->CacheLineSize = (LM_UINT8) Value32;
  636. pDevice->SavedCacheLineReg = Value32;
  637. if(pDevice->ChipRevId != T3_CHIP_ID_5703_A1 &&
  638. pDevice->ChipRevId != T3_CHIP_ID_5703_A2 &&
  639. pDevice->ChipRevId != T3_CHIP_ID_5704_A0)
  640. {
  641. pDevice->UndiFix = FALSE;
  642. }
  643. #if !PCIX_TARGET_WORKAROUND
  644. pDevice->UndiFix = FALSE;
  645. #endif
  646. /* Map the memory base to system address space. */
  647. if (!pDevice->UndiFix)
  648. {
  649. Status = MM_MapMemBase(pDevice);
  650. if(Status != LM_STATUS_SUCCESS)
  651. {
  652. return Status;
  653. }
  654. /* Initialize the memory view pointer. */
  655. pDevice->pMemView = (PT3_STD_MEM_MAP) pDevice->pMappedMemBase;
  656. }
  657. #if PCIX_TARGET_WORKAROUND
  658. /* store whether we are in PCI are PCI-X mode */
  659. pDevice->EnablePciXFix = FALSE;
  660. MM_ReadConfig32(pDevice, T3_PCI_STATE_REG, &Value32);
  661. if((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0)
  662. {
  663. /* Enable PCI-X workaround only if we are running on 5700 BX. */
  664. if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX)
  665. {
  666. pDevice->EnablePciXFix = TRUE;
  667. }
  668. }
  669. if (pDevice->UndiFix)
  670. {
  671. pDevice->EnablePciXFix = TRUE;
  672. }
  673. #endif
  674. /* Bx bug: due to the "byte_enable bug" in PCI-X mode, the power */
  675. /* management register may be clobbered which may cause the */
  676. /* BCM5700 to go into D3 state. While in this state, we will */
  677. /* not have memory mapped register access. As a workaround, we */
  678. /* need to restore the device to D0 state. */
  679. MM_ReadConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, &Value32);
  680. Value32 |= T3_PM_PME_ASSERTED;
  681. Value32 &= ~T3_PM_POWER_STATE_MASK;
  682. Value32 |= T3_PM_POWER_STATE_D0;
  683. MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, Value32);
  684. /* read the current PCI command word */
  685. MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32);
  686. /* Make sure bus-mastering is enabled. */
  687. Value32 |= PCI_BUSMASTER_ENABLE;
  688. #if PCIX_TARGET_WORKAROUND
  689. /* if we are in PCI-X mode, also make sure mem-mapping and SERR#/PERR#
  690. are enabled */
  691. if (pDevice->EnablePciXFix == TRUE) {
  692. Value32 |= (PCI_MEM_SPACE_ENABLE | PCI_SYSTEM_ERROR_ENABLE |
  693. PCI_PARITY_ERROR_ENABLE);
  694. }
  695. if (pDevice->UndiFix)
  696. {
  697. Value32 &= ~PCI_MEM_SPACE_ENABLE;
  698. }
  699. #endif
  700. if(pDevice->EnableMWI)
  701. {
  702. Value32 |= PCI_MEMORY_WRITE_INVALIDATE;
  703. }
  704. else {
  705. Value32 &= (~PCI_MEMORY_WRITE_INVALIDATE);
  706. }
  707. /* Error out if mem-mapping is NOT enabled for PCI systems */
  708. if (!(Value32 | PCI_MEM_SPACE_ENABLE))
  709. {
  710. return LM_STATUS_FAILURE;
  711. }
  712. /* save the value we are going to write into the PCI command word */
  713. pDevice->PciCommandStatusWords = Value32;
  714. Status = MM_WriteConfig32(pDevice, PCI_COMMAND_REG, Value32);
  715. if(Status != LM_STATUS_SUCCESS)
  716. {
  717. return Status;
  718. }
  719. /* Set power state to D0. */
  720. LM_SetPowerState(pDevice, LM_POWER_STATE_D0);
  721. #ifdef BIG_ENDIAN_PCI
  722. pDevice->MiscHostCtrl =
  723. MISC_HOST_CTRL_MASK_PCI_INT |
  724. MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
  725. MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
  726. MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
  727. #else /* No CPU Swap modes for PCI IO */
  728. /* Setup the mode registers. */
  729. pDevice->MiscHostCtrl =
  730. MISC_HOST_CTRL_MASK_PCI_INT |
  731. MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
  732. #ifdef BIG_ENDIAN_HOST
  733. MISC_HOST_CTRL_ENABLE_ENDIAN_BYTE_SWAP |
  734. #endif /* BIG_ENDIAN_HOST */
  735. MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
  736. MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
  737. #endif /* !BIG_ENDIAN_PCI */
  738. /* write to PCI misc host ctr first in order to enable indirect accesses */
  739. MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl);
  740. REG_WR(pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl);
  741. #ifdef BIG_ENDIAN_PCI
  742. Value32 = GRC_MODE_WORD_SWAP_DATA|
  743. GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
  744. #else
  745. /* No CPU Swap modes for PCI IO */
  746. #ifdef BIG_ENDIAN_HOST
  747. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
  748. GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
  749. #else
  750. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
  751. #endif
  752. #endif /* !BIG_ENDIAN_PCI */
  753. REG_WR(pDevice, Grc.Mode, Value32);
  754. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  755. {
  756. REG_WR(pDevice, Grc.LocalCtrl, GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
  757. GRC_MISC_LOCAL_CTRL_GPIO_OE1);
  758. }
  759. MM_Wait(40);
  760. /* Enable indirect memory access */
  761. REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
  762. if (REG_RD(pDevice, PciCfg.ClockCtrl) & T3_PCI_44MHZ_CORE_CLOCK)
  763. {
  764. REG_WR(pDevice, PciCfg.ClockCtrl, T3_PCI_44MHZ_CORE_CLOCK |
  765. T3_PCI_SELECT_ALTERNATE_CLOCK);
  766. REG_WR(pDevice, PciCfg.ClockCtrl, T3_PCI_SELECT_ALTERNATE_CLOCK);
  767. MM_Wait(40); /* required delay is 27usec */
  768. }
  769. REG_WR(pDevice, PciCfg.ClockCtrl, 0);
  770. REG_WR(pDevice, PciCfg.MemWindowBaseAddr, 0);
  771. #if PCIX_TARGET_WORKAROUND
  772. MM_ReadConfig32(pDevice, T3_PCI_STATE_REG, &Value32);
  773. if ((pDevice->EnablePciXFix == FALSE) &&
  774. ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0))
  775. {
  776. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  777. pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
  778. pDevice->ChipRevId == T3_CHIP_ID_5701_B2 ||
  779. pDevice->ChipRevId == T3_CHIP_ID_5701_B5)
  780. {
  781. __raw_writel(0, &(pDevice->pMemView->uIntMem.MemBlock32K[0x300]));
  782. __raw_writel(0, &(pDevice->pMemView->uIntMem.MemBlock32K[0x301]));
  783. __raw_writel(0xffffffff, &(pDevice->pMemView->uIntMem.MemBlock32K[0x301]));
  784. if (__raw_readl(&(pDevice->pMemView->uIntMem.MemBlock32K[0x300])))
  785. {
  786. pDevice->EnablePciXFix = TRUE;
  787. }
  788. }
  789. }
  790. #endif
  791. #if 1
  792. /*
  793. * This code was at the beginning of else block below, but that's
  794. * a bug if node address in shared memory.
  795. */
  796. MM_Wait(50);
  797. LM_NvramInit(pDevice);
  798. #endif
  799. /* Get the node address. First try to get in from the shared memory. */
  800. /* If the signature is not present, then get it from the NVRAM. */
  801. Value32 = MEM_RD_OFFSET(pDevice, T3_MAC_ADDR_HIGH_MAILBOX);
  802. if((Value32 >> 16) == 0x484b)
  803. {
  804. pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 8);
  805. pDevice->NodeAddress[1] = (LM_UINT8) Value32;
  806. Value32 = MEM_RD_OFFSET(pDevice, T3_MAC_ADDR_LOW_MAILBOX);
  807. pDevice->NodeAddress[2] = (LM_UINT8) (Value32 >> 24);
  808. pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 16);
  809. pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 8);
  810. pDevice->NodeAddress[5] = (LM_UINT8) Value32;
  811. Status = LM_STATUS_SUCCESS;
  812. }
  813. else
  814. {
  815. Status = LM_NvramRead(pDevice, 0x7c, &Value32);
  816. if(Status == LM_STATUS_SUCCESS)
  817. {
  818. pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 16);
  819. pDevice->NodeAddress[1] = (LM_UINT8) (Value32 >> 24);
  820. Status = LM_NvramRead(pDevice, 0x80, &Value32);
  821. pDevice->NodeAddress[2] = (LM_UINT8) Value32;
  822. pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 8);
  823. pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 16);
  824. pDevice->NodeAddress[5] = (LM_UINT8) (Value32 >> 24);
  825. }
  826. }
  827. /* Assign a default address. */
  828. if(Status != LM_STATUS_SUCCESS)
  829. {
  830. #ifndef EMBEDDED
  831. printk(KERN_ERR "Cannot get MAC addr from NVRAM. Using default.\n");
  832. #endif
  833. pDevice->NodeAddress[0] = 0x00; pDevice->NodeAddress[1] = 0x10;
  834. pDevice->NodeAddress[2] = 0x18; pDevice->NodeAddress[3] = 0x68;
  835. pDevice->NodeAddress[4] = 0x61; pDevice->NodeAddress[5] = 0x76;
  836. }
  837. pDevice->PermanentNodeAddress[0] = pDevice->NodeAddress[0];
  838. pDevice->PermanentNodeAddress[1] = pDevice->NodeAddress[1];
  839. pDevice->PermanentNodeAddress[2] = pDevice->NodeAddress[2];
  840. pDevice->PermanentNodeAddress[3] = pDevice->NodeAddress[3];
  841. pDevice->PermanentNodeAddress[4] = pDevice->NodeAddress[4];
  842. pDevice->PermanentNodeAddress[5] = pDevice->NodeAddress[5];
  843. /* Initialize the default values. */
  844. pDevice->NoTxPseudoHdrChksum = FALSE;
  845. pDevice->NoRxPseudoHdrChksum = FALSE;
  846. pDevice->NicSendBd = FALSE;
  847. pDevice->TxPacketDescCnt = DEFAULT_TX_PACKET_DESC_COUNT;
  848. pDevice->RxStdDescCnt = DEFAULT_STD_RCV_DESC_COUNT;
  849. pDevice->RxCoalescingTicks = DEFAULT_RX_COALESCING_TICKS;
  850. pDevice->TxCoalescingTicks = DEFAULT_TX_COALESCING_TICKS;
  851. pDevice->RxMaxCoalescedFrames = DEFAULT_RX_MAX_COALESCED_FRAMES;
  852. pDevice->TxMaxCoalescedFrames = DEFAULT_TX_MAX_COALESCED_FRAMES;
  853. pDevice->RxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
  854. pDevice->TxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
  855. pDevice->RxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
  856. pDevice->TxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
  857. pDevice->StatsCoalescingTicks = DEFAULT_STATS_COALESCING_TICKS;
  858. pDevice->EnableMWI = FALSE;
  859. pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  860. pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  861. pDevice->DisableAutoNeg = FALSE;
  862. pDevice->PhyIntMode = T3_PHY_INT_MODE_AUTO;
  863. pDevice->LinkChngMode = T3_LINK_CHNG_MODE_AUTO;
  864. pDevice->LedMode = LED_MODE_AUTO;
  865. pDevice->ResetPhyOnInit = TRUE;
  866. pDevice->DelayPciGrant = TRUE;
  867. pDevice->UseTaggedStatus = FALSE;
  868. pDevice->OneDmaAtOnce = BAD_DEFAULT_VALUE;
  869. pDevice->DmaMbufLowMark = T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO;
  870. pDevice->RxMacMbufLowMark = T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO;
  871. pDevice->MbufHighMark = T3_DEF_MBUF_HIGH_WMARK_JUMBO;
  872. pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_AUTO;
  873. pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_NONE;
  874. pDevice->FlowControlCap = LM_FLOW_CONTROL_AUTO_PAUSE;
  875. pDevice->EnableTbi = FALSE;
  876. #if INCLUDE_TBI_SUPPORT
  877. pDevice->PollTbiLink = BAD_DEFAULT_VALUE;
  878. #endif
  879. switch (T3_ASIC_REV(pDevice->ChipRevId))
  880. {
  881. case T3_ASIC_REV_5704:
  882. pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
  883. pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE64;
  884. break;
  885. default:
  886. pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
  887. pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE96;
  888. break;
  889. }
  890. pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
  891. pDevice->QueueRxPackets = TRUE;
  892. pDevice->EnableWireSpeed = TRUE;
  893. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  894. pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT;
  895. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  896. /* Make this is a known adapter. */
  897. pAdapterInfo = LM_GetAdapterInfoBySsid(pDevice->SubsystemVendorId,
  898. pDevice->SubsystemId);
  899. pDevice->BondId = REG_RD(pDevice, Grc.MiscCfg) & GRC_MISC_BD_ID_MASK;
  900. if (pDevice->BondId != GRC_MISC_BD_ID_5700 &&
  901. pDevice->BondId != GRC_MISC_BD_ID_5701 &&
  902. pDevice->BondId != GRC_MISC_BD_ID_5702FE &&
  903. pDevice->BondId != GRC_MISC_BD_ID_5703 &&
  904. pDevice->BondId != GRC_MISC_BD_ID_5703S &&
  905. pDevice->BondId != GRC_MISC_BD_ID_5704 &&
  906. pDevice->BondId != GRC_MISC_BD_ID_5704CIOBE)
  907. {
  908. return LM_STATUS_UNKNOWN_ADAPTER;
  909. }
  910. pDevice->SplitModeEnable = SPLIT_MODE_DISABLE;
  911. if ((pDevice->ChipRevId == T3_CHIP_ID_5704_A0) &&
  912. (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE))
  913. {
  914. pDevice->SplitModeEnable = SPLIT_MODE_ENABLE;
  915. pDevice->SplitModeMaxReq = SPLIT_MODE_5704_MAX_REQ;
  916. }
  917. /* Get Eeprom info. */
  918. Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_SIG_ADDR);
  919. if (Value32 == T3_NIC_DATA_SIG)
  920. {
  921. EeSigFound = TRUE;
  922. Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR);
  923. /* Determine PHY type. */
  924. switch (Value32 & T3_NIC_CFG_PHY_TYPE_MASK)
  925. {
  926. case T3_NIC_CFG_PHY_TYPE_COPPER:
  927. EePhyTypeSerdes = FALSE;
  928. break;
  929. case T3_NIC_CFG_PHY_TYPE_FIBER:
  930. EePhyTypeSerdes = TRUE;
  931. break;
  932. default:
  933. EePhyTypeSerdes = FALSE;
  934. break;
  935. }
  936. /* Determine PHY led mode. */
  937. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  938. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  939. {
  940. switch(Value32 & T3_NIC_CFG_LED_MODE_MASK)
  941. {
  942. case T3_NIC_CFG_LED_MODE_TRIPLE_SPEED:
  943. EePhyLedMode = LED_MODE_THREE_LINK;
  944. break;
  945. case T3_NIC_CFG_LED_MODE_LINK_SPEED:
  946. EePhyLedMode = LED_MODE_LINK10;
  947. break;
  948. default:
  949. EePhyLedMode = LED_MODE_AUTO;
  950. break;
  951. }
  952. }
  953. else
  954. {
  955. switch(Value32 & T3_NIC_CFG_LED_MODE_MASK)
  956. {
  957. case T3_NIC_CFG_LED_MODE_OPEN_DRAIN:
  958. EePhyLedMode = LED_MODE_OPEN_DRAIN;
  959. break;
  960. case T3_NIC_CFG_LED_MODE_OUTPUT:
  961. EePhyLedMode = LED_MODE_OUTPUT;
  962. break;
  963. default:
  964. EePhyLedMode = LED_MODE_AUTO;
  965. break;
  966. }
  967. }
  968. if(pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
  969. pDevice->ChipRevId == T3_CHIP_ID_5703_A2)
  970. {
  971. /* Enable EEPROM write protection. */
  972. if(Value32 & T3_NIC_EEPROM_WP)
  973. {
  974. pDevice->EepromWp = TRUE;
  975. }
  976. }
  977. /* Get the PHY Id. */
  978. Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_PHY_ID_ADDR);
  979. if (Value32)
  980. {
  981. EePhyId = (((Value32 & T3_NIC_PHY_ID1_MASK) >> 16) &
  982. PHY_ID1_OUI_MASK) << 10;
  983. Value32 = Value32 & T3_NIC_PHY_ID2_MASK;
  984. EePhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
  985. (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);
  986. }
  987. else
  988. {
  989. EePhyId = 0;
  990. }
  991. }
  992. else
  993. {
  994. EeSigFound = FALSE;
  995. }
  996. /* Set the PHY address. */
  997. pDevice->PhyAddr = PHY_DEVICE_ID;
  998. /* Disable auto polling. */
  999. pDevice->MiMode = 0xc0000;
  1000. REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
  1001. MM_Wait(40);
  1002. /* Get the PHY id. */
  1003. LM_ReadPhy(pDevice, PHY_ID1_REG, &Value32);
  1004. pDevice->PhyId = (Value32 & PHY_ID1_OUI_MASK) << 10;
  1005. LM_ReadPhy(pDevice, PHY_ID2_REG, &Value32);
  1006. pDevice->PhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
  1007. (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);
  1008. /* Set the EnableTbi flag to false if we have a copper PHY. */
  1009. switch(pDevice->PhyId & PHY_ID_MASK)
  1010. {
  1011. case PHY_BCM5400_PHY_ID:
  1012. pDevice->EnableTbi = FALSE;
  1013. break;
  1014. case PHY_BCM5401_PHY_ID:
  1015. pDevice->EnableTbi = FALSE;
  1016. break;
  1017. case PHY_BCM5411_PHY_ID:
  1018. pDevice->EnableTbi = FALSE;
  1019. break;
  1020. case PHY_BCM5701_PHY_ID:
  1021. pDevice->EnableTbi = FALSE;
  1022. break;
  1023. case PHY_BCM5703_PHY_ID:
  1024. pDevice->EnableTbi = FALSE;
  1025. break;
  1026. case PHY_BCM5704_PHY_ID:
  1027. pDevice->EnableTbi = FALSE;
  1028. break;
  1029. case PHY_BCM8002_PHY_ID:
  1030. pDevice->EnableTbi = TRUE;
  1031. break;
  1032. default:
  1033. if (pAdapterInfo)
  1034. {
  1035. pDevice->PhyId = pAdapterInfo->PhyId;
  1036. pDevice->EnableTbi = pAdapterInfo->Serdes;
  1037. }
  1038. else if (EeSigFound)
  1039. {
  1040. pDevice->PhyId = EePhyId;
  1041. pDevice->EnableTbi = EePhyTypeSerdes;
  1042. }
  1043. break;
  1044. }
  1045. /* Bail out if we don't know the copper PHY id. */
  1046. if(UNKNOWN_PHY_ID(pDevice->PhyId) && !pDevice->EnableTbi)
  1047. {
  1048. return LM_STATUS_FAILURE;
  1049. }
  1050. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
  1051. {
  1052. if((pDevice->SavedCacheLineReg & 0xff00) < 0x4000)
  1053. {
  1054. pDevice->SavedCacheLineReg &= 0xffff00ff;
  1055. pDevice->SavedCacheLineReg |= 0x4000;
  1056. }
  1057. }
  1058. /* Change driver parameters. */
  1059. Status = MM_GetConfig(pDevice);
  1060. if(Status != LM_STATUS_SUCCESS)
  1061. {
  1062. return Status;
  1063. }
  1064. #if INCLUDE_5701_AX_FIX
  1065. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  1066. pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
  1067. {
  1068. pDevice->ResetPhyOnInit = TRUE;
  1069. }
  1070. #endif
  1071. /* Save the current phy link status. */
  1072. if(!pDevice->EnableTbi)
  1073. {
  1074. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  1075. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  1076. /* If we don't have link reset the PHY. */
  1077. if(!(Value32 & PHY_STATUS_LINK_PASS) || pDevice->ResetPhyOnInit)
  1078. {
  1079. LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);
  1080. for(j = 0; j < 100; j++)
  1081. {
  1082. MM_Wait(10);
  1083. LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
  1084. if(Value32 && !(Value32 & PHY_CTRL_PHY_RESET))
  1085. {
  1086. MM_Wait(40);
  1087. break;
  1088. }
  1089. }
  1090. #if INCLUDE_5701_AX_FIX
  1091. /* 5701_AX_BX bug: only advertises 10mb speed. */
  1092. if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  1093. pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
  1094. {
  1095. Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
  1096. PHY_AN_AD_10BASET_HALF | PHY_AN_AD_10BASET_FULL |
  1097. PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
  1098. Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
  1099. LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
  1100. pDevice->advertising = Value32;
  1101. Value32 = BCM540X_AN_AD_1000BASET_HALF |
  1102. BCM540X_AN_AD_1000BASET_FULL | BCM540X_CONFIG_AS_MASTER |
  1103. BCM540X_ENABLE_CONFIG_AS_MASTER;
  1104. LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
  1105. pDevice->advertising1000 = Value32;
  1106. LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
  1107. PHY_CTRL_RESTART_AUTO_NEG);
  1108. }
  1109. #endif
  1110. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
  1111. {
  1112. LM_WritePhy(pDevice, 0x18, 0x0c00);
  1113. LM_WritePhy(pDevice, 0x17, 0x201f);
  1114. LM_WritePhy(pDevice, 0x15, 0x2aaa);
  1115. }
  1116. if(pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
  1117. {
  1118. LM_WritePhy(pDevice, 0x1c, 0x8d68);
  1119. LM_WritePhy(pDevice, 0x1c, 0x8d68);
  1120. }
  1121. /* Enable Ethernet@WireSpeed. */
  1122. if(pDevice->EnableWireSpeed)
  1123. {
  1124. LM_WritePhy(pDevice, 0x18, 0x7007);
  1125. LM_ReadPhy(pDevice, 0x18, &Value32);
  1126. LM_WritePhy(pDevice, 0x18, Value32 | BIT_15 | BIT_4);
  1127. }
  1128. }
  1129. }
  1130. /* Turn off tap power management. */
  1131. if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
  1132. {
  1133. LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0c20);
  1134. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
  1135. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1804);
  1136. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
  1137. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1204);
  1138. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  1139. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0132);
  1140. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  1141. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0232);
  1142. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
  1143. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
  1144. MM_Wait(40);
  1145. }
  1146. #if INCLUDE_TBI_SUPPORT
  1147. pDevice->IgnoreTbiLinkChange = FALSE;
  1148. if(pDevice->EnableTbi)
  1149. {
  1150. pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_NONE;
  1151. pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
  1152. if ((pDevice->PollTbiLink == BAD_DEFAULT_VALUE) ||
  1153. pDevice->DisableAutoNeg)
  1154. {
  1155. pDevice->PollTbiLink = FALSE;
  1156. }
  1157. }
  1158. else
  1159. {
  1160. pDevice->PollTbiLink = FALSE;
  1161. }
  1162. #endif /* INCLUDE_TBI_SUPPORT */
  1163. /* UseTaggedStatus is only valid for 5701 and later. */
  1164. if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  1165. {
  1166. pDevice->UseTaggedStatus = FALSE;
  1167. pDevice->CoalesceMode = 0;
  1168. }
  1169. else
  1170. {
  1171. pDevice->CoalesceMode = HOST_COALESCE_CLEAR_TICKS_ON_RX_BD_EVENT |
  1172. HOST_COALESCE_CLEAR_TICKS_ON_TX_BD_EVENT;
  1173. }
  1174. /* Set the status block size. */
  1175. if(T3_CHIP_REV(pDevice->ChipRevId) != T3_CHIP_REV_5700_AX &&
  1176. T3_CHIP_REV(pDevice->ChipRevId) != T3_CHIP_REV_5700_BX)
  1177. {
  1178. pDevice->CoalesceMode |= HOST_COALESCE_32_BYTE_STATUS_MODE;
  1179. }
  1180. /* Check the DURING_INT coalescing ticks parameters. */
  1181. if(pDevice->UseTaggedStatus)
  1182. {
  1183. if(pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
  1184. {
  1185. pDevice->RxCoalescingTicksDuringInt =
  1186. DEFAULT_RX_COALESCING_TICKS_DURING_INT;
  1187. }
  1188. if(pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
  1189. {
  1190. pDevice->TxCoalescingTicksDuringInt =
  1191. DEFAULT_TX_COALESCING_TICKS_DURING_INT;
  1192. }
  1193. if(pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
  1194. {
  1195. pDevice->RxMaxCoalescedFramesDuringInt =
  1196. DEFAULT_RX_MAX_COALESCED_FRAMES_DURING_INT;
  1197. }
  1198. if(pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
  1199. {
  1200. pDevice->TxMaxCoalescedFramesDuringInt =
  1201. DEFAULT_TX_MAX_COALESCED_FRAMES_DURING_INT;
  1202. }
  1203. }
  1204. else
  1205. {
  1206. if(pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
  1207. {
  1208. pDevice->RxCoalescingTicksDuringInt = 0;
  1209. }
  1210. if(pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
  1211. {
  1212. pDevice->TxCoalescingTicksDuringInt = 0;
  1213. }
  1214. if(pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
  1215. {
  1216. pDevice->RxMaxCoalescedFramesDuringInt = 0;
  1217. }
  1218. if(pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
  1219. {
  1220. pDevice->TxMaxCoalescedFramesDuringInt = 0;
  1221. }
  1222. }
  1223. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1224. if(pDevice->RxMtu <= (MAX_STD_RCV_BUFFER_SIZE - 8 /* CRC */))
  1225. {
  1226. pDevice->RxJumboDescCnt = 0;
  1227. if(pDevice->RxMtu <= MAX_ETHERNET_PACKET_SIZE_NO_CRC)
  1228. {
  1229. pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  1230. }
  1231. }
  1232. else
  1233. {
  1234. pDevice->RxJumboBufferSize = (pDevice->RxMtu + 8 /* CRC + VLAN */ +
  1235. COMMON_CACHE_LINE_SIZE-1) & ~COMMON_CACHE_LINE_MASK;
  1236. if(pDevice->RxJumboBufferSize > MAX_JUMBO_RCV_BUFFER_SIZE)
  1237. {
  1238. pDevice->RxJumboBufferSize = DEFAULT_JUMBO_RCV_BUFFER_SIZE;
  1239. pDevice->RxMtu = pDevice->RxJumboBufferSize - 8 /* CRC + VLAN */;
  1240. }
  1241. pDevice->TxMtu = pDevice->RxMtu;
  1242. }
  1243. #else
  1244. pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  1245. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1246. pDevice->RxPacketDescCnt =
  1247. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1248. pDevice->RxJumboDescCnt +
  1249. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1250. pDevice->RxStdDescCnt;
  1251. if(pDevice->TxMtu < MAX_ETHERNET_PACKET_SIZE_NO_CRC)
  1252. {
  1253. pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  1254. }
  1255. if(pDevice->TxMtu > MAX_JUMBO_TX_BUFFER_SIZE)
  1256. {
  1257. pDevice->TxMtu = MAX_JUMBO_TX_BUFFER_SIZE;
  1258. }
  1259. /* Configure the proper ways to get link change interrupt. */
  1260. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO)
  1261. {
  1262. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  1263. {
  1264. pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
  1265. }
  1266. else
  1267. {
  1268. pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
  1269. }
  1270. }
  1271. else if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
  1272. {
  1273. /* Auto-polling does not work on 5700_AX and 5700_BX. */
  1274. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  1275. {
  1276. pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
  1277. }
  1278. }
  1279. /* Determine the method to get link change status. */
  1280. if(pDevice->LinkChngMode == T3_LINK_CHNG_MODE_AUTO)
  1281. {
  1282. /* The link status bit in the status block does not work on 5700_AX */
  1283. /* and 5700_BX chips. */
  1284. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  1285. {
  1286. pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
  1287. }
  1288. else
  1289. {
  1290. pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_BLOCK;
  1291. }
  1292. }
  1293. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT ||
  1294. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  1295. {
  1296. pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
  1297. }
  1298. /* Configure PHY led mode. */
  1299. if(pDevice->LedMode == LED_MODE_AUTO)
  1300. {
  1301. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  1302. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  1303. {
  1304. if(pDevice->SubsystemVendorId == T3_SVID_DELL)
  1305. {
  1306. pDevice->LedMode = LED_MODE_LINK10;
  1307. }
  1308. else
  1309. {
  1310. pDevice->LedMode = LED_MODE_THREE_LINK;
  1311. if(EeSigFound && EePhyLedMode != LED_MODE_AUTO)
  1312. {
  1313. pDevice->LedMode = EePhyLedMode;
  1314. }
  1315. }
  1316. /* bug? 5701 in LINK10 mode does not seem to work when */
  1317. /* PhyIntMode is LINK_READY. */
  1318. if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  1319. #if INCLUDE_TBI_SUPPORT
  1320. pDevice->EnableTbi == FALSE &&
  1321. #endif
  1322. pDevice->LedMode == LED_MODE_LINK10)
  1323. {
  1324. pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
  1325. pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
  1326. }
  1327. if(pDevice->EnableTbi)
  1328. {
  1329. pDevice->LedMode = LED_MODE_THREE_LINK;
  1330. }
  1331. }
  1332. else
  1333. {
  1334. if(EeSigFound && EePhyLedMode != LED_MODE_AUTO)
  1335. {
  1336. pDevice->LedMode = EePhyLedMode;
  1337. }
  1338. else
  1339. {
  1340. pDevice->LedMode = LED_MODE_OPEN_DRAIN;
  1341. }
  1342. }
  1343. }
  1344. /* Enable OneDmaAtOnce. */
  1345. if(pDevice->OneDmaAtOnce == BAD_DEFAULT_VALUE)
  1346. {
  1347. pDevice->OneDmaAtOnce = FALSE;
  1348. }
  1349. if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  1350. pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  1351. pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
  1352. pDevice->ChipRevId == T3_CHIP_ID_5701_B2)
  1353. {
  1354. pDevice->WolSpeed = WOL_SPEED_10MB;
  1355. }
  1356. else
  1357. {
  1358. pDevice->WolSpeed = WOL_SPEED_100MB;
  1359. }
  1360. /* Offloadings. */
  1361. pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE;
  1362. /* Turn off task offloading on Ax. */
  1363. if(pDevice->ChipRevId == T3_CHIP_ID_5700_B0)
  1364. {
  1365. pDevice->TaskOffloadCap &= ~(LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
  1366. LM_TASK_OFFLOAD_TX_UDP_CHECKSUM);
  1367. }
  1368. pDevice->PciState = REG_RD(pDevice, PciCfg.PciState);
  1369. LM_ReadVPD(pDevice);
  1370. LM_ReadBootCodeVersion(pDevice);
  1371. LM_GetBusSpeed(pDevice);
  1372. return LM_STATUS_SUCCESS;
  1373. } /* LM_GetAdapterInfo */
  1374. STATIC PLM_ADAPTER_INFO
  1375. LM_GetAdapterInfoBySsid(
  1376. LM_UINT16 Svid,
  1377. LM_UINT16 Ssid)
  1378. {
  1379. static LM_ADAPTER_INFO AdapterArr[] =
  1380. {
  1381. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A6, PHY_BCM5401_PHY_ID, 0},
  1382. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A5, PHY_BCM5701_PHY_ID, 0},
  1383. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700T6, PHY_BCM8002_PHY_ID, 1},
  1384. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A9, 0, 1 },
  1385. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T1, PHY_BCM5701_PHY_ID, 0},
  1386. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T8, PHY_BCM5701_PHY_ID, 0},
  1387. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A7, 0, 1},
  1388. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A10, PHY_BCM5701_PHY_ID, 0},
  1389. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A12, PHY_BCM5701_PHY_ID, 0},
  1390. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax1, PHY_BCM5701_PHY_ID, 0},
  1391. { T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax2, PHY_BCM5701_PHY_ID, 0},
  1392. { T3_SVID_3COM, T3_SSID_3COM_3C996T, PHY_BCM5401_PHY_ID, 0 },
  1393. { T3_SVID_3COM, T3_SSID_3COM_3C996BT, PHY_BCM5701_PHY_ID, 0 },
  1394. { T3_SVID_3COM, T3_SSID_3COM_3C996SX, 0, 1 },
  1395. { T3_SVID_3COM, T3_SSID_3COM_3C1000T, PHY_BCM5701_PHY_ID, 0 },
  1396. { T3_SVID_3COM, T3_SSID_3COM_3C940BR01, PHY_BCM5701_PHY_ID, 0 },
  1397. { T3_SVID_DELL, T3_SSID_DELL_VIPER, PHY_BCM5401_PHY_ID, 0 },
  1398. { T3_SVID_DELL, T3_SSID_DELL_JAGUAR, PHY_BCM5401_PHY_ID, 0 },
  1399. { T3_SVID_DELL, T3_SSID_DELL_MERLOT, PHY_BCM5411_PHY_ID, 0 },
  1400. { T3_SVID_DELL, T3_SSID_DELL_SLIM_MERLOT, PHY_BCM5411_PHY_ID, 0 },
  1401. { T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE, PHY_BCM5701_PHY_ID, 0 },
  1402. { T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE_2, PHY_BCM5701_PHY_ID, 0 },
  1403. { T3_SVID_COMPAQ, T3_SSID_COMPAQ_CHANGELING, 0, 1 },
  1404. { T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780, PHY_BCM5701_PHY_ID, 0 },
  1405. { T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780_2, PHY_BCM5701_PHY_ID, 0 },
  1406. };
  1407. LM_UINT32 j;
  1408. for(j = 0; j < sizeof(AdapterArr)/sizeof(LM_ADAPTER_INFO); j++)
  1409. {
  1410. if(AdapterArr[j].Svid == Svid && AdapterArr[j].Ssid == Ssid)
  1411. {
  1412. return &AdapterArr[j];
  1413. }
  1414. }
  1415. return NULL;
  1416. }
  1417. /******************************************************************************/
  1418. /* Description: */
  1419. /* This routine sets up receive/transmit buffer descriptions queues. */
  1420. /* */
  1421. /* Return: */
  1422. /* LM_STATUS_SUCCESS */
  1423. /******************************************************************************/
  1424. LM_STATUS
  1425. LM_InitializeAdapter(
  1426. PLM_DEVICE_BLOCK pDevice)
  1427. {
  1428. LM_PHYSICAL_ADDRESS MemPhy;
  1429. PLM_UINT8 pMemVirt;
  1430. PLM_PACKET pPacket;
  1431. LM_STATUS Status;
  1432. LM_UINT32 Size;
  1433. LM_UINT32 j;
  1434. /* Set power state to D0. */
  1435. LM_SetPowerState(pDevice, LM_POWER_STATE_D0);
  1436. /* Intialize the queues. */
  1437. QQ_InitQueue(&pDevice->RxPacketReceivedQ.Container,
  1438. MAX_RX_PACKET_DESC_COUNT);
  1439. QQ_InitQueue(&pDevice->RxPacketFreeQ.Container,
  1440. MAX_RX_PACKET_DESC_COUNT);
  1441. QQ_InitQueue(&pDevice->TxPacketFreeQ.Container,MAX_TX_PACKET_DESC_COUNT);
  1442. QQ_InitQueue(&pDevice->TxPacketActiveQ.Container,MAX_TX_PACKET_DESC_COUNT);
  1443. QQ_InitQueue(&pDevice->TxPacketXmittedQ.Container,MAX_TX_PACKET_DESC_COUNT);
  1444. /* Allocate shared memory for: status block, the buffers for receive */
  1445. /* rings -- standard, mini, jumbo, and return rings. */
  1446. Size = T3_STATUS_BLOCK_SIZE + sizeof(T3_STATS_BLOCK) +
  1447. T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD) +
  1448. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1449. T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD) +
  1450. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1451. T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD);
  1452. /* Memory for host based Send BD. */
  1453. if(pDevice->NicSendBd == FALSE)
  1454. {
  1455. Size += sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
  1456. }
  1457. /* Allocate the memory block. */
  1458. Status = MM_AllocateSharedMemory(pDevice, Size, (PLM_VOID) &pMemVirt, &MemPhy, FALSE);
  1459. if(Status != LM_STATUS_SUCCESS)
  1460. {
  1461. return Status;
  1462. }
  1463. /* Program DMA Read/Write */
  1464. if (pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS)
  1465. {
  1466. pDevice->DmaReadWriteCtrl = 0x763f000f;
  1467. }
  1468. else
  1469. {
  1470. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
  1471. {
  1472. pDevice->DmaReadWriteCtrl = 0x761f0000;
  1473. }
  1474. else
  1475. {
  1476. pDevice->DmaReadWriteCtrl = 0x761b000f;
  1477. }
  1478. if(pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
  1479. pDevice->ChipRevId == T3_CHIP_ID_5703_A2)
  1480. {
  1481. pDevice->OneDmaAtOnce = TRUE;
  1482. }
  1483. }
  1484. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
  1485. {
  1486. pDevice->DmaReadWriteCtrl &= 0xfffffff0;
  1487. }
  1488. if(pDevice->OneDmaAtOnce)
  1489. {
  1490. pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_ONE_DMA_AT_ONCE;
  1491. }
  1492. REG_WR(pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
  1493. if (LM_DmaTest(pDevice, pMemVirt, MemPhy, 0x400) != LM_STATUS_SUCCESS)
  1494. {
  1495. return LM_STATUS_FAILURE;
  1496. }
  1497. /* Status block. */
  1498. pDevice->pStatusBlkVirt = (PT3_STATUS_BLOCK) pMemVirt;
  1499. pDevice->StatusBlkPhy = MemPhy;
  1500. pMemVirt += T3_STATUS_BLOCK_SIZE;
  1501. LM_INC_PHYSICAL_ADDRESS(&MemPhy, T3_STATUS_BLOCK_SIZE);
  1502. /* Statistics block. */
  1503. pDevice->pStatsBlkVirt = (PT3_STATS_BLOCK) pMemVirt;
  1504. pDevice->StatsBlkPhy = MemPhy;
  1505. pMemVirt += sizeof(T3_STATS_BLOCK);
  1506. LM_INC_PHYSICAL_ADDRESS(&MemPhy, sizeof(T3_STATS_BLOCK));
  1507. /* Receive standard BD buffer. */
  1508. pDevice->pRxStdBdVirt = (PT3_RCV_BD) pMemVirt;
  1509. pDevice->RxStdBdPhy = MemPhy;
  1510. pMemVirt += T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD);
  1511. LM_INC_PHYSICAL_ADDRESS(&MemPhy,
  1512. T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD));
  1513. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1514. /* Receive jumbo BD buffer. */
  1515. pDevice->pRxJumboBdVirt = (PT3_RCV_BD) pMemVirt;
  1516. pDevice->RxJumboBdPhy = MemPhy;
  1517. pMemVirt += T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD);
  1518. LM_INC_PHYSICAL_ADDRESS(&MemPhy,
  1519. T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD));
  1520. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1521. /* Receive return BD buffer. */
  1522. pDevice->pRcvRetBdVirt = (PT3_RCV_BD) pMemVirt;
  1523. pDevice->RcvRetBdPhy = MemPhy;
  1524. pMemVirt += T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD);
  1525. LM_INC_PHYSICAL_ADDRESS(&MemPhy,
  1526. T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD));
  1527. /* Set up Send BD. */
  1528. if(pDevice->NicSendBd == FALSE)
  1529. {
  1530. pDevice->pSendBdVirt = (PT3_SND_BD) pMemVirt;
  1531. pDevice->SendBdPhy = MemPhy;
  1532. pMemVirt += sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
  1533. LM_INC_PHYSICAL_ADDRESS(&MemPhy,
  1534. sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT);
  1535. }
  1536. else
  1537. {
  1538. pDevice->pSendBdVirt = (PT3_SND_BD)
  1539. pDevice->pMemView->uIntMem.First32k.BufferDesc;
  1540. pDevice->SendBdPhy.High = 0;
  1541. pDevice->SendBdPhy.Low = T3_NIC_SND_BUFFER_DESC_ADDR;
  1542. }
  1543. /* Allocate memory for packet descriptors. */
  1544. Size = (pDevice->RxPacketDescCnt +
  1545. pDevice->TxPacketDescCnt) * MM_PACKET_DESC_SIZE;
  1546. Status = MM_AllocateMemory(pDevice, Size, (PLM_VOID *) &pPacket);
  1547. if(Status != LM_STATUS_SUCCESS)
  1548. {
  1549. return Status;
  1550. }
  1551. pDevice->pPacketDescBase = (PLM_VOID) pPacket;
  1552. /* Create transmit packet descriptors from the memory block and add them */
  1553. /* to the TxPacketFreeQ for each send ring. */
  1554. for(j = 0; j < pDevice->TxPacketDescCnt; j++)
  1555. {
  1556. /* Ring index. */
  1557. pPacket->Flags = 0;
  1558. /* Queue the descriptor in the TxPacketFreeQ of the 'k' ring. */
  1559. QQ_PushTail(&pDevice->TxPacketFreeQ.Container, pPacket);
  1560. /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
  1561. /* is the total size of the packet descriptor including the */
  1562. /* os-specific extensions in the UM_PACKET structure. */
  1563. pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
  1564. } /* for(j.. */
  1565. /* Create receive packet descriptors from the memory block and add them */
  1566. /* to the RxPacketFreeQ. Create the Standard packet descriptors. */
  1567. for(j = 0; j < pDevice->RxStdDescCnt; j++)
  1568. {
  1569. /* Receive producer ring. */
  1570. pPacket->u.Rx.RcvProdRing = T3_STD_RCV_PROD_RING;
  1571. /* Receive buffer size. */
  1572. pPacket->u.Rx.RxBufferSize = MAX_STD_RCV_BUFFER_SIZE;
  1573. /* Add the descriptor to RxPacketFreeQ. */
  1574. QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
  1575. /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
  1576. /* is the total size of the packet descriptor including the */
  1577. /* os-specific extensions in the UM_PACKET structure. */
  1578. pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
  1579. } /* for */
  1580. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1581. /* Create the Jumbo packet descriptors. */
  1582. for(j = 0; j < pDevice->RxJumboDescCnt; j++)
  1583. {
  1584. /* Receive producer ring. */
  1585. pPacket->u.Rx.RcvProdRing = T3_JUMBO_RCV_PROD_RING;
  1586. /* Receive buffer size. */
  1587. pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize;
  1588. /* Add the descriptor to RxPacketFreeQ. */
  1589. QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
  1590. /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
  1591. /* is the total size of the packet descriptor including the */
  1592. /* os-specific extensions in the UM_PACKET structure. */
  1593. pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
  1594. } /* for */
  1595. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1596. /* Initialize the rest of the packet descriptors. */
  1597. Status = MM_InitializeUmPackets(pDevice);
  1598. if(Status != LM_STATUS_SUCCESS)
  1599. {
  1600. return Status;
  1601. } /* if */
  1602. /* Default receive mask. */
  1603. pDevice->ReceiveMask = LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST |
  1604. LM_ACCEPT_UNICAST;
  1605. /* Make sure we are in the first 32k memory window or NicSendBd. */
  1606. REG_WR(pDevice, PciCfg.MemWindowBaseAddr, 0);
  1607. /* Initialize the hardware. */
  1608. Status = LM_ResetAdapter(pDevice);
  1609. if(Status != LM_STATUS_SUCCESS)
  1610. {
  1611. return Status;
  1612. }
  1613. /* We are done with initialization. */
  1614. pDevice->InitDone = TRUE;
  1615. return LM_STATUS_SUCCESS;
  1616. } /* LM_InitializeAdapter */
  1617. /******************************************************************************/
  1618. /* Description: */
  1619. /* This function Enables/Disables a given block. */
  1620. /* */
  1621. /* Return: */
  1622. /* LM_STATUS_SUCCESS */
  1623. /******************************************************************************/
  1624. LM_STATUS
  1625. LM_CntrlBlock(
  1626. PLM_DEVICE_BLOCK pDevice,
  1627. LM_UINT32 mask,LM_UINT32 cntrl)
  1628. {
  1629. LM_UINT32 j,i,data;
  1630. LM_UINT32 MaxWaitCnt;
  1631. MaxWaitCnt = 2;
  1632. j = 0;
  1633. for(i = 0 ; i < 32; i++)
  1634. {
  1635. if(!(mask & (1 << i)))
  1636. continue;
  1637. switch (1 << i)
  1638. {
  1639. case T3_BLOCK_DMA_RD:
  1640. data = REG_RD(pDevice, DmaRead.Mode);
  1641. if (cntrl == LM_DISABLE)
  1642. {
  1643. data &= ~DMA_READ_MODE_ENABLE;
  1644. REG_WR(pDevice, DmaRead.Mode, data);
  1645. for(j = 0; j < MaxWaitCnt; j++)
  1646. {
  1647. if(!(REG_RD(pDevice, DmaRead.Mode) & DMA_READ_MODE_ENABLE))
  1648. break;
  1649. MM_Wait(10);
  1650. }
  1651. }
  1652. else
  1653. REG_WR(pDevice, DmaRead.Mode, data | DMA_READ_MODE_ENABLE);
  1654. break;
  1655. case T3_BLOCK_DMA_COMP:
  1656. data = REG_RD(pDevice,DmaComp.Mode);
  1657. if (cntrl == LM_DISABLE)
  1658. {
  1659. data &= ~DMA_COMP_MODE_ENABLE;
  1660. REG_WR(pDevice, DmaComp.Mode, data);
  1661. for(j = 0; j < MaxWaitCnt; j++)
  1662. {
  1663. if(!(REG_RD(pDevice, DmaComp.Mode) & DMA_COMP_MODE_ENABLE))
  1664. break;
  1665. MM_Wait(10);
  1666. }
  1667. }
  1668. else
  1669. REG_WR(pDevice, DmaComp.Mode, data | DMA_COMP_MODE_ENABLE);
  1670. break;
  1671. case T3_BLOCK_RX_BD_INITIATOR:
  1672. data = REG_RD(pDevice, RcvBdIn.Mode);
  1673. if (cntrl == LM_DISABLE)
  1674. {
  1675. data &= ~RCV_BD_IN_MODE_ENABLE;
  1676. REG_WR(pDevice, RcvBdIn.Mode,data);
  1677. for(j = 0; j < MaxWaitCnt; j++)
  1678. {
  1679. if(!(REG_RD(pDevice, RcvBdIn.Mode) & RCV_BD_IN_MODE_ENABLE))
  1680. break;
  1681. MM_Wait(10);
  1682. }
  1683. }
  1684. else
  1685. REG_WR(pDevice, RcvBdIn.Mode,data | RCV_BD_IN_MODE_ENABLE);
  1686. break;
  1687. case T3_BLOCK_RX_BD_COMP:
  1688. data = REG_RD(pDevice, RcvBdComp.Mode);
  1689. if (cntrl == LM_DISABLE)
  1690. {
  1691. data &= ~RCV_BD_COMP_MODE_ENABLE;
  1692. REG_WR(pDevice, RcvBdComp.Mode,data);
  1693. for(j = 0; j < MaxWaitCnt; j++)
  1694. {
  1695. if(!(REG_RD(pDevice, RcvBdComp.Mode) & RCV_BD_COMP_MODE_ENABLE))
  1696. break;
  1697. MM_Wait(10);
  1698. }
  1699. }
  1700. else
  1701. REG_WR(pDevice, RcvBdComp.Mode,data | RCV_BD_COMP_MODE_ENABLE);
  1702. break;
  1703. case T3_BLOCK_DMA_WR:
  1704. data = REG_RD(pDevice, DmaWrite.Mode);
  1705. if (cntrl == LM_DISABLE)
  1706. {
  1707. data &= ~DMA_WRITE_MODE_ENABLE;
  1708. REG_WR(pDevice, DmaWrite.Mode,data);
  1709. for(j = 0; j < MaxWaitCnt; j++)
  1710. {
  1711. if(!(REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE))
  1712. break;
  1713. MM_Wait(10);
  1714. }
  1715. }
  1716. else
  1717. REG_WR(pDevice, DmaWrite.Mode,data | DMA_WRITE_MODE_ENABLE);
  1718. break;
  1719. case T3_BLOCK_MSI_HANDLER:
  1720. data = REG_RD(pDevice, Msi.Mode);
  1721. if (cntrl == LM_DISABLE)
  1722. {
  1723. data &= ~MSI_MODE_ENABLE;
  1724. REG_WR(pDevice, Msi.Mode, data);
  1725. for(j = 0; j < MaxWaitCnt; j++)
  1726. {
  1727. if(!(REG_RD(pDevice, Msi.Mode) & MSI_MODE_ENABLE))
  1728. break;
  1729. MM_Wait(10);
  1730. }
  1731. }
  1732. else
  1733. REG_WR(pDevice, Msi.Mode, data |MSI_MODE_ENABLE);
  1734. break;
  1735. case T3_BLOCK_RX_LIST_PLMT:
  1736. data = REG_RD(pDevice, RcvListPlmt.Mode);
  1737. if (cntrl == LM_DISABLE)
  1738. {
  1739. data &= ~RCV_LIST_PLMT_MODE_ENABLE;
  1740. REG_WR(pDevice, RcvListPlmt.Mode,data);
  1741. for(j = 0; j < MaxWaitCnt; j++)
  1742. {
  1743. if(!(REG_RD(pDevice, RcvListPlmt.Mode) & RCV_LIST_PLMT_MODE_ENABLE))
  1744. break;
  1745. MM_Wait(10);
  1746. }
  1747. }
  1748. else
  1749. REG_WR(pDevice, RcvListPlmt.Mode,data | RCV_LIST_PLMT_MODE_ENABLE);
  1750. break;
  1751. case T3_BLOCK_RX_LIST_SELECTOR:
  1752. data = REG_RD(pDevice, RcvListSel.Mode);
  1753. if (cntrl == LM_DISABLE)
  1754. {
  1755. data &= ~RCV_LIST_SEL_MODE_ENABLE;
  1756. REG_WR(pDevice, RcvListSel.Mode,data);
  1757. for(j = 0; j < MaxWaitCnt; j++)
  1758. {
  1759. if(!(REG_RD(pDevice, RcvListSel.Mode) & RCV_LIST_SEL_MODE_ENABLE))
  1760. break;
  1761. MM_Wait(10);
  1762. }
  1763. }
  1764. else
  1765. REG_WR(pDevice, RcvListSel.Mode,data |RCV_LIST_SEL_MODE_ENABLE);
  1766. break;
  1767. case T3_BLOCK_RX_DATA_INITIATOR:
  1768. data = REG_RD(pDevice, RcvDataBdIn.Mode);
  1769. if (cntrl == LM_DISABLE)
  1770. {
  1771. data &= ~RCV_DATA_BD_IN_MODE_ENABLE;
  1772. REG_WR(pDevice, RcvDataBdIn.Mode,data);
  1773. for(j = 0; j < MaxWaitCnt; j++)
  1774. {
  1775. if(!(REG_RD(pDevice, RcvDataBdIn.Mode) & RCV_DATA_BD_IN_MODE_ENABLE))
  1776. break;
  1777. MM_Wait(10);
  1778. }
  1779. }
  1780. else
  1781. REG_WR(pDevice, RcvDataBdIn.Mode, data | RCV_DATA_BD_IN_MODE_ENABLE);
  1782. break;
  1783. case T3_BLOCK_RX_DATA_COMP:
  1784. data = REG_RD(pDevice, RcvDataComp.Mode);
  1785. if (cntrl == LM_DISABLE)
  1786. {
  1787. data &= ~RCV_DATA_COMP_MODE_ENABLE;
  1788. REG_WR(pDevice, RcvDataComp.Mode,data);
  1789. for(j = 0; j < MaxWaitCnt; j++)
  1790. {
  1791. if(!(REG_RD(pDevice, RcvDataBdIn.Mode) & RCV_DATA_COMP_MODE_ENABLE))
  1792. break;
  1793. MM_Wait(10);
  1794. }
  1795. }
  1796. else
  1797. REG_WR(pDevice, RcvDataComp.Mode,data | RCV_DATA_COMP_MODE_ENABLE);
  1798. break;
  1799. case T3_BLOCK_HOST_COALESING:
  1800. data = REG_RD(pDevice, HostCoalesce.Mode);
  1801. if (cntrl == LM_DISABLE)
  1802. {
  1803. data &= ~HOST_COALESCE_ENABLE;
  1804. REG_WR(pDevice, HostCoalesce.Mode, data);
  1805. for(j = 0; j < MaxWaitCnt; j++)
  1806. {
  1807. if(!(REG_RD(pDevice, SndBdIn.Mode) & HOST_COALESCE_ENABLE))
  1808. break;
  1809. MM_Wait(10);
  1810. }
  1811. }
  1812. else
  1813. REG_WR(pDevice, HostCoalesce.Mode, data | HOST_COALESCE_ENABLE);
  1814. break;
  1815. case T3_BLOCK_MAC_RX_ENGINE:
  1816. if(cntrl == LM_DISABLE)
  1817. {
  1818. pDevice->RxMode &= ~RX_MODE_ENABLE;
  1819. REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
  1820. for(j = 0; j < MaxWaitCnt; j++)
  1821. {
  1822. if(!(REG_RD(pDevice, MacCtrl.RxMode) & RX_MODE_ENABLE))
  1823. {
  1824. break;
  1825. }
  1826. MM_Wait(10);
  1827. }
  1828. }
  1829. else
  1830. {
  1831. pDevice->RxMode |= RX_MODE_ENABLE;
  1832. REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
  1833. }
  1834. break;
  1835. case T3_BLOCK_MBUF_CLUSTER_FREE:
  1836. data = REG_RD(pDevice, MbufClusterFree.Mode);
  1837. if (cntrl == LM_DISABLE)
  1838. {
  1839. data &= ~MBUF_CLUSTER_FREE_MODE_ENABLE;
  1840. REG_WR(pDevice, MbufClusterFree.Mode,data);
  1841. for(j = 0; j < MaxWaitCnt; j++)
  1842. {
  1843. if(!(REG_RD(pDevice, MbufClusterFree.Mode) & MBUF_CLUSTER_FREE_MODE_ENABLE))
  1844. break;
  1845. MM_Wait(10);
  1846. }
  1847. }
  1848. else
  1849. REG_WR(pDevice, MbufClusterFree.Mode, data | MBUF_CLUSTER_FREE_MODE_ENABLE);
  1850. break;
  1851. case T3_BLOCK_SEND_BD_INITIATOR:
  1852. data = REG_RD(pDevice, SndBdIn.Mode);
  1853. if (cntrl == LM_DISABLE)
  1854. {
  1855. data &= ~SND_BD_IN_MODE_ENABLE;
  1856. REG_WR(pDevice, SndBdIn.Mode, data);
  1857. for(j = 0; j < MaxWaitCnt; j++)
  1858. {
  1859. if(!(REG_RD(pDevice, SndBdIn.Mode) & SND_BD_IN_MODE_ENABLE))
  1860. break;
  1861. MM_Wait(10);
  1862. }
  1863. }
  1864. else
  1865. REG_WR(pDevice, SndBdIn.Mode, data | SND_BD_IN_MODE_ENABLE);
  1866. break;
  1867. case T3_BLOCK_SEND_BD_COMP:
  1868. data = REG_RD(pDevice, SndBdComp.Mode);
  1869. if (cntrl == LM_DISABLE)
  1870. {
  1871. data &= ~SND_BD_COMP_MODE_ENABLE;
  1872. REG_WR(pDevice, SndBdComp.Mode, data);
  1873. for(j = 0; j < MaxWaitCnt; j++)
  1874. {
  1875. if(!(REG_RD(pDevice, SndBdComp.Mode) & SND_BD_COMP_MODE_ENABLE))
  1876. break;
  1877. MM_Wait(10);
  1878. }
  1879. }
  1880. else
  1881. REG_WR(pDevice, SndBdComp.Mode, data | SND_BD_COMP_MODE_ENABLE);
  1882. break;
  1883. case T3_BLOCK_SEND_BD_SELECTOR:
  1884. data = REG_RD(pDevice, SndBdSel.Mode);
  1885. if (cntrl == LM_DISABLE)
  1886. {
  1887. data &= ~SND_BD_SEL_MODE_ENABLE;
  1888. REG_WR(pDevice, SndBdSel.Mode, data);
  1889. for(j = 0; j < MaxWaitCnt; j++)
  1890. {
  1891. if(!(REG_RD(pDevice, SndBdSel.Mode) & SND_BD_SEL_MODE_ENABLE))
  1892. break;
  1893. MM_Wait(10);
  1894. }
  1895. }
  1896. else
  1897. REG_WR(pDevice, SndBdSel.Mode, data | SND_BD_SEL_MODE_ENABLE);
  1898. break;
  1899. case T3_BLOCK_SEND_DATA_INITIATOR:
  1900. data = REG_RD(pDevice, SndDataIn.Mode);
  1901. if (cntrl == LM_DISABLE)
  1902. {
  1903. data &= ~T3_SND_DATA_IN_MODE_ENABLE;
  1904. REG_WR(pDevice, SndDataIn.Mode,data);
  1905. for(j = 0; j < MaxWaitCnt; j++)
  1906. {
  1907. if(!(REG_RD(pDevice, SndDataIn.Mode) & T3_SND_DATA_IN_MODE_ENABLE))
  1908. break;
  1909. MM_Wait(10);
  1910. }
  1911. }
  1912. else
  1913. REG_WR(pDevice, SndDataIn.Mode,data | T3_SND_DATA_IN_MODE_ENABLE);
  1914. break;
  1915. case T3_BLOCK_SEND_DATA_COMP:
  1916. data = REG_RD(pDevice, SndDataComp.Mode);
  1917. if (cntrl == LM_DISABLE)
  1918. {
  1919. data &= ~SND_DATA_COMP_MODE_ENABLE;
  1920. REG_WR(pDevice, SndDataComp.Mode, data);
  1921. for(j = 0; j < MaxWaitCnt; j++)
  1922. {
  1923. if(!(REG_RD(pDevice, SndDataComp.Mode) & SND_DATA_COMP_MODE_ENABLE))
  1924. break;
  1925. MM_Wait(10);
  1926. }
  1927. }
  1928. else
  1929. REG_WR(pDevice, SndDataComp.Mode,data | SND_DATA_COMP_MODE_ENABLE);
  1930. break;
  1931. case T3_BLOCK_MAC_TX_ENGINE:
  1932. if(cntrl == LM_DISABLE)
  1933. {
  1934. pDevice->TxMode &= ~TX_MODE_ENABLE;
  1935. REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);
  1936. for(j = 0; j < MaxWaitCnt; j++)
  1937. {
  1938. if(!(REG_RD(pDevice, MacCtrl.TxMode) & TX_MODE_ENABLE))
  1939. break;
  1940. MM_Wait(10);
  1941. }
  1942. }
  1943. else
  1944. {
  1945. pDevice->TxMode |= TX_MODE_ENABLE;
  1946. REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);
  1947. }
  1948. break;
  1949. case T3_BLOCK_MEM_ARBITOR:
  1950. data = REG_RD(pDevice, MemArbiter.Mode);
  1951. if (cntrl == LM_DISABLE)
  1952. {
  1953. data &= ~T3_MEM_ARBITER_MODE_ENABLE;
  1954. REG_WR(pDevice, MemArbiter.Mode, data);
  1955. for(j = 0; j < MaxWaitCnt; j++)
  1956. {
  1957. if(!(REG_RD(pDevice, MemArbiter.Mode) & T3_MEM_ARBITER_MODE_ENABLE))
  1958. break;
  1959. MM_Wait(10);
  1960. }
  1961. }
  1962. else
  1963. REG_WR(pDevice, MemArbiter.Mode,data|T3_MEM_ARBITER_MODE_ENABLE);
  1964. break;
  1965. case T3_BLOCK_MBUF_MANAGER:
  1966. data = REG_RD(pDevice, BufMgr.Mode);
  1967. if (cntrl == LM_DISABLE)
  1968. {
  1969. data &= ~BUFMGR_MODE_ENABLE;
  1970. REG_WR(pDevice, BufMgr.Mode,data);
  1971. for(j = 0; j < MaxWaitCnt; j++)
  1972. {
  1973. if(!(REG_RD(pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE))
  1974. break;
  1975. MM_Wait(10);
  1976. }
  1977. }
  1978. else
  1979. REG_WR(pDevice, BufMgr.Mode,data | BUFMGR_MODE_ENABLE);
  1980. break;
  1981. case T3_BLOCK_MAC_GLOBAL:
  1982. if(cntrl == LM_DISABLE)
  1983. {
  1984. pDevice->MacMode &= ~(MAC_MODE_ENABLE_TDE |
  1985. MAC_MODE_ENABLE_RDE |
  1986. MAC_MODE_ENABLE_FHDE);
  1987. }
  1988. else
  1989. {
  1990. pDevice->MacMode |= (MAC_MODE_ENABLE_TDE |
  1991. MAC_MODE_ENABLE_RDE |
  1992. MAC_MODE_ENABLE_FHDE);
  1993. }
  1994. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
  1995. break;
  1996. default:
  1997. return LM_STATUS_FAILURE;
  1998. } /* switch */
  1999. if(j >= MaxWaitCnt)
  2000. {
  2001. return LM_STATUS_FAILURE;
  2002. }
  2003. }
  2004. return LM_STATUS_SUCCESS;
  2005. }
  2006. /******************************************************************************/
  2007. /* Description: */
  2008. /* This function reinitializes the adapter. */
  2009. /* */
  2010. /* Return: */
  2011. /* LM_STATUS_SUCCESS */
  2012. /******************************************************************************/
  2013. LM_STATUS
  2014. LM_ResetAdapter(
  2015. PLM_DEVICE_BLOCK pDevice)
  2016. {
  2017. LM_UINT32 Value32;
  2018. LM_UINT16 Value16;
  2019. LM_UINT32 j, k;
  2020. /* Disable interrupt. */
  2021. LM_DisableInterrupt(pDevice);
  2022. /* May get a spurious interrupt */
  2023. pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED;
  2024. /* Disable transmit and receive DMA engines. Abort all pending requests. */
  2025. if(pDevice->InitDone)
  2026. {
  2027. LM_Abort(pDevice);
  2028. }
  2029. pDevice->ShuttingDown = FALSE;
  2030. LM_ResetChip(pDevice);
  2031. /* Bug: Athlon fix for B3 silicon only. This bit does not do anything */
  2032. /* in other chip revisions. */
  2033. if(pDevice->DelayPciGrant)
  2034. {
  2035. Value32 = REG_RD(pDevice, PciCfg.ClockCtrl);
  2036. REG_WR(pDevice, PciCfg.ClockCtrl, Value32 | BIT_31);
  2037. }
  2038. if(pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
  2039. {
  2040. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
  2041. {
  2042. Value32 = REG_RD(pDevice, PciCfg.PciState);
  2043. Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
  2044. REG_WR(pDevice, PciCfg.PciState, Value32);
  2045. }
  2046. }
  2047. /* Enable TaggedStatus mode. */
  2048. if(pDevice->UseTaggedStatus)
  2049. {
  2050. pDevice->MiscHostCtrl |= MISC_HOST_CTRL_ENABLE_TAGGED_STATUS_MODE;
  2051. }
  2052. /* Restore PCI configuration registers. */
  2053. MM_WriteConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG,
  2054. pDevice->SavedCacheLineReg);
  2055. MM_WriteConfig32(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
  2056. (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);
  2057. /* Clear the statistics block. */
  2058. for(j = 0x0300; j < 0x0b00; j++)
  2059. {
  2060. MEM_WR_OFFSET(pDevice, j, 0);
  2061. }
  2062. /* Initialize the statistis Block */
  2063. pDevice->pStatusBlkVirt->Status = 0;
  2064. pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
  2065. pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
  2066. pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
  2067. for(j = 0; j < 16; j++)
  2068. {
  2069. pDevice->pStatusBlkVirt->Idx[j].RcvProdIdx = 0;
  2070. pDevice->pStatusBlkVirt->Idx[j].SendConIdx = 0;
  2071. }
  2072. for(k = 0; k < T3_STD_RCV_RCB_ENTRY_COUNT ;k++)
  2073. {
  2074. pDevice->pRxStdBdVirt[k].HostAddr.High = 0;
  2075. pDevice->pRxStdBdVirt[k].HostAddr.Low = 0;
  2076. }
  2077. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2078. /* Receive jumbo BD buffer. */
  2079. for(k = 0; k < T3_JUMBO_RCV_RCB_ENTRY_COUNT; k++)
  2080. {
  2081. pDevice->pRxJumboBdVirt[k].HostAddr.High = 0;
  2082. pDevice->pRxJumboBdVirt[k].HostAddr.Low = 0;
  2083. }
  2084. #endif
  2085. REG_WR(pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
  2086. /* GRC mode control register. */
  2087. #ifdef BIG_ENDIAN_PCI /* Jimmy, this ifdef block deleted in new code! */
  2088. Value32 =
  2089. GRC_MODE_WORD_SWAP_DATA |
  2090. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  2091. GRC_MODE_INT_ON_MAC_ATTN |
  2092. GRC_MODE_HOST_STACK_UP;
  2093. #else
  2094. /* No CPU Swap modes for PCI IO */
  2095. Value32 =
  2096. #ifdef BIG_ENDIAN_HOST
  2097. GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
  2098. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  2099. GRC_MODE_BYTE_SWAP_DATA |
  2100. GRC_MODE_WORD_SWAP_DATA |
  2101. #else
  2102. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  2103. GRC_MODE_BYTE_SWAP_DATA |
  2104. GRC_MODE_WORD_SWAP_DATA |
  2105. #endif
  2106. GRC_MODE_INT_ON_MAC_ATTN |
  2107. GRC_MODE_HOST_STACK_UP;
  2108. #endif /* !BIG_ENDIAN_PCI */
  2109. /* Configure send BD mode. */
  2110. if(pDevice->NicSendBd == FALSE)
  2111. {
  2112. Value32 |= GRC_MODE_HOST_SEND_BDS;
  2113. }
  2114. else
  2115. {
  2116. Value32 |= GRC_MODE_4X_NIC_BASED_SEND_RINGS;
  2117. }
  2118. /* Configure pseudo checksum mode. */
  2119. if(pDevice->NoTxPseudoHdrChksum)
  2120. {
  2121. Value32 |= GRC_MODE_TX_NO_PSEUDO_HEADER_CHKSUM;
  2122. }
  2123. if(pDevice->NoRxPseudoHdrChksum)
  2124. {
  2125. Value32 |= GRC_MODE_RX_NO_PSEUDO_HEADER_CHKSUM;
  2126. }
  2127. REG_WR(pDevice, Grc.Mode, Value32);
  2128. /* Setup the timer prescalar register. */
  2129. REG_WR(pDevice, Grc.MiscCfg, 65 << 1); /* Clock is alwasy 66Mhz. */
  2130. /* Set up the MBUF pool base address and size. */
  2131. REG_WR(pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase);
  2132. REG_WR(pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize);
  2133. /* Set up the DMA descriptor pool base address and size. */
  2134. REG_WR(pDevice, BufMgr.DmaDescPoolAddr, T3_NIC_DMA_DESC_POOL_ADDR);
  2135. REG_WR(pDevice, BufMgr.DmaDescPoolSize, T3_NIC_DMA_DESC_POOL_SIZE);
  2136. /* Configure MBUF and Threshold watermarks */
  2137. /* Configure the DMA read MBUF low water mark. */
  2138. if(pDevice->DmaMbufLowMark)
  2139. {
  2140. REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,
  2141. pDevice->DmaMbufLowMark);
  2142. }
  2143. else
  2144. {
  2145. if(pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE)
  2146. {
  2147. REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,
  2148. T3_DEF_DMA_MBUF_LOW_WMARK);
  2149. }
  2150. else
  2151. {
  2152. REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,
  2153. T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO);
  2154. }
  2155. }
  2156. /* Configure the MAC Rx MBUF low water mark. */
  2157. if(pDevice->RxMacMbufLowMark)
  2158. {
  2159. REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,
  2160. pDevice->RxMacMbufLowMark);
  2161. }
  2162. else
  2163. {
  2164. if(pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE)
  2165. {
  2166. REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,
  2167. T3_DEF_RX_MAC_MBUF_LOW_WMARK);
  2168. }
  2169. else
  2170. {
  2171. REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,
  2172. T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO);
  2173. }
  2174. }
  2175. /* Configure the MBUF high water mark. */
  2176. if(pDevice->MbufHighMark)
  2177. {
  2178. REG_WR(pDevice, BufMgr.MbufHighWaterMark, pDevice->MbufHighMark);
  2179. }
  2180. else
  2181. {
  2182. if(pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE)
  2183. {
  2184. REG_WR(pDevice, BufMgr.MbufHighWaterMark,
  2185. T3_DEF_MBUF_HIGH_WMARK);
  2186. }
  2187. else
  2188. {
  2189. REG_WR(pDevice, BufMgr.MbufHighWaterMark,
  2190. T3_DEF_MBUF_HIGH_WMARK_JUMBO);
  2191. }
  2192. }
  2193. REG_WR(pDevice, BufMgr.DmaLowWaterMark, T3_DEF_DMA_DESC_LOW_WMARK);
  2194. REG_WR(pDevice, BufMgr.DmaHighWaterMark, T3_DEF_DMA_DESC_HIGH_WMARK);
  2195. /* Enable buffer manager. */
  2196. REG_WR(pDevice, BufMgr.Mode, BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE);
  2197. for(j = 0 ;j < 2000; j++)
  2198. {
  2199. if(REG_RD(pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE)
  2200. break;
  2201. MM_Wait(10);
  2202. }
  2203. if(j >= 2000)
  2204. {
  2205. return LM_STATUS_FAILURE;
  2206. }
  2207. /* Enable the FTQs. */
  2208. REG_WR(pDevice, Ftq.Reset, 0xffffffff);
  2209. REG_WR(pDevice, Ftq.Reset, 0);
  2210. /* Wait until FTQ is ready */
  2211. for(j = 0; j < 2000; j++)
  2212. {
  2213. if(REG_RD(pDevice, Ftq.Reset) == 0)
  2214. break;
  2215. MM_Wait(10);
  2216. }
  2217. if(j >= 2000)
  2218. {
  2219. return LM_STATUS_FAILURE;
  2220. }
  2221. /* Initialize the Standard Receive RCB. */
  2222. REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.High,
  2223. pDevice->RxStdBdPhy.High);
  2224. REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.Low,
  2225. pDevice->RxStdBdPhy.Low);
  2226. REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags,
  2227. MAX_STD_RCV_BUFFER_SIZE << 16);
  2228. /* Initialize the Jumbo Receive RCB. */
  2229. REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags,
  2230. T3_RCB_FLAG_RING_DISABLED);
  2231. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2232. REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.High,
  2233. pDevice->RxJumboBdPhy.High);
  2234. REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.Low,
  2235. pDevice->RxJumboBdPhy.Low);
  2236. REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, 0);
  2237. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  2238. /* Initialize the Mini Receive RCB. */
  2239. REG_WR(pDevice, RcvDataBdIn.MiniRcvRcb.u.MaxLen_Flags,
  2240. T3_RCB_FLAG_RING_DISABLED);
  2241. {
  2242. REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.NicRingAddr,
  2243. (LM_UINT32) T3_NIC_STD_RCV_BUFFER_DESC_ADDR);
  2244. REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.NicRingAddr,
  2245. (LM_UINT32) T3_NIC_JUMBO_RCV_BUFFER_DESC_ADDR);
  2246. }
  2247. /* Receive BD Ring replenish threshold. */
  2248. REG_WR(pDevice, RcvBdIn.StdRcvThreshold, pDevice->RxStdDescCnt/8);
  2249. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2250. REG_WR(pDevice, RcvBdIn.JumboRcvThreshold, pDevice->RxJumboDescCnt/8);
  2251. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  2252. /* Disable all the unused rings. */
  2253. for(j = 0; j < T3_MAX_SEND_RCB_COUNT; j++) {
  2254. MEM_WR(pDevice, SendRcb[j].u.MaxLen_Flags, T3_RCB_FLAG_RING_DISABLED);
  2255. } /* for */
  2256. /* Initialize the indices. */
  2257. pDevice->SendProdIdx = 0;
  2258. pDevice->SendConIdx = 0;
  2259. MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, 0);
  2260. MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, 0);
  2261. /* Set up host or NIC based send RCB. */
  2262. if(pDevice->NicSendBd == FALSE)
  2263. {
  2264. MEM_WR(pDevice, SendRcb[0].HostRingAddr.High,
  2265. pDevice->SendBdPhy.High);
  2266. MEM_WR(pDevice, SendRcb[0].HostRingAddr.Low,
  2267. pDevice->SendBdPhy.Low);
  2268. /* Set up the NIC ring address in the RCB. */
  2269. MEM_WR(pDevice, SendRcb[0].NicRingAddr,T3_NIC_SND_BUFFER_DESC_ADDR);
  2270. /* Setup the RCB. */
  2271. MEM_WR(pDevice, SendRcb[0].u.MaxLen_Flags,
  2272. T3_SEND_RCB_ENTRY_COUNT << 16);
  2273. for(k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++)
  2274. {
  2275. pDevice->pSendBdVirt[k].HostAddr.High = 0;
  2276. pDevice->pSendBdVirt[k].HostAddr.Low = 0;
  2277. }
  2278. }
  2279. else
  2280. {
  2281. MEM_WR(pDevice, SendRcb[0].HostRingAddr.High, 0);
  2282. MEM_WR(pDevice, SendRcb[0].HostRingAddr.Low, 0);
  2283. MEM_WR(pDevice, SendRcb[0].NicRingAddr,
  2284. pDevice->SendBdPhy.Low);
  2285. for(k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++)
  2286. {
  2287. __raw_writel(0, &(pDevice->pSendBdVirt[k].HostAddr.High));
  2288. __raw_writel(0, &(pDevice->pSendBdVirt[k].HostAddr.Low));
  2289. __raw_writel(0, &(pDevice->pSendBdVirt[k].u1.Len_Flags));
  2290. pDevice->ShadowSendBd[k].HostAddr.High = 0;
  2291. pDevice->ShadowSendBd[k].u1.Len_Flags = 0;
  2292. }
  2293. }
  2294. atomic_set(&pDevice->SendBdLeft, T3_SEND_RCB_ENTRY_COUNT-1);
  2295. /* Configure the receive return rings. */
  2296. for(j = 0; j < T3_MAX_RCV_RETURN_RCB_COUNT; j++)
  2297. {
  2298. MEM_WR(pDevice, RcvRetRcb[j].u.MaxLen_Flags, T3_RCB_FLAG_RING_DISABLED);
  2299. }
  2300. pDevice->RcvRetConIdx = 0;
  2301. MEM_WR(pDevice, RcvRetRcb[0].HostRingAddr.High,
  2302. pDevice->RcvRetBdPhy.High);
  2303. MEM_WR(pDevice, RcvRetRcb[0].HostRingAddr.Low,
  2304. pDevice->RcvRetBdPhy.Low);
  2305. /* Set up the NIC ring address in the RCB. */
  2306. /* Not very clear from the spec. I am guessing that for Receive */
  2307. /* Return Ring, NicRingAddr is not used. */
  2308. MEM_WR(pDevice, RcvRetRcb[0].NicRingAddr, 0);
  2309. /* Setup the RCB. */
  2310. MEM_WR(pDevice, RcvRetRcb[0].u.MaxLen_Flags,
  2311. T3_RCV_RETURN_RCB_ENTRY_COUNT << 16);
  2312. /* Reinitialize RX ring producer index */
  2313. MB_REG_WR(pDevice, Mailbox.RcvStdProdIdx.Low, 0);
  2314. MB_REG_WR(pDevice, Mailbox.RcvJumboProdIdx.Low, 0);
  2315. MB_REG_WR(pDevice, Mailbox.RcvMiniProdIdx.Low, 0);
  2316. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2317. pDevice->RxJumboProdIdx = 0;
  2318. pDevice->RxJumboQueuedCnt = 0;
  2319. #endif
  2320. /* Reinitialize our copy of the indices. */
  2321. pDevice->RxStdProdIdx = 0;
  2322. pDevice->RxStdQueuedCnt = 0;
  2323. #if T3_JUMBO_RCV_ENTRY_COUNT
  2324. pDevice->RxJumboProdIdx = 0;
  2325. #endif /* T3_JUMBO_RCV_ENTRY_COUNT */
  2326. /* Configure the MAC address. */
  2327. LM_SetMacAddress(pDevice, pDevice->NodeAddress);
  2328. /* Initialize the transmit random backoff seed. */
  2329. Value32 = (pDevice->NodeAddress[0] + pDevice->NodeAddress[1] +
  2330. pDevice->NodeAddress[2] + pDevice->NodeAddress[3] +
  2331. pDevice->NodeAddress[4] + pDevice->NodeAddress[5]) &
  2332. MAC_TX_BACKOFF_SEED_MASK;
  2333. REG_WR(pDevice, MacCtrl.TxBackoffSeed, Value32);
  2334. /* Receive MTU. Frames larger than the MTU is marked as oversized. */
  2335. REG_WR(pDevice, MacCtrl.MtuSize, pDevice->RxMtu + 8); /* CRC + VLAN. */
  2336. /* Configure Time slot/IPG per 802.3 */
  2337. REG_WR(pDevice, MacCtrl.TxLengths, 0x2620);
  2338. /*
  2339. * Configure Receive Rules so that packets don't match
  2340. * Programmble rule will be queued to Return Ring 1
  2341. */
  2342. REG_WR(pDevice, MacCtrl.RcvRuleCfg, RX_RULE_DEFAULT_CLASS);
  2343. /*
  2344. * Configure to have 16 Classes of Services (COS) and one
  2345. * queue per class. Bad frames are queued to RRR#1.
  2346. * And frames don't match rules are also queued to COS#1.
  2347. */
  2348. REG_WR(pDevice, RcvListPlmt.Config, 0x181);
  2349. /* Enable Receive Placement Statistics */
  2350. REG_WR(pDevice, RcvListPlmt.StatsEnableMask,0xffffff);
  2351. REG_WR(pDevice, RcvListPlmt.StatsCtrl, RCV_LIST_STATS_ENABLE);
  2352. /* Enable Send Data Initator Statistics */
  2353. REG_WR(pDevice, SndDataIn.StatsEnableMask,0xffffff);
  2354. REG_WR(pDevice, SndDataIn.StatsCtrl,
  2355. T3_SND_DATA_IN_STATS_CTRL_ENABLE | \
  2356. T3_SND_DATA_IN_STATS_CTRL_FASTER_UPDATE);
  2357. /* Disable the host coalescing state machine before configuring it's */
  2358. /* parameters. */
  2359. REG_WR(pDevice, HostCoalesce.Mode, 0);
  2360. for(j = 0; j < 2000; j++)
  2361. {
  2362. Value32 = REG_RD(pDevice, HostCoalesce.Mode);
  2363. if(!(Value32 & HOST_COALESCE_ENABLE))
  2364. {
  2365. break;
  2366. }
  2367. MM_Wait(10);
  2368. }
  2369. /* Host coalescing configurations. */
  2370. REG_WR(pDevice, HostCoalesce.RxCoalescingTicks, pDevice->RxCoalescingTicks);
  2371. REG_WR(pDevice, HostCoalesce.TxCoalescingTicks, pDevice->TxCoalescingTicks);
  2372. REG_WR(pDevice, HostCoalesce.RxMaxCoalescedFrames,
  2373. pDevice->RxMaxCoalescedFrames);
  2374. REG_WR(pDevice, HostCoalesce.TxMaxCoalescedFrames,
  2375. pDevice->TxMaxCoalescedFrames);
  2376. REG_WR(pDevice, HostCoalesce.RxCoalescedTickDuringInt,
  2377. pDevice->RxCoalescingTicksDuringInt);
  2378. REG_WR(pDevice, HostCoalesce.TxCoalescedTickDuringInt,
  2379. pDevice->TxCoalescingTicksDuringInt);
  2380. REG_WR(pDevice, HostCoalesce.RxMaxCoalescedFramesDuringInt,
  2381. pDevice->RxMaxCoalescedFramesDuringInt);
  2382. REG_WR(pDevice, HostCoalesce.TxMaxCoalescedFramesDuringInt,
  2383. pDevice->TxMaxCoalescedFramesDuringInt);
  2384. /* Initialize the address of the status block. The NIC will DMA */
  2385. /* the status block to this memory which resides on the host. */
  2386. REG_WR(pDevice, HostCoalesce.StatusBlkHostAddr.High,
  2387. pDevice->StatusBlkPhy.High);
  2388. REG_WR(pDevice, HostCoalesce.StatusBlkHostAddr.Low,
  2389. pDevice->StatusBlkPhy.Low);
  2390. /* Initialize the address of the statistics block. The NIC will DMA */
  2391. /* the statistics to this block of memory. */
  2392. REG_WR(pDevice, HostCoalesce.StatsBlkHostAddr.High,
  2393. pDevice->StatsBlkPhy.High);
  2394. REG_WR(pDevice, HostCoalesce.StatsBlkHostAddr.Low,
  2395. pDevice->StatsBlkPhy.Low);
  2396. REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks,
  2397. pDevice->StatsCoalescingTicks);
  2398. REG_WR(pDevice, HostCoalesce.StatsBlkNicAddr, 0x300);
  2399. REG_WR(pDevice, HostCoalesce.StatusBlkNicAddr,0xb00);
  2400. /* Enable Host Coalesing state machine */
  2401. REG_WR(pDevice, HostCoalesce.Mode, HOST_COALESCE_ENABLE |
  2402. pDevice->CoalesceMode);
  2403. /* Enable the Receive BD Completion state machine. */
  2404. REG_WR(pDevice, RcvBdComp.Mode, RCV_BD_COMP_MODE_ENABLE |
  2405. RCV_BD_COMP_MODE_ATTN_ENABLE);
  2406. /* Enable the Receive List Placement state machine. */
  2407. REG_WR(pDevice, RcvListPlmt.Mode, RCV_LIST_PLMT_MODE_ENABLE);
  2408. /* Enable the Receive List Selector state machine. */
  2409. REG_WR(pDevice, RcvListSel.Mode, RCV_LIST_SEL_MODE_ENABLE |
  2410. RCV_LIST_SEL_MODE_ATTN_ENABLE);
  2411. /* Enable transmit DMA, clear statistics. */
  2412. pDevice->MacMode = MAC_MODE_ENABLE_TX_STATISTICS |
  2413. MAC_MODE_ENABLE_RX_STATISTICS | MAC_MODE_ENABLE_TDE |
  2414. MAC_MODE_ENABLE_RDE | MAC_MODE_ENABLE_FHDE;
  2415. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
  2416. MAC_MODE_CLEAR_RX_STATISTICS | MAC_MODE_CLEAR_TX_STATISTICS);
  2417. /* GRC miscellaneous local control register. */
  2418. pDevice->GrcLocalCtrl = GRC_MISC_LOCAL_CTRL_INT_ON_ATTN |
  2419. GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM;
  2420. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  2421. {
  2422. pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  2423. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1;
  2424. }
  2425. REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
  2426. MM_Wait(40);
  2427. /* Reset RX counters. */
  2428. for(j = 0; j < sizeof(LM_RX_COUNTERS); j++)
  2429. {
  2430. ((PLM_UINT8) &pDevice->RxCounters)[j] = 0;
  2431. }
  2432. /* Reset TX counters. */
  2433. for(j = 0; j < sizeof(LM_TX_COUNTERS); j++)
  2434. {
  2435. ((PLM_UINT8) &pDevice->TxCounters)[j] = 0;
  2436. }
  2437. MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 0);
  2438. /* Enable the DMA Completion state machine. */
  2439. REG_WR(pDevice, DmaComp.Mode, DMA_COMP_MODE_ENABLE);
  2440. /* Enable the DMA Write state machine. */
  2441. Value32 = DMA_WRITE_MODE_ENABLE |
  2442. DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE |
  2443. DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE |
  2444. DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE |
  2445. DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
  2446. DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE |
  2447. DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
  2448. DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE |
  2449. DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE;
  2450. REG_WR(pDevice, DmaWrite.Mode, Value32);
  2451. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
  2452. {
  2453. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
  2454. {
  2455. Value16 = REG_RD(pDevice, PciCfg.PciXCommand);
  2456. Value16 &= ~(PCIX_CMD_MAX_SPLIT_MASK | PCIX_CMD_MAX_BURST_MASK);
  2457. Value16 |= ((PCIX_CMD_MAX_BURST_CPIOB << PCIX_CMD_MAX_BURST_SHL) &
  2458. PCIX_CMD_MAX_BURST_MASK);
  2459. if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE)
  2460. {
  2461. Value16 |= (pDevice->SplitModeMaxReq << PCIX_CMD_MAX_SPLIT_SHL)
  2462. & PCIX_CMD_MAX_SPLIT_MASK;
  2463. }
  2464. REG_WR(pDevice, PciCfg.PciXCommand, Value16);
  2465. }
  2466. }
  2467. /* Enable the Read DMA state machine. */
  2468. Value32 = DMA_READ_MODE_ENABLE |
  2469. DMA_READ_MODE_TARGET_ABORT_ATTN_ENABLE |
  2470. DMA_READ_MODE_MASTER_ABORT_ATTN_ENABLE |
  2471. DMA_READ_MODE_PARITY_ERROR_ATTN_ENABLE |
  2472. DMA_READ_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
  2473. DMA_READ_MODE_FIFO_OVERRUN_ATTN_ENABLE |
  2474. DMA_READ_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
  2475. DMA_READ_MODE_FIFO_OVERREAD_ATTN_ENABLE |
  2476. DMA_READ_MODE_LONG_READ_ATTN_ENABLE;
  2477. if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE)
  2478. {
  2479. Value32 |= DMA_READ_MODE_SPLIT_ENABLE;
  2480. }
  2481. REG_WR(pDevice, DmaRead.Mode, Value32);
  2482. /* Enable the Receive Data Completion state machine. */
  2483. REG_WR(pDevice, RcvDataComp.Mode, RCV_DATA_COMP_MODE_ENABLE |
  2484. RCV_DATA_COMP_MODE_ATTN_ENABLE);
  2485. /* Enable the Mbuf Cluster Free state machine. */
  2486. REG_WR(pDevice, MbufClusterFree.Mode, MBUF_CLUSTER_FREE_MODE_ENABLE);
  2487. /* Enable the Send Data Completion state machine. */
  2488. REG_WR(pDevice, SndDataComp.Mode, SND_DATA_COMP_MODE_ENABLE);
  2489. /* Enable the Send BD Completion state machine. */
  2490. REG_WR(pDevice, SndBdComp.Mode, SND_BD_COMP_MODE_ENABLE |
  2491. SND_BD_COMP_MODE_ATTN_ENABLE);
  2492. /* Enable the Receive BD Initiator state machine. */
  2493. REG_WR(pDevice, RcvBdIn.Mode, RCV_BD_IN_MODE_ENABLE |
  2494. RCV_BD_IN_MODE_BD_IN_DIABLED_RCB_ATTN_ENABLE);
  2495. /* Enable the Receive Data and Receive BD Initiator state machine. */
  2496. REG_WR(pDevice, RcvDataBdIn.Mode, RCV_DATA_BD_IN_MODE_ENABLE |
  2497. RCV_DATA_BD_IN_MODE_INVALID_RING_SIZE);
  2498. /* Enable the Send Data Initiator state machine. */
  2499. REG_WR(pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE);
  2500. /* Enable the Send BD Initiator state machine. */
  2501. REG_WR(pDevice, SndBdIn.Mode, SND_BD_IN_MODE_ENABLE |
  2502. SND_BD_IN_MODE_ATTN_ENABLE);
  2503. /* Enable the Send BD Selector state machine. */
  2504. REG_WR(pDevice, SndBdSel.Mode, SND_BD_SEL_MODE_ENABLE |
  2505. SND_BD_SEL_MODE_ATTN_ENABLE);
  2506. #if INCLUDE_5701_AX_FIX
  2507. /* Load the firmware for the 5701_A0 workaround. */
  2508. if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0)
  2509. {
  2510. LM_LoadRlsFirmware(pDevice);
  2511. }
  2512. #endif
  2513. /* Enable the transmitter. */
  2514. pDevice->TxMode = TX_MODE_ENABLE;
  2515. REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);
  2516. /* Enable the receiver. */
  2517. pDevice->RxMode = RX_MODE_ENABLE;
  2518. REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
  2519. if (pDevice->RestoreOnWakeUp)
  2520. {
  2521. pDevice->RestoreOnWakeUp = FALSE;
  2522. pDevice->DisableAutoNeg = pDevice->WakeUpDisableAutoNeg;
  2523. pDevice->RequestedMediaType = pDevice->WakeUpRequestedMediaType;
  2524. }
  2525. /* Disable auto polling. */
  2526. pDevice->MiMode = 0xc0000;
  2527. REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
  2528. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  2529. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  2530. {
  2531. Value32 = LED_CTRL_PHY_MODE_1;
  2532. }
  2533. else
  2534. {
  2535. if(pDevice->LedMode == LED_MODE_OUTPUT)
  2536. {
  2537. Value32 = LED_CTRL_PHY_MODE_2;
  2538. }
  2539. else
  2540. {
  2541. Value32 = LED_CTRL_PHY_MODE_1;
  2542. }
  2543. }
  2544. REG_WR(pDevice, MacCtrl.LedCtrl, Value32);
  2545. /* Activate Link to enable MAC state machine */
  2546. REG_WR(pDevice, MacCtrl.MiStatus, MI_STATUS_ENABLE_LINK_STATUS_ATTN);
  2547. if (pDevice->EnableTbi)
  2548. {
  2549. REG_WR(pDevice, MacCtrl.RxMode, RX_MODE_RESET);
  2550. MM_Wait(10);
  2551. REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
  2552. if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1)
  2553. {
  2554. REG_WR(pDevice, MacCtrl.SerdesCfg, 0x616000);
  2555. }
  2556. }
  2557. /* Setup the phy chip. */
  2558. LM_SetupPhy(pDevice);
  2559. if (!pDevice->EnableTbi) {
  2560. /* Clear CRC stats */
  2561. LM_ReadPhy(pDevice, 0x1e, &Value32);
  2562. LM_WritePhy(pDevice, 0x1e, Value32 | 0x8000);
  2563. LM_ReadPhy(pDevice, 0x14, &Value32);
  2564. }
  2565. /* Set up the receive mask. */
  2566. LM_SetReceiveMask(pDevice, pDevice->ReceiveMask);
  2567. /* Queue Rx packet buffers. */
  2568. if(pDevice->QueueRxPackets)
  2569. {
  2570. LM_QueueRxPackets(pDevice);
  2571. }
  2572. /* Enable interrupt to the host. */
  2573. if(pDevice->InitDone)
  2574. {
  2575. LM_EnableInterrupt(pDevice);
  2576. }
  2577. return LM_STATUS_SUCCESS;
  2578. } /* LM_ResetAdapter */
  2579. /******************************************************************************/
  2580. /* Description: */
  2581. /* This routine disables the adapter from generating interrupts. */
  2582. /* */
  2583. /* Return: */
  2584. /* LM_STATUS_SUCCESS */
  2585. /******************************************************************************/
  2586. LM_STATUS
  2587. LM_DisableInterrupt(
  2588. PLM_DEVICE_BLOCK pDevice)
  2589. {
  2590. REG_WR(pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl |
  2591. MISC_HOST_CTRL_MASK_PCI_INT);
  2592. MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 1);
  2593. return LM_STATUS_SUCCESS;
  2594. }
  2595. /******************************************************************************/
  2596. /* Description: */
  2597. /* This routine enables the adapter to generate interrupts. */
  2598. /* */
  2599. /* Return: */
  2600. /* LM_STATUS_SUCCESS */
  2601. /******************************************************************************/
  2602. LM_STATUS
  2603. LM_EnableInterrupt(
  2604. PLM_DEVICE_BLOCK pDevice)
  2605. {
  2606. REG_WR(pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl &
  2607. ~MISC_HOST_CTRL_MASK_PCI_INT);
  2608. MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 0);
  2609. if(pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_UPDATED)
  2610. {
  2611. REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  2612. GRC_MISC_LOCAL_CTRL_SET_INT);
  2613. }
  2614. return LM_STATUS_SUCCESS;
  2615. }
  2616. /******************************************************************************/
  2617. /* Description: */
  2618. /* This routine puts a packet on the wire if there is a transmit DMA */
  2619. /* descriptor available; otherwise the packet is queued for later */
  2620. /* transmission. If the second argue is NULL, this routine will put */
  2621. /* the queued packet on the wire if possible. */
  2622. /* */
  2623. /* Return: */
  2624. /* LM_STATUS_SUCCESS */
  2625. /******************************************************************************/
  2626. #if 0
  2627. LM_STATUS
  2628. LM_SendPacket(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
  2629. {
  2630. LM_UINT32 FragCount;
  2631. PT3_SND_BD pSendBd;
  2632. PT3_SND_BD pShadowSendBd;
  2633. LM_UINT32 Value32, Len;
  2634. LM_UINT32 Idx;
  2635. if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  2636. return LM_5700SendPacket(pDevice, pPacket);
  2637. }
  2638. /* Update the SendBdLeft count. */
  2639. atomic_sub(pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  2640. /* Initalize the send buffer descriptors. */
  2641. Idx = pDevice->SendProdIdx;
  2642. pSendBd = &pDevice->pSendBdVirt[Idx];
  2643. /* Next producer index. */
  2644. if (pDevice->NicSendBd == TRUE)
  2645. {
  2646. T3_64BIT_HOST_ADDR paddr;
  2647. pShadowSendBd = &pDevice->ShadowSendBd[Idx];
  2648. for(FragCount = 0; ; )
  2649. {
  2650. MM_MapTxDma(pDevice, pPacket, &paddr, &Len, FragCount);
  2651. /* Initialize the pointer to the send buffer fragment. */
  2652. if (paddr.High != pShadowSendBd->HostAddr.High)
  2653. {
  2654. __raw_writel(paddr.High, &(pSendBd->HostAddr.High));
  2655. pShadowSendBd->HostAddr.High = paddr.High;
  2656. }
  2657. __raw_writel(paddr.Low, &(pSendBd->HostAddr.Low));
  2658. /* Setup the control flags and send buffer size. */
  2659. Value32 = (Len << 16) | pPacket->Flags;
  2660. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2661. FragCount++;
  2662. if (FragCount >= pPacket->u.Tx.FragCount)
  2663. {
  2664. Value32 |= SND_BD_FLAG_END;
  2665. if (Value32 != pShadowSendBd->u1.Len_Flags)
  2666. {
  2667. __raw_writel(Value32, &(pSendBd->u1.Len_Flags));
  2668. pShadowSendBd->u1.Len_Flags = Value32;
  2669. }
  2670. if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
  2671. __raw_writel(pPacket->VlanTag, &(pSendBd->u2.VlanTag));
  2672. }
  2673. break;
  2674. }
  2675. else
  2676. {
  2677. if (Value32 != pShadowSendBd->u1.Len_Flags)
  2678. {
  2679. __raw_writel(Value32, &(pSendBd->u1.Len_Flags));
  2680. pShadowSendBd->u1.Len_Flags = Value32;
  2681. }
  2682. if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
  2683. __raw_writel(pPacket->VlanTag, &(pSendBd->u2.VlanTag));
  2684. }
  2685. }
  2686. pSendBd++;
  2687. pShadowSendBd++;
  2688. if (Idx == 0)
  2689. {
  2690. pSendBd = &pDevice->pSendBdVirt[0];
  2691. pShadowSendBd = &pDevice->ShadowSendBd[0];
  2692. }
  2693. } /* for */
  2694. /* Put the packet descriptor in the ActiveQ. */
  2695. QQ_PushTail(&pDevice->TxPacketActiveQ.Container, pPacket);
  2696. wmb();
  2697. MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
  2698. }
  2699. else
  2700. {
  2701. for(FragCount = 0; ; )
  2702. {
  2703. /* Initialize the pointer to the send buffer fragment. */
  2704. MM_MapTxDma(pDevice, pPacket, &pSendBd->HostAddr, &Len, FragCount);
  2705. pSendBd->u2.VlanTag = pPacket->VlanTag;
  2706. /* Setup the control flags and send buffer size. */
  2707. Value32 = (Len << 16) | pPacket->Flags;
  2708. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2709. FragCount++;
  2710. if (FragCount >= pPacket->u.Tx.FragCount)
  2711. {
  2712. pSendBd->u1.Len_Flags = Value32 | SND_BD_FLAG_END;
  2713. break;
  2714. }
  2715. else
  2716. {
  2717. pSendBd->u1.Len_Flags = Value32;
  2718. }
  2719. pSendBd++;
  2720. if (Idx == 0)
  2721. {
  2722. pSendBd = &pDevice->pSendBdVirt[0];
  2723. }
  2724. } /* for */
  2725. /* Put the packet descriptor in the ActiveQ. */
  2726. QQ_PushTail(&pDevice->TxPacketActiveQ.Container, pPacket);
  2727. wmb();
  2728. MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
  2729. }
  2730. /* Update the producer index. */
  2731. pDevice->SendProdIdx = Idx;
  2732. return LM_STATUS_SUCCESS;
  2733. }
  2734. #endif
  2735. LM_STATUS
  2736. LM_SendPacket(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
  2737. {
  2738. LM_UINT32 FragCount;
  2739. PT3_SND_BD pSendBd, pTmpSendBd, pShadowSendBd;
  2740. T3_SND_BD NicSendBdArr[MAX_FRAGMENT_COUNT];
  2741. LM_UINT32 StartIdx, Idx;
  2742. while (1)
  2743. {
  2744. /* Initalize the send buffer descriptors. */
  2745. StartIdx = Idx = pDevice->SendProdIdx;
  2746. if (pDevice->NicSendBd)
  2747. {
  2748. pTmpSendBd = pSendBd = &NicSendBdArr[0];
  2749. }
  2750. else
  2751. {
  2752. pTmpSendBd = pSendBd = &pDevice->pSendBdVirt[Idx];
  2753. }
  2754. /* Next producer index. */
  2755. for(FragCount = 0; ; )
  2756. {
  2757. LM_UINT32 Value32, Len;
  2758. /* Initialize the pointer to the send buffer fragment. */
  2759. MM_MapTxDma(pDevice, pPacket, &pSendBd->HostAddr, &Len, FragCount);
  2760. pSendBd->u2.VlanTag = pPacket->VlanTag;
  2761. /* Setup the control flags and send buffer size. */
  2762. Value32 = (Len << 16) | pPacket->Flags;
  2763. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2764. FragCount++;
  2765. if (FragCount >= pPacket->u.Tx.FragCount)
  2766. {
  2767. pSendBd->u1.Len_Flags = Value32 | SND_BD_FLAG_END;
  2768. break;
  2769. }
  2770. else
  2771. {
  2772. pSendBd->u1.Len_Flags = Value32;
  2773. }
  2774. pSendBd++;
  2775. if ((Idx == 0) && !pDevice->NicSendBd)
  2776. {
  2777. pSendBd = &pDevice->pSendBdVirt[0];
  2778. }
  2779. } /* for */
  2780. if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  2781. {
  2782. if (LM_Test4GBoundary(pDevice, pPacket, pTmpSendBd) ==
  2783. LM_STATUS_SUCCESS)
  2784. {
  2785. if (MM_CoalesceTxBuffer(pDevice, pPacket) != LM_STATUS_SUCCESS)
  2786. {
  2787. QQ_PushHead(&pDevice->TxPacketFreeQ.Container, pPacket);
  2788. return LM_STATUS_FAILURE;
  2789. }
  2790. continue;
  2791. }
  2792. }
  2793. break;
  2794. }
  2795. /* Put the packet descriptor in the ActiveQ. */
  2796. QQ_PushTail(&pDevice->TxPacketActiveQ.Container, pPacket);
  2797. if (pDevice->NicSendBd)
  2798. {
  2799. pSendBd = &pDevice->pSendBdVirt[StartIdx];
  2800. pShadowSendBd = &pDevice->ShadowSendBd[StartIdx];
  2801. while (StartIdx != Idx)
  2802. {
  2803. LM_UINT32 Value32;
  2804. if ((Value32 = pTmpSendBd->HostAddr.High) !=
  2805. pShadowSendBd->HostAddr.High)
  2806. {
  2807. __raw_writel(Value32, &(pSendBd->HostAddr.High));
  2808. pShadowSendBd->HostAddr.High = Value32;
  2809. }
  2810. __raw_writel(pTmpSendBd->HostAddr.Low, &(pSendBd->HostAddr.Low));
  2811. if ((Value32 = pTmpSendBd->u1.Len_Flags) !=
  2812. pShadowSendBd->u1.Len_Flags)
  2813. {
  2814. __raw_writel(Value32, &(pSendBd->u1.Len_Flags));
  2815. pShadowSendBd->u1.Len_Flags = Value32;
  2816. }
  2817. if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG)
  2818. {
  2819. __raw_writel(pTmpSendBd->u2.VlanTag, &(pSendBd->u2.VlanTag));
  2820. }
  2821. StartIdx = (StartIdx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2822. if (StartIdx == 0)
  2823. pSendBd = &pDevice->pSendBdVirt[0];
  2824. else
  2825. pSendBd++;
  2826. pTmpSendBd++;
  2827. }
  2828. wmb();
  2829. MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
  2830. if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX)
  2831. {
  2832. MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
  2833. }
  2834. }
  2835. else
  2836. {
  2837. wmb();
  2838. MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
  2839. if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX)
  2840. {
  2841. MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
  2842. }
  2843. }
  2844. /* Update the SendBdLeft count. */
  2845. atomic_sub(pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  2846. /* Update the producer index. */
  2847. pDevice->SendProdIdx = Idx;
  2848. return LM_STATUS_SUCCESS;
  2849. }
  2850. STATIC LM_STATUS
  2851. LM_Test4GBoundary(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
  2852. PT3_SND_BD pSendBd)
  2853. {
  2854. int FragCount;
  2855. LM_UINT32 Idx, Base, Len;
  2856. Idx = pDevice->SendProdIdx;
  2857. for(FragCount = 0; ; )
  2858. {
  2859. Len = pSendBd->u1.Len_Flags >> 16;
  2860. if (((Base = pSendBd->HostAddr.Low) > 0xffffdcc0) &&
  2861. (pSendBd->HostAddr.High == 0) &&
  2862. ((Base + 8 + Len) < Base))
  2863. {
  2864. return LM_STATUS_SUCCESS;
  2865. }
  2866. FragCount++;
  2867. if (FragCount >= pPacket->u.Tx.FragCount)
  2868. {
  2869. break;
  2870. }
  2871. pSendBd++;
  2872. if (!pDevice->NicSendBd)
  2873. {
  2874. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2875. if (Idx == 0)
  2876. {
  2877. pSendBd = &pDevice->pSendBdVirt[0];
  2878. }
  2879. }
  2880. }
  2881. return LM_STATUS_FAILURE;
  2882. }
  2883. /******************************************************************************/
  2884. /* Description: */
  2885. /* */
  2886. /* Return: */
  2887. /******************************************************************************/
  2888. __inline static unsigned long
  2889. ComputeCrc32(
  2890. unsigned char *pBuffer,
  2891. unsigned long BufferSize) {
  2892. unsigned long Reg;
  2893. unsigned long Tmp;
  2894. unsigned long j, k;
  2895. Reg = 0xffffffff;
  2896. for(j = 0; j < BufferSize; j++)
  2897. {
  2898. Reg ^= pBuffer[j];
  2899. for(k = 0; k < 8; k++)
  2900. {
  2901. Tmp = Reg & 0x01;
  2902. Reg >>= 1;
  2903. if(Tmp)
  2904. {
  2905. Reg ^= 0xedb88320;
  2906. }
  2907. }
  2908. }
  2909. return ~Reg;
  2910. } /* ComputeCrc32 */
  2911. /******************************************************************************/
  2912. /* Description: */
  2913. /* This routine sets the receive control register according to ReceiveMask */
  2914. /* */
  2915. /* Return: */
  2916. /* LM_STATUS_SUCCESS */
  2917. /******************************************************************************/
  2918. LM_STATUS
  2919. LM_SetReceiveMask(
  2920. PLM_DEVICE_BLOCK pDevice,
  2921. LM_UINT32 Mask) {
  2922. LM_UINT32 ReceiveMask;
  2923. LM_UINT32 RxMode;
  2924. LM_UINT32 j, k;
  2925. ReceiveMask = Mask;
  2926. RxMode = pDevice->RxMode;
  2927. if(Mask & LM_ACCEPT_UNICAST)
  2928. {
  2929. Mask &= ~LM_ACCEPT_UNICAST;
  2930. }
  2931. if(Mask & LM_ACCEPT_MULTICAST)
  2932. {
  2933. Mask &= ~LM_ACCEPT_MULTICAST;
  2934. }
  2935. if(Mask & LM_ACCEPT_ALL_MULTICAST)
  2936. {
  2937. Mask &= ~LM_ACCEPT_ALL_MULTICAST;
  2938. }
  2939. if(Mask & LM_ACCEPT_BROADCAST)
  2940. {
  2941. Mask &= ~LM_ACCEPT_BROADCAST;
  2942. }
  2943. RxMode &= ~RX_MODE_PROMISCUOUS_MODE;
  2944. if(Mask & LM_PROMISCUOUS_MODE)
  2945. {
  2946. RxMode |= RX_MODE_PROMISCUOUS_MODE;
  2947. Mask &= ~LM_PROMISCUOUS_MODE;
  2948. }
  2949. RxMode &= ~(RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED);
  2950. if(Mask & LM_ACCEPT_ERROR_PACKET)
  2951. {
  2952. RxMode |= RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED;
  2953. Mask &= ~LM_ACCEPT_ERROR_PACKET;
  2954. }
  2955. /* Make sure all the bits are valid before committing changes. */
  2956. if(Mask)
  2957. {
  2958. return LM_STATUS_FAILURE;
  2959. }
  2960. /* Commit the new filter. */
  2961. pDevice->RxMode = RxMode;
  2962. REG_WR(pDevice, MacCtrl.RxMode, RxMode);
  2963. pDevice->ReceiveMask = ReceiveMask;
  2964. /* Set up the MC hash table. */
  2965. if(ReceiveMask & LM_ACCEPT_ALL_MULTICAST)
  2966. {
  2967. for(k = 0; k < 4; k++)
  2968. {
  2969. REG_WR(pDevice, MacCtrl.HashReg[k], 0xffffffff);
  2970. }
  2971. }
  2972. else if(ReceiveMask & LM_ACCEPT_MULTICAST)
  2973. {
  2974. LM_UINT32 HashReg[4];
  2975. HashReg[0] = 0; HashReg[1] = 0; HashReg[2] = 0; HashReg[3] = 0;
  2976. for(j = 0; j < pDevice->McEntryCount; j++)
  2977. {
  2978. LM_UINT32 RegIndex;
  2979. LM_UINT32 Bitpos;
  2980. LM_UINT32 Crc32;
  2981. Crc32 = ComputeCrc32(pDevice->McTable[j], ETHERNET_ADDRESS_SIZE);
  2982. /* The most significant 7 bits of the CRC32 (no inversion), */
  2983. /* are used to index into one of the possible 128 bit positions. */
  2984. Bitpos = ~Crc32 & 0x7f;
  2985. /* Hash register index. */
  2986. RegIndex = (Bitpos & 0x60) >> 5;
  2987. /* Bit to turn on within a hash register. */
  2988. Bitpos &= 0x1f;
  2989. /* Enable the multicast bit. */
  2990. HashReg[RegIndex] |= (1 << Bitpos);
  2991. }
  2992. /* REV_AX has problem with multicast filtering where it uses both */
  2993. /* DA and SA to perform hashing. */
  2994. for(k = 0; k < 4; k++)
  2995. {
  2996. REG_WR(pDevice, MacCtrl.HashReg[k], HashReg[k]);
  2997. }
  2998. }
  2999. else
  3000. {
  3001. /* Reject all multicast frames. */
  3002. for(j = 0; j < 4; j++)
  3003. {
  3004. REG_WR(pDevice, MacCtrl.HashReg[j], 0);
  3005. }
  3006. }
  3007. /* By default, Tigon3 will accept broadcast frames. We need to setup */
  3008. if(ReceiveMask & LM_ACCEPT_BROADCAST)
  3009. {
  3010. REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
  3011. REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
  3012. REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
  3013. REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
  3014. REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
  3015. REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
  3016. REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
  3017. REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
  3018. }
  3019. else
  3020. {
  3021. REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
  3022. REJECT_BROADCAST_RULE1_RULE);
  3023. REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
  3024. REJECT_BROADCAST_RULE1_VALUE);
  3025. REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
  3026. REJECT_BROADCAST_RULE2_RULE);
  3027. REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
  3028. REJECT_BROADCAST_RULE2_VALUE);
  3029. }
  3030. /* disable the rest of the rules. */
  3031. for(j = RCV_LAST_RULE_IDX; j < 16; j++)
  3032. {
  3033. REG_WR(pDevice, MacCtrl.RcvRules[j].Rule, 0);
  3034. REG_WR(pDevice, MacCtrl.RcvRules[j].Value, 0);
  3035. }
  3036. return LM_STATUS_SUCCESS;
  3037. } /* LM_SetReceiveMask */
  3038. /******************************************************************************/
  3039. /* Description: */
  3040. /* Disable the interrupt and put the transmitter and receiver engines in */
  3041. /* an idle state. Also aborts all pending send requests and receive */
  3042. /* buffers. */
  3043. /* */
  3044. /* Return: */
  3045. /* LM_STATUS_SUCCESS */
  3046. /******************************************************************************/
  3047. LM_STATUS
  3048. LM_Abort(
  3049. PLM_DEVICE_BLOCK pDevice)
  3050. {
  3051. PLM_PACKET pPacket;
  3052. LM_UINT Idx;
  3053. LM_DisableInterrupt(pDevice);
  3054. /* Disable all the state machines. */
  3055. LM_CntrlBlock(pDevice,T3_BLOCK_MAC_RX_ENGINE,LM_DISABLE);
  3056. LM_CntrlBlock(pDevice,T3_BLOCK_RX_BD_INITIATOR,LM_DISABLE);
  3057. LM_CntrlBlock(pDevice,T3_BLOCK_RX_LIST_PLMT,LM_DISABLE);
  3058. LM_CntrlBlock(pDevice,T3_BLOCK_RX_LIST_SELECTOR,LM_DISABLE);
  3059. LM_CntrlBlock(pDevice,T3_BLOCK_RX_DATA_INITIATOR,LM_DISABLE);
  3060. LM_CntrlBlock(pDevice,T3_BLOCK_RX_DATA_COMP,LM_DISABLE);
  3061. LM_CntrlBlock(pDevice,T3_BLOCK_RX_BD_COMP,LM_DISABLE);
  3062. LM_CntrlBlock(pDevice,T3_BLOCK_SEND_BD_SELECTOR,LM_DISABLE);
  3063. LM_CntrlBlock(pDevice,T3_BLOCK_SEND_BD_INITIATOR,LM_DISABLE);
  3064. LM_CntrlBlock(pDevice,T3_BLOCK_SEND_DATA_INITIATOR,LM_DISABLE);
  3065. LM_CntrlBlock(pDevice,T3_BLOCK_DMA_RD,LM_DISABLE);
  3066. LM_CntrlBlock(pDevice,T3_BLOCK_SEND_DATA_COMP,LM_DISABLE);
  3067. LM_CntrlBlock(pDevice,T3_BLOCK_DMA_COMP,LM_DISABLE);
  3068. LM_CntrlBlock(pDevice,T3_BLOCK_SEND_BD_COMP,LM_DISABLE);
  3069. /* Clear TDE bit */
  3070. pDevice->MacMode &= ~MAC_MODE_ENABLE_TDE;
  3071. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
  3072. LM_CntrlBlock(pDevice,T3_BLOCK_MAC_TX_ENGINE,LM_DISABLE);
  3073. LM_CntrlBlock(pDevice,T3_BLOCK_HOST_COALESING,LM_DISABLE);
  3074. LM_CntrlBlock(pDevice,T3_BLOCK_DMA_WR,LM_DISABLE);
  3075. LM_CntrlBlock(pDevice,T3_BLOCK_MBUF_CLUSTER_FREE,LM_DISABLE);
  3076. /* Reset all FTQs */
  3077. REG_WR(pDevice, Ftq.Reset, 0xffffffff);
  3078. REG_WR(pDevice, Ftq.Reset, 0x0);
  3079. LM_CntrlBlock(pDevice,T3_BLOCK_MBUF_MANAGER,LM_DISABLE);
  3080. LM_CntrlBlock(pDevice,T3_BLOCK_MEM_ARBITOR,LM_DISABLE);
  3081. MM_ACQUIRE_INT_LOCK(pDevice);
  3082. /* Abort packets that have already queued to go out. */
  3083. pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->TxPacketActiveQ.Container);
  3084. while(pPacket)
  3085. {
  3086. pPacket->PacketStatus = LM_STATUS_TRANSMIT_ABORTED;
  3087. pDevice->TxCounters.TxPacketAbortedCnt++;
  3088. atomic_add(pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  3089. QQ_PushTail(&pDevice->TxPacketXmittedQ.Container, pPacket);
  3090. pPacket = (PLM_PACKET)
  3091. QQ_PopHead(&pDevice->TxPacketActiveQ.Container);
  3092. }
  3093. /* Cleanup the receive return rings. */
  3094. LM_ServiceRxInterrupt(pDevice);
  3095. /* Don't want to indicate rx packets in Ndis miniport shutdown context. */
  3096. /* Doing so may cause system crash. */
  3097. if(!pDevice->ShuttingDown)
  3098. {
  3099. /* Indicate packets to the protocol. */
  3100. MM_IndicateTxPackets(pDevice);
  3101. /* Indicate received packets to the protocols. */
  3102. MM_IndicateRxPackets(pDevice);
  3103. }
  3104. else
  3105. {
  3106. /* Move the receive packet descriptors in the ReceivedQ to the */
  3107. /* free queue. */
  3108. for(; ;)
  3109. {
  3110. pPacket = (PLM_PACKET) QQ_PopHead(
  3111. &pDevice->RxPacketReceivedQ.Container);
  3112. if(pPacket == NULL)
  3113. {
  3114. break;
  3115. }
  3116. QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
  3117. }
  3118. }
  3119. /* Clean up the Std Receive Producer ring. */
  3120. Idx = pDevice->pStatusBlkVirt->RcvStdConIdx;
  3121. while(Idx != pDevice->RxStdProdIdx) {
  3122. pPacket = (PLM_PACKET) (MM_UINT_PTR(pDevice->pPacketDescBase) +
  3123. MM_UINT_PTR(pDevice->pRxStdBdVirt[Idx].Opaque));
  3124. QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
  3125. Idx = (Idx + 1) & T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
  3126. } /* while */
  3127. /* Reinitialize our copy of the indices. */
  3128. pDevice->RxStdProdIdx = 0;
  3129. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  3130. /* Clean up the Jumbo Receive Producer ring. */
  3131. Idx = pDevice->pStatusBlkVirt->RcvJumboConIdx;
  3132. while(Idx != pDevice->RxJumboProdIdx) {
  3133. pPacket = (PLM_PACKET) (MM_UINT_PTR(pDevice->pPacketDescBase) +
  3134. MM_UINT_PTR(pDevice->pRxJumboBdVirt[Idx].Opaque));
  3135. QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
  3136. Idx = (Idx + 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
  3137. } /* while */
  3138. /* Reinitialize our copy of the indices. */
  3139. pDevice->RxJumboProdIdx = 0;
  3140. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  3141. MM_RELEASE_INT_LOCK(pDevice);
  3142. /* Initialize the statistis Block */
  3143. pDevice->pStatusBlkVirt->Status = 0;
  3144. pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
  3145. pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
  3146. pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
  3147. return LM_STATUS_SUCCESS;
  3148. } /* LM_Abort */
  3149. /******************************************************************************/
  3150. /* Description: */
  3151. /* Disable the interrupt and put the transmitter and receiver engines in */
  3152. /* an idle state. Aborts all pending send requests and receive buffers. */
  3153. /* Also free all the receive buffers. */
  3154. /* */
  3155. /* Return: */
  3156. /* LM_STATUS_SUCCESS */
  3157. /******************************************************************************/
  3158. LM_STATUS
  3159. LM_Halt(
  3160. PLM_DEVICE_BLOCK pDevice) {
  3161. PLM_PACKET pPacket;
  3162. LM_UINT32 EntryCnt;
  3163. LM_Abort(pDevice);
  3164. /* Get the number of entries in the queue. */
  3165. EntryCnt = QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container);
  3166. /* Make sure all the packets have been accounted for. */
  3167. for(EntryCnt = 0; EntryCnt < pDevice->RxPacketDescCnt; EntryCnt++)
  3168. {
  3169. pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
  3170. if (pPacket == 0)
  3171. break;
  3172. MM_FreeRxBuffer(pDevice, pPacket);
  3173. QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
  3174. }
  3175. LM_ResetChip(pDevice);
  3176. /* Restore PCI configuration registers. */
  3177. MM_WriteConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG,
  3178. pDevice->SavedCacheLineReg);
  3179. LM_RegWrInd(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
  3180. (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);
  3181. /* Reprogram the MAC address. */
  3182. LM_SetMacAddress(pDevice, pDevice->NodeAddress);
  3183. return LM_STATUS_SUCCESS;
  3184. } /* LM_Halt */
  3185. STATIC LM_STATUS
  3186. LM_ResetChip(PLM_DEVICE_BLOCK pDevice)
  3187. {
  3188. LM_UINT32 Value32;
  3189. LM_UINT32 j;
  3190. /* Wait for access to the nvram interface before resetting. This is */
  3191. /* a workaround to prevent EEPROM corruption. */
  3192. if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  3193. T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)
  3194. {
  3195. /* Request access to the flash interface. */
  3196. REG_WR(pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
  3197. for(j = 0; j < 100000; j++)
  3198. {
  3199. Value32 = REG_RD(pDevice, Nvram.SwArb);
  3200. if(Value32 & SW_ARB_GNT1)
  3201. {
  3202. break;
  3203. }
  3204. MM_Wait(10);
  3205. }
  3206. }
  3207. /* Global reset. */
  3208. REG_WR(pDevice, Grc.MiscCfg, GRC_MISC_CFG_CORE_CLOCK_RESET);
  3209. MM_Wait(40); MM_Wait(40); MM_Wait(40);
  3210. /* make sure we re-enable indirect accesses */
  3211. MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG,
  3212. pDevice->MiscHostCtrl);
  3213. /* Set MAX PCI retry to zero. */
  3214. Value32 = T3_PCI_STATE_PCI_ROM_ENABLE | T3_PCI_STATE_PCI_ROM_RETRY_ENABLE;
  3215. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
  3216. {
  3217. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
  3218. {
  3219. Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
  3220. }
  3221. }
  3222. MM_WriteConfig32(pDevice, T3_PCI_STATE_REG, Value32);
  3223. /* Restore PCI command register. */
  3224. MM_WriteConfig32(pDevice, PCI_COMMAND_REG,
  3225. pDevice->PciCommandStatusWords);
  3226. /* Disable PCI-X relaxed ordering bit. */
  3227. MM_ReadConfig32(pDevice, PCIX_CAP_REG, &Value32);
  3228. Value32 &= ~PCIX_ENABLE_RELAXED_ORDERING;
  3229. MM_WriteConfig32(pDevice, PCIX_CAP_REG, Value32);
  3230. /* Enable memory arbiter. */
  3231. REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
  3232. #ifdef BIG_ENDIAN_PCI /* This from jfd */
  3233. Value32 = GRC_MODE_WORD_SWAP_DATA|
  3234. GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
  3235. #else
  3236. #ifdef BIG_ENDIAN_HOST
  3237. /* Reconfigure the mode register. */
  3238. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
  3239. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  3240. GRC_MODE_BYTE_SWAP_DATA |
  3241. GRC_MODE_WORD_SWAP_DATA;
  3242. #else
  3243. /* Reconfigure the mode register. */
  3244. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
  3245. #endif
  3246. #endif
  3247. REG_WR(pDevice, Grc.Mode, Value32);
  3248. /* Prevent PXE from restarting. */
  3249. MEM_WR_OFFSET(pDevice, 0x0b50, T3_MAGIC_NUM);
  3250. if(pDevice->EnableTbi) {
  3251. pDevice->MacMode = MAC_MODE_PORT_MODE_TBI;
  3252. REG_WR(pDevice, MacCtrl.Mode, MAC_MODE_PORT_MODE_TBI);
  3253. }
  3254. else {
  3255. REG_WR(pDevice, MacCtrl.Mode, 0);
  3256. }
  3257. /* Wait for the firmware to finish initialization. */
  3258. for(j = 0; j < 100000; j++)
  3259. {
  3260. MM_Wait(10);
  3261. Value32 = MEM_RD_OFFSET(pDevice, 0x0b50);
  3262. if(Value32 == ~T3_MAGIC_NUM)
  3263. {
  3264. break;
  3265. }
  3266. }
  3267. return LM_STATUS_SUCCESS;
  3268. }
  3269. /******************************************************************************/
  3270. /* Description: */
  3271. /* */
  3272. /* Return: */
  3273. /******************************************************************************/
  3274. __inline static void
  3275. LM_ServiceTxInterrupt(
  3276. PLM_DEVICE_BLOCK pDevice) {
  3277. PLM_PACKET pPacket;
  3278. LM_UINT32 HwConIdx;
  3279. LM_UINT32 SwConIdx;
  3280. HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
  3281. /* Get our copy of the consumer index. The buffer descriptors */
  3282. /* that are in between the consumer indices are freed. */
  3283. SwConIdx = pDevice->SendConIdx;
  3284. /* Move the packets from the TxPacketActiveQ that are sent out to */
  3285. /* the TxPacketXmittedQ. Packets that are sent use the */
  3286. /* descriptors that are between SwConIdx and HwConIdx. */
  3287. while(SwConIdx != HwConIdx)
  3288. {
  3289. /* Get the packet that was sent from the TxPacketActiveQ. */
  3290. pPacket = (PLM_PACKET) QQ_PopHead(
  3291. &pDevice->TxPacketActiveQ.Container);
  3292. /* Set the return status. */
  3293. pPacket->PacketStatus = LM_STATUS_SUCCESS;
  3294. /* Put the packet in the TxPacketXmittedQ for indication later. */
  3295. QQ_PushTail(&pDevice->TxPacketXmittedQ.Container, pPacket);
  3296. /* Move to the next packet's BD. */
  3297. SwConIdx = (SwConIdx + pPacket->u.Tx.FragCount) &
  3298. T3_SEND_RCB_ENTRY_COUNT_MASK;
  3299. /* Update the number of unused BDs. */
  3300. atomic_add(pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  3301. /* Get the new updated HwConIdx. */
  3302. HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
  3303. } /* while */
  3304. /* Save the new SwConIdx. */
  3305. pDevice->SendConIdx = SwConIdx;
  3306. } /* LM_ServiceTxInterrupt */
  3307. /******************************************************************************/
  3308. /* Description: */
  3309. /* */
  3310. /* Return: */
  3311. /******************************************************************************/
  3312. __inline static void
  3313. LM_ServiceRxInterrupt(
  3314. PLM_DEVICE_BLOCK pDevice) {
  3315. PLM_PACKET pPacket;
  3316. PT3_RCV_BD pRcvBd;
  3317. LM_UINT32 HwRcvRetProdIdx;
  3318. LM_UINT32 SwRcvRetConIdx;
  3319. /* Loop thru the receive return rings for received packets. */
  3320. HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
  3321. SwRcvRetConIdx = pDevice->RcvRetConIdx;
  3322. while(SwRcvRetConIdx != HwRcvRetProdIdx)
  3323. {
  3324. pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx];
  3325. /* Get the received packet descriptor. */
  3326. pPacket = (PLM_PACKET) (MM_UINT_PTR(pDevice->pPacketDescBase) +
  3327. MM_UINT_PTR(pRcvBd->Opaque));
  3328. /* Check the error flag. */
  3329. if(pRcvBd->ErrorFlag &&
  3330. pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
  3331. {
  3332. pPacket->PacketStatus = LM_STATUS_FAILURE;
  3333. pDevice->RxCounters.RxPacketErrCnt++;
  3334. if(pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC)
  3335. {
  3336. pDevice->RxCounters.RxErrCrcCnt++;
  3337. }
  3338. if(pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT)
  3339. {
  3340. pDevice->RxCounters.RxErrCollCnt++;
  3341. }
  3342. if(pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT)
  3343. {
  3344. pDevice->RxCounters.RxErrLinkLostCnt++;
  3345. }
  3346. if(pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR)
  3347. {
  3348. pDevice->RxCounters.RxErrPhyDecodeCnt++;
  3349. }
  3350. if(pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
  3351. {
  3352. pDevice->RxCounters.RxErrOddNibbleCnt++;
  3353. }
  3354. if(pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT)
  3355. {
  3356. pDevice->RxCounters.RxErrMacAbortCnt++;
  3357. }
  3358. if(pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64)
  3359. {
  3360. pDevice->RxCounters.RxErrShortPacketCnt++;
  3361. }
  3362. if(pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES)
  3363. {
  3364. pDevice->RxCounters.RxErrNoResourceCnt++;
  3365. }
  3366. if(pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD)
  3367. {
  3368. pDevice->RxCounters.RxErrLargePacketCnt++;
  3369. }
  3370. }
  3371. else
  3372. {
  3373. pPacket->PacketStatus = LM_STATUS_SUCCESS;
  3374. pPacket->PacketSize = pRcvBd->Len - 4;
  3375. pPacket->Flags = pRcvBd->Flags;
  3376. if(pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG)
  3377. {
  3378. pPacket->VlanTag = pRcvBd->VlanTag;
  3379. }
  3380. pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum;
  3381. }
  3382. /* Put the packet descriptor containing the received packet */
  3383. /* buffer in the RxPacketReceivedQ for indication later. */
  3384. QQ_PushTail(&pDevice->RxPacketReceivedQ.Container, pPacket);
  3385. /* Go to the next buffer descriptor. */
  3386. SwRcvRetConIdx = (SwRcvRetConIdx + 1) &
  3387. T3_RCV_RETURN_RCB_ENTRY_COUNT_MASK;
  3388. /* Get the updated HwRcvRetProdIdx. */
  3389. HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
  3390. } /* while */
  3391. pDevice->RcvRetConIdx = SwRcvRetConIdx;
  3392. /* Update the receive return ring consumer index. */
  3393. MB_REG_WR(pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx);
  3394. } /* LM_ServiceRxInterrupt */
  3395. /******************************************************************************/
  3396. /* Description: */
  3397. /* This is the interrupt event handler routine. It acknowledges all */
  3398. /* pending interrupts and process all pending events. */
  3399. /* */
  3400. /* Return: */
  3401. /* LM_STATUS_SUCCESS */
  3402. /******************************************************************************/
  3403. LM_STATUS
  3404. LM_ServiceInterrupts(
  3405. PLM_DEVICE_BLOCK pDevice)
  3406. {
  3407. LM_UINT32 Value32;
  3408. int ServicePhyInt = FALSE;
  3409. /* Setup the phy chip whenever the link status changes. */
  3410. if(pDevice->LinkChngMode == T3_LINK_CHNG_MODE_USE_STATUS_REG)
  3411. {
  3412. Value32 = REG_RD(pDevice, MacCtrl.Status);
  3413. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
  3414. {
  3415. if (Value32 & MAC_STATUS_MI_INTERRUPT)
  3416. {
  3417. ServicePhyInt = TRUE;
  3418. }
  3419. }
  3420. else if(Value32 & MAC_STATUS_LINK_STATE_CHANGED)
  3421. {
  3422. ServicePhyInt = TRUE;
  3423. }
  3424. }
  3425. else
  3426. {
  3427. if(pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_LINK_CHANGED_STATUS)
  3428. {
  3429. pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
  3430. (pDevice->pStatusBlkVirt->Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
  3431. ServicePhyInt = TRUE;
  3432. }
  3433. }
  3434. #if INCLUDE_TBI_SUPPORT
  3435. if (pDevice->IgnoreTbiLinkChange == TRUE)
  3436. {
  3437. ServicePhyInt = FALSE;
  3438. }
  3439. #endif
  3440. if (ServicePhyInt == TRUE)
  3441. {
  3442. LM_SetupPhy(pDevice);
  3443. }
  3444. /* Service receive and transmit interrupts. */
  3445. LM_ServiceRxInterrupt(pDevice);
  3446. LM_ServiceTxInterrupt(pDevice);
  3447. /* No spinlock for this queue since this routine is serialized. */
  3448. if(!QQ_Empty(&pDevice->RxPacketReceivedQ.Container))
  3449. {
  3450. /* Indicate receive packets. */
  3451. MM_IndicateRxPackets(pDevice);
  3452. /* LM_QueueRxPackets(pDevice); */
  3453. }
  3454. /* No spinlock for this queue since this routine is serialized. */
  3455. if(!QQ_Empty(&pDevice->TxPacketXmittedQ.Container))
  3456. {
  3457. MM_IndicateTxPackets(pDevice);
  3458. }
  3459. return LM_STATUS_SUCCESS;
  3460. } /* LM_ServiceInterrupts */
  3461. /******************************************************************************/
  3462. /* Description: */
  3463. /* */
  3464. /* Return: */
  3465. /******************************************************************************/
  3466. LM_STATUS
  3467. LM_MulticastAdd(
  3468. PLM_DEVICE_BLOCK pDevice,
  3469. PLM_UINT8 pMcAddress) {
  3470. PLM_UINT8 pEntry;
  3471. LM_UINT32 j;
  3472. pEntry = pDevice->McTable[0];
  3473. for(j = 0; j < pDevice->McEntryCount; j++)
  3474. {
  3475. if(IS_ETH_ADDRESS_EQUAL(pEntry, pMcAddress))
  3476. {
  3477. /* Found a match, increment the instance count. */
  3478. pEntry[LM_MC_INSTANCE_COUNT_INDEX] += 1;
  3479. return LM_STATUS_SUCCESS;
  3480. }
  3481. pEntry += LM_MC_ENTRY_SIZE;
  3482. }
  3483. if(pDevice->McEntryCount >= LM_MAX_MC_TABLE_SIZE)
  3484. {
  3485. return LM_STATUS_FAILURE;
  3486. }
  3487. pEntry = pDevice->McTable[pDevice->McEntryCount];
  3488. COPY_ETH_ADDRESS(pMcAddress, pEntry);
  3489. pEntry[LM_MC_INSTANCE_COUNT_INDEX] = 1;
  3490. pDevice->McEntryCount++;
  3491. LM_SetReceiveMask(pDevice, pDevice->ReceiveMask | LM_ACCEPT_MULTICAST);
  3492. return LM_STATUS_SUCCESS;
  3493. } /* LM_MulticastAdd */
  3494. /******************************************************************************/
  3495. /* Description: */
  3496. /* */
  3497. /* Return: */
  3498. /******************************************************************************/
  3499. LM_STATUS
  3500. LM_MulticastDel(
  3501. PLM_DEVICE_BLOCK pDevice,
  3502. PLM_UINT8 pMcAddress) {
  3503. PLM_UINT8 pEntry;
  3504. LM_UINT32 j;
  3505. pEntry = pDevice->McTable[0];
  3506. for(j = 0; j < pDevice->McEntryCount; j++)
  3507. {
  3508. if(IS_ETH_ADDRESS_EQUAL(pEntry, pMcAddress))
  3509. {
  3510. /* Found a match, decrement the instance count. */
  3511. pEntry[LM_MC_INSTANCE_COUNT_INDEX] -= 1;
  3512. /* No more instance left, remove the address from the table. */
  3513. /* Move the last entry in the table to the delete slot. */
  3514. if(pEntry[LM_MC_INSTANCE_COUNT_INDEX] == 0 &&
  3515. pDevice->McEntryCount > 1)
  3516. {
  3517. COPY_ETH_ADDRESS(
  3518. pDevice->McTable[pDevice->McEntryCount-1], pEntry);
  3519. pEntry[LM_MC_INSTANCE_COUNT_INDEX] =
  3520. pDevice->McTable[pDevice->McEntryCount-1]
  3521. [LM_MC_INSTANCE_COUNT_INDEX];
  3522. }
  3523. pDevice->McEntryCount--;
  3524. /* Update the receive mask if the table is empty. */
  3525. if(pDevice->McEntryCount == 0)
  3526. {
  3527. LM_SetReceiveMask(pDevice,
  3528. pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST);
  3529. }
  3530. return LM_STATUS_SUCCESS;
  3531. }
  3532. pEntry += LM_MC_ENTRY_SIZE;
  3533. }
  3534. return LM_STATUS_FAILURE;
  3535. } /* LM_MulticastDel */
  3536. /******************************************************************************/
  3537. /* Description: */
  3538. /* */
  3539. /* Return: */
  3540. /******************************************************************************/
  3541. LM_STATUS
  3542. LM_MulticastClear(
  3543. PLM_DEVICE_BLOCK pDevice) {
  3544. pDevice->McEntryCount = 0;
  3545. LM_SetReceiveMask(pDevice, pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST);
  3546. return LM_STATUS_SUCCESS;
  3547. } /* LM_MulticastClear */
  3548. /******************************************************************************/
  3549. /* Description: */
  3550. /* */
  3551. /* Return: */
  3552. /******************************************************************************/
  3553. LM_STATUS
  3554. LM_SetMacAddress(
  3555. PLM_DEVICE_BLOCK pDevice,
  3556. PLM_UINT8 pMacAddress)
  3557. {
  3558. LM_UINT32 j;
  3559. for(j = 0; j < 4; j++)
  3560. {
  3561. REG_WR(pDevice, MacCtrl.MacAddr[j].High,
  3562. (pMacAddress[0] << 8) | pMacAddress[1]);
  3563. REG_WR(pDevice, MacCtrl.MacAddr[j].Low,
  3564. (pMacAddress[2] << 24) | (pMacAddress[3] << 16) |
  3565. (pMacAddress[4] << 8) | pMacAddress[5]);
  3566. }
  3567. return LM_STATUS_SUCCESS;
  3568. }
  3569. /******************************************************************************/
  3570. /* Description: */
  3571. /* Sets up the default line speed, and duplex modes based on the requested */
  3572. /* media type. */
  3573. /* */
  3574. /* Return: */
  3575. /* None. */
  3576. /******************************************************************************/
  3577. static LM_STATUS
  3578. LM_TranslateRequestedMediaType(
  3579. LM_REQUESTED_MEDIA_TYPE RequestedMediaType,
  3580. PLM_MEDIA_TYPE pMediaType,
  3581. PLM_LINE_SPEED pLineSpeed,
  3582. PLM_DUPLEX_MODE pDuplexMode) {
  3583. *pMediaType = LM_MEDIA_TYPE_AUTO;
  3584. *pLineSpeed = LM_LINE_SPEED_UNKNOWN;
  3585. *pDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
  3586. /* determine media type */
  3587. switch(RequestedMediaType) {
  3588. case LM_REQUESTED_MEDIA_TYPE_BNC:
  3589. *pMediaType = LM_MEDIA_TYPE_BNC;
  3590. *pLineSpeed = LM_LINE_SPEED_10MBPS;
  3591. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3592. break;
  3593. case LM_REQUESTED_MEDIA_TYPE_UTP_AUTO:
  3594. *pMediaType = LM_MEDIA_TYPE_UTP;
  3595. break;
  3596. case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS:
  3597. *pMediaType = LM_MEDIA_TYPE_UTP;
  3598. *pLineSpeed = LM_LINE_SPEED_10MBPS;
  3599. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3600. break;
  3601. case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS_FULL_DUPLEX:
  3602. *pMediaType = LM_MEDIA_TYPE_UTP;
  3603. *pLineSpeed = LM_LINE_SPEED_10MBPS;
  3604. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3605. break;
  3606. case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS:
  3607. *pMediaType = LM_MEDIA_TYPE_UTP;
  3608. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3609. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3610. break;
  3611. case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS_FULL_DUPLEX:
  3612. *pMediaType = LM_MEDIA_TYPE_UTP;
  3613. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3614. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3615. break;
  3616. case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS:
  3617. *pMediaType = LM_MEDIA_TYPE_UTP;
  3618. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3619. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3620. break;
  3621. case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS_FULL_DUPLEX:
  3622. *pMediaType = LM_MEDIA_TYPE_UTP;
  3623. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3624. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3625. break;
  3626. case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS:
  3627. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3628. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3629. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3630. break;
  3631. case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS_FULL_DUPLEX:
  3632. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3633. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3634. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3635. break;
  3636. case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS:
  3637. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3638. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3639. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3640. break;
  3641. case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS_FULL_DUPLEX:
  3642. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3643. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3644. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3645. break;
  3646. default:
  3647. break;
  3648. } /* switch */
  3649. return LM_STATUS_SUCCESS;
  3650. } /* LM_TranslateRequestedMediaType */
  3651. /******************************************************************************/
  3652. /* Description: */
  3653. /* */
  3654. /* Return: */
  3655. /* LM_STATUS_LINK_ACTIVE */
  3656. /* LM_STATUS_LINK_DOWN */
  3657. /******************************************************************************/
  3658. static LM_STATUS
  3659. LM_InitBcm540xPhy(
  3660. PLM_DEVICE_BLOCK pDevice)
  3661. {
  3662. LM_LINE_SPEED CurrentLineSpeed;
  3663. LM_DUPLEX_MODE CurrentDuplexMode;
  3664. LM_STATUS CurrentLinkStatus;
  3665. LM_UINT32 Value32;
  3666. LM_UINT32 j;
  3667. #if 1 /* jmb: bugfix -- moved here, out of code that sets initial pwr state */
  3668. LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x2);
  3669. #endif
  3670. if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
  3671. {
  3672. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  3673. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  3674. if(!pDevice->InitDone)
  3675. {
  3676. Value32 = 0;
  3677. }
  3678. if(!(Value32 & PHY_STATUS_LINK_PASS))
  3679. {
  3680. LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0c20);
  3681. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
  3682. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1804);
  3683. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
  3684. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1204);
  3685. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  3686. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0132);
  3687. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  3688. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0232);
  3689. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
  3690. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
  3691. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  3692. for(j = 0; j < 1000; j++)
  3693. {
  3694. MM_Wait(10);
  3695. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  3696. if(Value32 & PHY_STATUS_LINK_PASS)
  3697. {
  3698. MM_Wait(40);
  3699. break;
  3700. }
  3701. }
  3702. if((pDevice->PhyId & PHY_ID_REV_MASK) == PHY_BCM5401_B0_REV)
  3703. {
  3704. if(!(Value32 & PHY_STATUS_LINK_PASS) &&
  3705. (pDevice->OldLineSpeed == LM_LINE_SPEED_1000MBPS))
  3706. {
  3707. LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);
  3708. for(j = 0; j < 100; j++)
  3709. {
  3710. MM_Wait(10);
  3711. LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
  3712. if(!(Value32 & PHY_CTRL_PHY_RESET))
  3713. {
  3714. MM_Wait(40);
  3715. break;
  3716. }
  3717. }
  3718. LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0c20);
  3719. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
  3720. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1804);
  3721. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
  3722. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1204);
  3723. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  3724. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0132);
  3725. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  3726. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0232);
  3727. LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
  3728. LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
  3729. }
  3730. }
  3731. }
  3732. }
  3733. else if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  3734. pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
  3735. {
  3736. /* Bug: 5701 A0, B0 TX CRC workaround. */
  3737. LM_WritePhy(pDevice, 0x15, 0x0a75);
  3738. LM_WritePhy(pDevice, 0x1c, 0x8c68);
  3739. LM_WritePhy(pDevice, 0x1c, 0x8d68);
  3740. LM_WritePhy(pDevice, 0x1c, 0x8c68);
  3741. }
  3742. /* Acknowledge interrupts. */
  3743. LM_ReadPhy(pDevice, BCM540X_INT_STATUS_REG, &Value32);
  3744. LM_ReadPhy(pDevice, BCM540X_INT_STATUS_REG, &Value32);
  3745. /* Configure the interrupt mask. */
  3746. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
  3747. {
  3748. LM_WritePhy(pDevice, BCM540X_INT_MASK_REG, ~BCM540X_INT_LINK_CHANGE);
  3749. }
  3750. /* Configure PHY led mode. */
  3751. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
  3752. (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700))
  3753. {
  3754. if(pDevice->LedMode == LED_MODE_THREE_LINK)
  3755. {
  3756. LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG,
  3757. BCM540X_EXT_CTRL_LINK3_LED_MODE);
  3758. }
  3759. else
  3760. {
  3761. LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, 0);
  3762. }
  3763. }
  3764. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3765. /* Get current link and duplex mode. */
  3766. for(j = 0; j < 100; j++)
  3767. {
  3768. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  3769. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  3770. if(Value32 & PHY_STATUS_LINK_PASS)
  3771. {
  3772. break;
  3773. }
  3774. MM_Wait(40);
  3775. }
  3776. if(Value32 & PHY_STATUS_LINK_PASS)
  3777. {
  3778. /* Determine the current line and duplex settings. */
  3779. LM_ReadPhy(pDevice, BCM540X_AUX_STATUS_REG, &Value32);
  3780. for(j = 0; j < 2000; j++)
  3781. {
  3782. MM_Wait(10);
  3783. LM_ReadPhy(pDevice, BCM540X_AUX_STATUS_REG, &Value32);
  3784. if(Value32)
  3785. {
  3786. break;
  3787. }
  3788. }
  3789. switch(Value32 & BCM540X_AUX_SPEED_MASK)
  3790. {
  3791. case BCM540X_AUX_10BASET_HD:
  3792. CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
  3793. CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
  3794. break;
  3795. case BCM540X_AUX_10BASET_FD:
  3796. CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
  3797. CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
  3798. break;
  3799. case BCM540X_AUX_100BASETX_HD:
  3800. CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
  3801. CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
  3802. break;
  3803. case BCM540X_AUX_100BASETX_FD:
  3804. CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
  3805. CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
  3806. break;
  3807. case BCM540X_AUX_100BASET_HD:
  3808. CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
  3809. CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
  3810. break;
  3811. case BCM540X_AUX_100BASET_FD:
  3812. CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
  3813. CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
  3814. break;
  3815. default:
  3816. CurrentLineSpeed = LM_LINE_SPEED_UNKNOWN;
  3817. CurrentDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
  3818. break;
  3819. }
  3820. /* Make sure we are in auto-neg mode. */
  3821. for (j = 0; j < 200; j++)
  3822. {
  3823. LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
  3824. if(Value32 && Value32 != 0x7fff)
  3825. {
  3826. break;
  3827. }
  3828. if(Value32 == 0 && pDevice->RequestedMediaType ==
  3829. LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS)
  3830. {
  3831. break;
  3832. }
  3833. MM_Wait(10);
  3834. }
  3835. /* Use the current line settings for "auto" mode. */
  3836. if(pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO ||
  3837. pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_UTP_AUTO)
  3838. {
  3839. if(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)
  3840. {
  3841. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3842. /* We may be exiting low power mode and the link is in */
  3843. /* 10mb. In this case, we need to restart autoneg. */
  3844. LM_ReadPhy(pDevice, BCM540X_1000BASET_CTRL_REG, &Value32);
  3845. pDevice->advertising1000 = Value32;
  3846. /* 5702FE supports 10/100Mb only. */
  3847. if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5703 ||
  3848. pDevice->BondId != GRC_MISC_BD_ID_5702FE)
  3849. {
  3850. if(!(Value32 & (BCM540X_AN_AD_1000BASET_HALF |
  3851. BCM540X_AN_AD_1000BASET_FULL)))
  3852. {
  3853. CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
  3854. }
  3855. }
  3856. }
  3857. else
  3858. {
  3859. CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
  3860. }
  3861. }
  3862. else
  3863. {
  3864. /* Force line settings. */
  3865. /* Use the current setting if it matches the user's requested */
  3866. /* setting. */
  3867. LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
  3868. if((pDevice->LineSpeed == CurrentLineSpeed) &&
  3869. (pDevice->DuplexMode == CurrentDuplexMode))
  3870. {
  3871. if ((pDevice->DisableAutoNeg &&
  3872. !(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)) ||
  3873. (!pDevice->DisableAutoNeg &&
  3874. (Value32 & PHY_CTRL_AUTO_NEG_ENABLE)))
  3875. {
  3876. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3877. }
  3878. else
  3879. {
  3880. CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
  3881. }
  3882. }
  3883. else
  3884. {
  3885. CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
  3886. }
  3887. }
  3888. /* Save line settings. */
  3889. pDevice->LineSpeed = CurrentLineSpeed;
  3890. pDevice->DuplexMode = CurrentDuplexMode;
  3891. pDevice->MediaType = LM_MEDIA_TYPE_UTP;
  3892. }
  3893. return CurrentLinkStatus;
  3894. } /* LM_InitBcm540xPhy */
  3895. /******************************************************************************/
  3896. /* Description: */
  3897. /* */
  3898. /* Return: */
  3899. /******************************************************************************/
  3900. LM_STATUS
  3901. LM_SetFlowControl(
  3902. PLM_DEVICE_BLOCK pDevice,
  3903. LM_UINT32 LocalPhyAd,
  3904. LM_UINT32 RemotePhyAd)
  3905. {
  3906. LM_FLOW_CONTROL FlowCap;
  3907. /* Resolve flow control. */
  3908. FlowCap = LM_FLOW_CONTROL_NONE;
  3909. /* See Table 28B-3 of 802.3ab-1999 spec. */
  3910. if(pDevice->FlowControlCap & LM_FLOW_CONTROL_AUTO_PAUSE)
  3911. {
  3912. if(LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE)
  3913. {
  3914. if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE)
  3915. {
  3916. if(RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE)
  3917. {
  3918. FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE |
  3919. LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3920. }
  3921. else if(RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE)
  3922. {
  3923. FlowCap = LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3924. }
  3925. }
  3926. else
  3927. {
  3928. if(RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE)
  3929. {
  3930. FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE |
  3931. LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3932. }
  3933. }
  3934. }
  3935. else if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE)
  3936. {
  3937. if((RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) &&
  3938. (RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE))
  3939. {
  3940. FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE;
  3941. }
  3942. }
  3943. }
  3944. else
  3945. {
  3946. FlowCap = pDevice->FlowControlCap;
  3947. }
  3948. /* Enable/disable rx PAUSE. */
  3949. pDevice->RxMode &= ~RX_MODE_ENABLE_FLOW_CONTROL;
  3950. if(FlowCap & LM_FLOW_CONTROL_RECEIVE_PAUSE &&
  3951. (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
  3952. pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE))
  3953. {
  3954. pDevice->FlowControl |= LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3955. pDevice->RxMode |= RX_MODE_ENABLE_FLOW_CONTROL;
  3956. }
  3957. REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
  3958. /* Enable/disable tx PAUSE. */
  3959. pDevice->TxMode &= ~TX_MODE_ENABLE_FLOW_CONTROL;
  3960. if(FlowCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE &&
  3961. (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
  3962. pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))
  3963. {
  3964. pDevice->FlowControl |= LM_FLOW_CONTROL_TRANSMIT_PAUSE;
  3965. pDevice->TxMode |= TX_MODE_ENABLE_FLOW_CONTROL;
  3966. }
  3967. REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);
  3968. return LM_STATUS_SUCCESS;
  3969. }
  3970. #if INCLUDE_TBI_SUPPORT
  3971. /******************************************************************************/
  3972. /* Description: */
  3973. /* */
  3974. /* Return: */
  3975. /******************************************************************************/
  3976. STATIC LM_STATUS
  3977. LM_InitBcm800xPhy(
  3978. PLM_DEVICE_BLOCK pDevice)
  3979. {
  3980. LM_UINT32 Value32;
  3981. LM_UINT32 j;
  3982. Value32 = REG_RD(pDevice, MacCtrl.Status);
  3983. /* Reset the SERDES during init and when we have link. */
  3984. if(!pDevice->InitDone || Value32 & MAC_STATUS_PCS_SYNCED)
  3985. {
  3986. /* Set PLL lock range. */
  3987. LM_WritePhy(pDevice, 0x16, 0x8007);
  3988. /* Software reset. */
  3989. LM_WritePhy(pDevice, 0x00, 0x8000);
  3990. /* Wait for reset to complete. */
  3991. for(j = 0; j < 500; j++)
  3992. {
  3993. MM_Wait(10);
  3994. }
  3995. /* Config mode; seletct PMA/Ch 1 regs. */
  3996. LM_WritePhy(pDevice, 0x10, 0x8411);
  3997. /* Enable auto-lock and comdet, select txclk for tx. */
  3998. LM_WritePhy(pDevice, 0x11, 0x0a10);
  3999. LM_WritePhy(pDevice, 0x18, 0x00a0);
  4000. LM_WritePhy(pDevice, 0x16, 0x41ff);
  4001. /* Assert and deassert POR. */
  4002. LM_WritePhy(pDevice, 0x13, 0x0400);
  4003. MM_Wait(40);
  4004. LM_WritePhy(pDevice, 0x13, 0x0000);
  4005. LM_WritePhy(pDevice, 0x11, 0x0a50);
  4006. MM_Wait(40);
  4007. LM_WritePhy(pDevice, 0x11, 0x0a10);
  4008. /* Delay for signal to stabilize. */
  4009. for(j = 0; j < 15000; j++)
  4010. {
  4011. MM_Wait(10);
  4012. }
  4013. /* Deselect the channel register so we can read the PHY id later. */
  4014. LM_WritePhy(pDevice, 0x10, 0x8011);
  4015. }
  4016. return LM_STATUS_SUCCESS;
  4017. }
  4018. /******************************************************************************/
  4019. /* Description: */
  4020. /* */
  4021. /* Return: */
  4022. /******************************************************************************/
  4023. STATIC LM_STATUS
  4024. LM_SetupFiberPhy(
  4025. PLM_DEVICE_BLOCK pDevice)
  4026. {
  4027. LM_STATUS CurrentLinkStatus;
  4028. AUTONEG_STATUS AnStatus = 0;
  4029. LM_UINT32 Value32;
  4030. LM_UINT32 Cnt;
  4031. LM_UINT32 j, k;
  4032. pDevice->MacMode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK);
  4033. /* Initialize the send_config register. */
  4034. REG_WR(pDevice, MacCtrl.TxAutoNeg, 0);
  4035. /* Enable TBI and full duplex mode. */
  4036. pDevice->MacMode |= MAC_MODE_PORT_MODE_TBI;
  4037. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
  4038. /* Initialize the BCM8002 SERDES PHY. */
  4039. switch(pDevice->PhyId & PHY_ID_MASK)
  4040. {
  4041. case PHY_BCM8002_PHY_ID:
  4042. LM_InitBcm800xPhy(pDevice);
  4043. break;
  4044. default:
  4045. break;
  4046. }
  4047. /* Enable link change interrupt. */
  4048. REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
  4049. /* Default to link down. */
  4050. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  4051. /* Get the link status. */
  4052. Value32 = REG_RD(pDevice, MacCtrl.Status);
  4053. if(Value32 & MAC_STATUS_PCS_SYNCED)
  4054. {
  4055. if((pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO) ||
  4056. (pDevice->DisableAutoNeg == FALSE))
  4057. {
  4058. /* auto-negotiation mode. */
  4059. /* Initialize the autoneg default capaiblities. */
  4060. AutonegInit(&pDevice->AnInfo);
  4061. /* Set the context pointer to point to the main device structure. */
  4062. pDevice->AnInfo.pContext = pDevice;
  4063. /* Setup flow control advertisement register. */
  4064. Value32 = GetPhyAdFlowCntrlSettings(pDevice);
  4065. if(Value32 & PHY_AN_AD_PAUSE_CAPABLE)
  4066. {
  4067. pDevice->AnInfo.mr_adv_sym_pause = 1;
  4068. }
  4069. else
  4070. {
  4071. pDevice->AnInfo.mr_adv_sym_pause = 0;
  4072. }
  4073. if(Value32 & PHY_AN_AD_ASYM_PAUSE)
  4074. {
  4075. pDevice->AnInfo.mr_adv_asym_pause = 1;
  4076. }
  4077. else
  4078. {
  4079. pDevice->AnInfo.mr_adv_asym_pause = 0;
  4080. }
  4081. /* Try to autoneg up to six times. */
  4082. if (pDevice->IgnoreTbiLinkChange)
  4083. {
  4084. Cnt = 1;
  4085. }
  4086. else
  4087. {
  4088. Cnt = 6;
  4089. }
  4090. for (j = 0; j < Cnt; j++)
  4091. {
  4092. REG_WR(pDevice, MacCtrl.TxAutoNeg, 0);
  4093. Value32 = pDevice->MacMode & ~MAC_MODE_PORT_MODE_MASK;
  4094. REG_WR(pDevice, MacCtrl.Mode, Value32);
  4095. MM_Wait(20);
  4096. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
  4097. MAC_MODE_SEND_CONFIGS);
  4098. MM_Wait(20);
  4099. pDevice->AnInfo.State = AN_STATE_UNKNOWN;
  4100. pDevice->AnInfo.CurrentTime_us = 0;
  4101. REG_WR(pDevice, Grc.Timer, 0);
  4102. for(k = 0; (pDevice->AnInfo.CurrentTime_us < 75000) &&
  4103. (k < 75000); k++)
  4104. {
  4105. AnStatus = Autoneg8023z(&pDevice->AnInfo);
  4106. if((AnStatus == AUTONEG_STATUS_DONE) ||
  4107. (AnStatus == AUTONEG_STATUS_FAILED))
  4108. {
  4109. break;
  4110. }
  4111. pDevice->AnInfo.CurrentTime_us = REG_RD(pDevice, Grc.Timer);
  4112. }
  4113. if((AnStatus == AUTONEG_STATUS_DONE) ||
  4114. (AnStatus == AUTONEG_STATUS_FAILED))
  4115. {
  4116. break;
  4117. }
  4118. if (j >= 1)
  4119. {
  4120. if (!(REG_RD(pDevice, MacCtrl.Status) &
  4121. MAC_STATUS_PCS_SYNCED)) {
  4122. break;
  4123. }
  4124. }
  4125. }
  4126. /* Stop sending configs. */
  4127. MM_AnTxIdle(&pDevice->AnInfo);
  4128. /* Resolve flow control settings. */
  4129. if((AnStatus == AUTONEG_STATUS_DONE) &&
  4130. pDevice->AnInfo.mr_an_complete && pDevice->AnInfo.mr_link_ok &&
  4131. pDevice->AnInfo.mr_lp_adv_full_duplex)
  4132. {
  4133. LM_UINT32 RemotePhyAd;
  4134. LM_UINT32 LocalPhyAd;
  4135. LocalPhyAd = 0;
  4136. if(pDevice->AnInfo.mr_adv_sym_pause)
  4137. {
  4138. LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE;
  4139. }
  4140. if(pDevice->AnInfo.mr_adv_asym_pause)
  4141. {
  4142. LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE;
  4143. }
  4144. RemotePhyAd = 0;
  4145. if(pDevice->AnInfo.mr_lp_adv_sym_pause)
  4146. {
  4147. RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE;
  4148. }
  4149. if(pDevice->AnInfo.mr_lp_adv_asym_pause)
  4150. {
  4151. RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE;
  4152. }
  4153. LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd);
  4154. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  4155. }
  4156. for (j = 0; j < 30; j++)
  4157. {
  4158. MM_Wait(20);
  4159. REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  4160. MAC_STATUS_CFG_CHANGED);
  4161. MM_Wait(20);
  4162. if ((REG_RD(pDevice, MacCtrl.Status) &
  4163. (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
  4164. break;
  4165. }
  4166. if (pDevice->PollTbiLink)
  4167. {
  4168. Value32 = REG_RD(pDevice, MacCtrl.Status);
  4169. if (Value32 & MAC_STATUS_RECEIVING_CFG)
  4170. {
  4171. pDevice->IgnoreTbiLinkChange = TRUE;
  4172. }
  4173. else
  4174. {
  4175. pDevice->IgnoreTbiLinkChange = FALSE;
  4176. }
  4177. }
  4178. Value32 = REG_RD(pDevice, MacCtrl.Status);
  4179. if (CurrentLinkStatus == LM_STATUS_LINK_DOWN &&
  4180. (Value32 & MAC_STATUS_PCS_SYNCED) &&
  4181. ((Value32 & MAC_STATUS_RECEIVING_CFG) == 0))
  4182. {
  4183. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  4184. }
  4185. }
  4186. else
  4187. {
  4188. /* We are forcing line speed. */
  4189. pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
  4190. LM_SetFlowControl(pDevice, 0, 0);
  4191. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  4192. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
  4193. MAC_MODE_SEND_CONFIGS);
  4194. }
  4195. }
  4196. /* Set the link polarity bit. */
  4197. pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
  4198. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
  4199. pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
  4200. (pDevice->pStatusBlkVirt->Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
  4201. for (j = 0; j < 100; j++)
  4202. {
  4203. REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  4204. MAC_STATUS_CFG_CHANGED);
  4205. MM_Wait(5);
  4206. if ((REG_RD(pDevice, MacCtrl.Status) &
  4207. (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
  4208. break;
  4209. }
  4210. Value32 = REG_RD(pDevice, MacCtrl.Status);
  4211. if((Value32 & MAC_STATUS_PCS_SYNCED) == 0)
  4212. {
  4213. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  4214. if (pDevice->DisableAutoNeg == FALSE)
  4215. {
  4216. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
  4217. MAC_MODE_SEND_CONFIGS);
  4218. MM_Wait(1);
  4219. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
  4220. }
  4221. }
  4222. /* Initialize the current link status. */
  4223. if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
  4224. {
  4225. pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS;
  4226. pDevice->DuplexMode = LM_DUPLEX_MODE_FULL;
  4227. REG_WR(pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
  4228. LED_CTRL_1000MBPS_LED_ON);
  4229. }
  4230. else
  4231. {
  4232. pDevice->LineSpeed = LM_LINE_SPEED_UNKNOWN;
  4233. pDevice->DuplexMode = LM_DUPLEX_MODE_UNKNOWN;
  4234. REG_WR(pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
  4235. LED_CTRL_OVERRIDE_TRAFFIC_LED);
  4236. }
  4237. /* Indicate link status. */
  4238. if (pDevice->LinkStatus != CurrentLinkStatus) {
  4239. pDevice->LinkStatus = CurrentLinkStatus;
  4240. MM_IndicateStatus(pDevice, CurrentLinkStatus);
  4241. }
  4242. return LM_STATUS_SUCCESS;
  4243. }
  4244. #endif /* INCLUDE_TBI_SUPPORT */
  4245. /******************************************************************************/
  4246. /* Description: */
  4247. /* */
  4248. /* Return: */
  4249. /******************************************************************************/
  4250. LM_STATUS
  4251. LM_SetupCopperPhy(
  4252. PLM_DEVICE_BLOCK pDevice)
  4253. {
  4254. LM_STATUS CurrentLinkStatus;
  4255. LM_UINT32 Value32;
  4256. /* Assume there is not link first. */
  4257. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  4258. /* Disable phy link change attention. */
  4259. REG_WR(pDevice, MacCtrl.MacEvent, 0);
  4260. /* Clear link change attention. */
  4261. REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  4262. MAC_STATUS_CFG_CHANGED);
  4263. /* Disable auto-polling for the moment. */
  4264. pDevice->MiMode = 0xc0000;
  4265. REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4266. MM_Wait(40);
  4267. /* Determine the requested line speed and duplex. */
  4268. pDevice->OldLineSpeed = pDevice->LineSpeed;
  4269. LM_TranslateRequestedMediaType(pDevice->RequestedMediaType,
  4270. &pDevice->MediaType, &pDevice->LineSpeed, &pDevice->DuplexMode);
  4271. /* Initialize the phy chip. */
  4272. switch(pDevice->PhyId & PHY_ID_MASK)
  4273. {
  4274. case PHY_BCM5400_PHY_ID:
  4275. case PHY_BCM5401_PHY_ID:
  4276. case PHY_BCM5411_PHY_ID:
  4277. case PHY_BCM5701_PHY_ID:
  4278. case PHY_BCM5703_PHY_ID:
  4279. case PHY_BCM5704_PHY_ID:
  4280. CurrentLinkStatus = LM_InitBcm540xPhy(pDevice);
  4281. break;
  4282. default:
  4283. break;
  4284. }
  4285. if(CurrentLinkStatus == LM_STATUS_LINK_SETTING_MISMATCH)
  4286. {
  4287. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  4288. }
  4289. /* Setup flow control. */
  4290. pDevice->FlowControl = LM_FLOW_CONTROL_NONE;
  4291. if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
  4292. {
  4293. LM_FLOW_CONTROL FlowCap; /* Flow control capability. */
  4294. FlowCap = LM_FLOW_CONTROL_NONE;
  4295. if(pDevice->DuplexMode == LM_DUPLEX_MODE_FULL)
  4296. {
  4297. if(pDevice->DisableAutoNeg == FALSE ||
  4298. pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO ||
  4299. pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_UTP_AUTO)
  4300. {
  4301. LM_UINT32 ExpectedPhyAd;
  4302. LM_UINT32 LocalPhyAd;
  4303. LM_UINT32 RemotePhyAd;
  4304. LM_ReadPhy(pDevice, PHY_AN_AD_REG, &LocalPhyAd);
  4305. pDevice->advertising = LocalPhyAd;
  4306. LocalPhyAd &= (PHY_AN_AD_ASYM_PAUSE | PHY_AN_AD_PAUSE_CAPABLE);
  4307. ExpectedPhyAd = GetPhyAdFlowCntrlSettings(pDevice);
  4308. if(LocalPhyAd != ExpectedPhyAd)
  4309. {
  4310. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  4311. }
  4312. else
  4313. {
  4314. LM_ReadPhy(pDevice, PHY_LINK_PARTNER_ABILITY_REG,
  4315. &RemotePhyAd);
  4316. LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd);
  4317. }
  4318. }
  4319. else
  4320. {
  4321. pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
  4322. LM_SetFlowControl(pDevice, 0, 0);
  4323. }
  4324. }
  4325. }
  4326. if(CurrentLinkStatus == LM_STATUS_LINK_DOWN)
  4327. {
  4328. LM_ForceAutoNeg(pDevice, pDevice->RequestedMediaType);
  4329. /* If we force line speed, we make get link right away. */
  4330. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  4331. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  4332. if(Value32 & PHY_STATUS_LINK_PASS)
  4333. {
  4334. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  4335. }
  4336. }
  4337. /* GMII interface. */
  4338. pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
  4339. if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
  4340. {
  4341. if(pDevice->LineSpeed == LM_LINE_SPEED_100MBPS ||
  4342. pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)
  4343. {
  4344. pDevice->MacMode |= MAC_MODE_PORT_MODE_MII;
  4345. }
  4346. else
  4347. {
  4348. pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
  4349. }
  4350. }
  4351. else {
  4352. pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
  4353. }
  4354. /* Set the MAC to operate in the appropriate duplex mode. */
  4355. pDevice->MacMode &= ~MAC_MODE_HALF_DUPLEX;
  4356. if(pDevice->DuplexMode == LM_DUPLEX_MODE_HALF)
  4357. {
  4358. pDevice->MacMode |= MAC_MODE_HALF_DUPLEX;
  4359. }
  4360. /* Set the link polarity bit. */
  4361. pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
  4362. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  4363. {
  4364. if((pDevice->LedMode == LED_MODE_LINK10) ||
  4365. (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE &&
  4366. pDevice->LineSpeed == LM_LINE_SPEED_10MBPS))
  4367. {
  4368. pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
  4369. }
  4370. }
  4371. else
  4372. {
  4373. if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
  4374. {
  4375. pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
  4376. }
  4377. /* Set LED mode. */
  4378. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4379. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  4380. {
  4381. Value32 = LED_CTRL_PHY_MODE_1;
  4382. }
  4383. else
  4384. {
  4385. if(pDevice->LedMode == LED_MODE_OUTPUT)
  4386. {
  4387. Value32 = LED_CTRL_PHY_MODE_2;
  4388. }
  4389. else
  4390. {
  4391. Value32 = LED_CTRL_PHY_MODE_1;
  4392. }
  4393. }
  4394. REG_WR(pDevice, MacCtrl.LedCtrl, Value32);
  4395. }
  4396. REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
  4397. /* Enable auto polling. */
  4398. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
  4399. {
  4400. pDevice->MiMode |= MI_MODE_AUTO_POLLING_ENABLE;
  4401. REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4402. }
  4403. /* Enable phy link change attention. */
  4404. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
  4405. {
  4406. REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_MI_INTERRUPT);
  4407. }
  4408. else
  4409. {
  4410. REG_WR(pDevice, MacCtrl.MacEvent,
  4411. MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
  4412. }
  4413. if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) &&
  4414. (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) &&
  4415. (pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
  4416. (((pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) &&
  4417. (pDevice->PciState & T3_PCI_STATE_BUS_SPEED_HIGH)) ||
  4418. !(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)))
  4419. {
  4420. MM_Wait(120);
  4421. REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  4422. MAC_STATUS_CFG_CHANGED);
  4423. MEM_WR_OFFSET(pDevice, T3_FIRMWARE_MAILBOX,
  4424. T3_MAGIC_NUM_DISABLE_DMAW_ON_LINK_CHANGE);
  4425. }
  4426. /* Indicate link status. */
  4427. if (pDevice->LinkStatus != CurrentLinkStatus) {
  4428. pDevice->LinkStatus = CurrentLinkStatus;
  4429. MM_IndicateStatus(pDevice, CurrentLinkStatus);
  4430. }
  4431. return LM_STATUS_SUCCESS;
  4432. } /* LM_SetupCopperPhy */
  4433. /******************************************************************************/
  4434. /* Description: */
  4435. /* */
  4436. /* Return: */
  4437. /******************************************************************************/
  4438. LM_STATUS
  4439. LM_SetupPhy(
  4440. PLM_DEVICE_BLOCK pDevice)
  4441. {
  4442. LM_STATUS LmStatus;
  4443. LM_UINT32 Value32;
  4444. #if INCLUDE_TBI_SUPPORT
  4445. if(pDevice->EnableTbi)
  4446. {
  4447. LmStatus = LM_SetupFiberPhy(pDevice);
  4448. }
  4449. else
  4450. #endif /* INCLUDE_TBI_SUPPORT */
  4451. {
  4452. LmStatus = LM_SetupCopperPhy(pDevice);
  4453. }
  4454. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
  4455. {
  4456. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
  4457. {
  4458. Value32 = REG_RD(pDevice, PciCfg.PciState);
  4459. REG_WR(pDevice, PciCfg.PciState,
  4460. Value32 | T3_PCI_STATE_RETRY_SAME_DMA);
  4461. }
  4462. }
  4463. if ((pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
  4464. (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF))
  4465. {
  4466. REG_WR(pDevice, MacCtrl.TxLengths, 0x26ff);
  4467. }
  4468. else
  4469. {
  4470. REG_WR(pDevice, MacCtrl.TxLengths, 0x2620);
  4471. }
  4472. return LmStatus;
  4473. }
  4474. /******************************************************************************/
  4475. /* Description: */
  4476. /* */
  4477. /* Return: */
  4478. /******************************************************************************/
  4479. LM_VOID
  4480. LM_ReadPhy(
  4481. PLM_DEVICE_BLOCK pDevice,
  4482. LM_UINT32 PhyReg,
  4483. PLM_UINT32 pData32) {
  4484. LM_UINT32 Value32;
  4485. LM_UINT32 j;
  4486. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
  4487. {
  4488. REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode &
  4489. ~MI_MODE_AUTO_POLLING_ENABLE);
  4490. MM_Wait(40);
  4491. }
  4492. Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
  4493. ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << MI_COM_FIRST_PHY_REG_ADDR_BIT) |
  4494. MI_COM_CMD_READ | MI_COM_START;
  4495. REG_WR(pDevice, MacCtrl.MiCom, Value32);
  4496. for(j = 0; j < 20; j++)
  4497. {
  4498. MM_Wait(25);
  4499. Value32 = REG_RD(pDevice, MacCtrl.MiCom);
  4500. if(!(Value32 & MI_COM_BUSY))
  4501. {
  4502. MM_Wait(5);
  4503. Value32 = REG_RD(pDevice, MacCtrl.MiCom);
  4504. Value32 &= MI_COM_PHY_DATA_MASK;
  4505. break;
  4506. }
  4507. }
  4508. if(Value32 & MI_COM_BUSY)
  4509. {
  4510. Value32 = 0;
  4511. }
  4512. *pData32 = Value32;
  4513. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
  4514. {
  4515. REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4516. MM_Wait(40);
  4517. }
  4518. } /* LM_ReadPhy */
  4519. /******************************************************************************/
  4520. /* Description: */
  4521. /* */
  4522. /* Return: */
  4523. /******************************************************************************/
  4524. LM_VOID
  4525. LM_WritePhy(
  4526. PLM_DEVICE_BLOCK pDevice,
  4527. LM_UINT32 PhyReg,
  4528. LM_UINT32 Data32) {
  4529. LM_UINT32 Value32;
  4530. LM_UINT32 j;
  4531. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
  4532. {
  4533. REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode &
  4534. ~MI_MODE_AUTO_POLLING_ENABLE);
  4535. MM_Wait(40);
  4536. }
  4537. Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
  4538. ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << MI_COM_FIRST_PHY_REG_ADDR_BIT) |
  4539. (Data32 & MI_COM_PHY_DATA_MASK) | MI_COM_CMD_WRITE | MI_COM_START;
  4540. REG_WR(pDevice, MacCtrl.MiCom, Value32);
  4541. for(j = 0; j < 20; j++)
  4542. {
  4543. MM_Wait(25);
  4544. Value32 = REG_RD(pDevice, MacCtrl.MiCom);
  4545. if(!(Value32 & MI_COM_BUSY))
  4546. {
  4547. MM_Wait(5);
  4548. break;
  4549. }
  4550. }
  4551. if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
  4552. {
  4553. REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4554. MM_Wait(40);
  4555. }
  4556. } /* LM_WritePhy */
  4557. /******************************************************************************/
  4558. /* Description: */
  4559. /* */
  4560. /* Return: */
  4561. /******************************************************************************/
  4562. LM_STATUS
  4563. LM_SetPowerState(
  4564. PLM_DEVICE_BLOCK pDevice,
  4565. LM_POWER_STATE PowerLevel) {
  4566. LM_UINT32 PmeSupport;
  4567. LM_UINT32 Value32;
  4568. LM_UINT32 PmCtrl;
  4569. /* make sureindirect accesses are enabled*/
  4570. MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl);
  4571. /* Clear the PME_ASSERT bit and the power state bits. Also enable */
  4572. /* the PME bit. */
  4573. MM_ReadConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, &PmCtrl);
  4574. PmCtrl |= T3_PM_PME_ASSERTED;
  4575. PmCtrl &= ~T3_PM_POWER_STATE_MASK;
  4576. /* Set the appropriate power state. */
  4577. if(PowerLevel == LM_POWER_STATE_D0)
  4578. {
  4579. /* Bring the card out of low power mode. */
  4580. PmCtrl |= T3_PM_POWER_STATE_D0;
  4581. MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
  4582. REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
  4583. MM_Wait (40);
  4584. #if 0 /* Bugfix by jmb...can't call WritePhy here because pDevice not fully initialized */
  4585. LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x02);
  4586. #endif
  4587. return LM_STATUS_SUCCESS;
  4588. }
  4589. else if(PowerLevel == LM_POWER_STATE_D1)
  4590. {
  4591. PmCtrl |= T3_PM_POWER_STATE_D1;
  4592. }
  4593. else if(PowerLevel == LM_POWER_STATE_D2)
  4594. {
  4595. PmCtrl |= T3_PM_POWER_STATE_D2;
  4596. }
  4597. else if(PowerLevel == LM_POWER_STATE_D3)
  4598. {
  4599. PmCtrl |= T3_PM_POWER_STATE_D3;
  4600. }
  4601. else
  4602. {
  4603. return LM_STATUS_FAILURE;
  4604. }
  4605. PmCtrl |= T3_PM_PME_ENABLE;
  4606. /* Mask out all interrupts so LM_SetupPhy won't be called while we are */
  4607. /* setting new line speed. */
  4608. Value32 = REG_RD(pDevice, PciCfg.MiscHostCtrl);
  4609. REG_WR(pDevice, PciCfg.MiscHostCtrl, Value32 | MISC_HOST_CTRL_MASK_PCI_INT);
  4610. if(!pDevice->RestoreOnWakeUp)
  4611. {
  4612. pDevice->RestoreOnWakeUp = TRUE;
  4613. pDevice->WakeUpDisableAutoNeg = pDevice->DisableAutoNeg;
  4614. pDevice->WakeUpRequestedMediaType = pDevice->RequestedMediaType;
  4615. }
  4616. /* Force auto-negotiation to 10 line speed. */
  4617. pDevice->DisableAutoNeg = FALSE;
  4618. pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS;
  4619. LM_SetupPhy(pDevice);
  4620. /* Put the driver in the initial state, and go through the power down */
  4621. /* sequence. */
  4622. LM_Halt(pDevice);
  4623. MM_ReadConfig32(pDevice, T3_PCI_PM_CAP_REG, &PmeSupport);
  4624. if (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE)
  4625. {
  4626. /* Enable WOL. */
  4627. LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x5a);
  4628. MM_Wait(40);
  4629. /* Set LED mode. */
  4630. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4631. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  4632. {
  4633. Value32 = LED_CTRL_PHY_MODE_1;
  4634. }
  4635. else
  4636. {
  4637. if(pDevice->LedMode == LED_MODE_OUTPUT)
  4638. {
  4639. Value32 = LED_CTRL_PHY_MODE_2;
  4640. }
  4641. else
  4642. {
  4643. Value32 = LED_CTRL_PHY_MODE_1;
  4644. }
  4645. }
  4646. Value32 = MAC_MODE_PORT_MODE_MII;
  4647. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
  4648. {
  4649. if(pDevice->LedMode == LED_MODE_LINK10 ||
  4650. pDevice->WolSpeed == WOL_SPEED_10MB)
  4651. {
  4652. Value32 |= MAC_MODE_LINK_POLARITY;
  4653. }
  4654. }
  4655. else
  4656. {
  4657. Value32 |= MAC_MODE_LINK_POLARITY;
  4658. }
  4659. REG_WR(pDevice, MacCtrl.Mode, Value32);
  4660. MM_Wait(40); MM_Wait(40); MM_Wait(40);
  4661. /* Always enable magic packet wake-up if we have vaux. */
  4662. if((PmeSupport & T3_PCI_PM_CAP_PME_D3COLD) &&
  4663. (pDevice->WakeUpModeCap & LM_WAKE_UP_MODE_MAGIC_PACKET))
  4664. {
  4665. Value32 |= MAC_MODE_DETECT_MAGIC_PACKET_ENABLE;
  4666. }
  4667. REG_WR(pDevice, MacCtrl.Mode, Value32);
  4668. /* Enable the receiver. */
  4669. REG_WR(pDevice, MacCtrl.RxMode, RX_MODE_ENABLE);
  4670. }
  4671. /* Disable tx/rx clocks, and seletect an alternate clock. */
  4672. if(pDevice->WolSpeed == WOL_SPEED_100MB)
  4673. {
  4674. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4675. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  4676. {
  4677. Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4678. T3_PCI_SELECT_ALTERNATE_CLOCK;
  4679. }
  4680. else
  4681. {
  4682. Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK;
  4683. }
  4684. REG_WR(pDevice, PciCfg.ClockCtrl, Value32);
  4685. MM_Wait(40);
  4686. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4687. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  4688. {
  4689. Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4690. T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_44MHZ_CORE_CLOCK;
  4691. }
  4692. else
  4693. {
  4694. Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
  4695. T3_PCI_44MHZ_CORE_CLOCK;
  4696. }
  4697. REG_WR(pDevice, PciCfg.ClockCtrl, Value32);
  4698. MM_Wait(40);
  4699. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4700. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  4701. {
  4702. Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4703. T3_PCI_44MHZ_CORE_CLOCK;
  4704. }
  4705. else
  4706. {
  4707. Value32 = T3_PCI_44MHZ_CORE_CLOCK;
  4708. }
  4709. REG_WR(pDevice, PciCfg.ClockCtrl, Value32);
  4710. }
  4711. else
  4712. {
  4713. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4714. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  4715. {
  4716. Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4717. T3_PCI_SELECT_ALTERNATE_CLOCK |
  4718. T3_PCI_POWER_DOWN_PCI_PLL133;
  4719. }
  4720. else
  4721. {
  4722. Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
  4723. T3_PCI_POWER_DOWN_PCI_PLL133;
  4724. }
  4725. REG_WR(pDevice, PciCfg.ClockCtrl, Value32);
  4726. }
  4727. MM_Wait(40);
  4728. if(!pDevice->EepromWp && (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE))
  4729. {
  4730. /* Switch adapter to auxilliary power. */
  4731. if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4732. T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
  4733. {
  4734. /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
  4735. REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4736. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4737. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4738. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4739. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
  4740. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
  4741. MM_Wait(40);
  4742. }
  4743. else
  4744. {
  4745. /* GPIO0 = 0, GPIO1 = 1, GPIO2 = 1. */
  4746. REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4747. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4748. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4749. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4750. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
  4751. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
  4752. MM_Wait(40);
  4753. /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 1. */
  4754. REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4755. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4756. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4757. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4758. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
  4759. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
  4760. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
  4761. MM_Wait(40);
  4762. /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
  4763. REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4764. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4765. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4766. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4767. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
  4768. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
  4769. MM_Wait(40);
  4770. }
  4771. }
  4772. /* Set the phy to low power mode. */
  4773. /* Put the the hardware in low power mode. */
  4774. MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
  4775. return LM_STATUS_SUCCESS;
  4776. } /* LM_SetPowerState */
  4777. /******************************************************************************/
  4778. /* Description: */
  4779. /* */
  4780. /* Return: */
  4781. /******************************************************************************/
  4782. static LM_UINT32
  4783. GetPhyAdFlowCntrlSettings(
  4784. PLM_DEVICE_BLOCK pDevice)
  4785. {
  4786. LM_UINT32 Value32;
  4787. Value32 = 0;
  4788. /* Auto negotiation flow control only when autonegotiation is enabled. */
  4789. if(pDevice->DisableAutoNeg == FALSE ||
  4790. pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO ||
  4791. pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_UTP_AUTO)
  4792. {
  4793. /* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */
  4794. if((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) ||
  4795. ((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) &&
  4796. (pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)))
  4797. {
  4798. Value32 |= PHY_AN_AD_PAUSE_CAPABLE;
  4799. }
  4800. else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)
  4801. {
  4802. Value32 |= PHY_AN_AD_ASYM_PAUSE;
  4803. }
  4804. else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)
  4805. {
  4806. Value32 |= PHY_AN_AD_PAUSE_CAPABLE | PHY_AN_AD_ASYM_PAUSE;
  4807. }
  4808. }
  4809. return Value32;
  4810. }
  4811. /******************************************************************************/
  4812. /* Description: */
  4813. /* */
  4814. /* Return: */
  4815. /* LM_STATUS_FAILURE */
  4816. /* LM_STATUS_SUCCESS */
  4817. /* */
  4818. /******************************************************************************/
  4819. static LM_STATUS
  4820. LM_ForceAutoNegBcm540xPhy(
  4821. PLM_DEVICE_BLOCK pDevice,
  4822. LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
  4823. {
  4824. LM_MEDIA_TYPE MediaType;
  4825. LM_LINE_SPEED LineSpeed;
  4826. LM_DUPLEX_MODE DuplexMode;
  4827. LM_UINT32 NewPhyCtrl;
  4828. LM_UINT32 Value32;
  4829. LM_UINT32 Cnt;
  4830. /* Get the interface type, line speed, and duplex mode. */
  4831. LM_TranslateRequestedMediaType(RequestedMediaType, &MediaType, &LineSpeed,
  4832. &DuplexMode);
  4833. if (pDevice->RestoreOnWakeUp)
  4834. {
  4835. LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
  4836. pDevice->advertising1000 = 0;
  4837. Value32 = PHY_AN_AD_10BASET_FULL | PHY_AN_AD_10BASET_HALF;
  4838. if (pDevice->WolSpeed == WOL_SPEED_100MB)
  4839. {
  4840. Value32 |= PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
  4841. }
  4842. Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4843. Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
  4844. LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
  4845. pDevice->advertising = Value32;
  4846. }
  4847. /* Setup the auto-negotiation advertisement register. */
  4848. else if(LineSpeed == LM_LINE_SPEED_UNKNOWN)
  4849. {
  4850. /* Setup the 10/100 Mbps auto-negotiation advertisement register. */
  4851. Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
  4852. PHY_AN_AD_10BASET_HALF | PHY_AN_AD_10BASET_FULL |
  4853. PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
  4854. Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
  4855. LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
  4856. pDevice->advertising = Value32;
  4857. /* Advertise 1000Mbps */
  4858. Value32 = BCM540X_AN_AD_1000BASET_HALF | BCM540X_AN_AD_1000BASET_FULL;
  4859. #if INCLUDE_5701_AX_FIX
  4860. /* Bug: workaround for CRC error in gigabit mode when we are in */
  4861. /* slave mode. This will force the PHY to operate in */
  4862. /* master mode. */
  4863. if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  4864. pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
  4865. {
  4866. Value32 |= BCM540X_CONFIG_AS_MASTER |
  4867. BCM540X_ENABLE_CONFIG_AS_MASTER;
  4868. }
  4869. #endif
  4870. LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
  4871. pDevice->advertising1000 = Value32;
  4872. }
  4873. else
  4874. {
  4875. if(LineSpeed == LM_LINE_SPEED_1000MBPS)
  4876. {
  4877. Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4878. Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
  4879. LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
  4880. pDevice->advertising = Value32;
  4881. if(DuplexMode != LM_DUPLEX_MODE_FULL)
  4882. {
  4883. Value32 = BCM540X_AN_AD_1000BASET_HALF;
  4884. }
  4885. else
  4886. {
  4887. Value32 = BCM540X_AN_AD_1000BASET_FULL;
  4888. }
  4889. LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
  4890. pDevice->advertising1000 = Value32;
  4891. }
  4892. else if(LineSpeed == LM_LINE_SPEED_100MBPS)
  4893. {
  4894. LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
  4895. pDevice->advertising1000 = 0;
  4896. if(DuplexMode != LM_DUPLEX_MODE_FULL)
  4897. {
  4898. Value32 = PHY_AN_AD_100BASETX_HALF;
  4899. }
  4900. else
  4901. {
  4902. Value32 = PHY_AN_AD_100BASETX_FULL;
  4903. }
  4904. Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4905. Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
  4906. LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
  4907. pDevice->advertising = Value32;
  4908. }
  4909. else if(LineSpeed == LM_LINE_SPEED_10MBPS)
  4910. {
  4911. LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
  4912. pDevice->advertising1000 = 0;
  4913. if(DuplexMode != LM_DUPLEX_MODE_FULL)
  4914. {
  4915. Value32 = PHY_AN_AD_10BASET_HALF;
  4916. }
  4917. else
  4918. {
  4919. Value32 = PHY_AN_AD_10BASET_FULL;
  4920. }
  4921. Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4922. Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
  4923. LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
  4924. pDevice->advertising = Value32;
  4925. }
  4926. }
  4927. /* Force line speed if auto-negotiation is disabled. */
  4928. if(pDevice->DisableAutoNeg && LineSpeed != LM_LINE_SPEED_UNKNOWN)
  4929. {
  4930. /* This code path is executed only when there is link. */
  4931. pDevice->MediaType = MediaType;
  4932. pDevice->LineSpeed = LineSpeed;
  4933. pDevice->DuplexMode = DuplexMode;
  4934. /* Force line seepd. */
  4935. NewPhyCtrl = 0;
  4936. switch(LineSpeed)
  4937. {
  4938. case LM_LINE_SPEED_10MBPS:
  4939. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_10MBPS;
  4940. break;
  4941. case LM_LINE_SPEED_100MBPS:
  4942. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_100MBPS;
  4943. break;
  4944. case LM_LINE_SPEED_1000MBPS:
  4945. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
  4946. break;
  4947. default:
  4948. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
  4949. break;
  4950. }
  4951. if(DuplexMode == LM_DUPLEX_MODE_FULL)
  4952. {
  4953. NewPhyCtrl |= PHY_CTRL_FULL_DUPLEX_MODE;
  4954. }
  4955. /* Don't do anything if the PHY_CTRL is already what we wanted. */
  4956. LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
  4957. if(Value32 != NewPhyCtrl)
  4958. {
  4959. /* Temporary bring the link down before forcing line speed. */
  4960. LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_LOOPBACK_MODE);
  4961. /* Wait for link to go down. */
  4962. for(Cnt = 0; Cnt < 15000; Cnt++)
  4963. {
  4964. MM_Wait(10);
  4965. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  4966. LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
  4967. if(!(Value32 & PHY_STATUS_LINK_PASS))
  4968. {
  4969. MM_Wait(40);
  4970. break;
  4971. }
  4972. }
  4973. LM_WritePhy(pDevice, PHY_CTRL_REG, NewPhyCtrl);
  4974. MM_Wait(40);
  4975. }
  4976. }
  4977. else
  4978. {
  4979. LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
  4980. PHY_CTRL_RESTART_AUTO_NEG);
  4981. }
  4982. return LM_STATUS_SUCCESS;
  4983. } /* LM_ForceAutoNegBcm540xPhy */
  4984. /******************************************************************************/
  4985. /* Description: */
  4986. /* */
  4987. /* Return: */
  4988. /******************************************************************************/
  4989. static LM_STATUS
  4990. LM_ForceAutoNeg(
  4991. PLM_DEVICE_BLOCK pDevice,
  4992. LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
  4993. {
  4994. LM_STATUS LmStatus;
  4995. /* Initialize the phy chip. */
  4996. switch(pDevice->PhyId & PHY_ID_MASK)
  4997. {
  4998. case PHY_BCM5400_PHY_ID:
  4999. case PHY_BCM5401_PHY_ID:
  5000. case PHY_BCM5411_PHY_ID:
  5001. case PHY_BCM5701_PHY_ID:
  5002. case PHY_BCM5703_PHY_ID:
  5003. case PHY_BCM5704_PHY_ID:
  5004. LmStatus = LM_ForceAutoNegBcm540xPhy(pDevice, RequestedMediaType);
  5005. break;
  5006. default:
  5007. LmStatus = LM_STATUS_FAILURE;
  5008. break;
  5009. }
  5010. return LmStatus;
  5011. } /* LM_ForceAutoNeg */
  5012. /******************************************************************************/
  5013. /* Description: */
  5014. /* */
  5015. /* Return: */
  5016. /******************************************************************************/
  5017. LM_STATUS LM_LoadFirmware(PLM_DEVICE_BLOCK pDevice,
  5018. PT3_FWIMG_INFO pFwImg,
  5019. LM_UINT32 LoadCpu,
  5020. LM_UINT32 StartCpu)
  5021. {
  5022. LM_UINT32 i;
  5023. LM_UINT32 address;
  5024. if (LoadCpu & T3_RX_CPU_ID)
  5025. {
  5026. if (LM_HaltCpu(pDevice,T3_RX_CPU_ID) != LM_STATUS_SUCCESS)
  5027. {
  5028. return LM_STATUS_FAILURE;
  5029. }
  5030. /* First of all clear scrach pad memory */
  5031. for (i = 0; i < T3_RX_CPU_SPAD_SIZE; i+=4)
  5032. {
  5033. LM_RegWrInd(pDevice,T3_RX_CPU_SPAD_ADDR+i,0);
  5034. }
  5035. /* Copy code first */
  5036. address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
  5037. for (i = 0; i <= pFwImg->Text.Length; i+=4)
  5038. {
  5039. LM_RegWrInd(pDevice,address+i,
  5040. ((LM_UINT32 *)pFwImg->Text.Buffer)[i/4]);
  5041. }
  5042. address = T3_RX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
  5043. for (i = 0; i <= pFwImg->ROnlyData.Length; i+=4)
  5044. {
  5045. LM_RegWrInd(pDevice,address+i,
  5046. ((LM_UINT32 *)pFwImg->ROnlyData.Buffer)[i/4]);
  5047. }
  5048. address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
  5049. for (i= 0; i <= pFwImg->Data.Length; i+=4)
  5050. {
  5051. LM_RegWrInd(pDevice,address+i,
  5052. ((LM_UINT32 *)pFwImg->Data.Buffer)[i/4]);
  5053. }
  5054. }
  5055. if (LoadCpu & T3_TX_CPU_ID)
  5056. {
  5057. if (LM_HaltCpu(pDevice,T3_TX_CPU_ID) != LM_STATUS_SUCCESS)
  5058. {
  5059. return LM_STATUS_FAILURE;
  5060. }
  5061. /* First of all clear scrach pad memory */
  5062. for (i = 0; i < T3_TX_CPU_SPAD_SIZE; i+=4)
  5063. {
  5064. LM_RegWrInd(pDevice,T3_TX_CPU_SPAD_ADDR+i,0);
  5065. }
  5066. /* Copy code first */
  5067. address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
  5068. for (i= 0; i <= pFwImg->Text.Length; i+=4)
  5069. {
  5070. LM_RegWrInd(pDevice,address+i,
  5071. ((LM_UINT32 *)pFwImg->Text.Buffer)[i/4]);
  5072. }
  5073. address = T3_TX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
  5074. for (i= 0; i <= pFwImg->ROnlyData.Length; i+=4)
  5075. {
  5076. LM_RegWrInd(pDevice,address+i,
  5077. ((LM_UINT32 *)pFwImg->ROnlyData.Buffer)[i/4]);
  5078. }
  5079. address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
  5080. for (i= 0; i <= pFwImg->Data.Length; i+=4)
  5081. {
  5082. LM_RegWrInd(pDevice,address+i,
  5083. ((LM_UINT32 *)pFwImg->Data.Buffer)[i/4]);
  5084. }
  5085. }
  5086. if (StartCpu & T3_RX_CPU_ID)
  5087. {
  5088. /* Start Rx CPU */
  5089. REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
  5090. REG_WR(pDevice,rxCpu.reg.PC,pFwImg->StartAddress);
  5091. for (i = 0 ; i < 5; i++)
  5092. {
  5093. if (pFwImg->StartAddress == REG_RD(pDevice,rxCpu.reg.PC))
  5094. break;
  5095. REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
  5096. REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT);
  5097. REG_WR(pDevice,rxCpu.reg.PC,pFwImg->StartAddress);
  5098. MM_Wait(1000);
  5099. }
  5100. REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
  5101. REG_WR(pDevice,rxCpu.reg.mode, 0);
  5102. }
  5103. if (StartCpu & T3_TX_CPU_ID)
  5104. {
  5105. /* Start Tx CPU */
  5106. REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
  5107. REG_WR(pDevice,txCpu.reg.PC,pFwImg->StartAddress);
  5108. for (i = 0 ; i < 5; i++)
  5109. {
  5110. if (pFwImg->StartAddress == REG_RD(pDevice,txCpu.reg.PC))
  5111. break;
  5112. REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
  5113. REG_WR(pDevice,txCpu.reg.mode,CPU_MODE_HALT);
  5114. REG_WR(pDevice,txCpu.reg.PC,pFwImg->StartAddress);
  5115. MM_Wait(1000);
  5116. }
  5117. REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
  5118. REG_WR(pDevice,txCpu.reg.mode, 0);
  5119. }
  5120. return LM_STATUS_SUCCESS;
  5121. }
  5122. STATIC LM_STATUS LM_HaltCpu(PLM_DEVICE_BLOCK pDevice,LM_UINT32 cpu_number)
  5123. {
  5124. LM_UINT32 i;
  5125. if (cpu_number == T3_RX_CPU_ID)
  5126. {
  5127. for (i = 0 ; i < 10000; i++)
  5128. {
  5129. REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
  5130. REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT);
  5131. if (REG_RD(pDevice,rxCpu.reg.mode) & CPU_MODE_HALT)
  5132. break;
  5133. }
  5134. REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
  5135. REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT);
  5136. MM_Wait(10);
  5137. }
  5138. else
  5139. {
  5140. for (i = 0 ; i < 10000; i++)
  5141. {
  5142. REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
  5143. REG_WR(pDevice,txCpu.reg.mode,CPU_MODE_HALT);
  5144. if (REG_RD(pDevice,txCpu.reg.mode) & CPU_MODE_HALT)
  5145. break;
  5146. }
  5147. }
  5148. return (( i == 10000) ? LM_STATUS_FAILURE : LM_STATUS_SUCCESS);
  5149. }
  5150. int
  5151. LM_BlinkLED(PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlinkDurationSec)
  5152. {
  5153. LM_UINT32 Oldcfg;
  5154. int j;
  5155. int ret = 0;
  5156. if(BlinkDurationSec == 0)
  5157. {
  5158. return 0;
  5159. }
  5160. if(BlinkDurationSec > 120)
  5161. {
  5162. BlinkDurationSec = 120;
  5163. }
  5164. Oldcfg = REG_RD(pDevice, MacCtrl.LedCtrl);
  5165. for(j = 0; j < BlinkDurationSec * 2; j++)
  5166. {
  5167. if(j % 2)
  5168. {
  5169. /* Turn on the LEDs. */
  5170. REG_WR(pDevice, MacCtrl.LedCtrl,
  5171. LED_CTRL_OVERRIDE_LINK_LED |
  5172. LED_CTRL_1000MBPS_LED_ON |
  5173. LED_CTRL_100MBPS_LED_ON |
  5174. LED_CTRL_10MBPS_LED_ON |
  5175. LED_CTRL_OVERRIDE_TRAFFIC_LED |
  5176. LED_CTRL_BLINK_TRAFFIC_LED |
  5177. LED_CTRL_TRAFFIC_LED);
  5178. }
  5179. else
  5180. {
  5181. /* Turn off the LEDs. */
  5182. REG_WR(pDevice, MacCtrl.LedCtrl,
  5183. LED_CTRL_OVERRIDE_LINK_LED |
  5184. LED_CTRL_OVERRIDE_TRAFFIC_LED);
  5185. }
  5186. #ifndef EMBEDDED
  5187. current->state = TASK_INTERRUPTIBLE;
  5188. if (schedule_timeout(HZ/2) != 0) {
  5189. ret = -EINTR;
  5190. break;
  5191. }
  5192. #else
  5193. udelay(100000); /* 1s sleep */
  5194. #endif
  5195. }
  5196. REG_WR(pDevice, MacCtrl.LedCtrl, Oldcfg);
  5197. return ret;
  5198. }
  5199. int t3_do_dma(PLM_DEVICE_BLOCK pDevice,
  5200. LM_PHYSICAL_ADDRESS host_addr_phy, int length,
  5201. int dma_read)
  5202. {
  5203. T3_DMA_DESC dma_desc;
  5204. int i;
  5205. LM_UINT32 dma_desc_addr;
  5206. LM_UINT32 value32;
  5207. REG_WR(pDevice, BufMgr.Mode, 0);
  5208. REG_WR(pDevice, Ftq.Reset, 0);
  5209. dma_desc.host_addr.High = host_addr_phy.High;
  5210. dma_desc.host_addr.Low = host_addr_phy.Low;
  5211. dma_desc.nic_mbuf = 0x2100;
  5212. dma_desc.len = length;
  5213. dma_desc.flags = 0x00000004; /* Generate Rx-CPU event */
  5214. if (dma_read)
  5215. {
  5216. dma_desc.cqid_sqid = (T3_QID_RX_BD_COMP << 8) |
  5217. T3_QID_DMA_HIGH_PRI_READ;
  5218. REG_WR(pDevice, DmaRead.Mode, DMA_READ_MODE_ENABLE);
  5219. }
  5220. else
  5221. {
  5222. dma_desc.cqid_sqid = (T3_QID_RX_DATA_COMP << 8) |
  5223. T3_QID_DMA_HIGH_PRI_WRITE;
  5224. REG_WR(pDevice, DmaWrite.Mode, DMA_WRITE_MODE_ENABLE);
  5225. }
  5226. dma_desc_addr = T3_NIC_DMA_DESC_POOL_ADDR;
  5227. /* Writing this DMA descriptor to DMA memory */
  5228. for (i = 0; i < sizeof(T3_DMA_DESC); i += 4)
  5229. {
  5230. value32 = *((PLM_UINT32) (((PLM_UINT8) &dma_desc) + i));
  5231. MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, dma_desc_addr+i);
  5232. MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, cpu_to_le32(value32));
  5233. }
  5234. MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, 0);
  5235. if (dma_read)
  5236. REG_WR(pDevice, Ftq.DmaHighReadFtqFifoEnqueueDequeue, dma_desc_addr);
  5237. else
  5238. REG_WR(pDevice, Ftq.DmaHighWriteFtqFifoEnqueueDequeue, dma_desc_addr);
  5239. for (i = 0; i < 40; i++)
  5240. {
  5241. if (dma_read)
  5242. value32 = REG_RD(pDevice, Ftq.RcvBdCompFtqFifoEnqueueDequeue);
  5243. else
  5244. value32 = REG_RD(pDevice, Ftq.RcvDataCompFtqFifoEnqueueDequeue);
  5245. if ((value32 & 0xffff) == dma_desc_addr)
  5246. break;
  5247. MM_Wait(10);
  5248. }
  5249. return LM_STATUS_SUCCESS;
  5250. }
  5251. STATIC LM_STATUS
  5252. LM_DmaTest(PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
  5253. LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize)
  5254. {
  5255. int j;
  5256. LM_UINT32 *ptr;
  5257. int dma_success = 0;
  5258. if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  5259. T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)
  5260. {
  5261. return LM_STATUS_SUCCESS;
  5262. }
  5263. while (!dma_success)
  5264. {
  5265. /* Fill data with incremental patterns */
  5266. ptr = (LM_UINT32 *)pBufferVirt;
  5267. for (j = 0; j < BufferSize/4; j++)
  5268. *ptr++ = j;
  5269. if (t3_do_dma(pDevice,BufferPhy,BufferSize, 1) == LM_STATUS_FAILURE)
  5270. {
  5271. return LM_STATUS_FAILURE;
  5272. }
  5273. MM_Wait(40);
  5274. ptr = (LM_UINT32 *)pBufferVirt;
  5275. /* Fill data with zero */
  5276. for (j = 0; j < BufferSize/4; j++)
  5277. *ptr++ = 0;
  5278. if (t3_do_dma(pDevice,BufferPhy,BufferSize, 0) == LM_STATUS_FAILURE)
  5279. {
  5280. return LM_STATUS_FAILURE;
  5281. }
  5282. MM_Wait(40);
  5283. /* Check for data */
  5284. ptr = (LM_UINT32 *)pBufferVirt;
  5285. for (j = 0; j < BufferSize/4; j++)
  5286. {
  5287. if (*ptr++ != j)
  5288. {
  5289. if ((pDevice->DmaReadWriteCtrl & DMA_CTRL_WRITE_BOUNDARY_MASK)
  5290. == DMA_CTRL_WRITE_BOUNDARY_DISABLE)
  5291. {
  5292. pDevice->DmaReadWriteCtrl = (pDevice->DmaReadWriteCtrl &
  5293. ~DMA_CTRL_WRITE_BOUNDARY_MASK) |
  5294. DMA_CTRL_WRITE_BOUNDARY_16;
  5295. REG_WR(pDevice, PciCfg.DmaReadWriteCtrl,
  5296. pDevice->DmaReadWriteCtrl);
  5297. break;
  5298. }
  5299. else
  5300. {
  5301. return LM_STATUS_FAILURE;
  5302. }
  5303. }
  5304. }
  5305. if (j == (BufferSize/4))
  5306. dma_success = 1;
  5307. }
  5308. return LM_STATUS_SUCCESS;
  5309. }
  5310. #endif