uec.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271
  1. /*
  2. * Copyright (C) 2006 Freescale Semiconductor, Inc.
  3. *
  4. * Dave Liu <daveliu@freescale.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 of
  9. * the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  19. * MA 02111-1307 USA
  20. */
  21. #include "common.h"
  22. #include "net.h"
  23. #include "malloc.h"
  24. #include "asm/errno.h"
  25. #include "asm/io.h"
  26. #include "asm/immap_qe.h"
  27. #include "qe.h"
  28. #include "uccf.h"
  29. #include "uec.h"
  30. #include "uec_phy.h"
  31. #if defined(CONFIG_QE)
  32. #ifdef CONFIG_UEC_ETH1
  33. static uec_info_t eth1_uec_info = {
  34. .uf_info = {
  35. .ucc_num = CFG_UEC1_UCC_NUM,
  36. .rx_clock = CFG_UEC1_RX_CLK,
  37. .tx_clock = CFG_UEC1_TX_CLK,
  38. .eth_type = CFG_UEC1_ETH_TYPE,
  39. },
  40. .num_threads_tx = UEC_NUM_OF_THREADS_4,
  41. .num_threads_rx = UEC_NUM_OF_THREADS_4,
  42. .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  43. .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  44. .tx_bd_ring_len = 16,
  45. .rx_bd_ring_len = 16,
  46. .phy_address = CFG_UEC1_PHY_ADDR,
  47. .enet_interface = CFG_UEC1_INTERFACE_MODE,
  48. };
  49. #endif
  50. #ifdef CONFIG_UEC_ETH2
  51. static uec_info_t eth2_uec_info = {
  52. .uf_info = {
  53. .ucc_num = CFG_UEC2_UCC_NUM,
  54. .rx_clock = CFG_UEC2_RX_CLK,
  55. .tx_clock = CFG_UEC2_TX_CLK,
  56. .eth_type = CFG_UEC2_ETH_TYPE,
  57. },
  58. .num_threads_tx = UEC_NUM_OF_THREADS_4,
  59. .num_threads_rx = UEC_NUM_OF_THREADS_4,
  60. .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  61. .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  62. .tx_bd_ring_len = 16,
  63. .rx_bd_ring_len = 16,
  64. .phy_address = CFG_UEC2_PHY_ADDR,
  65. .enet_interface = CFG_UEC2_INTERFACE_MODE,
  66. };
  67. #endif
  68. static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
  69. {
  70. uec_t *uec_regs;
  71. u32 maccfg1;
  72. if (!uec) {
  73. printf("%s: uec not initial\n", __FUNCTION__);
  74. return -EINVAL;
  75. }
  76. uec_regs = uec->uec_regs;
  77. maccfg1 = in_be32(&uec_regs->maccfg1);
  78. if (mode & COMM_DIR_TX) {
  79. maccfg1 |= MACCFG1_ENABLE_TX;
  80. out_be32(&uec_regs->maccfg1, maccfg1);
  81. uec->mac_tx_enabled = 1;
  82. }
  83. if (mode & COMM_DIR_RX) {
  84. maccfg1 |= MACCFG1_ENABLE_RX;
  85. out_be32(&uec_regs->maccfg1, maccfg1);
  86. uec->mac_rx_enabled = 1;
  87. }
  88. return 0;
  89. }
  90. static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
  91. {
  92. uec_t *uec_regs;
  93. u32 maccfg1;
  94. if (!uec) {
  95. printf("%s: uec not initial\n", __FUNCTION__);
  96. return -EINVAL;
  97. }
  98. uec_regs = uec->uec_regs;
  99. maccfg1 = in_be32(&uec_regs->maccfg1);
  100. if (mode & COMM_DIR_TX) {
  101. maccfg1 &= ~MACCFG1_ENABLE_TX;
  102. out_be32(&uec_regs->maccfg1, maccfg1);
  103. uec->mac_tx_enabled = 0;
  104. }
  105. if (mode & COMM_DIR_RX) {
  106. maccfg1 &= ~MACCFG1_ENABLE_RX;
  107. out_be32(&uec_regs->maccfg1, maccfg1);
  108. uec->mac_rx_enabled = 0;
  109. }
  110. return 0;
  111. }
  112. static int uec_graceful_stop_tx(uec_private_t *uec)
  113. {
  114. ucc_fast_t *uf_regs;
  115. u32 cecr_subblock;
  116. u32 ucce;
  117. if (!uec || !uec->uccf) {
  118. printf("%s: No handle passed.\n", __FUNCTION__);
  119. return -EINVAL;
  120. }
  121. uf_regs = uec->uccf->uf_regs;
  122. /* Clear the grace stop event */
  123. out_be32(&uf_regs->ucce, UCCE_GRA);
  124. /* Issue host command */
  125. cecr_subblock =
  126. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  127. qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
  128. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  129. /* Wait for command to complete */
  130. do {
  131. ucce = in_be32(&uf_regs->ucce);
  132. } while (! (ucce & UCCE_GRA));
  133. uec->grace_stopped_tx = 1;
  134. return 0;
  135. }
  136. static int uec_graceful_stop_rx(uec_private_t *uec)
  137. {
  138. u32 cecr_subblock;
  139. u8 ack;
  140. if (!uec) {
  141. printf("%s: No handle passed.\n", __FUNCTION__);
  142. return -EINVAL;
  143. }
  144. if (!uec->p_rx_glbl_pram) {
  145. printf("%s: No init rx global parameter\n", __FUNCTION__);
  146. return -EINVAL;
  147. }
  148. /* Clear acknowledge bit */
  149. ack = uec->p_rx_glbl_pram->rxgstpack;
  150. ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
  151. uec->p_rx_glbl_pram->rxgstpack = ack;
  152. /* Keep issuing cmd and checking ack bit until it is asserted */
  153. do {
  154. /* Issue host command */
  155. cecr_subblock =
  156. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  157. qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
  158. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  159. ack = uec->p_rx_glbl_pram->rxgstpack;
  160. } while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
  161. uec->grace_stopped_rx = 1;
  162. return 0;
  163. }
  164. static int uec_restart_tx(uec_private_t *uec)
  165. {
  166. u32 cecr_subblock;
  167. if (!uec || !uec->uec_info) {
  168. printf("%s: No handle passed.\n", __FUNCTION__);
  169. return -EINVAL;
  170. }
  171. cecr_subblock =
  172. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  173. qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
  174. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  175. uec->grace_stopped_tx = 0;
  176. return 0;
  177. }
  178. static int uec_restart_rx(uec_private_t *uec)
  179. {
  180. u32 cecr_subblock;
  181. if (!uec || !uec->uec_info) {
  182. printf("%s: No handle passed.\n", __FUNCTION__);
  183. return -EINVAL;
  184. }
  185. cecr_subblock =
  186. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  187. qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
  188. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  189. uec->grace_stopped_rx = 0;
  190. return 0;
  191. }
  192. static int uec_open(uec_private_t *uec, comm_dir_e mode)
  193. {
  194. ucc_fast_private_t *uccf;
  195. if (!uec || !uec->uccf) {
  196. printf("%s: No handle passed.\n", __FUNCTION__);
  197. return -EINVAL;
  198. }
  199. uccf = uec->uccf;
  200. /* check if the UCC number is in range. */
  201. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  202. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  203. return -EINVAL;
  204. }
  205. /* Enable MAC */
  206. uec_mac_enable(uec, mode);
  207. /* Enable UCC fast */
  208. ucc_fast_enable(uccf, mode);
  209. /* RISC microcode start */
  210. if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
  211. uec_restart_tx(uec);
  212. }
  213. if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
  214. uec_restart_rx(uec);
  215. }
  216. return 0;
  217. }
  218. static int uec_stop(uec_private_t *uec, comm_dir_e mode)
  219. {
  220. ucc_fast_private_t *uccf;
  221. if (!uec || !uec->uccf) {
  222. printf("%s: No handle passed.\n", __FUNCTION__);
  223. return -EINVAL;
  224. }
  225. uccf = uec->uccf;
  226. /* check if the UCC number is in range. */
  227. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  228. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  229. return -EINVAL;
  230. }
  231. /* Stop any transmissions */
  232. if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
  233. uec_graceful_stop_tx(uec);
  234. }
  235. /* Stop any receptions */
  236. if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
  237. uec_graceful_stop_rx(uec);
  238. }
  239. /* Disable the UCC fast */
  240. ucc_fast_disable(uec->uccf, mode);
  241. /* Disable the MAC */
  242. uec_mac_disable(uec, mode);
  243. return 0;
  244. }
  245. static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
  246. {
  247. uec_t *uec_regs;
  248. u32 maccfg2;
  249. if (!uec) {
  250. printf("%s: uec not initial\n", __FUNCTION__);
  251. return -EINVAL;
  252. }
  253. uec_regs = uec->uec_regs;
  254. if (duplex == DUPLEX_HALF) {
  255. maccfg2 = in_be32(&uec_regs->maccfg2);
  256. maccfg2 &= ~MACCFG2_FDX;
  257. out_be32(&uec_regs->maccfg2, maccfg2);
  258. }
  259. if (duplex == DUPLEX_FULL) {
  260. maccfg2 = in_be32(&uec_regs->maccfg2);
  261. maccfg2 |= MACCFG2_FDX;
  262. out_be32(&uec_regs->maccfg2, maccfg2);
  263. }
  264. return 0;
  265. }
  266. static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode)
  267. {
  268. enet_interface_e enet_if_mode;
  269. uec_info_t *uec_info;
  270. uec_t *uec_regs;
  271. u32 upsmr;
  272. u32 maccfg2;
  273. if (!uec) {
  274. printf("%s: uec not initial\n", __FUNCTION__);
  275. return -EINVAL;
  276. }
  277. uec_info = uec->uec_info;
  278. uec_regs = uec->uec_regs;
  279. enet_if_mode = if_mode;
  280. maccfg2 = in_be32(&uec_regs->maccfg2);
  281. maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
  282. upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
  283. upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
  284. switch (enet_if_mode) {
  285. case ENET_100_MII:
  286. case ENET_10_MII:
  287. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  288. break;
  289. case ENET_1000_GMII:
  290. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  291. break;
  292. case ENET_1000_TBI:
  293. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  294. upsmr |= UPSMR_TBIM;
  295. break;
  296. case ENET_1000_RTBI:
  297. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  298. upsmr |= (UPSMR_RPM | UPSMR_TBIM);
  299. break;
  300. case ENET_1000_RGMII:
  301. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  302. upsmr |= UPSMR_RPM;
  303. break;
  304. case ENET_100_RGMII:
  305. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  306. upsmr |= UPSMR_RPM;
  307. break;
  308. case ENET_10_RGMII:
  309. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  310. upsmr |= (UPSMR_RPM | UPSMR_R10M);
  311. break;
  312. case ENET_100_RMII:
  313. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  314. upsmr |= UPSMR_RMM;
  315. break;
  316. case ENET_10_RMII:
  317. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  318. upsmr |= (UPSMR_R10M | UPSMR_RMM);
  319. break;
  320. default:
  321. return -EINVAL;
  322. break;
  323. }
  324. out_be32(&uec_regs->maccfg2, maccfg2);
  325. out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
  326. return 0;
  327. }
  328. static int init_mii_management_configuration(uec_t *uec_regs)
  329. {
  330. uint timeout = 0x1000;
  331. u32 miimcfg = 0;
  332. miimcfg = in_be32(&uec_regs->miimcfg);
  333. miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
  334. out_be32(&uec_regs->miimcfg, miimcfg);
  335. /* Wait until the bus is free */
  336. while ((in_be32(&uec_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
  337. if (timeout <= 0) {
  338. printf("%s: The MII Bus is stuck!", __FUNCTION__);
  339. return -ETIMEDOUT;
  340. }
  341. return 0;
  342. }
  343. static int init_phy(struct eth_device *dev)
  344. {
  345. uec_private_t *uec;
  346. uec_t *uec_regs;
  347. struct uec_mii_info *mii_info;
  348. struct phy_info *curphy;
  349. int err;
  350. uec = (uec_private_t *)dev->priv;
  351. uec_regs = uec->uec_regs;
  352. uec->oldlink = 0;
  353. uec->oldspeed = 0;
  354. uec->oldduplex = -1;
  355. mii_info = malloc(sizeof(*mii_info));
  356. if (!mii_info) {
  357. printf("%s: Could not allocate mii_info", dev->name);
  358. return -ENOMEM;
  359. }
  360. memset(mii_info, 0, sizeof(*mii_info));
  361. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  362. mii_info->speed = SPEED_1000;
  363. } else {
  364. mii_info->speed = SPEED_100;
  365. }
  366. mii_info->duplex = DUPLEX_FULL;
  367. mii_info->pause = 0;
  368. mii_info->link = 1;
  369. mii_info->advertising = (ADVERTISED_10baseT_Half |
  370. ADVERTISED_10baseT_Full |
  371. ADVERTISED_100baseT_Half |
  372. ADVERTISED_100baseT_Full |
  373. ADVERTISED_1000baseT_Full);
  374. mii_info->autoneg = 1;
  375. mii_info->mii_id = uec->uec_info->phy_address;
  376. mii_info->dev = dev;
  377. mii_info->mdio_read = &read_phy_reg;
  378. mii_info->mdio_write = &write_phy_reg;
  379. uec->mii_info = mii_info;
  380. if (init_mii_management_configuration(uec_regs)) {
  381. printf("%s: The MII Bus is stuck!", dev->name);
  382. err = -1;
  383. goto bus_fail;
  384. }
  385. /* get info for this PHY */
  386. curphy = get_phy_info(uec->mii_info);
  387. if (!curphy) {
  388. printf("%s: No PHY found", dev->name);
  389. err = -1;
  390. goto no_phy;
  391. }
  392. mii_info->phyinfo = curphy;
  393. /* Run the commands which initialize the PHY */
  394. if (curphy->init) {
  395. err = curphy->init(uec->mii_info);
  396. if (err)
  397. goto phy_init_fail;
  398. }
  399. return 0;
  400. phy_init_fail:
  401. no_phy:
  402. bus_fail:
  403. free(mii_info);
  404. return err;
  405. }
  406. static void adjust_link(struct eth_device *dev)
  407. {
  408. uec_private_t *uec = (uec_private_t *)dev->priv;
  409. uec_t *uec_regs;
  410. struct uec_mii_info *mii_info = uec->mii_info;
  411. extern void change_phy_interface_mode(struct eth_device *dev,
  412. enet_interface_e mode);
  413. uec_regs = uec->uec_regs;
  414. if (mii_info->link) {
  415. /* Now we make sure that we can be in full duplex mode.
  416. * If not, we operate in half-duplex mode. */
  417. if (mii_info->duplex != uec->oldduplex) {
  418. if (!(mii_info->duplex)) {
  419. uec_set_mac_duplex(uec, DUPLEX_HALF);
  420. printf("%s: Half Duplex\n", dev->name);
  421. } else {
  422. uec_set_mac_duplex(uec, DUPLEX_FULL);
  423. printf("%s: Full Duplex\n", dev->name);
  424. }
  425. uec->oldduplex = mii_info->duplex;
  426. }
  427. if (mii_info->speed != uec->oldspeed) {
  428. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  429. switch (mii_info->speed) {
  430. case 1000:
  431. break;
  432. case 100:
  433. printf ("switching to rgmii 100\n");
  434. /* change phy to rgmii 100 */
  435. change_phy_interface_mode(dev,
  436. ENET_100_RGMII);
  437. /* change the MAC interface mode */
  438. uec_set_mac_if_mode(uec,ENET_100_RGMII);
  439. break;
  440. case 10:
  441. printf ("switching to rgmii 10\n");
  442. /* change phy to rgmii 10 */
  443. change_phy_interface_mode(dev,
  444. ENET_10_RGMII);
  445. /* change the MAC interface mode */
  446. uec_set_mac_if_mode(uec,ENET_10_RGMII);
  447. break;
  448. default:
  449. printf("%s: Ack,Speed(%d)is illegal\n",
  450. dev->name, mii_info->speed);
  451. break;
  452. }
  453. }
  454. printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
  455. uec->oldspeed = mii_info->speed;
  456. }
  457. if (!uec->oldlink) {
  458. printf("%s: Link is up\n", dev->name);
  459. uec->oldlink = 1;
  460. }
  461. } else { /* if (mii_info->link) */
  462. if (uec->oldlink) {
  463. printf("%s: Link is down\n", dev->name);
  464. uec->oldlink = 0;
  465. uec->oldspeed = 0;
  466. uec->oldduplex = -1;
  467. }
  468. }
  469. }
  470. static void phy_change(struct eth_device *dev)
  471. {
  472. uec_private_t *uec = (uec_private_t *)dev->priv;
  473. uec_t *uec_regs;
  474. int result = 0;
  475. uec_regs = uec->uec_regs;
  476. /* Delay 5s to give the PHY a chance to change the register state */
  477. udelay(5000000);
  478. /* Update the link, speed, duplex */
  479. result = uec->mii_info->phyinfo->read_status(uec->mii_info);
  480. /* Adjust the interface according to speed */
  481. if ((0 == result) || (uec->mii_info->link == 0)) {
  482. adjust_link(dev);
  483. }
  484. }
  485. static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
  486. {
  487. uec_t *uec_regs;
  488. u32 mac_addr1;
  489. u32 mac_addr2;
  490. if (!uec) {
  491. printf("%s: uec not initial\n", __FUNCTION__);
  492. return -EINVAL;
  493. }
  494. uec_regs = uec->uec_regs;
  495. /* if a station address of 0x12345678ABCD, perform a write to
  496. MACSTNADDR1 of 0xCDAB7856,
  497. MACSTNADDR2 of 0x34120000 */
  498. mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
  499. (mac_addr[3] << 8) | (mac_addr[2]);
  500. out_be32(&uec_regs->macstnaddr1, mac_addr1);
  501. mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
  502. out_be32(&uec_regs->macstnaddr2, mac_addr2);
  503. return 0;
  504. }
  505. static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
  506. int *threads_num_ret)
  507. {
  508. int num_threads_numerica;
  509. switch (threads_num) {
  510. case UEC_NUM_OF_THREADS_1:
  511. num_threads_numerica = 1;
  512. break;
  513. case UEC_NUM_OF_THREADS_2:
  514. num_threads_numerica = 2;
  515. break;
  516. case UEC_NUM_OF_THREADS_4:
  517. num_threads_numerica = 4;
  518. break;
  519. case UEC_NUM_OF_THREADS_6:
  520. num_threads_numerica = 6;
  521. break;
  522. case UEC_NUM_OF_THREADS_8:
  523. num_threads_numerica = 8;
  524. break;
  525. default:
  526. printf("%s: Bad number of threads value.",
  527. __FUNCTION__);
  528. return -EINVAL;
  529. }
  530. *threads_num_ret = num_threads_numerica;
  531. return 0;
  532. }
  533. static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
  534. {
  535. uec_info_t *uec_info;
  536. u32 end_bd;
  537. u8 bmrx = 0;
  538. int i;
  539. uec_info = uec->uec_info;
  540. /* Alloc global Tx parameter RAM page */
  541. uec->tx_glbl_pram_offset = qe_muram_alloc(
  542. sizeof(uec_tx_global_pram_t),
  543. UEC_TX_GLOBAL_PRAM_ALIGNMENT);
  544. uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
  545. qe_muram_addr(uec->tx_glbl_pram_offset);
  546. /* Zero the global Tx prameter RAM */
  547. memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
  548. /* Init global Tx parameter RAM */
  549. /* TEMODER, RMON statistics disable, one Tx queue */
  550. out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
  551. /* SQPTR */
  552. uec->send_q_mem_reg_offset = qe_muram_alloc(
  553. sizeof(uec_send_queue_qd_t),
  554. UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
  555. uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
  556. qe_muram_addr(uec->send_q_mem_reg_offset);
  557. out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
  558. /* Setup the table with TxBDs ring */
  559. end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
  560. * SIZEOFBD;
  561. out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
  562. (u32)(uec->p_tx_bd_ring));
  563. out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
  564. end_bd);
  565. /* Scheduler Base Pointer, we have only one Tx queue, no need it */
  566. out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
  567. /* TxRMON Base Pointer, TxRMON disable, we don't need it */
  568. out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
  569. /* TSTATE, global snooping, big endian, the CSB bus selected */
  570. bmrx = BMR_INIT_VALUE;
  571. out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
  572. /* IPH_Offset */
  573. for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
  574. out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
  575. }
  576. /* VTAG table */
  577. for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
  578. out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
  579. }
  580. /* TQPTR */
  581. uec->thread_dat_tx_offset = qe_muram_alloc(
  582. num_threads_tx * sizeof(uec_thread_data_tx_t) +
  583. 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
  584. uec->p_thread_data_tx = (uec_thread_data_tx_t *)
  585. qe_muram_addr(uec->thread_dat_tx_offset);
  586. out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
  587. }
  588. static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
  589. {
  590. u8 bmrx = 0;
  591. int i;
  592. uec_82xx_address_filtering_pram_t *p_af_pram;
  593. /* Allocate global Rx parameter RAM page */
  594. uec->rx_glbl_pram_offset = qe_muram_alloc(
  595. sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
  596. uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
  597. qe_muram_addr(uec->rx_glbl_pram_offset);
  598. /* Zero Global Rx parameter RAM */
  599. memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
  600. /* Init global Rx parameter RAM */
  601. /* REMODER, Extended feature mode disable, VLAN disable,
  602. LossLess flow control disable, Receive firmware statisic disable,
  603. Extended address parsing mode disable, One Rx queues,
  604. Dynamic maximum/minimum frame length disable, IP checksum check
  605. disable, IP address alignment disable
  606. */
  607. out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
  608. /* RQPTR */
  609. uec->thread_dat_rx_offset = qe_muram_alloc(
  610. num_threads_rx * sizeof(uec_thread_data_rx_t),
  611. UEC_THREAD_DATA_ALIGNMENT);
  612. uec->p_thread_data_rx = (uec_thread_data_rx_t *)
  613. qe_muram_addr(uec->thread_dat_rx_offset);
  614. out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
  615. /* Type_or_Len */
  616. out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
  617. /* RxRMON base pointer, we don't need it */
  618. out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
  619. /* IntCoalescingPTR, we don't need it, no interrupt */
  620. out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
  621. /* RSTATE, global snooping, big endian, the CSB bus selected */
  622. bmrx = BMR_INIT_VALUE;
  623. out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
  624. /* MRBLR */
  625. out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
  626. /* RBDQPTR */
  627. uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
  628. sizeof(uec_rx_bd_queues_entry_t) + \
  629. sizeof(uec_rx_prefetched_bds_t),
  630. UEC_RX_BD_QUEUES_ALIGNMENT);
  631. uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
  632. qe_muram_addr(uec->rx_bd_qs_tbl_offset);
  633. /* Zero it */
  634. memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
  635. sizeof(uec_rx_prefetched_bds_t));
  636. out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
  637. out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
  638. (u32)uec->p_rx_bd_ring);
  639. /* MFLR */
  640. out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
  641. /* MINFLR */
  642. out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
  643. /* MAXD1 */
  644. out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
  645. /* MAXD2 */
  646. out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
  647. /* ECAM_PTR */
  648. out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
  649. /* L2QT */
  650. out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
  651. /* L3QT */
  652. for (i = 0; i < 8; i++) {
  653. out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
  654. }
  655. /* VLAN_TYPE */
  656. out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
  657. /* TCI */
  658. out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
  659. /* Clear PQ2 style address filtering hash table */
  660. p_af_pram = (uec_82xx_address_filtering_pram_t *) \
  661. uec->p_rx_glbl_pram->addressfiltering;
  662. p_af_pram->iaddr_h = 0;
  663. p_af_pram->iaddr_l = 0;
  664. p_af_pram->gaddr_h = 0;
  665. p_af_pram->gaddr_l = 0;
  666. }
  667. static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
  668. int thread_tx, int thread_rx)
  669. {
  670. uec_init_cmd_pram_t *p_init_enet_param;
  671. u32 init_enet_param_offset;
  672. uec_info_t *uec_info;
  673. int i;
  674. int snum;
  675. u32 init_enet_offset;
  676. u32 entry_val;
  677. u32 command;
  678. u32 cecr_subblock;
  679. uec_info = uec->uec_info;
  680. /* Allocate init enet command parameter */
  681. uec->init_enet_param_offset = qe_muram_alloc(
  682. sizeof(uec_init_cmd_pram_t), 4);
  683. init_enet_param_offset = uec->init_enet_param_offset;
  684. uec->p_init_enet_param = (uec_init_cmd_pram_t *)
  685. qe_muram_addr(uec->init_enet_param_offset);
  686. /* Zero init enet command struct */
  687. memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
  688. /* Init the command struct */
  689. p_init_enet_param = uec->p_init_enet_param;
  690. p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
  691. p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
  692. p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
  693. p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
  694. p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
  695. p_init_enet_param->largestexternallookupkeysize = 0;
  696. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
  697. << ENET_INIT_PARAM_RGF_SHIFT;
  698. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
  699. << ENET_INIT_PARAM_TGF_SHIFT;
  700. /* Init Rx global parameter pointer */
  701. p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
  702. (u32)uec_info->riscRx;
  703. /* Init Rx threads */
  704. for (i = 0; i < (thread_rx + 1); i++) {
  705. if ((snum = qe_get_snum()) < 0) {
  706. printf("%s can not get snum\n", __FUNCTION__);
  707. return -ENOMEM;
  708. }
  709. if (i==0) {
  710. init_enet_offset = 0;
  711. } else {
  712. init_enet_offset = qe_muram_alloc(
  713. sizeof(uec_thread_rx_pram_t),
  714. UEC_THREAD_RX_PRAM_ALIGNMENT);
  715. }
  716. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  717. init_enet_offset | (u32)uec_info->riscRx;
  718. p_init_enet_param->rxthread[i] = entry_val;
  719. }
  720. /* Init Tx global parameter pointer */
  721. p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
  722. (u32)uec_info->riscTx;
  723. /* Init Tx threads */
  724. for (i = 0; i < thread_tx; i++) {
  725. if ((snum = qe_get_snum()) < 0) {
  726. printf("%s can not get snum\n", __FUNCTION__);
  727. return -ENOMEM;
  728. }
  729. init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
  730. UEC_THREAD_TX_PRAM_ALIGNMENT);
  731. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  732. init_enet_offset | (u32)uec_info->riscTx;
  733. p_init_enet_param->txthread[i] = entry_val;
  734. }
  735. __asm__ __volatile__("sync");
  736. /* Issue QE command */
  737. command = QE_INIT_TX_RX;
  738. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  739. uec->uec_info->uf_info.ucc_num);
  740. qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
  741. init_enet_param_offset);
  742. return 0;
  743. }
  744. static int uec_startup(uec_private_t *uec)
  745. {
  746. uec_info_t *uec_info;
  747. ucc_fast_info_t *uf_info;
  748. ucc_fast_private_t *uccf;
  749. ucc_fast_t *uf_regs;
  750. uec_t *uec_regs;
  751. int num_threads_tx;
  752. int num_threads_rx;
  753. u32 utbipar;
  754. enet_interface_e enet_interface;
  755. u32 length;
  756. u32 align;
  757. qe_bd_t *bd;
  758. u8 *buf;
  759. int i;
  760. if (!uec || !uec->uec_info) {
  761. printf("%s: uec or uec_info not initial\n", __FUNCTION__);
  762. return -EINVAL;
  763. }
  764. uec_info = uec->uec_info;
  765. uf_info = &(uec_info->uf_info);
  766. /* Check if Rx BD ring len is illegal */
  767. if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
  768. (uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
  769. printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
  770. __FUNCTION__);
  771. return -EINVAL;
  772. }
  773. /* Check if Tx BD ring len is illegal */
  774. if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
  775. printf("%s: Tx BD ring length must not be smaller than 2.\n",
  776. __FUNCTION__);
  777. return -EINVAL;
  778. }
  779. /* Check if MRBLR is illegal */
  780. if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) {
  781. printf("%s: max rx buffer length must be mutliple of 128.\n",
  782. __FUNCTION__);
  783. return -EINVAL;
  784. }
  785. /* Both Rx and Tx are stopped */
  786. uec->grace_stopped_rx = 1;
  787. uec->grace_stopped_tx = 1;
  788. /* Init UCC fast */
  789. if (ucc_fast_init(uf_info, &uccf)) {
  790. printf("%s: failed to init ucc fast\n", __FUNCTION__);
  791. return -ENOMEM;
  792. }
  793. /* Save uccf */
  794. uec->uccf = uccf;
  795. /* Convert the Tx threads number */
  796. if (uec_convert_threads_num(uec_info->num_threads_tx,
  797. &num_threads_tx)) {
  798. return -EINVAL;
  799. }
  800. /* Convert the Rx threads number */
  801. if (uec_convert_threads_num(uec_info->num_threads_rx,
  802. &num_threads_rx)) {
  803. return -EINVAL;
  804. }
  805. uf_regs = uccf->uf_regs;
  806. /* UEC register is following UCC fast registers */
  807. uec_regs = (uec_t *)(&uf_regs->ucc_eth);
  808. /* Save the UEC register pointer to UEC private struct */
  809. uec->uec_regs = uec_regs;
  810. /* Init UPSMR, enable hardware statistics (UCC) */
  811. out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
  812. /* Init MACCFG1, flow control disable, disable Tx and Rx */
  813. out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
  814. /* Init MACCFG2, length check, MAC PAD and CRC enable */
  815. out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
  816. /* Setup MAC interface mode */
  817. uec_set_mac_if_mode(uec, uec_info->enet_interface);
  818. /* Setup MII master clock source */
  819. qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
  820. /* Setup UTBIPAR */
  821. utbipar = in_be32(&uec_regs->utbipar);
  822. utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
  823. enet_interface = uec->uec_info->enet_interface;
  824. if (enet_interface == ENET_1000_TBI ||
  825. enet_interface == ENET_1000_RTBI) {
  826. utbipar |= (uec_info->phy_address + uec_info->uf_info.ucc_num)
  827. << UTBIPAR_PHY_ADDRESS_SHIFT;
  828. } else {
  829. utbipar |= (0x10 + uec_info->uf_info.ucc_num)
  830. << UTBIPAR_PHY_ADDRESS_SHIFT;
  831. }
  832. out_be32(&uec_regs->utbipar, utbipar);
  833. /* Allocate Tx BDs */
  834. length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
  835. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
  836. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  837. if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
  838. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
  839. length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  840. }
  841. align = UEC_TX_BD_RING_ALIGNMENT;
  842. uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
  843. if (uec->tx_bd_ring_offset != 0) {
  844. uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
  845. & ~(align - 1));
  846. }
  847. /* Zero all of Tx BDs */
  848. memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
  849. /* Allocate Rx BDs */
  850. length = uec_info->rx_bd_ring_len * SIZEOFBD;
  851. align = UEC_RX_BD_RING_ALIGNMENT;
  852. uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
  853. if (uec->rx_bd_ring_offset != 0) {
  854. uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
  855. & ~(align - 1));
  856. }
  857. /* Zero all of Rx BDs */
  858. memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
  859. /* Allocate Rx buffer */
  860. length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
  861. align = UEC_RX_DATA_BUF_ALIGNMENT;
  862. uec->rx_buf_offset = (u32)malloc(length + align);
  863. if (uec->rx_buf_offset != 0) {
  864. uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
  865. & ~(align - 1));
  866. }
  867. /* Zero all of the Rx buffer */
  868. memset((void *)(uec->rx_buf_offset), 0, length + align);
  869. /* Init TxBD ring */
  870. bd = (qe_bd_t *)uec->p_tx_bd_ring;
  871. uec->txBd = bd;
  872. for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
  873. BD_DATA_CLEAR(bd);
  874. BD_STATUS_SET(bd, 0);
  875. BD_LENGTH_SET(bd, 0);
  876. bd ++;
  877. }
  878. BD_STATUS_SET((--bd), TxBD_WRAP);
  879. /* Init RxBD ring */
  880. bd = (qe_bd_t *)uec->p_rx_bd_ring;
  881. uec->rxBd = bd;
  882. buf = uec->p_rx_buf;
  883. for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
  884. BD_DATA_SET(bd, buf);
  885. BD_LENGTH_SET(bd, 0);
  886. BD_STATUS_SET(bd, RxBD_EMPTY);
  887. buf += MAX_RXBUF_LEN;
  888. bd ++;
  889. }
  890. BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
  891. /* Init global Tx parameter RAM */
  892. uec_init_tx_parameter(uec, num_threads_tx);
  893. /* Init global Rx parameter RAM */
  894. uec_init_rx_parameter(uec, num_threads_rx);
  895. /* Init ethernet Tx and Rx parameter command */
  896. if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
  897. num_threads_rx)) {
  898. printf("%s issue init enet cmd failed\n", __FUNCTION__);
  899. return -ENOMEM;
  900. }
  901. return 0;
  902. }
  903. static int uec_init(struct eth_device* dev, bd_t *bd)
  904. {
  905. uec_private_t *uec;
  906. int err;
  907. uec = (uec_private_t *)dev->priv;
  908. if (uec->the_first_run == 0) {
  909. /* Set up the MAC address */
  910. if (dev->enetaddr[0] & 0x01) {
  911. printf("%s: MacAddress is multcast address\n",
  912. __FUNCTION__);
  913. return -EINVAL;
  914. }
  915. uec_set_mac_address(uec, dev->enetaddr);
  916. uec->the_first_run = 1;
  917. }
  918. err = uec_open(uec, COMM_DIR_RX_AND_TX);
  919. if (err) {
  920. printf("%s: cannot enable UEC device\n", dev->name);
  921. return err;
  922. }
  923. return 0;
  924. }
  925. static void uec_halt(struct eth_device* dev)
  926. {
  927. uec_private_t *uec = (uec_private_t *)dev->priv;
  928. uec_stop(uec, COMM_DIR_RX_AND_TX);
  929. }
  930. static int uec_send(struct eth_device* dev, volatile void *buf, int len)
  931. {
  932. uec_private_t *uec;
  933. ucc_fast_private_t *uccf;
  934. volatile qe_bd_t *bd;
  935. u16 status;
  936. int i;
  937. int result = 0;
  938. uec = (uec_private_t *)dev->priv;
  939. uccf = uec->uccf;
  940. bd = uec->txBd;
  941. /* Find an empty TxBD */
  942. for (i = 0; bd->status & TxBD_READY; i++) {
  943. if (i > 0x100000) {
  944. printf("%s: tx buffer not ready\n", dev->name);
  945. return result;
  946. }
  947. }
  948. /* Init TxBD */
  949. BD_DATA_SET(bd, buf);
  950. BD_LENGTH_SET(bd, len);
  951. status = bd->status;
  952. status &= BD_WRAP;
  953. status |= (TxBD_READY | TxBD_LAST);
  954. BD_STATUS_SET(bd, status);
  955. /* Tell UCC to transmit the buffer */
  956. ucc_fast_transmit_on_demand(uccf);
  957. /* Wait for buffer to be transmitted */
  958. for (i = 0; bd->status & TxBD_READY; i++) {
  959. if (i > 0x100000) {
  960. printf("%s: tx error\n", dev->name);
  961. return result;
  962. }
  963. }
  964. /* Ok, the buffer be transimitted */
  965. BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
  966. uec->txBd = bd;
  967. result = 1;
  968. return result;
  969. }
  970. static int uec_recv(struct eth_device* dev)
  971. {
  972. uec_private_t *uec = dev->priv;
  973. volatile qe_bd_t *bd;
  974. u16 status;
  975. u16 len;
  976. u8 *data;
  977. bd = uec->rxBd;
  978. status = bd->status;
  979. while (!(status & RxBD_EMPTY)) {
  980. if (!(status & RxBD_ERROR)) {
  981. data = BD_DATA(bd);
  982. len = BD_LENGTH(bd);
  983. NetReceive(data, len);
  984. } else {
  985. printf("%s: Rx error\n", dev->name);
  986. }
  987. status &= BD_CLEAN;
  988. BD_LENGTH_SET(bd, 0);
  989. BD_STATUS_SET(bd, status | RxBD_EMPTY);
  990. BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
  991. status = bd->status;
  992. }
  993. uec->rxBd = bd;
  994. return 1;
  995. }
  996. int uec_initialize(int index)
  997. {
  998. struct eth_device *dev;
  999. int i;
  1000. uec_private_t *uec;
  1001. uec_info_t *uec_info;
  1002. int err;
  1003. dev = (struct eth_device *)malloc(sizeof(struct eth_device));
  1004. if (!dev)
  1005. return 0;
  1006. memset(dev, 0, sizeof(struct eth_device));
  1007. /* Allocate the UEC private struct */
  1008. uec = (uec_private_t *)malloc(sizeof(uec_private_t));
  1009. if (!uec) {
  1010. return -ENOMEM;
  1011. }
  1012. memset(uec, 0, sizeof(uec_private_t));
  1013. /* Init UEC private struct, they come from board.h */
  1014. if (index == 0) {
  1015. #ifdef CONFIG_UEC_ETH1
  1016. uec_info = &eth1_uec_info;
  1017. #endif
  1018. } else if (index == 1) {
  1019. #ifdef CONFIG_UEC_ETH2
  1020. uec_info = &eth2_uec_info;
  1021. #endif
  1022. } else {
  1023. printf("%s: index is illegal.\n", __FUNCTION__);
  1024. return -EINVAL;
  1025. }
  1026. uec->uec_info = uec_info;
  1027. sprintf(dev->name, "FSL UEC%d", index);
  1028. dev->iobase = 0;
  1029. dev->priv = (void *)uec;
  1030. dev->init = uec_init;
  1031. dev->halt = uec_halt;
  1032. dev->send = uec_send;
  1033. dev->recv = uec_recv;
  1034. /* Clear the ethnet address */
  1035. for (i = 0; i < 6; i++)
  1036. dev->enetaddr[i] = 0;
  1037. eth_register(dev);
  1038. err = uec_startup(uec);
  1039. if (err) {
  1040. printf("%s: Cannot configure net device, aborting.",dev->name);
  1041. return err;
  1042. }
  1043. err = init_phy(dev);
  1044. if (err) {
  1045. printf("%s: Cannot initialize PHY, aborting.\n", dev->name);
  1046. return err;
  1047. }
  1048. phy_change(dev);
  1049. return 1;
  1050. }
  1051. #endif /* CONFIG_QE */