44x_spd_ddr2.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  43. /*-----------------------------------------------------------------------------+
  44. * Defines
  45. *-----------------------------------------------------------------------------*/
  46. #ifndef TRUE
  47. #define TRUE 1
  48. #endif
  49. #ifndef FALSE
  50. #define FALSE 0
  51. #endif
  52. #define SDRAM_DDR1 1
  53. #define SDRAM_DDR2 2
  54. #define SDRAM_NONE 0
  55. #define MAXDIMMS 2
  56. #define MAXRANKS 4
  57. #define MAXBXCF 4
  58. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  59. #define ONE_BILLION 1000000000
  60. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  61. #define CMD_NOP (7 << 19)
  62. #define CMD_PRECHARGE (2 << 19)
  63. #define CMD_REFRESH (1 << 19)
  64. #define CMD_EMR (0 << 19)
  65. #define CMD_READ (5 << 19)
  66. #define CMD_WRITE (4 << 19)
  67. #define SELECT_MR (0 << 16)
  68. #define SELECT_EMR (1 << 16)
  69. #define SELECT_EMR2 (2 << 16)
  70. #define SELECT_EMR3 (3 << 16)
  71. /* MR */
  72. #define DLL_RESET 0x00000100
  73. #define WRITE_RECOV_2 (1 << 9)
  74. #define WRITE_RECOV_3 (2 << 9)
  75. #define WRITE_RECOV_4 (3 << 9)
  76. #define WRITE_RECOV_5 (4 << 9)
  77. #define WRITE_RECOV_6 (5 << 9)
  78. #define BURST_LEN_4 0x00000002
  79. /* EMR */
  80. #define ODT_0_OHM 0x00000000
  81. #define ODT_50_OHM 0x00000044
  82. #define ODT_75_OHM 0x00000004
  83. #define ODT_150_OHM 0x00000040
  84. #define ODS_FULL 0x00000000
  85. #define ODS_REDUCED 0x00000002
  86. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  87. #define ODT_EB0R (0x80000000 >> 8)
  88. #define ODT_EB0W (0x80000000 >> 7)
  89. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  90. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  91. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  92. /* Defines for the Read Cycle Delay test */
  93. #define NUMMEMTESTS 8
  94. #define NUMMEMWORDS 8
  95. #define NUMLOOPS 256 /* memory test loops */
  96. #undef CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
  97. /*
  98. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  99. * region. Right now the cache should still be disabled in U-Boot because of the
  100. * EMAC driver, that need it's buffer descriptor to be located in non cached
  101. * memory.
  102. *
  103. * If at some time this restriction doesn't apply anymore, just define
  104. * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
  105. * everything correctly.
  106. */
  107. #ifdef CFG_ENABLE_SDRAM_CACHE
  108. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  109. #else
  110. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  111. #endif
  112. /*
  113. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  114. */
  115. void __spd_ddr_init_hang (void)
  116. {
  117. hang ();
  118. }
  119. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  120. /* Private Structure Definitions */
  121. /* enum only to ease code for cas latency setting */
  122. typedef enum ddr_cas_id {
  123. DDR_CAS_2 = 20,
  124. DDR_CAS_2_5 = 25,
  125. DDR_CAS_3 = 30,
  126. DDR_CAS_4 = 40,
  127. DDR_CAS_5 = 50
  128. } ddr_cas_id_t;
  129. /*-----------------------------------------------------------------------------+
  130. * Prototypes
  131. *-----------------------------------------------------------------------------*/
  132. static unsigned long sdram_memsize(void);
  133. void program_tlb(u32 phys_addr, u32 virt_addr, u32 size, u32 tlb_word2_i_value);
  134. static void get_spd_info(unsigned long *dimm_populated,
  135. unsigned char *iic0_dimm_addr,
  136. unsigned long num_dimm_banks);
  137. static void check_mem_type(unsigned long *dimm_populated,
  138. unsigned char *iic0_dimm_addr,
  139. unsigned long num_dimm_banks);
  140. static void check_frequency(unsigned long *dimm_populated,
  141. unsigned char *iic0_dimm_addr,
  142. unsigned long num_dimm_banks);
  143. static void check_rank_number(unsigned long *dimm_populated,
  144. unsigned char *iic0_dimm_addr,
  145. unsigned long num_dimm_banks);
  146. static void check_voltage_type(unsigned long *dimm_populated,
  147. unsigned char *iic0_dimm_addr,
  148. unsigned long num_dimm_banks);
  149. static void program_memory_queue(unsigned long *dimm_populated,
  150. unsigned char *iic0_dimm_addr,
  151. unsigned long num_dimm_banks);
  152. static void program_codt(unsigned long *dimm_populated,
  153. unsigned char *iic0_dimm_addr,
  154. unsigned long num_dimm_banks);
  155. static void program_mode(unsigned long *dimm_populated,
  156. unsigned char *iic0_dimm_addr,
  157. unsigned long num_dimm_banks,
  158. ddr_cas_id_t *selected_cas,
  159. int *write_recovery);
  160. static void program_tr(unsigned long *dimm_populated,
  161. unsigned char *iic0_dimm_addr,
  162. unsigned long num_dimm_banks);
  163. static void program_rtr(unsigned long *dimm_populated,
  164. unsigned char *iic0_dimm_addr,
  165. unsigned long num_dimm_banks);
  166. static void program_bxcf(unsigned long *dimm_populated,
  167. unsigned char *iic0_dimm_addr,
  168. unsigned long num_dimm_banks);
  169. static void program_copt1(unsigned long *dimm_populated,
  170. unsigned char *iic0_dimm_addr,
  171. unsigned long num_dimm_banks);
  172. static void program_initplr(unsigned long *dimm_populated,
  173. unsigned char *iic0_dimm_addr,
  174. unsigned long num_dimm_banks,
  175. ddr_cas_id_t selected_cas,
  176. int write_recovery);
  177. static unsigned long is_ecc_enabled(void);
  178. #ifdef CONFIG_DDR_ECC
  179. static void program_ecc(unsigned long *dimm_populated,
  180. unsigned char *iic0_dimm_addr,
  181. unsigned long num_dimm_banks,
  182. unsigned long tlb_word2_i_value);
  183. static void program_ecc_addr(unsigned long start_address,
  184. unsigned long num_bytes,
  185. unsigned long tlb_word2_i_value);
  186. #endif
  187. static void program_DQS_calibration(unsigned long *dimm_populated,
  188. unsigned char *iic0_dimm_addr,
  189. unsigned long num_dimm_banks);
  190. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  191. static void test(void);
  192. #else
  193. static void DQS_calibration_process(void);
  194. #endif
  195. #if defined(DEBUG)
  196. static void ppc440sp_sdram_register_dump(void);
  197. #endif
  198. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  199. void dcbz_area(u32 start_address, u32 num_bytes);
  200. void dflush(void);
  201. static u32 mfdcr_any(u32 dcr)
  202. {
  203. u32 val;
  204. switch (dcr) {
  205. case SDRAM_R0BAS + 0:
  206. val = mfdcr(SDRAM_R0BAS + 0);
  207. break;
  208. case SDRAM_R0BAS + 1:
  209. val = mfdcr(SDRAM_R0BAS + 1);
  210. break;
  211. case SDRAM_R0BAS + 2:
  212. val = mfdcr(SDRAM_R0BAS + 2);
  213. break;
  214. case SDRAM_R0BAS + 3:
  215. val = mfdcr(SDRAM_R0BAS + 3);
  216. break;
  217. default:
  218. printf("DCR %d not defined in case statement!!!\n", dcr);
  219. val = 0; /* just to satisfy the compiler */
  220. }
  221. return val;
  222. }
  223. static void mtdcr_any(u32 dcr, u32 val)
  224. {
  225. switch (dcr) {
  226. case SDRAM_R0BAS + 0:
  227. mtdcr(SDRAM_R0BAS + 0, val);
  228. break;
  229. case SDRAM_R0BAS + 1:
  230. mtdcr(SDRAM_R0BAS + 1, val);
  231. break;
  232. case SDRAM_R0BAS + 2:
  233. mtdcr(SDRAM_R0BAS + 2, val);
  234. break;
  235. case SDRAM_R0BAS + 3:
  236. mtdcr(SDRAM_R0BAS + 3, val);
  237. break;
  238. default:
  239. printf("DCR %d not defined in case statement!!!\n", dcr);
  240. }
  241. }
  242. static unsigned char spd_read(uchar chip, uint addr)
  243. {
  244. unsigned char data[2];
  245. if (i2c_probe(chip) == 0)
  246. if (i2c_read(chip, addr, 1, data, 1) == 0)
  247. return data[0];
  248. return 0;
  249. }
  250. /*-----------------------------------------------------------------------------+
  251. * sdram_memsize
  252. *-----------------------------------------------------------------------------*/
  253. static unsigned long sdram_memsize(void)
  254. {
  255. unsigned long mem_size;
  256. unsigned long mcopt2;
  257. unsigned long mcstat;
  258. unsigned long mb0cf;
  259. unsigned long sdsz;
  260. unsigned long i;
  261. mem_size = 0;
  262. mfsdram(SDRAM_MCOPT2, mcopt2);
  263. mfsdram(SDRAM_MCSTAT, mcstat);
  264. /* DDR controller must be enabled and not in self-refresh. */
  265. /* Otherwise memsize is zero. */
  266. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  267. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  268. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  269. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  270. for (i = 0; i < MAXBXCF; i++) {
  271. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  272. /* Banks enabled */
  273. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  274. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  275. switch(sdsz) {
  276. case SDRAM_RXBAS_SDSZ_8:
  277. mem_size+=8;
  278. break;
  279. case SDRAM_RXBAS_SDSZ_16:
  280. mem_size+=16;
  281. break;
  282. case SDRAM_RXBAS_SDSZ_32:
  283. mem_size+=32;
  284. break;
  285. case SDRAM_RXBAS_SDSZ_64:
  286. mem_size+=64;
  287. break;
  288. case SDRAM_RXBAS_SDSZ_128:
  289. mem_size+=128;
  290. break;
  291. case SDRAM_RXBAS_SDSZ_256:
  292. mem_size+=256;
  293. break;
  294. case SDRAM_RXBAS_SDSZ_512:
  295. mem_size+=512;
  296. break;
  297. case SDRAM_RXBAS_SDSZ_1024:
  298. mem_size+=1024;
  299. break;
  300. case SDRAM_RXBAS_SDSZ_2048:
  301. mem_size+=2048;
  302. break;
  303. case SDRAM_RXBAS_SDSZ_4096:
  304. mem_size+=4096;
  305. break;
  306. default:
  307. mem_size=0;
  308. break;
  309. }
  310. }
  311. }
  312. }
  313. mem_size *= 1024 * 1024;
  314. return(mem_size);
  315. }
  316. /*-----------------------------------------------------------------------------+
  317. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  318. * Note: This routine runs from flash with a stack set up in the chip's
  319. * sram space. It is important that the routine does not require .sbss, .bss or
  320. * .data sections. It also cannot call routines that require these sections.
  321. *-----------------------------------------------------------------------------*/
  322. /*-----------------------------------------------------------------------------
  323. * Function: initdram
  324. * Description: Configures SDRAM memory banks for DDR operation.
  325. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  326. * via the IIC bus and then configures the DDR SDRAM memory
  327. * banks appropriately. If Auto Memory Configuration is
  328. * not used, it is assumed that no DIMM is plugged
  329. *-----------------------------------------------------------------------------*/
  330. long int initdram(int board_type)
  331. {
  332. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  333. unsigned char spd0[MAX_SPD_BYTES];
  334. unsigned char spd1[MAX_SPD_BYTES];
  335. unsigned char *dimm_spd[MAXDIMMS];
  336. unsigned long dimm_populated[MAXDIMMS];
  337. unsigned long num_dimm_banks; /* on board dimm banks */
  338. unsigned long val;
  339. ddr_cas_id_t selected_cas;
  340. int write_recovery;
  341. unsigned long dram_size = 0;
  342. num_dimm_banks = sizeof(iic0_dimm_addr);
  343. /*------------------------------------------------------------------
  344. * Set up an array of SPD matrixes.
  345. *-----------------------------------------------------------------*/
  346. dimm_spd[0] = spd0;
  347. dimm_spd[1] = spd1;
  348. /*------------------------------------------------------------------
  349. * Reset the DDR-SDRAM controller.
  350. *-----------------------------------------------------------------*/
  351. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  352. mtsdr(SDR0_SRST, 0x00000000);
  353. /*
  354. * Make sure I2C controller is initialized
  355. * before continuing.
  356. */
  357. /* switch to correct I2C bus */
  358. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  359. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  360. /*------------------------------------------------------------------
  361. * Clear out the serial presence detect buffers.
  362. * Perform IIC reads from the dimm. Fill in the spds.
  363. * Check to see if the dimm slots are populated
  364. *-----------------------------------------------------------------*/
  365. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  366. /*------------------------------------------------------------------
  367. * Check the memory type for the dimms plugged.
  368. *-----------------------------------------------------------------*/
  369. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  370. /*------------------------------------------------------------------
  371. * Check the frequency supported for the dimms plugged.
  372. *-----------------------------------------------------------------*/
  373. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  374. /*------------------------------------------------------------------
  375. * Check the total rank number.
  376. *-----------------------------------------------------------------*/
  377. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  378. /*------------------------------------------------------------------
  379. * Check the voltage type for the dimms plugged.
  380. *-----------------------------------------------------------------*/
  381. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  382. /*------------------------------------------------------------------
  383. * Program SDRAM controller options 2 register
  384. * Except Enabling of the memory controller.
  385. *-----------------------------------------------------------------*/
  386. mfsdram(SDRAM_MCOPT2, val);
  387. mtsdram(SDRAM_MCOPT2,
  388. (val &
  389. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  390. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  391. SDRAM_MCOPT2_ISIE_MASK))
  392. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  393. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  394. SDRAM_MCOPT2_ISIE_ENABLE));
  395. /*------------------------------------------------------------------
  396. * Program SDRAM controller options 1 register
  397. * Note: Does not enable the memory controller.
  398. *-----------------------------------------------------------------*/
  399. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  400. /*------------------------------------------------------------------
  401. * Set the SDRAM Controller On Die Termination Register
  402. *-----------------------------------------------------------------*/
  403. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  404. /*------------------------------------------------------------------
  405. * Program SDRAM refresh register.
  406. *-----------------------------------------------------------------*/
  407. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  408. /*------------------------------------------------------------------
  409. * Program SDRAM mode register.
  410. *-----------------------------------------------------------------*/
  411. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  412. &selected_cas, &write_recovery);
  413. /*------------------------------------------------------------------
  414. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  415. *-----------------------------------------------------------------*/
  416. mfsdram(SDRAM_WRDTR, val);
  417. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  418. (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  419. /*------------------------------------------------------------------
  420. * Set the SDRAM Clock Timing Register
  421. *-----------------------------------------------------------------*/
  422. mfsdram(SDRAM_CLKTR, val);
  423. #ifdef CFG_44x_DDR2_CKTR_180
  424. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_180_DEG_ADV);
  425. #else
  426. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
  427. #endif
  428. /*------------------------------------------------------------------
  429. * Program the BxCF registers.
  430. *-----------------------------------------------------------------*/
  431. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  432. /*------------------------------------------------------------------
  433. * Program SDRAM timing registers.
  434. *-----------------------------------------------------------------*/
  435. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  436. /*------------------------------------------------------------------
  437. * Set the Extended Mode register
  438. *-----------------------------------------------------------------*/
  439. mfsdram(SDRAM_MEMODE, val);
  440. mtsdram(SDRAM_MEMODE,
  441. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  442. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  443. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  444. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  445. /*------------------------------------------------------------------
  446. * Program Initialization preload registers.
  447. *-----------------------------------------------------------------*/
  448. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  449. selected_cas, write_recovery);
  450. /*------------------------------------------------------------------
  451. * Delay to ensure 200usec have elapsed since reset.
  452. *-----------------------------------------------------------------*/
  453. udelay(400);
  454. /*------------------------------------------------------------------
  455. * Set the memory queue core base addr.
  456. *-----------------------------------------------------------------*/
  457. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  458. /*------------------------------------------------------------------
  459. * Program SDRAM controller options 2 register
  460. * Enable the memory controller.
  461. *-----------------------------------------------------------------*/
  462. mfsdram(SDRAM_MCOPT2, val);
  463. mtsdram(SDRAM_MCOPT2,
  464. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  465. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  466. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  467. /*------------------------------------------------------------------
  468. * Wait for SDRAM_CFG0_DC_EN to complete.
  469. *-----------------------------------------------------------------*/
  470. do {
  471. mfsdram(SDRAM_MCSTAT, val);
  472. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  473. /* get installed memory size */
  474. dram_size = sdram_memsize();
  475. /* and program tlb entries for this size (dynamic) */
  476. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  477. /*------------------------------------------------------------------
  478. * DQS calibration.
  479. *-----------------------------------------------------------------*/
  480. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  481. #ifdef CONFIG_DDR_ECC
  482. /*------------------------------------------------------------------
  483. * If ecc is enabled, initialize the parity bits.
  484. *-----------------------------------------------------------------*/
  485. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
  486. #endif
  487. #ifdef DEBUG
  488. ppc440sp_sdram_register_dump();
  489. #endif
  490. return dram_size;
  491. }
  492. static void get_spd_info(unsigned long *dimm_populated,
  493. unsigned char *iic0_dimm_addr,
  494. unsigned long num_dimm_banks)
  495. {
  496. unsigned long dimm_num;
  497. unsigned long dimm_found;
  498. unsigned char num_of_bytes;
  499. unsigned char total_size;
  500. dimm_found = FALSE;
  501. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  502. num_of_bytes = 0;
  503. total_size = 0;
  504. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  505. debug("\nspd_read(0x%x) returned %d\n",
  506. iic0_dimm_addr[dimm_num], num_of_bytes);
  507. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  508. debug("spd_read(0x%x) returned %d\n",
  509. iic0_dimm_addr[dimm_num], total_size);
  510. if ((num_of_bytes != 0) && (total_size != 0)) {
  511. dimm_populated[dimm_num] = TRUE;
  512. dimm_found = TRUE;
  513. debug("DIMM slot %lu: populated\n", dimm_num);
  514. } else {
  515. dimm_populated[dimm_num] = FALSE;
  516. debug("DIMM slot %lu: Not populated\n", dimm_num);
  517. }
  518. }
  519. if (dimm_found == FALSE) {
  520. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  521. spd_ddr_init_hang ();
  522. }
  523. }
  524. #ifdef CONFIG_ADD_RAM_INFO
  525. void board_add_ram_info(int use_default)
  526. {
  527. PPC440_SYS_INFO board_cfg;
  528. u32 val;
  529. if (is_ecc_enabled())
  530. puts(" (ECC");
  531. else
  532. puts(" (ECC not");
  533. get_sys_info(&board_cfg);
  534. mfsdr(SDR0_DDR0, val);
  535. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  536. printf(" enabled, %d MHz", (val * 2) / 1000000);
  537. mfsdram(SDRAM_MMODE, val);
  538. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  539. printf(", CL%d)", val);
  540. }
  541. #endif
  542. /*------------------------------------------------------------------
  543. * For the memory DIMMs installed, this routine verifies that they
  544. * really are DDR specific DIMMs.
  545. *-----------------------------------------------------------------*/
  546. static void check_mem_type(unsigned long *dimm_populated,
  547. unsigned char *iic0_dimm_addr,
  548. unsigned long num_dimm_banks)
  549. {
  550. unsigned long dimm_num;
  551. unsigned long dimm_type;
  552. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  553. if (dimm_populated[dimm_num] == TRUE) {
  554. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  555. switch (dimm_type) {
  556. case 1:
  557. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  558. "slot %d.\n", (unsigned int)dimm_num);
  559. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  560. printf("Replace the DIMM module with a supported DIMM.\n\n");
  561. spd_ddr_init_hang ();
  562. break;
  563. case 2:
  564. printf("ERROR: EDO DIMM detected in slot %d.\n",
  565. (unsigned int)dimm_num);
  566. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  567. printf("Replace the DIMM module with a supported DIMM.\n\n");
  568. spd_ddr_init_hang ();
  569. break;
  570. case 3:
  571. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  572. (unsigned int)dimm_num);
  573. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  574. printf("Replace the DIMM module with a supported DIMM.\n\n");
  575. spd_ddr_init_hang ();
  576. break;
  577. case 4:
  578. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  579. (unsigned int)dimm_num);
  580. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  581. printf("Replace the DIMM module with a supported DIMM.\n\n");
  582. spd_ddr_init_hang ();
  583. break;
  584. case 5:
  585. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  586. (unsigned int)dimm_num);
  587. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  588. printf("Replace the DIMM module with a supported DIMM.\n\n");
  589. spd_ddr_init_hang ();
  590. break;
  591. case 6:
  592. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  593. (unsigned int)dimm_num);
  594. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  595. printf("Replace the DIMM module with a supported DIMM.\n\n");
  596. spd_ddr_init_hang ();
  597. break;
  598. case 7:
  599. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  600. dimm_populated[dimm_num] = SDRAM_DDR1;
  601. break;
  602. case 8:
  603. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  604. dimm_populated[dimm_num] = SDRAM_DDR2;
  605. break;
  606. default:
  607. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  608. (unsigned int)dimm_num);
  609. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  610. printf("Replace the DIMM module with a supported DIMM.\n\n");
  611. spd_ddr_init_hang ();
  612. break;
  613. }
  614. }
  615. }
  616. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  617. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  618. && (dimm_populated[dimm_num] != SDRAM_NONE)
  619. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  620. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  621. spd_ddr_init_hang ();
  622. }
  623. }
  624. }
  625. /*------------------------------------------------------------------
  626. * For the memory DIMMs installed, this routine verifies that
  627. * frequency previously calculated is supported.
  628. *-----------------------------------------------------------------*/
  629. static void check_frequency(unsigned long *dimm_populated,
  630. unsigned char *iic0_dimm_addr,
  631. unsigned long num_dimm_banks)
  632. {
  633. unsigned long dimm_num;
  634. unsigned long tcyc_reg;
  635. unsigned long cycle_time;
  636. unsigned long calc_cycle_time;
  637. unsigned long sdram_freq;
  638. unsigned long sdr_ddrpll;
  639. PPC440_SYS_INFO board_cfg;
  640. /*------------------------------------------------------------------
  641. * Get the board configuration info.
  642. *-----------------------------------------------------------------*/
  643. get_sys_info(&board_cfg);
  644. mfsdr(SDR0_DDR0, sdr_ddrpll);
  645. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  646. /*
  647. * calc_cycle_time is calculated from DDR frequency set by board/chip
  648. * and is expressed in multiple of 10 picoseconds
  649. * to match the way DIMM cycle time is calculated below.
  650. */
  651. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  652. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  653. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  654. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  655. /*
  656. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  657. * the higher order nibble (bits 4-7) designates the cycle time
  658. * to a granularity of 1ns;
  659. * the value presented by the lower order nibble (bits 0-3)
  660. * has a granularity of .1ns and is added to the value designated
  661. * by the higher nibble. In addition, four lines of the lower order
  662. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  663. */
  664. /* Convert from hex to decimal */
  665. if ((tcyc_reg & 0x0F) == 0x0D)
  666. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  667. else if ((tcyc_reg & 0x0F) == 0x0C)
  668. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  669. else if ((tcyc_reg & 0x0F) == 0x0B)
  670. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  671. else if ((tcyc_reg & 0x0F) == 0x0A)
  672. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  673. else
  674. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  675. ((tcyc_reg & 0x0F)*10);
  676. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  677. if (cycle_time > (calc_cycle_time + 10)) {
  678. /*
  679. * the provided sdram cycle_time is too small
  680. * for the available DIMM cycle_time.
  681. * The additionnal 100ps is here to accept a small incertainty.
  682. */
  683. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  684. "slot %d \n while calculated cycle time is %d ps.\n",
  685. (unsigned int)(cycle_time*10),
  686. (unsigned int)dimm_num,
  687. (unsigned int)(calc_cycle_time*10));
  688. printf("Replace the DIMM, or change DDR frequency via "
  689. "strapping bits.\n\n");
  690. spd_ddr_init_hang ();
  691. }
  692. }
  693. }
  694. }
  695. /*------------------------------------------------------------------
  696. * For the memory DIMMs installed, this routine verifies two
  697. * ranks/banks maximum are availables.
  698. *-----------------------------------------------------------------*/
  699. static void check_rank_number(unsigned long *dimm_populated,
  700. unsigned char *iic0_dimm_addr,
  701. unsigned long num_dimm_banks)
  702. {
  703. unsigned long dimm_num;
  704. unsigned long dimm_rank;
  705. unsigned long total_rank = 0;
  706. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  707. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  708. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  709. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  710. dimm_rank = (dimm_rank & 0x0F) +1;
  711. else
  712. dimm_rank = dimm_rank & 0x0F;
  713. if (dimm_rank > MAXRANKS) {
  714. printf("ERROR: DRAM DIMM detected with %d ranks in "
  715. "slot %d is not supported.\n", dimm_rank, dimm_num);
  716. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  717. printf("Replace the DIMM module with a supported DIMM.\n\n");
  718. spd_ddr_init_hang ();
  719. } else
  720. total_rank += dimm_rank;
  721. }
  722. if (total_rank > MAXRANKS) {
  723. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  724. "for all slots.\n", (unsigned int)total_rank);
  725. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  726. printf("Remove one of the DIMM modules.\n\n");
  727. spd_ddr_init_hang ();
  728. }
  729. }
  730. }
  731. /*------------------------------------------------------------------
  732. * only support 2.5V modules.
  733. * This routine verifies this.
  734. *-----------------------------------------------------------------*/
  735. static void check_voltage_type(unsigned long *dimm_populated,
  736. unsigned char *iic0_dimm_addr,
  737. unsigned long num_dimm_banks)
  738. {
  739. unsigned long dimm_num;
  740. unsigned long voltage_type;
  741. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  742. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  743. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  744. switch (voltage_type) {
  745. case 0x00:
  746. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  747. printf("This DIMM is 5.0 Volt/TTL.\n");
  748. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  749. (unsigned int)dimm_num);
  750. spd_ddr_init_hang ();
  751. break;
  752. case 0x01:
  753. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  754. printf("This DIMM is LVTTL.\n");
  755. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  756. (unsigned int)dimm_num);
  757. spd_ddr_init_hang ();
  758. break;
  759. case 0x02:
  760. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  761. printf("This DIMM is 1.5 Volt.\n");
  762. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  763. (unsigned int)dimm_num);
  764. spd_ddr_init_hang ();
  765. break;
  766. case 0x03:
  767. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  768. printf("This DIMM is 3.3 Volt/TTL.\n");
  769. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  770. (unsigned int)dimm_num);
  771. spd_ddr_init_hang ();
  772. break;
  773. case 0x04:
  774. /* 2.5 Voltage only for DDR1 */
  775. break;
  776. case 0x05:
  777. /* 1.8 Voltage only for DDR2 */
  778. break;
  779. default:
  780. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  781. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  782. (unsigned int)dimm_num);
  783. spd_ddr_init_hang ();
  784. break;
  785. }
  786. }
  787. }
  788. }
  789. /*-----------------------------------------------------------------------------+
  790. * program_copt1.
  791. *-----------------------------------------------------------------------------*/
  792. static void program_copt1(unsigned long *dimm_populated,
  793. unsigned char *iic0_dimm_addr,
  794. unsigned long num_dimm_banks)
  795. {
  796. unsigned long dimm_num;
  797. unsigned long mcopt1;
  798. unsigned long ecc_enabled;
  799. unsigned long ecc = 0;
  800. unsigned long data_width = 0;
  801. unsigned long dimm_32bit;
  802. unsigned long dimm_64bit;
  803. unsigned long registered = 0;
  804. unsigned long attribute = 0;
  805. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  806. unsigned long bankcount;
  807. unsigned long ddrtype;
  808. unsigned long val;
  809. #ifdef CONFIG_DDR_ECC
  810. ecc_enabled = TRUE;
  811. #else
  812. ecc_enabled = FALSE;
  813. #endif
  814. dimm_32bit = FALSE;
  815. dimm_64bit = FALSE;
  816. buf0 = FALSE;
  817. buf1 = FALSE;
  818. /*------------------------------------------------------------------
  819. * Set memory controller options reg 1, SDRAM_MCOPT1.
  820. *-----------------------------------------------------------------*/
  821. mfsdram(SDRAM_MCOPT1, val);
  822. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  823. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  824. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  825. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  826. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  827. SDRAM_MCOPT1_DREF_MASK);
  828. mcopt1 |= SDRAM_MCOPT1_QDEP;
  829. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  830. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  831. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  832. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  833. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  834. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  835. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  836. /* test ecc support */
  837. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  838. if (ecc != 0x02) /* ecc not supported */
  839. ecc_enabled = FALSE;
  840. /* test bank count */
  841. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  842. if (bankcount == 0x04) /* bank count = 4 */
  843. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  844. else /* bank count = 8 */
  845. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  846. /* test DDR type */
  847. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  848. /* test for buffered/unbuffered, registered, differential clocks */
  849. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  850. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  851. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  852. if (dimm_num == 0) {
  853. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  854. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  855. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  856. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  857. if (registered == 1) { /* DDR2 always buffered */
  858. /* TODO: what about above comments ? */
  859. mcopt1 |= SDRAM_MCOPT1_RDEN;
  860. buf0 = TRUE;
  861. } else {
  862. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  863. if ((attribute & 0x02) == 0x00) {
  864. /* buffered not supported */
  865. buf0 = FALSE;
  866. } else {
  867. mcopt1 |= SDRAM_MCOPT1_RDEN;
  868. buf0 = TRUE;
  869. }
  870. }
  871. }
  872. else if (dimm_num == 1) {
  873. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  874. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  875. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  876. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  877. if (registered == 1) {
  878. /* DDR2 always buffered */
  879. mcopt1 |= SDRAM_MCOPT1_RDEN;
  880. buf1 = TRUE;
  881. } else {
  882. if ((attribute & 0x02) == 0x00) {
  883. /* buffered not supported */
  884. buf1 = FALSE;
  885. } else {
  886. mcopt1 |= SDRAM_MCOPT1_RDEN;
  887. buf1 = TRUE;
  888. }
  889. }
  890. }
  891. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  892. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  893. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  894. switch (data_width) {
  895. case 72:
  896. case 64:
  897. dimm_64bit = TRUE;
  898. break;
  899. case 40:
  900. case 32:
  901. dimm_32bit = TRUE;
  902. break;
  903. default:
  904. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  905. data_width);
  906. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  907. break;
  908. }
  909. }
  910. }
  911. /* verify matching properties */
  912. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  913. if (buf0 != buf1) {
  914. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  915. spd_ddr_init_hang ();
  916. }
  917. }
  918. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  919. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  920. spd_ddr_init_hang ();
  921. }
  922. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  923. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  924. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  925. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  926. } else {
  927. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  928. spd_ddr_init_hang ();
  929. }
  930. if (ecc_enabled == TRUE)
  931. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  932. else
  933. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  934. mtsdram(SDRAM_MCOPT1, mcopt1);
  935. }
  936. /*-----------------------------------------------------------------------------+
  937. * program_codt.
  938. *-----------------------------------------------------------------------------*/
  939. static void program_codt(unsigned long *dimm_populated,
  940. unsigned char *iic0_dimm_addr,
  941. unsigned long num_dimm_banks)
  942. {
  943. unsigned long codt;
  944. unsigned long modt0 = 0;
  945. unsigned long modt1 = 0;
  946. unsigned long modt2 = 0;
  947. unsigned long modt3 = 0;
  948. unsigned char dimm_num;
  949. unsigned char dimm_rank;
  950. unsigned char total_rank = 0;
  951. unsigned char total_dimm = 0;
  952. unsigned char dimm_type = 0;
  953. unsigned char firstSlot = 0;
  954. /*------------------------------------------------------------------
  955. * Set the SDRAM Controller On Die Termination Register
  956. *-----------------------------------------------------------------*/
  957. mfsdram(SDRAM_CODT, codt);
  958. codt |= (SDRAM_CODT_IO_NMODE
  959. & (~SDRAM_CODT_DQS_SINGLE_END
  960. & ~SDRAM_CODT_CKSE_SINGLE_END
  961. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  962. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  963. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  964. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  965. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  966. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  967. dimm_rank = (dimm_rank & 0x0F) + 1;
  968. dimm_type = SDRAM_DDR2;
  969. } else {
  970. dimm_rank = dimm_rank & 0x0F;
  971. dimm_type = SDRAM_DDR1;
  972. }
  973. total_rank += dimm_rank;
  974. total_dimm++;
  975. if ((dimm_num == 0) && (total_dimm == 1))
  976. firstSlot = TRUE;
  977. else
  978. firstSlot = FALSE;
  979. }
  980. }
  981. if (dimm_type == SDRAM_DDR2) {
  982. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  983. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  984. if (total_rank == 1) {
  985. codt |= CALC_ODT_R(0);
  986. modt0 = CALC_ODT_W(0);
  987. modt1 = 0x00000000;
  988. modt2 = 0x00000000;
  989. modt3 = 0x00000000;
  990. }
  991. if (total_rank == 2) {
  992. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  993. modt0 = CALC_ODT_W(0);
  994. modt1 = CALC_ODT_W(0);
  995. modt2 = 0x00000000;
  996. modt3 = 0x00000000;
  997. }
  998. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  999. if (total_rank == 1) {
  1000. codt |= CALC_ODT_R(2);
  1001. modt0 = 0x00000000;
  1002. modt1 = 0x00000000;
  1003. modt2 = CALC_ODT_W(2);
  1004. modt3 = 0x00000000;
  1005. }
  1006. if (total_rank == 2) {
  1007. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1008. modt0 = 0x00000000;
  1009. modt1 = 0x00000000;
  1010. modt2 = CALC_ODT_W(2);
  1011. modt3 = CALC_ODT_W(2);
  1012. }
  1013. }
  1014. if (total_dimm == 2) {
  1015. if (total_rank == 2) {
  1016. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1017. modt0 = CALC_ODT_RW(2);
  1018. modt1 = 0x00000000;
  1019. modt2 = CALC_ODT_RW(0);
  1020. modt3 = 0x00000000;
  1021. }
  1022. if (total_rank == 4) {
  1023. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1024. CALC_ODT_R(2) | CALC_ODT_R(3);
  1025. modt0 = CALC_ODT_RW(2);
  1026. modt1 = 0x00000000;
  1027. modt2 = CALC_ODT_RW(0);
  1028. modt3 = 0x00000000;
  1029. }
  1030. }
  1031. } else {
  1032. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1033. modt0 = 0x00000000;
  1034. modt1 = 0x00000000;
  1035. modt2 = 0x00000000;
  1036. modt3 = 0x00000000;
  1037. if (total_dimm == 1) {
  1038. if (total_rank == 1)
  1039. codt |= 0x00800000;
  1040. if (total_rank == 2)
  1041. codt |= 0x02800000;
  1042. }
  1043. if (total_dimm == 2) {
  1044. if (total_rank == 2)
  1045. codt |= 0x08800000;
  1046. if (total_rank == 4)
  1047. codt |= 0x2a800000;
  1048. }
  1049. }
  1050. debug("nb of dimm %d\n", total_dimm);
  1051. debug("nb of rank %d\n", total_rank);
  1052. if (total_dimm == 1)
  1053. debug("dimm in slot %d\n", firstSlot);
  1054. mtsdram(SDRAM_CODT, codt);
  1055. mtsdram(SDRAM_MODT0, modt0);
  1056. mtsdram(SDRAM_MODT1, modt1);
  1057. mtsdram(SDRAM_MODT2, modt2);
  1058. mtsdram(SDRAM_MODT3, modt3);
  1059. }
  1060. /*-----------------------------------------------------------------------------+
  1061. * program_initplr.
  1062. *-----------------------------------------------------------------------------*/
  1063. static void program_initplr(unsigned long *dimm_populated,
  1064. unsigned char *iic0_dimm_addr,
  1065. unsigned long num_dimm_banks,
  1066. ddr_cas_id_t selected_cas,
  1067. int write_recovery)
  1068. {
  1069. u32 cas = 0;
  1070. u32 odt = 0;
  1071. u32 ods = 0;
  1072. u32 mr;
  1073. u32 wr;
  1074. u32 emr;
  1075. u32 emr2;
  1076. u32 emr3;
  1077. int dimm_num;
  1078. int total_dimm = 0;
  1079. /******************************************************
  1080. ** Assumption: if more than one DIMM, all DIMMs are the same
  1081. ** as already checked in check_memory_type
  1082. ******************************************************/
  1083. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1084. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1085. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1086. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1087. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1088. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1089. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1090. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1091. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1092. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1093. switch (selected_cas) {
  1094. case DDR_CAS_3:
  1095. cas = 3 << 4;
  1096. break;
  1097. case DDR_CAS_4:
  1098. cas = 4 << 4;
  1099. break;
  1100. case DDR_CAS_5:
  1101. cas = 5 << 4;
  1102. break;
  1103. default:
  1104. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1105. spd_ddr_init_hang ();
  1106. break;
  1107. }
  1108. #if 0
  1109. /*
  1110. * ToDo - Still a problem with the write recovery:
  1111. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1112. * in the INITPLR reg to the value calculated in program_mode()
  1113. * results in not correctly working DDR2 memory (crash after
  1114. * relocation).
  1115. *
  1116. * So for now, set the write recovery to 3. This seems to work
  1117. * on the Corair module too.
  1118. *
  1119. * 2007-03-01, sr
  1120. */
  1121. switch (write_recovery) {
  1122. case 3:
  1123. wr = WRITE_RECOV_3;
  1124. break;
  1125. case 4:
  1126. wr = WRITE_RECOV_4;
  1127. break;
  1128. case 5:
  1129. wr = WRITE_RECOV_5;
  1130. break;
  1131. case 6:
  1132. wr = WRITE_RECOV_6;
  1133. break;
  1134. default:
  1135. printf("ERROR: write recovery not support (%d)", write_recovery);
  1136. spd_ddr_init_hang ();
  1137. break;
  1138. }
  1139. #else
  1140. wr = WRITE_RECOV_3; /* test-only, see description above */
  1141. #endif
  1142. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1143. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1144. total_dimm++;
  1145. if (total_dimm == 1) {
  1146. odt = ODT_150_OHM;
  1147. ods = ODS_FULL;
  1148. } else if (total_dimm == 2) {
  1149. odt = ODT_75_OHM;
  1150. ods = ODS_REDUCED;
  1151. } else {
  1152. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1153. spd_ddr_init_hang ();
  1154. }
  1155. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1156. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1157. emr2 = CMD_EMR | SELECT_EMR2;
  1158. emr3 = CMD_EMR | SELECT_EMR3;
  1159. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1160. udelay(1000);
  1161. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1162. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1163. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1164. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1165. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1166. udelay(1000);
  1167. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1168. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1169. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1170. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1171. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1172. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1173. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1174. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1175. } else {
  1176. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1177. spd_ddr_init_hang ();
  1178. }
  1179. }
  1180. /*------------------------------------------------------------------
  1181. * This routine programs the SDRAM_MMODE register.
  1182. * the selected_cas is an output parameter, that will be passed
  1183. * by caller to call the above program_initplr( )
  1184. *-----------------------------------------------------------------*/
  1185. static void program_mode(unsigned long *dimm_populated,
  1186. unsigned char *iic0_dimm_addr,
  1187. unsigned long num_dimm_banks,
  1188. ddr_cas_id_t *selected_cas,
  1189. int *write_recovery)
  1190. {
  1191. unsigned long dimm_num;
  1192. unsigned long sdram_ddr1;
  1193. unsigned long t_wr_ns;
  1194. unsigned long t_wr_clk;
  1195. unsigned long cas_bit;
  1196. unsigned long cas_index;
  1197. unsigned long sdram_freq;
  1198. unsigned long ddr_check;
  1199. unsigned long mmode;
  1200. unsigned long tcyc_reg;
  1201. unsigned long cycle_2_0_clk;
  1202. unsigned long cycle_2_5_clk;
  1203. unsigned long cycle_3_0_clk;
  1204. unsigned long cycle_4_0_clk;
  1205. unsigned long cycle_5_0_clk;
  1206. unsigned long max_2_0_tcyc_ns_x_100;
  1207. unsigned long max_2_5_tcyc_ns_x_100;
  1208. unsigned long max_3_0_tcyc_ns_x_100;
  1209. unsigned long max_4_0_tcyc_ns_x_100;
  1210. unsigned long max_5_0_tcyc_ns_x_100;
  1211. unsigned long cycle_time_ns_x_100[3];
  1212. PPC440_SYS_INFO board_cfg;
  1213. unsigned char cas_2_0_available;
  1214. unsigned char cas_2_5_available;
  1215. unsigned char cas_3_0_available;
  1216. unsigned char cas_4_0_available;
  1217. unsigned char cas_5_0_available;
  1218. unsigned long sdr_ddrpll;
  1219. /*------------------------------------------------------------------
  1220. * Get the board configuration info.
  1221. *-----------------------------------------------------------------*/
  1222. get_sys_info(&board_cfg);
  1223. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1224. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1225. debug("sdram_freq=%d\n", sdram_freq);
  1226. /*------------------------------------------------------------------
  1227. * Handle the timing. We need to find the worst case timing of all
  1228. * the dimm modules installed.
  1229. *-----------------------------------------------------------------*/
  1230. t_wr_ns = 0;
  1231. cas_2_0_available = TRUE;
  1232. cas_2_5_available = TRUE;
  1233. cas_3_0_available = TRUE;
  1234. cas_4_0_available = TRUE;
  1235. cas_5_0_available = TRUE;
  1236. max_2_0_tcyc_ns_x_100 = 10;
  1237. max_2_5_tcyc_ns_x_100 = 10;
  1238. max_3_0_tcyc_ns_x_100 = 10;
  1239. max_4_0_tcyc_ns_x_100 = 10;
  1240. max_5_0_tcyc_ns_x_100 = 10;
  1241. sdram_ddr1 = TRUE;
  1242. /* loop through all the DIMM slots on the board */
  1243. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1244. /* If a dimm is installed in a particular slot ... */
  1245. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1246. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1247. sdram_ddr1 = TRUE;
  1248. else
  1249. sdram_ddr1 = FALSE;
  1250. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1251. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1252. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1253. /* For a particular DIMM, grab the three CAS values it supports */
  1254. for (cas_index = 0; cas_index < 3; cas_index++) {
  1255. switch (cas_index) {
  1256. case 0:
  1257. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1258. break;
  1259. case 1:
  1260. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1261. break;
  1262. default:
  1263. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1264. break;
  1265. }
  1266. if ((tcyc_reg & 0x0F) >= 10) {
  1267. if ((tcyc_reg & 0x0F) == 0x0D) {
  1268. /* Convert from hex to decimal */
  1269. cycle_time_ns_x_100[cas_index] =
  1270. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1271. } else {
  1272. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1273. "in slot %d\n", (unsigned int)dimm_num);
  1274. spd_ddr_init_hang ();
  1275. }
  1276. } else {
  1277. /* Convert from hex to decimal */
  1278. cycle_time_ns_x_100[cas_index] =
  1279. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1280. ((tcyc_reg & 0x0F)*10);
  1281. }
  1282. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1283. cycle_time_ns_x_100[cas_index]);
  1284. }
  1285. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1286. /* supported for a particular DIMM. */
  1287. cas_index = 0;
  1288. if (sdram_ddr1) {
  1289. /*
  1290. * DDR devices use the following bitmask for CAS latency:
  1291. * Bit 7 6 5 4 3 2 1 0
  1292. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1293. */
  1294. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1295. (cycle_time_ns_x_100[cas_index] != 0)) {
  1296. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1297. cycle_time_ns_x_100[cas_index]);
  1298. cas_index++;
  1299. } else {
  1300. if (cas_index != 0)
  1301. cas_index++;
  1302. cas_4_0_available = FALSE;
  1303. }
  1304. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1305. (cycle_time_ns_x_100[cas_index] != 0)) {
  1306. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1307. cycle_time_ns_x_100[cas_index]);
  1308. cas_index++;
  1309. } else {
  1310. if (cas_index != 0)
  1311. cas_index++;
  1312. cas_3_0_available = FALSE;
  1313. }
  1314. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1315. (cycle_time_ns_x_100[cas_index] != 0)) {
  1316. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1317. cycle_time_ns_x_100[cas_index]);
  1318. cas_index++;
  1319. } else {
  1320. if (cas_index != 0)
  1321. cas_index++;
  1322. cas_2_5_available = FALSE;
  1323. }
  1324. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1325. (cycle_time_ns_x_100[cas_index] != 0)) {
  1326. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1327. cycle_time_ns_x_100[cas_index]);
  1328. cas_index++;
  1329. } else {
  1330. if (cas_index != 0)
  1331. cas_index++;
  1332. cas_2_0_available = FALSE;
  1333. }
  1334. } else {
  1335. /*
  1336. * DDR2 devices use the following bitmask for CAS latency:
  1337. * Bit 7 6 5 4 3 2 1 0
  1338. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1339. */
  1340. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1341. (cycle_time_ns_x_100[cas_index] != 0)) {
  1342. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1343. cycle_time_ns_x_100[cas_index]);
  1344. cas_index++;
  1345. } else {
  1346. if (cas_index != 0)
  1347. cas_index++;
  1348. cas_5_0_available = FALSE;
  1349. }
  1350. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1351. (cycle_time_ns_x_100[cas_index] != 0)) {
  1352. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1353. cycle_time_ns_x_100[cas_index]);
  1354. cas_index++;
  1355. } else {
  1356. if (cas_index != 0)
  1357. cas_index++;
  1358. cas_4_0_available = FALSE;
  1359. }
  1360. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1361. (cycle_time_ns_x_100[cas_index] != 0)) {
  1362. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1363. cycle_time_ns_x_100[cas_index]);
  1364. cas_index++;
  1365. } else {
  1366. if (cas_index != 0)
  1367. cas_index++;
  1368. cas_3_0_available = FALSE;
  1369. }
  1370. }
  1371. }
  1372. }
  1373. /*------------------------------------------------------------------
  1374. * Set the SDRAM mode, SDRAM_MMODE
  1375. *-----------------------------------------------------------------*/
  1376. mfsdram(SDRAM_MMODE, mmode);
  1377. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1378. /* add 10 here because of rounding problems */
  1379. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1380. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1381. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1382. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1383. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1384. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1385. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1386. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1387. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1388. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1389. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1390. *selected_cas = DDR_CAS_2;
  1391. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1392. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1393. *selected_cas = DDR_CAS_2_5;
  1394. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1395. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1396. *selected_cas = DDR_CAS_3;
  1397. } else {
  1398. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1399. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1400. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1401. spd_ddr_init_hang ();
  1402. }
  1403. } else { /* DDR2 */
  1404. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1405. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1406. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1407. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1408. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1409. *selected_cas = DDR_CAS_3;
  1410. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1411. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1412. *selected_cas = DDR_CAS_4;
  1413. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1414. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1415. *selected_cas = DDR_CAS_5;
  1416. } else {
  1417. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1418. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1419. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1420. printf("cas3=%d cas4=%d cas5=%d\n",
  1421. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1422. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1423. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1424. spd_ddr_init_hang ();
  1425. }
  1426. }
  1427. if (sdram_ddr1 == TRUE)
  1428. mmode |= SDRAM_MMODE_WR_DDR1;
  1429. else {
  1430. /* loop through all the DIMM slots on the board */
  1431. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1432. /* If a dimm is installed in a particular slot ... */
  1433. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1434. t_wr_ns = max(t_wr_ns,
  1435. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1436. }
  1437. /*
  1438. * convert from nanoseconds to ddr clocks
  1439. * round up if necessary
  1440. */
  1441. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1442. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1443. if (sdram_freq != ddr_check)
  1444. t_wr_clk++;
  1445. switch (t_wr_clk) {
  1446. case 0:
  1447. case 1:
  1448. case 2:
  1449. case 3:
  1450. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1451. break;
  1452. case 4:
  1453. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1454. break;
  1455. case 5:
  1456. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1457. break;
  1458. default:
  1459. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1460. break;
  1461. }
  1462. *write_recovery = t_wr_clk;
  1463. }
  1464. debug("CAS latency = %d\n", *selected_cas);
  1465. debug("Write recovery = %d\n", *write_recovery);
  1466. mtsdram(SDRAM_MMODE, mmode);
  1467. }
  1468. /*-----------------------------------------------------------------------------+
  1469. * program_rtr.
  1470. *-----------------------------------------------------------------------------*/
  1471. static void program_rtr(unsigned long *dimm_populated,
  1472. unsigned char *iic0_dimm_addr,
  1473. unsigned long num_dimm_banks)
  1474. {
  1475. PPC440_SYS_INFO board_cfg;
  1476. unsigned long max_refresh_rate;
  1477. unsigned long dimm_num;
  1478. unsigned long refresh_rate_type;
  1479. unsigned long refresh_rate;
  1480. unsigned long rint;
  1481. unsigned long sdram_freq;
  1482. unsigned long sdr_ddrpll;
  1483. unsigned long val;
  1484. /*------------------------------------------------------------------
  1485. * Get the board configuration info.
  1486. *-----------------------------------------------------------------*/
  1487. get_sys_info(&board_cfg);
  1488. /*------------------------------------------------------------------
  1489. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1490. *-----------------------------------------------------------------*/
  1491. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1492. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1493. max_refresh_rate = 0;
  1494. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1495. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1496. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1497. refresh_rate_type &= 0x7F;
  1498. switch (refresh_rate_type) {
  1499. case 0:
  1500. refresh_rate = 15625;
  1501. break;
  1502. case 1:
  1503. refresh_rate = 3906;
  1504. break;
  1505. case 2:
  1506. refresh_rate = 7812;
  1507. break;
  1508. case 3:
  1509. refresh_rate = 31250;
  1510. break;
  1511. case 4:
  1512. refresh_rate = 62500;
  1513. break;
  1514. case 5:
  1515. refresh_rate = 125000;
  1516. break;
  1517. default:
  1518. refresh_rate = 0;
  1519. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1520. (unsigned int)dimm_num);
  1521. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1522. spd_ddr_init_hang ();
  1523. break;
  1524. }
  1525. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1526. }
  1527. }
  1528. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1529. mfsdram(SDRAM_RTR, val);
  1530. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1531. (SDRAM_RTR_RINT_ENCODE(rint)));
  1532. }
  1533. /*------------------------------------------------------------------
  1534. * This routine programs the SDRAM_TRx registers.
  1535. *-----------------------------------------------------------------*/
  1536. static void program_tr(unsigned long *dimm_populated,
  1537. unsigned char *iic0_dimm_addr,
  1538. unsigned long num_dimm_banks)
  1539. {
  1540. unsigned long dimm_num;
  1541. unsigned long sdram_ddr1;
  1542. unsigned long t_rp_ns;
  1543. unsigned long t_rcd_ns;
  1544. unsigned long t_rrd_ns;
  1545. unsigned long t_ras_ns;
  1546. unsigned long t_rc_ns;
  1547. unsigned long t_rfc_ns;
  1548. unsigned long t_wpc_ns;
  1549. unsigned long t_wtr_ns;
  1550. unsigned long t_rpc_ns;
  1551. unsigned long t_rp_clk;
  1552. unsigned long t_rcd_clk;
  1553. unsigned long t_rrd_clk;
  1554. unsigned long t_ras_clk;
  1555. unsigned long t_rc_clk;
  1556. unsigned long t_rfc_clk;
  1557. unsigned long t_wpc_clk;
  1558. unsigned long t_wtr_clk;
  1559. unsigned long t_rpc_clk;
  1560. unsigned long sdtr1, sdtr2, sdtr3;
  1561. unsigned long ddr_check;
  1562. unsigned long sdram_freq;
  1563. unsigned long sdr_ddrpll;
  1564. PPC440_SYS_INFO board_cfg;
  1565. /*------------------------------------------------------------------
  1566. * Get the board configuration info.
  1567. *-----------------------------------------------------------------*/
  1568. get_sys_info(&board_cfg);
  1569. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1570. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1571. /*------------------------------------------------------------------
  1572. * Handle the timing. We need to find the worst case timing of all
  1573. * the dimm modules installed.
  1574. *-----------------------------------------------------------------*/
  1575. t_rp_ns = 0;
  1576. t_rrd_ns = 0;
  1577. t_rcd_ns = 0;
  1578. t_ras_ns = 0;
  1579. t_rc_ns = 0;
  1580. t_rfc_ns = 0;
  1581. t_wpc_ns = 0;
  1582. t_wtr_ns = 0;
  1583. t_rpc_ns = 0;
  1584. sdram_ddr1 = TRUE;
  1585. /* loop through all the DIMM slots on the board */
  1586. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1587. /* If a dimm is installed in a particular slot ... */
  1588. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1589. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1590. sdram_ddr1 = TRUE;
  1591. else
  1592. sdram_ddr1 = FALSE;
  1593. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1594. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1595. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1596. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1597. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1598. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1599. }
  1600. }
  1601. /*------------------------------------------------------------------
  1602. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1603. *-----------------------------------------------------------------*/
  1604. mfsdram(SDRAM_SDTR1, sdtr1);
  1605. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1606. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1607. /* default values */
  1608. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1609. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1610. /* normal operations */
  1611. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1612. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1613. mtsdram(SDRAM_SDTR1, sdtr1);
  1614. /*------------------------------------------------------------------
  1615. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1616. *-----------------------------------------------------------------*/
  1617. mfsdram(SDRAM_SDTR2, sdtr2);
  1618. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1619. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1620. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1621. SDRAM_SDTR2_RRD_MASK);
  1622. /*
  1623. * convert t_rcd from nanoseconds to ddr clocks
  1624. * round up if necessary
  1625. */
  1626. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1627. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1628. if (sdram_freq != ddr_check)
  1629. t_rcd_clk++;
  1630. switch (t_rcd_clk) {
  1631. case 0:
  1632. case 1:
  1633. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1634. break;
  1635. case 2:
  1636. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1637. break;
  1638. case 3:
  1639. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1640. break;
  1641. case 4:
  1642. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1643. break;
  1644. default:
  1645. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1646. break;
  1647. }
  1648. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1649. if (sdram_freq < 200000000) {
  1650. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1651. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1652. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1653. } else {
  1654. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1655. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1656. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1657. }
  1658. } else { /* DDR2 */
  1659. /* loop through all the DIMM slots on the board */
  1660. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1661. /* If a dimm is installed in a particular slot ... */
  1662. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1663. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1664. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1665. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1666. }
  1667. }
  1668. /*
  1669. * convert from nanoseconds to ddr clocks
  1670. * round up if necessary
  1671. */
  1672. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1673. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1674. if (sdram_freq != ddr_check)
  1675. t_wpc_clk++;
  1676. switch (t_wpc_clk) {
  1677. case 0:
  1678. case 1:
  1679. case 2:
  1680. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1681. break;
  1682. case 3:
  1683. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1684. break;
  1685. case 4:
  1686. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1687. break;
  1688. case 5:
  1689. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1690. break;
  1691. default:
  1692. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1693. break;
  1694. }
  1695. /*
  1696. * convert from nanoseconds to ddr clocks
  1697. * round up if necessary
  1698. */
  1699. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1700. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1701. if (sdram_freq != ddr_check)
  1702. t_wtr_clk++;
  1703. switch (t_wtr_clk) {
  1704. case 0:
  1705. case 1:
  1706. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1707. break;
  1708. case 2:
  1709. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1710. break;
  1711. case 3:
  1712. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1713. break;
  1714. default:
  1715. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1716. break;
  1717. }
  1718. /*
  1719. * convert from nanoseconds to ddr clocks
  1720. * round up if necessary
  1721. */
  1722. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1723. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1724. if (sdram_freq != ddr_check)
  1725. t_rpc_clk++;
  1726. switch (t_rpc_clk) {
  1727. case 0:
  1728. case 1:
  1729. case 2:
  1730. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1731. break;
  1732. case 3:
  1733. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1734. break;
  1735. default:
  1736. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1737. break;
  1738. }
  1739. }
  1740. /* default value */
  1741. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1742. /*
  1743. * convert t_rrd from nanoseconds to ddr clocks
  1744. * round up if necessary
  1745. */
  1746. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1747. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1748. if (sdram_freq != ddr_check)
  1749. t_rrd_clk++;
  1750. if (t_rrd_clk == 3)
  1751. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1752. else
  1753. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1754. /*
  1755. * convert t_rp from nanoseconds to ddr clocks
  1756. * round up if necessary
  1757. */
  1758. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1759. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1760. if (sdram_freq != ddr_check)
  1761. t_rp_clk++;
  1762. switch (t_rp_clk) {
  1763. case 0:
  1764. case 1:
  1765. case 2:
  1766. case 3:
  1767. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1768. break;
  1769. case 4:
  1770. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1771. break;
  1772. case 5:
  1773. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1774. break;
  1775. case 6:
  1776. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1777. break;
  1778. default:
  1779. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1780. break;
  1781. }
  1782. mtsdram(SDRAM_SDTR2, sdtr2);
  1783. /*------------------------------------------------------------------
  1784. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1785. *-----------------------------------------------------------------*/
  1786. mfsdram(SDRAM_SDTR3, sdtr3);
  1787. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1788. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1789. /*
  1790. * convert t_ras from nanoseconds to ddr clocks
  1791. * round up if necessary
  1792. */
  1793. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1794. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1795. if (sdram_freq != ddr_check)
  1796. t_ras_clk++;
  1797. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1798. /*
  1799. * convert t_rc from nanoseconds to ddr clocks
  1800. * round up if necessary
  1801. */
  1802. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1803. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1804. if (sdram_freq != ddr_check)
  1805. t_rc_clk++;
  1806. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1807. /* default xcs value */
  1808. sdtr3 |= SDRAM_SDTR3_XCS;
  1809. /*
  1810. * convert t_rfc from nanoseconds to ddr clocks
  1811. * round up if necessary
  1812. */
  1813. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1814. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1815. if (sdram_freq != ddr_check)
  1816. t_rfc_clk++;
  1817. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1818. mtsdram(SDRAM_SDTR3, sdtr3);
  1819. }
  1820. /*-----------------------------------------------------------------------------+
  1821. * program_bxcf.
  1822. *-----------------------------------------------------------------------------*/
  1823. static void program_bxcf(unsigned long *dimm_populated,
  1824. unsigned char *iic0_dimm_addr,
  1825. unsigned long num_dimm_banks)
  1826. {
  1827. unsigned long dimm_num;
  1828. unsigned long num_col_addr;
  1829. unsigned long num_ranks;
  1830. unsigned long num_banks;
  1831. unsigned long mode;
  1832. unsigned long ind_rank;
  1833. unsigned long ind;
  1834. unsigned long ind_bank;
  1835. unsigned long bank_0_populated;
  1836. /*------------------------------------------------------------------
  1837. * Set the BxCF regs. First, wipe out the bank config registers.
  1838. *-----------------------------------------------------------------*/
  1839. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
  1840. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1841. mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
  1842. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1843. mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
  1844. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1845. mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
  1846. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1847. mode = SDRAM_BXCF_M_BE_ENABLE;
  1848. bank_0_populated = 0;
  1849. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1850. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1851. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1852. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1853. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1854. num_ranks = (num_ranks & 0x0F) +1;
  1855. else
  1856. num_ranks = num_ranks & 0x0F;
  1857. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1858. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1859. if (num_banks == 4)
  1860. ind = 0;
  1861. else
  1862. ind = 5;
  1863. switch (num_col_addr) {
  1864. case 0x08:
  1865. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1866. break;
  1867. case 0x09:
  1868. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1869. break;
  1870. case 0x0A:
  1871. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1872. break;
  1873. case 0x0B:
  1874. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1875. break;
  1876. case 0x0C:
  1877. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1878. break;
  1879. default:
  1880. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1881. (unsigned int)dimm_num);
  1882. printf("ERROR: Unsupported value for number of "
  1883. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1884. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1885. spd_ddr_init_hang ();
  1886. }
  1887. }
  1888. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1889. bank_0_populated = 1;
  1890. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1891. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
  1892. mtdcr(SDRAMC_CFGDATA, mode);
  1893. }
  1894. }
  1895. }
  1896. }
  1897. /*------------------------------------------------------------------
  1898. * program memory queue.
  1899. *-----------------------------------------------------------------*/
  1900. static void program_memory_queue(unsigned long *dimm_populated,
  1901. unsigned char *iic0_dimm_addr,
  1902. unsigned long num_dimm_banks)
  1903. {
  1904. unsigned long dimm_num;
  1905. unsigned long rank_base_addr;
  1906. unsigned long rank_reg;
  1907. unsigned long rank_size_bytes;
  1908. unsigned long rank_size_id;
  1909. unsigned long num_ranks;
  1910. unsigned long baseadd_size;
  1911. unsigned long i;
  1912. unsigned long bank_0_populated = 0;
  1913. /*------------------------------------------------------------------
  1914. * Reset the rank_base_address.
  1915. *-----------------------------------------------------------------*/
  1916. rank_reg = SDRAM_R0BAS;
  1917. rank_base_addr = 0x00000000;
  1918. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1919. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1920. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1921. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1922. num_ranks = (num_ranks & 0x0F) + 1;
  1923. else
  1924. num_ranks = num_ranks & 0x0F;
  1925. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1926. /*------------------------------------------------------------------
  1927. * Set the sizes
  1928. *-----------------------------------------------------------------*/
  1929. baseadd_size = 0;
  1930. rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
  1931. switch (rank_size_id) {
  1932. case 0x02:
  1933. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1934. break;
  1935. case 0x04:
  1936. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1937. break;
  1938. case 0x08:
  1939. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1940. break;
  1941. case 0x10:
  1942. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1943. break;
  1944. case 0x20:
  1945. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1946. break;
  1947. case 0x40:
  1948. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1949. break;
  1950. case 0x80:
  1951. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1952. break;
  1953. default:
  1954. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1955. (unsigned int)dimm_num);
  1956. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1957. (unsigned int)rank_size_id);
  1958. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1959. spd_ddr_init_hang ();
  1960. }
  1961. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1962. bank_0_populated = 1;
  1963. for (i = 0; i < num_ranks; i++) {
  1964. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1965. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  1966. baseadd_size));
  1967. rank_base_addr += rank_size_bytes;
  1968. }
  1969. }
  1970. }
  1971. }
  1972. /*-----------------------------------------------------------------------------+
  1973. * is_ecc_enabled.
  1974. *-----------------------------------------------------------------------------*/
  1975. static unsigned long is_ecc_enabled(void)
  1976. {
  1977. unsigned long dimm_num;
  1978. unsigned long ecc;
  1979. unsigned long val;
  1980. ecc = 0;
  1981. /* loop through all the DIMM slots on the board */
  1982. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1983. mfsdram(SDRAM_MCOPT1, val);
  1984. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  1985. }
  1986. return ecc;
  1987. }
  1988. static void blank_string(int size)
  1989. {
  1990. int i;
  1991. for (i=0; i<size; i++)
  1992. putc('\b');
  1993. for (i=0; i<size; i++)
  1994. putc(' ');
  1995. for (i=0; i<size; i++)
  1996. putc('\b');
  1997. }
  1998. #ifdef CONFIG_DDR_ECC
  1999. /*-----------------------------------------------------------------------------+
  2000. * program_ecc.
  2001. *-----------------------------------------------------------------------------*/
  2002. static void program_ecc(unsigned long *dimm_populated,
  2003. unsigned char *iic0_dimm_addr,
  2004. unsigned long num_dimm_banks,
  2005. unsigned long tlb_word2_i_value)
  2006. {
  2007. unsigned long mcopt1;
  2008. unsigned long mcopt2;
  2009. unsigned long mcstat;
  2010. unsigned long dimm_num;
  2011. unsigned long ecc;
  2012. ecc = 0;
  2013. /* loop through all the DIMM slots on the board */
  2014. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2015. /* If a dimm is installed in a particular slot ... */
  2016. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2017. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2018. }
  2019. if (ecc == 0)
  2020. return;
  2021. mfsdram(SDRAM_MCOPT1, mcopt1);
  2022. mfsdram(SDRAM_MCOPT2, mcopt2);
  2023. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2024. /* DDR controller must be enabled and not in self-refresh. */
  2025. mfsdram(SDRAM_MCSTAT, mcstat);
  2026. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2027. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2028. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2029. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2030. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2031. }
  2032. }
  2033. return;
  2034. }
  2035. #ifdef CONFIG_ECC_ERROR_RESET
  2036. /*
  2037. * Check for ECC errors and reset board upon any error here
  2038. *
  2039. * On the Katmai 440SPe eval board, from time to time, the first
  2040. * lword write access after DDR2 initializazion with ECC checking
  2041. * enabled, leads to an ECC error. I couldn't find a configuration
  2042. * without this happening. On my board with the current setup it
  2043. * happens about 1 from 10 times.
  2044. *
  2045. * The ECC modules used for testing are:
  2046. * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
  2047. *
  2048. * This has to get fixed for the Katmai and tested for the other
  2049. * board (440SP/440SPe) that will eventually use this code in the
  2050. * future.
  2051. *
  2052. * 2007-03-01, sr
  2053. */
  2054. static void check_ecc(void)
  2055. {
  2056. u32 val;
  2057. mfsdram(SDRAM_ECCCR, val);
  2058. if (val != 0) {
  2059. printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
  2060. val, mfdcr(0x4c), mfdcr(0x4e));
  2061. printf("ECC error occured, resetting board...\n");
  2062. do_reset(NULL, 0, 0, NULL);
  2063. }
  2064. }
  2065. #endif
  2066. static void wait_ddr_idle(void)
  2067. {
  2068. u32 val;
  2069. do {
  2070. mfsdram(SDRAM_MCSTAT, val);
  2071. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2072. }
  2073. /*-----------------------------------------------------------------------------+
  2074. * program_ecc_addr.
  2075. *-----------------------------------------------------------------------------*/
  2076. static void program_ecc_addr(unsigned long start_address,
  2077. unsigned long num_bytes,
  2078. unsigned long tlb_word2_i_value)
  2079. {
  2080. unsigned long current_address;
  2081. unsigned long end_address;
  2082. unsigned long address_increment;
  2083. unsigned long mcopt1;
  2084. char str[] = "ECC generation -";
  2085. char slash[] = "\\|/-\\|/-";
  2086. int loop = 0;
  2087. int loopi = 0;
  2088. current_address = start_address;
  2089. mfsdram(SDRAM_MCOPT1, mcopt1);
  2090. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2091. mtsdram(SDRAM_MCOPT1,
  2092. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2093. sync();
  2094. eieio();
  2095. wait_ddr_idle();
  2096. puts(str);
  2097. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2098. /* ECC bit set method for non-cached memory */
  2099. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2100. address_increment = 4;
  2101. else
  2102. address_increment = 8;
  2103. end_address = current_address + num_bytes;
  2104. while (current_address < end_address) {
  2105. *((unsigned long *)current_address) = 0x00000000;
  2106. current_address += address_increment;
  2107. if ((loop++ % (2 << 20)) == 0) {
  2108. putc('\b');
  2109. putc(slash[loopi++ % 8]);
  2110. }
  2111. }
  2112. } else {
  2113. /* ECC bit set method for cached memory */
  2114. dcbz_area(start_address, num_bytes);
  2115. dflush();
  2116. }
  2117. blank_string(strlen(str));
  2118. sync();
  2119. eieio();
  2120. wait_ddr_idle();
  2121. /* clear ECC error repoting registers */
  2122. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2123. mtdcr(0x4c, 0xffffffff);
  2124. mtsdram(SDRAM_MCOPT1,
  2125. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2126. sync();
  2127. eieio();
  2128. wait_ddr_idle();
  2129. #ifdef CONFIG_ECC_ERROR_RESET
  2130. /*
  2131. * One write to 0 is enough to trigger this ECC error
  2132. * (see description above)
  2133. */
  2134. out_be32(0, 0x12345678);
  2135. check_ecc();
  2136. #endif
  2137. }
  2138. }
  2139. #endif
  2140. /*-----------------------------------------------------------------------------+
  2141. * program_DQS_calibration.
  2142. *-----------------------------------------------------------------------------*/
  2143. static void program_DQS_calibration(unsigned long *dimm_populated,
  2144. unsigned char *iic0_dimm_addr,
  2145. unsigned long num_dimm_banks)
  2146. {
  2147. unsigned long val;
  2148. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2149. mtsdram(SDRAM_RQDC, 0x80000037);
  2150. mtsdram(SDRAM_RDCC, 0x40000000);
  2151. mtsdram(SDRAM_RFDC, 0x000001DF);
  2152. test();
  2153. #else
  2154. /*------------------------------------------------------------------
  2155. * Program RDCC register
  2156. * Read sample cycle auto-update enable
  2157. *-----------------------------------------------------------------*/
  2158. /*
  2159. * Modified for the Katmai platform: with some DIMMs, the DDR2
  2160. * controller automatically selects the T2 read cycle, but this
  2161. * proves unreliable. Go ahead and force the DDR2 controller
  2162. * to use the T4 sample and disable the automatic update of the
  2163. * RDSS field.
  2164. */
  2165. mfsdram(SDRAM_RDCC, val);
  2166. mtsdram(SDRAM_RDCC,
  2167. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2168. | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
  2169. /*------------------------------------------------------------------
  2170. * Program RQDC register
  2171. * Internal DQS delay mechanism enable
  2172. *-----------------------------------------------------------------*/
  2173. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2174. /*------------------------------------------------------------------
  2175. * Program RFDC register
  2176. * Set Feedback Fractional Oversample
  2177. * Auto-detect read sample cycle enable
  2178. *-----------------------------------------------------------------*/
  2179. mfsdram(SDRAM_RFDC, val);
  2180. mtsdram(SDRAM_RFDC,
  2181. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2182. SDRAM_RFDC_RFFD_MASK))
  2183. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2184. SDRAM_RFDC_RFFD_ENCODE(0)));
  2185. DQS_calibration_process();
  2186. #endif
  2187. }
  2188. static int short_mem_test(void)
  2189. {
  2190. u32 *membase;
  2191. u32 bxcr_num;
  2192. u32 bxcf;
  2193. int i;
  2194. int j;
  2195. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2196. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2197. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2198. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2199. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2200. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2201. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2202. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2203. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2204. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2205. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2206. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2207. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2208. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2209. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2210. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2211. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2212. int l;
  2213. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2214. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2215. /* Banks enabled */
  2216. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2217. /* Bank is enabled */
  2218. /*------------------------------------------------------------------
  2219. * Run the short memory test.
  2220. *-----------------------------------------------------------------*/
  2221. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2222. for (i = 0; i < NUMMEMTESTS; i++) {
  2223. for (j = 0; j < NUMMEMWORDS; j++) {
  2224. membase[j] = test[i][j];
  2225. ppcDcbf((u32)&(membase[j]));
  2226. }
  2227. sync();
  2228. for (l=0; l<NUMLOOPS; l++) {
  2229. for (j = 0; j < NUMMEMWORDS; j++) {
  2230. if (membase[j] != test[i][j]) {
  2231. ppcDcbf((u32)&(membase[j]));
  2232. return 0;
  2233. }
  2234. ppcDcbf((u32)&(membase[j]));
  2235. }
  2236. sync();
  2237. }
  2238. }
  2239. } /* if bank enabled */
  2240. } /* for bxcf_num */
  2241. return 1;
  2242. }
  2243. #ifndef HARD_CODED_DQS
  2244. /*-----------------------------------------------------------------------------+
  2245. * DQS_calibration_process.
  2246. *-----------------------------------------------------------------------------*/
  2247. static void DQS_calibration_process(void)
  2248. {
  2249. unsigned long rfdc_reg;
  2250. unsigned long rffd;
  2251. unsigned long rqdc_reg;
  2252. unsigned long rqfd;
  2253. unsigned long val;
  2254. long rqfd_average;
  2255. long rffd_average;
  2256. long max_start;
  2257. long min_end;
  2258. unsigned long begin_rqfd[MAXRANKS];
  2259. unsigned long begin_rffd[MAXRANKS];
  2260. unsigned long end_rqfd[MAXRANKS];
  2261. unsigned long end_rffd[MAXRANKS];
  2262. char window_found;
  2263. unsigned long dlycal;
  2264. unsigned long dly_val;
  2265. unsigned long max_pass_length;
  2266. unsigned long current_pass_length;
  2267. unsigned long current_fail_length;
  2268. unsigned long current_start;
  2269. long max_end;
  2270. unsigned char fail_found;
  2271. unsigned char pass_found;
  2272. u32 rqfd_start;
  2273. char str[] = "Auto calibration -";
  2274. char slash[] = "\\|/-\\|/-";
  2275. int loopi = 0;
  2276. /*------------------------------------------------------------------
  2277. * Test to determine the best read clock delay tuning bits.
  2278. *
  2279. * Before the DDR controller can be used, the read clock delay needs to be
  2280. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2281. * This value cannot be hardcoded into the program because it changes
  2282. * depending on the board's setup and environment.
  2283. * To do this, all delay values are tested to see if they
  2284. * work or not. By doing this, you get groups of fails with groups of
  2285. * passing values. The idea is to find the start and end of a passing
  2286. * window and take the center of it to use as the read clock delay.
  2287. *
  2288. * A failure has to be seen first so that when we hit a pass, we know
  2289. * that it is truely the start of the window. If we get passing values
  2290. * to start off with, we don't know if we are at the start of the window.
  2291. *
  2292. * The code assumes that a failure will always be found.
  2293. * If a failure is not found, there is no easy way to get the middle
  2294. * of the passing window. I guess we can pretty much pick any value
  2295. * but some values will be better than others. Since the lowest speed
  2296. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2297. * from experimentation it is safe to say you will always have a failure.
  2298. *-----------------------------------------------------------------*/
  2299. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2300. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2301. puts(str);
  2302. calibration_loop:
  2303. mfsdram(SDRAM_RQDC, rqdc_reg);
  2304. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2305. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2306. max_start = 0;
  2307. min_end = 0;
  2308. begin_rqfd[0] = 0;
  2309. begin_rffd[0] = 0;
  2310. begin_rqfd[1] = 0;
  2311. begin_rffd[1] = 0;
  2312. end_rqfd[0] = 0;
  2313. end_rffd[0] = 0;
  2314. end_rqfd[1] = 0;
  2315. end_rffd[1] = 0;
  2316. window_found = FALSE;
  2317. max_pass_length = 0;
  2318. max_start = 0;
  2319. max_end = 0;
  2320. current_pass_length = 0;
  2321. current_fail_length = 0;
  2322. current_start = 0;
  2323. window_found = FALSE;
  2324. fail_found = FALSE;
  2325. pass_found = FALSE;
  2326. /*
  2327. * get the delay line calibration register value
  2328. */
  2329. mfsdram(SDRAM_DLCR, dlycal);
  2330. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2331. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2332. mfsdram(SDRAM_RFDC, rfdc_reg);
  2333. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2334. /*------------------------------------------------------------------
  2335. * Set the timing reg for the test.
  2336. *-----------------------------------------------------------------*/
  2337. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2338. /*------------------------------------------------------------------
  2339. * See if the rffd value passed.
  2340. *-----------------------------------------------------------------*/
  2341. if (short_mem_test()) {
  2342. if (fail_found == TRUE) {
  2343. pass_found = TRUE;
  2344. if (current_pass_length == 0)
  2345. current_start = rffd;
  2346. current_fail_length = 0;
  2347. current_pass_length++;
  2348. if (current_pass_length > max_pass_length) {
  2349. max_pass_length = current_pass_length;
  2350. max_start = current_start;
  2351. max_end = rffd;
  2352. }
  2353. }
  2354. } else {
  2355. current_pass_length = 0;
  2356. current_fail_length++;
  2357. if (current_fail_length >= (dly_val >> 2)) {
  2358. if (fail_found == FALSE) {
  2359. fail_found = TRUE;
  2360. } else if (pass_found == TRUE) {
  2361. window_found = TRUE;
  2362. break;
  2363. }
  2364. }
  2365. }
  2366. } /* for rffd */
  2367. /*------------------------------------------------------------------
  2368. * Set the average RFFD value
  2369. *-----------------------------------------------------------------*/
  2370. rffd_average = ((max_start + max_end) >> 1);
  2371. if (rffd_average < 0)
  2372. rffd_average = 0;
  2373. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2374. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2375. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2376. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2377. max_pass_length = 0;
  2378. max_start = 0;
  2379. max_end = 0;
  2380. current_pass_length = 0;
  2381. current_fail_length = 0;
  2382. current_start = 0;
  2383. window_found = FALSE;
  2384. fail_found = FALSE;
  2385. pass_found = FALSE;
  2386. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2387. mfsdram(SDRAM_RQDC, rqdc_reg);
  2388. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2389. /*------------------------------------------------------------------
  2390. * Set the timing reg for the test.
  2391. *-----------------------------------------------------------------*/
  2392. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2393. /*------------------------------------------------------------------
  2394. * See if the rffd value passed.
  2395. *-----------------------------------------------------------------*/
  2396. if (short_mem_test()) {
  2397. if (fail_found == TRUE) {
  2398. pass_found = TRUE;
  2399. if (current_pass_length == 0)
  2400. current_start = rqfd;
  2401. current_fail_length = 0;
  2402. current_pass_length++;
  2403. if (current_pass_length > max_pass_length) {
  2404. max_pass_length = current_pass_length;
  2405. max_start = current_start;
  2406. max_end = rqfd;
  2407. }
  2408. }
  2409. } else {
  2410. current_pass_length = 0;
  2411. current_fail_length++;
  2412. if (fail_found == FALSE) {
  2413. fail_found = TRUE;
  2414. } else if (pass_found == TRUE) {
  2415. window_found = TRUE;
  2416. break;
  2417. }
  2418. }
  2419. }
  2420. rqfd_average = ((max_start + max_end) >> 1);
  2421. /*------------------------------------------------------------------
  2422. * Make sure we found the valid read passing window. Halt if not
  2423. *-----------------------------------------------------------------*/
  2424. if (window_found == FALSE) {
  2425. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2426. putc('\b');
  2427. putc(slash[loopi++ % 8]);
  2428. /* try again from with a different RQFD start value */
  2429. rqfd_start++;
  2430. goto calibration_loop;
  2431. }
  2432. printf("\nERROR: Cannot determine a common read delay for the "
  2433. "DIMM(s) installed.\n");
  2434. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2435. spd_ddr_init_hang ();
  2436. }
  2437. blank_string(strlen(str));
  2438. if (rqfd_average < 0)
  2439. rqfd_average = 0;
  2440. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2441. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2442. mtsdram(SDRAM_RQDC,
  2443. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2444. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2445. mfsdram(SDRAM_DLCR, val);
  2446. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2447. mfsdram(SDRAM_RQDC, val);
  2448. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2449. mfsdram(SDRAM_RFDC, val);
  2450. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2451. }
  2452. #else /* calibration test with hardvalues */
  2453. /*-----------------------------------------------------------------------------+
  2454. * DQS_calibration_process.
  2455. *-----------------------------------------------------------------------------*/
  2456. static void test(void)
  2457. {
  2458. unsigned long dimm_num;
  2459. unsigned long ecc_temp;
  2460. unsigned long i, j;
  2461. unsigned long *membase;
  2462. unsigned long bxcf[MAXRANKS];
  2463. unsigned long val;
  2464. char window_found;
  2465. char begin_found[MAXDIMMS];
  2466. char end_found[MAXDIMMS];
  2467. char search_end[MAXDIMMS];
  2468. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2469. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2470. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2471. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2472. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2473. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2474. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2475. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2476. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2477. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2478. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2479. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2480. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2481. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2482. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2483. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2484. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2485. /*------------------------------------------------------------------
  2486. * Test to determine the best read clock delay tuning bits.
  2487. *
  2488. * Before the DDR controller can be used, the read clock delay needs to be
  2489. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2490. * This value cannot be hardcoded into the program because it changes
  2491. * depending on the board's setup and environment.
  2492. * To do this, all delay values are tested to see if they
  2493. * work or not. By doing this, you get groups of fails with groups of
  2494. * passing values. The idea is to find the start and end of a passing
  2495. * window and take the center of it to use as the read clock delay.
  2496. *
  2497. * A failure has to be seen first so that when we hit a pass, we know
  2498. * that it is truely the start of the window. If we get passing values
  2499. * to start off with, we don't know if we are at the start of the window.
  2500. *
  2501. * The code assumes that a failure will always be found.
  2502. * If a failure is not found, there is no easy way to get the middle
  2503. * of the passing window. I guess we can pretty much pick any value
  2504. * but some values will be better than others. Since the lowest speed
  2505. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2506. * from experimentation it is safe to say you will always have a failure.
  2507. *-----------------------------------------------------------------*/
  2508. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2509. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2510. mfsdram(SDRAM_MCOPT1, val);
  2511. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2512. SDRAM_MCOPT1_MCHK_NON);
  2513. window_found = FALSE;
  2514. begin_found[0] = FALSE;
  2515. end_found[0] = FALSE;
  2516. search_end[0] = FALSE;
  2517. begin_found[1] = FALSE;
  2518. end_found[1] = FALSE;
  2519. search_end[1] = FALSE;
  2520. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2521. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2522. /* Banks enabled */
  2523. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2524. /* Bank is enabled */
  2525. membase =
  2526. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2527. /*------------------------------------------------------------------
  2528. * Run the short memory test.
  2529. *-----------------------------------------------------------------*/
  2530. for (i = 0; i < NUMMEMTESTS; i++) {
  2531. for (j = 0; j < NUMMEMWORDS; j++) {
  2532. membase[j] = test[i][j];
  2533. ppcDcbf((u32)&(membase[j]));
  2534. }
  2535. sync();
  2536. for (j = 0; j < NUMMEMWORDS; j++) {
  2537. if (membase[j] != test[i][j]) {
  2538. ppcDcbf((u32)&(membase[j]));
  2539. break;
  2540. }
  2541. ppcDcbf((u32)&(membase[j]));
  2542. }
  2543. sync();
  2544. if (j < NUMMEMWORDS)
  2545. break;
  2546. }
  2547. /*------------------------------------------------------------------
  2548. * See if the rffd value passed.
  2549. *-----------------------------------------------------------------*/
  2550. if (i < NUMMEMTESTS) {
  2551. if ((end_found[dimm_num] == FALSE) &&
  2552. (search_end[dimm_num] == TRUE)) {
  2553. end_found[dimm_num] = TRUE;
  2554. }
  2555. if ((end_found[0] == TRUE) &&
  2556. (end_found[1] == TRUE))
  2557. break;
  2558. } else {
  2559. if (begin_found[dimm_num] == FALSE) {
  2560. begin_found[dimm_num] = TRUE;
  2561. search_end[dimm_num] = TRUE;
  2562. }
  2563. }
  2564. } else {
  2565. begin_found[dimm_num] = TRUE;
  2566. end_found[dimm_num] = TRUE;
  2567. }
  2568. }
  2569. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2570. window_found = TRUE;
  2571. /*------------------------------------------------------------------
  2572. * Make sure we found the valid read passing window. Halt if not
  2573. *-----------------------------------------------------------------*/
  2574. if (window_found == FALSE) {
  2575. printf("ERROR: Cannot determine a common read delay for the "
  2576. "DIMM(s) installed.\n");
  2577. spd_ddr_init_hang ();
  2578. }
  2579. /*------------------------------------------------------------------
  2580. * Restore the ECC variable to what it originally was
  2581. *-----------------------------------------------------------------*/
  2582. mtsdram(SDRAM_MCOPT1,
  2583. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2584. | ecc_temp);
  2585. }
  2586. #endif
  2587. #if defined(DEBUG)
  2588. static void ppc440sp_sdram_register_dump(void)
  2589. {
  2590. unsigned int sdram_reg;
  2591. unsigned int sdram_data;
  2592. unsigned int dcr_data;
  2593. printf("\n Register Dump:\n");
  2594. sdram_reg = SDRAM_MCSTAT;
  2595. mfsdram(sdram_reg, sdram_data);
  2596. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2597. sdram_reg = SDRAM_MCOPT1;
  2598. mfsdram(sdram_reg, sdram_data);
  2599. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2600. sdram_reg = SDRAM_MCOPT2;
  2601. mfsdram(sdram_reg, sdram_data);
  2602. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2603. sdram_reg = SDRAM_MODT0;
  2604. mfsdram(sdram_reg, sdram_data);
  2605. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2606. sdram_reg = SDRAM_MODT1;
  2607. mfsdram(sdram_reg, sdram_data);
  2608. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2609. sdram_reg = SDRAM_MODT2;
  2610. mfsdram(sdram_reg, sdram_data);
  2611. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2612. sdram_reg = SDRAM_MODT3;
  2613. mfsdram(sdram_reg, sdram_data);
  2614. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2615. sdram_reg = SDRAM_CODT;
  2616. mfsdram(sdram_reg, sdram_data);
  2617. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2618. sdram_reg = SDRAM_VVPR;
  2619. mfsdram(sdram_reg, sdram_data);
  2620. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2621. sdram_reg = SDRAM_OPARS;
  2622. mfsdram(sdram_reg, sdram_data);
  2623. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2624. /*
  2625. * OPAR2 is only used as a trigger register.
  2626. * No data is contained in this register, and reading or writing
  2627. * to is can cause bad things to happen (hangs). Just skip it
  2628. * and report NA
  2629. * sdram_reg = SDRAM_OPAR2;
  2630. * mfsdram(sdram_reg, sdram_data);
  2631. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2632. */
  2633. printf(" SDRAM_OPART = N/A ");
  2634. sdram_reg = SDRAM_RTR;
  2635. mfsdram(sdram_reg, sdram_data);
  2636. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2637. sdram_reg = SDRAM_MB0CF;
  2638. mfsdram(sdram_reg, sdram_data);
  2639. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2640. sdram_reg = SDRAM_MB1CF;
  2641. mfsdram(sdram_reg, sdram_data);
  2642. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2643. sdram_reg = SDRAM_MB2CF;
  2644. mfsdram(sdram_reg, sdram_data);
  2645. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2646. sdram_reg = SDRAM_MB3CF;
  2647. mfsdram(sdram_reg, sdram_data);
  2648. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2649. sdram_reg = SDRAM_INITPLR0;
  2650. mfsdram(sdram_reg, sdram_data);
  2651. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2652. sdram_reg = SDRAM_INITPLR1;
  2653. mfsdram(sdram_reg, sdram_data);
  2654. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2655. sdram_reg = SDRAM_INITPLR2;
  2656. mfsdram(sdram_reg, sdram_data);
  2657. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2658. sdram_reg = SDRAM_INITPLR3;
  2659. mfsdram(sdram_reg, sdram_data);
  2660. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2661. sdram_reg = SDRAM_INITPLR4;
  2662. mfsdram(sdram_reg, sdram_data);
  2663. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2664. sdram_reg = SDRAM_INITPLR5;
  2665. mfsdram(sdram_reg, sdram_data);
  2666. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2667. sdram_reg = SDRAM_INITPLR6;
  2668. mfsdram(sdram_reg, sdram_data);
  2669. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2670. sdram_reg = SDRAM_INITPLR7;
  2671. mfsdram(sdram_reg, sdram_data);
  2672. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2673. sdram_reg = SDRAM_INITPLR8;
  2674. mfsdram(sdram_reg, sdram_data);
  2675. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2676. sdram_reg = SDRAM_INITPLR9;
  2677. mfsdram(sdram_reg, sdram_data);
  2678. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2679. sdram_reg = SDRAM_INITPLR10;
  2680. mfsdram(sdram_reg, sdram_data);
  2681. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2682. sdram_reg = SDRAM_INITPLR11;
  2683. mfsdram(sdram_reg, sdram_data);
  2684. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2685. sdram_reg = SDRAM_INITPLR12;
  2686. mfsdram(sdram_reg, sdram_data);
  2687. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2688. sdram_reg = SDRAM_INITPLR13;
  2689. mfsdram(sdram_reg, sdram_data);
  2690. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2691. sdram_reg = SDRAM_INITPLR14;
  2692. mfsdram(sdram_reg, sdram_data);
  2693. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2694. sdram_reg = SDRAM_INITPLR15;
  2695. mfsdram(sdram_reg, sdram_data);
  2696. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2697. sdram_reg = SDRAM_RQDC;
  2698. mfsdram(sdram_reg, sdram_data);
  2699. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2700. sdram_reg = SDRAM_RFDC;
  2701. mfsdram(sdram_reg, sdram_data);
  2702. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2703. sdram_reg = SDRAM_RDCC;
  2704. mfsdram(sdram_reg, sdram_data);
  2705. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2706. sdram_reg = SDRAM_DLCR;
  2707. mfsdram(sdram_reg, sdram_data);
  2708. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2709. sdram_reg = SDRAM_CLKTR;
  2710. mfsdram(sdram_reg, sdram_data);
  2711. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2712. sdram_reg = SDRAM_WRDTR;
  2713. mfsdram(sdram_reg, sdram_data);
  2714. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2715. sdram_reg = SDRAM_SDTR1;
  2716. mfsdram(sdram_reg, sdram_data);
  2717. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2718. sdram_reg = SDRAM_SDTR2;
  2719. mfsdram(sdram_reg, sdram_data);
  2720. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2721. sdram_reg = SDRAM_SDTR3;
  2722. mfsdram(sdram_reg, sdram_data);
  2723. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2724. sdram_reg = SDRAM_MMODE;
  2725. mfsdram(sdram_reg, sdram_data);
  2726. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2727. sdram_reg = SDRAM_MEMODE;
  2728. mfsdram(sdram_reg, sdram_data);
  2729. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2730. sdram_reg = SDRAM_ECCCR;
  2731. mfsdram(sdram_reg, sdram_data);
  2732. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2733. dcr_data = mfdcr(SDRAM_R0BAS);
  2734. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2735. dcr_data = mfdcr(SDRAM_R1BAS);
  2736. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2737. dcr_data = mfdcr(SDRAM_R2BAS);
  2738. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2739. dcr_data = mfdcr(SDRAM_R3BAS);
  2740. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2741. }
  2742. #endif
  2743. #endif /* CONFIG_SPD_EEPROM */