cpu.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
  3. *
  4. * See file CREDITS for list of people who contributed to this
  5. * project.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License as
  9. * published by the Free Software Foundation; either version 2 of
  10. * the License, or (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  20. * MA 02111-1307 USA
  21. */
  22. /*
  23. * CPU specific code for the MPC83xx family.
  24. *
  25. * Derived from the MPC8260 and MPC85xx.
  26. */
  27. #include <common.h>
  28. #include <watchdog.h>
  29. #include <command.h>
  30. #include <mpc83xx.h>
  31. #include <asm/processor.h>
  32. #if defined(CONFIG_OF_FLAT_TREE)
  33. #include <ft_build.h>
  34. #elif defined(CONFIG_OF_LIBFDT)
  35. #include <libfdt.h>
  36. #include <libfdt_env.h>
  37. #endif
  38. DECLARE_GLOBAL_DATA_PTR;
  39. int checkcpu(void)
  40. {
  41. volatile immap_t *immr;
  42. ulong clock = gd->cpu_clk;
  43. u32 pvr = get_pvr();
  44. u32 spridr;
  45. char buf[32];
  46. immr = (immap_t *)CFG_IMMR;
  47. puts("CPU: ");
  48. switch (pvr & 0xffff0000) {
  49. case PVR_E300C1:
  50. printf("e300c1, ");
  51. break;
  52. case PVR_E300C2:
  53. printf("e300c2, ");
  54. break;
  55. case PVR_E300C3:
  56. printf("e300c3, ");
  57. break;
  58. default:
  59. printf("Unknown core, ");
  60. }
  61. spridr = immr->sysconf.spridr;
  62. switch(spridr) {
  63. case SPR_8349E_REV10:
  64. case SPR_8349E_REV11:
  65. case SPR_8349E_REV31:
  66. puts("MPC8349E, ");
  67. break;
  68. case SPR_8349_REV10:
  69. case SPR_8349_REV11:
  70. case SPR_8349_REV31:
  71. puts("MPC8349, ");
  72. break;
  73. case SPR_8347E_REV10_TBGA:
  74. case SPR_8347E_REV11_TBGA:
  75. case SPR_8347E_REV31_TBGA:
  76. case SPR_8347E_REV10_PBGA:
  77. case SPR_8347E_REV11_PBGA:
  78. case SPR_8347E_REV31_PBGA:
  79. puts("MPC8347E, ");
  80. break;
  81. case SPR_8347_REV10_TBGA:
  82. case SPR_8347_REV11_TBGA:
  83. case SPR_8347_REV31_TBGA:
  84. case SPR_8347_REV10_PBGA:
  85. case SPR_8347_REV11_PBGA:
  86. case SPR_8347_REV31_PBGA:
  87. puts("MPC8347, ");
  88. break;
  89. case SPR_8343E_REV10:
  90. case SPR_8343E_REV11:
  91. case SPR_8343E_REV31:
  92. puts("MPC8343E, ");
  93. break;
  94. case SPR_8343_REV10:
  95. case SPR_8343_REV11:
  96. case SPR_8343_REV31:
  97. puts("MPC8343, ");
  98. break;
  99. case SPR_8360E_REV10:
  100. case SPR_8360E_REV11:
  101. case SPR_8360E_REV12:
  102. case SPR_8360E_REV20:
  103. case SPR_8360E_REV21:
  104. puts("MPC8360E, ");
  105. break;
  106. case SPR_8360_REV10:
  107. case SPR_8360_REV11:
  108. case SPR_8360_REV12:
  109. case SPR_8360_REV20:
  110. case SPR_8360_REV21:
  111. puts("MPC8360, ");
  112. break;
  113. case SPR_8323E_REV10:
  114. case SPR_8323E_REV11:
  115. puts("MPC8323E, ");
  116. break;
  117. case SPR_8323_REV10:
  118. case SPR_8323_REV11:
  119. puts("MPC8323, ");
  120. break;
  121. case SPR_8321E_REV10:
  122. case SPR_8321E_REV11:
  123. puts("MPC8321E, ");
  124. break;
  125. case SPR_8321_REV10:
  126. case SPR_8321_REV11:
  127. puts("MPC8321, ");
  128. break;
  129. case SPR_8311_REV10:
  130. puts("MPC8311, ");
  131. break;
  132. case SPR_8311E_REV10:
  133. puts("MPC8311E, ");
  134. break;
  135. case SPR_8313_REV10:
  136. puts("MPC8313, ");
  137. break;
  138. case SPR_8313E_REV10:
  139. puts("MPC8313E, ");
  140. break;
  141. default:
  142. printf("Rev: Unknown revision number:%08x\n"
  143. "Warning: Unsupported cpu revision!\n",spridr);
  144. return 0;
  145. }
  146. #if defined(CONFIG_MPC834X)
  147. /* Multiple revisons of 834x processors may have the same SPRIDR value.
  148. * So use PVR to identify the revision number.
  149. */
  150. printf("Rev: %02x at %s MHz", PVR_MAJ(pvr)<<4 | PVR_MIN(pvr), strmhz(buf, clock));
  151. #else
  152. printf("Rev: %02x at %s MHz", spridr & 0x0000FFFF, strmhz(buf, clock));
  153. #endif
  154. printf(", CSB: %4d MHz\n", gd->csb_clk / 1000000);
  155. return 0;
  156. }
  157. /*
  158. * Program a UPM with the code supplied in the table.
  159. *
  160. * The 'dummy' variable is used to increment the MAD. 'dummy' is
  161. * supposed to be a pointer to the memory of the device being
  162. * programmed by the UPM. The data in the MDR is written into
  163. * memory and the MAD is incremented every time there's a read
  164. * from 'dummy'. Unfortunately, the current prototype for this
  165. * function doesn't allow for passing the address of this
  166. * device, and changing the prototype will break a number lots
  167. * of other code, so we need to use a round-about way of finding
  168. * the value for 'dummy'.
  169. *
  170. * The value can be extracted from the base address bits of the
  171. * Base Register (BR) associated with the specific UPM. To find
  172. * that BR, we need to scan all 8 BRs until we find the one that
  173. * has its MSEL bits matching the UPM we want. Once we know the
  174. * right BR, we can extract the base address bits from it.
  175. *
  176. * The MxMR and the BR and OR of the chosen bank should all be
  177. * configured before calling this function.
  178. *
  179. * Parameters:
  180. * upm: 0=UPMA, 1=UPMB, 2=UPMC
  181. * table: Pointer to an array of values to program
  182. * size: Number of elements in the array. Must be 64 or less.
  183. */
  184. void upmconfig (uint upm, uint *table, uint size)
  185. {
  186. #if defined(CONFIG_MPC834X)
  187. volatile immap_t *immap = (immap_t *) CFG_IMMR;
  188. volatile lbus83xx_t *lbus = &immap->lbus;
  189. volatile uchar *dummy = NULL;
  190. const u32 msel = (upm + 4) << BR_MSEL_SHIFT; /* What the MSEL field in BRn should be */
  191. volatile u32 *mxmr = &lbus->mamr + upm; /* Pointer to mamr, mbmr, or mcmr */
  192. uint i;
  193. /* Scan all the banks to determine the base address of the device */
  194. for (i = 0; i < 8; i++) {
  195. if ((lbus->bank[i].br & BR_MSEL) == msel) {
  196. dummy = (uchar *) (lbus->bank[i].br & BR_BA);
  197. break;
  198. }
  199. }
  200. if (!dummy) {
  201. printf("Error: %s() could not find matching BR\n", __FUNCTION__);
  202. hang();
  203. }
  204. /* Set the OP field in the MxMR to "write" and the MAD field to 000000 */
  205. *mxmr = (*mxmr & 0xCFFFFFC0) | 0x10000000;
  206. for (i = 0; i < size; i++) {
  207. lbus->mdr = table[i];
  208. __asm__ __volatile__ ("sync");
  209. *dummy; /* Write the value to memory and increment MAD */
  210. __asm__ __volatile__ ("sync");
  211. }
  212. /* Set the OP field in the MxMR to "normal" and the MAD field to 000000 */
  213. *mxmr &= 0xCFFFFFC0;
  214. #else
  215. printf("Error: %s() not defined for this configuration.\n", __FUNCTION__);
  216. hang();
  217. #endif
  218. }
  219. int
  220. do_reset (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
  221. {
  222. ulong msr;
  223. #ifndef MPC83xx_RESET
  224. ulong addr;
  225. #endif
  226. volatile immap_t *immap = (immap_t *) CFG_IMMR;
  227. #ifdef MPC83xx_RESET
  228. /* Interrupts and MMU off */
  229. __asm__ __volatile__ ("mfmsr %0":"=r" (msr):);
  230. msr &= ~( MSR_EE | MSR_IR | MSR_DR);
  231. __asm__ __volatile__ ("mtmsr %0"::"r" (msr));
  232. /* enable Reset Control Reg */
  233. immap->reset.rpr = 0x52535445;
  234. __asm__ __volatile__ ("sync");
  235. __asm__ __volatile__ ("isync");
  236. /* confirm Reset Control Reg is enabled */
  237. while(!((immap->reset.rcer) & RCER_CRE));
  238. printf("Resetting the board.");
  239. printf("\n");
  240. udelay(200);
  241. /* perform reset, only one bit */
  242. immap->reset.rcr = RCR_SWHR;
  243. #else /* ! MPC83xx_RESET */
  244. immap->reset.rmr = RMR_CSRE; /* Checkstop Reset enable */
  245. /* Interrupts and MMU off */
  246. __asm__ __volatile__ ("mfmsr %0":"=r" (msr):);
  247. msr &= ~(MSR_ME | MSR_EE | MSR_IR | MSR_DR);
  248. __asm__ __volatile__ ("mtmsr %0"::"r" (msr));
  249. /*
  250. * Trying to execute the next instruction at a non-existing address
  251. * should cause a machine check, resulting in reset
  252. */
  253. addr = CFG_RESET_ADDRESS;
  254. printf("resetting the board.");
  255. printf("\n");
  256. ((void (*)(void)) addr) ();
  257. #endif /* MPC83xx_RESET */
  258. return 1;
  259. }
  260. /*
  261. * Get timebase clock frequency (like cpu_clk in Hz)
  262. */
  263. unsigned long get_tbclk(void)
  264. {
  265. ulong tbclk;
  266. tbclk = (gd->bus_clk + 3L) / 4L;
  267. return tbclk;
  268. }
  269. #if defined(CONFIG_WATCHDOG)
  270. void watchdog_reset (void)
  271. {
  272. int re_enable = disable_interrupts();
  273. /* Reset the 83xx watchdog */
  274. volatile immap_t *immr = (immap_t *) CFG_IMMR;
  275. immr->wdt.swsrr = 0x556c;
  276. immr->wdt.swsrr = 0xaa39;
  277. if (re_enable)
  278. enable_interrupts ();
  279. }
  280. #endif
  281. #if defined(CONFIG_OF_LIBFDT)
  282. /*
  283. * "Setter" functions used to add/modify FDT entries.
  284. */
  285. static int fdt_set_eth0(void *blob, int nodeoffset, const char *name, bd_t *bd)
  286. {
  287. /*
  288. * Fix it up if it exists, don't create it if it doesn't exist.
  289. */
  290. if (fdt_get_property(blob, nodeoffset, name, 0)) {
  291. return fdt_setprop(blob, nodeoffset, name, bd->bi_enetaddr, 6);
  292. }
  293. return 0;
  294. }
  295. #ifdef CONFIG_HAS_ETH1
  296. /* second onboard ethernet port */
  297. static int fdt_set_eth1(void *blob, int nodeoffset, const char *name, bd_t *bd)
  298. {
  299. /*
  300. * Fix it up if it exists, don't create it if it doesn't exist.
  301. */
  302. if (fdt_get_property(blob, nodeoffset, name, 0)) {
  303. return fdt_setprop(blob, nodeoffset, name, bd->bi_enet1addr, 6);
  304. }
  305. return 0;
  306. }
  307. #endif
  308. #ifdef CONFIG_HAS_ETH2
  309. /* third onboard ethernet port */
  310. static int fdt_set_eth2(void *blob, int nodeoffset, const char *name, bd_t *bd)
  311. {
  312. /*
  313. * Fix it up if it exists, don't create it if it doesn't exist.
  314. */
  315. if (fdt_get_property(blob, nodeoffset, name, 0)) {
  316. return fdt_setprop(blob, nodeoffset, name, bd->bi_enet2addr, 6);
  317. }
  318. return 0;
  319. }
  320. #endif
  321. #ifdef CONFIG_HAS_ETH3
  322. /* fourth onboard ethernet port */
  323. static int fdt_set_eth3(void *blob, int nodeoffset, const char *name, bd_t *bd)
  324. {
  325. /*
  326. * Fix it up if it exists, don't create it if it doesn't exist.
  327. */
  328. if (fdt_get_property(blob, nodeoffset, name, 0)) {
  329. return fdt_setprop(blob, nodeoffset, name, bd->bi_enet3addr, 6);
  330. }
  331. return 0;
  332. }
  333. #endif
  334. static int fdt_set_busfreq(void *blob, int nodeoffset, const char *name, bd_t *bd)
  335. {
  336. u32 tmp;
  337. /*
  338. * Create or update the property.
  339. */
  340. tmp = cpu_to_be32(bd->bi_busfreq);
  341. return fdt_setprop(blob, nodeoffset, name, &tmp, sizeof(tmp));
  342. }
  343. static int fdt_set_tbfreq(void *blob, int nodeoffset, const char *name, bd_t *bd)
  344. {
  345. u32 tmp;
  346. /*
  347. * Create or update the property.
  348. */
  349. tmp = cpu_to_be32(OF_TBCLK);
  350. return fdt_setprop(blob, nodeoffset, name, &tmp, sizeof(tmp));
  351. }
  352. /*
  353. * Fixups to the fdt.
  354. */
  355. static const struct {
  356. char *node;
  357. char *prop;
  358. int (*set_fn)(void *blob, int nodeoffset, const char *name, bd_t *bd);
  359. } fixup_props[] = {
  360. { "/cpus/" OF_CPU,
  361. "timebase-frequency",
  362. fdt_set_tbfreq
  363. },
  364. { "/cpus/" OF_CPU,
  365. "bus-frequency",
  366. fdt_set_busfreq
  367. },
  368. { "/cpus/" OF_CPU,
  369. "clock-frequency",
  370. fdt_set_busfreq
  371. },
  372. { "/" OF_SOC "/serial@4500",
  373. "clock-frequency",
  374. fdt_set_busfreq
  375. },
  376. { "/" OF_SOC "/serial@4600",
  377. "clock-frequency",
  378. fdt_set_busfreq
  379. },
  380. #ifdef CONFIG_TSEC1
  381. { "/" OF_SOC "/ethernet@24000",
  382. "mac-address",
  383. fdt_set_eth0
  384. },
  385. { "/" OF_SOC "/ethernet@24000",
  386. "local-mac-address",
  387. fdt_set_eth0
  388. },
  389. #endif
  390. #ifdef CONFIG_TSEC2
  391. { "/" OF_SOC "/ethernet@25000",
  392. "mac-address",
  393. fdt_set_eth1
  394. },
  395. { "/" OF_SOC "/ethernet@25000",
  396. "local-mac-address",
  397. fdt_set_eth1
  398. },
  399. #endif
  400. #ifdef CONFIG_UEC_ETH1
  401. #if CFG_UEC1_UCC_NUM == 0 /* UCC1 */
  402. { "/" OF_QE "/ucc@2000",
  403. "mac-address",
  404. fdt_set_eth0
  405. },
  406. { "/" OF_QE "/ucc@2000",
  407. "local-mac-address",
  408. fdt_set_eth0
  409. },
  410. #elif CFG_UEC1_UCC_NUM == 2 /* UCC3 */
  411. { "/" OF_QE "/ucc@2200",
  412. "mac-address",
  413. fdt_set_eth0
  414. },
  415. { "/" OF_QE "/ucc@2200",
  416. "local-mac-address",
  417. fdt_set_eth0
  418. },
  419. #endif
  420. #endif /* CONFIG_UEC_ETH1 */
  421. #ifdef CONFIG_UEC_ETH2
  422. #if CFG_UEC2_UCC_NUM == 1 /* UCC2 */
  423. { "/" OF_QE "/ucc@3000",
  424. "mac-address",
  425. fdt_set_eth1
  426. },
  427. { "/" OF_QE "/ucc@3000",
  428. "local-mac-address",
  429. fdt_set_eth1
  430. },
  431. #elif CFG_UEC1_UCC_NUM == 3 /* UCC4 */
  432. { "/" OF_QE "/ucc@3200",
  433. "mac-address",
  434. fdt_set_eth1
  435. },
  436. { "/" OF_QE "/ucc@3200",
  437. "local-mac-address",
  438. fdt_set_eth1
  439. },
  440. #endif
  441. #endif /* CONFIG_UEC_ETH2 */
  442. };
  443. void
  444. ft_cpu_setup(void *blob, bd_t *bd)
  445. {
  446. int nodeoffset;
  447. int err;
  448. int j;
  449. for (j = 0; j < (sizeof(fixup_props) / sizeof(fixup_props[0])); j++) {
  450. nodeoffset = fdt_find_node_by_path(blob, fixup_props[j].node);
  451. if (nodeoffset >= 0) {
  452. err = fixup_props[j].set_fn(blob, nodeoffset,
  453. fixup_props[j].prop, bd);
  454. if (err < 0)
  455. debug("Problem setting %s = %s: %s\n",
  456. fixup_props[j].node,
  457. fixup_props[j].prop,
  458. fdt_strerror(err));
  459. } else {
  460. debug("Couldn't find %s: %s\n",
  461. fixup_props[j].node,
  462. fdt_strerror(nodeoffset));
  463. }
  464. }
  465. }
  466. #elif defined(CONFIG_OF_FLAT_TREE)
  467. void
  468. ft_cpu_setup(void *blob, bd_t *bd)
  469. {
  470. u32 *p;
  471. int len;
  472. ulong clock;
  473. clock = bd->bi_busfreq;
  474. p = ft_get_prop(blob, "/cpus/" OF_CPU "/bus-frequency", &len);
  475. if (p != NULL)
  476. *p = cpu_to_be32(clock);
  477. p = ft_get_prop(blob, "/" OF_SOC "/bus-frequency", &len);
  478. if (p != NULL)
  479. *p = cpu_to_be32(clock);
  480. p = ft_get_prop(blob, "/" OF_SOC "/serial@4500/clock-frequency", &len);
  481. if (p != NULL)
  482. *p = cpu_to_be32(clock);
  483. p = ft_get_prop(blob, "/" OF_SOC "/serial@4600/clock-frequency", &len);
  484. if (p != NULL)
  485. *p = cpu_to_be32(clock);
  486. #ifdef CONFIG_TSEC1
  487. p = ft_get_prop(blob, "/" OF_SOC "/ethernet@24000/mac-address", &len);
  488. if (p != NULL)
  489. memcpy(p, bd->bi_enetaddr, 6);
  490. p = ft_get_prop(blob, "/" OF_SOC "/ethernet@24000/local-mac-address", &len);
  491. if (p != NULL)
  492. memcpy(p, bd->bi_enetaddr, 6);
  493. #endif
  494. #ifdef CONFIG_TSEC2
  495. p = ft_get_prop(blob, "/" OF_SOC "/ethernet@25000/mac-address", &len);
  496. if (p != NULL)
  497. memcpy(p, bd->bi_enet1addr, 6);
  498. p = ft_get_prop(blob, "/" OF_SOC "/ethernet@25000/local-mac-address", &len);
  499. if (p != NULL)
  500. memcpy(p, bd->bi_enet1addr, 6);
  501. #endif
  502. #ifdef CONFIG_UEC_ETH1
  503. #if CFG_UEC1_UCC_NUM == 0 /* UCC1 */
  504. p = ft_get_prop(blob, "/" OF_QE "/ucc@2000/mac-address", &len);
  505. if (p != NULL)
  506. memcpy(p, bd->bi_enetaddr, 6);
  507. p = ft_get_prop(blob, "/" OF_QE "/ucc@2000/local-mac-address", &len);
  508. if (p != NULL)
  509. memcpy(p, bd->bi_enetaddr, 6);
  510. #elif CFG_UEC1_UCC_NUM == 2 /* UCC3 */
  511. p = ft_get_prop(blob, "/" OF_QE "/ucc@2200/mac-address", &len);
  512. if (p != NULL)
  513. memcpy(p, bd->bi_enetaddr, 6);
  514. p = ft_get_prop(blob, "/" OF_QE "/ucc@2200/local-mac-address", &len);
  515. if (p != NULL)
  516. memcpy(p, bd->bi_enetaddr, 6);
  517. #endif
  518. #endif
  519. #ifdef CONFIG_UEC_ETH2
  520. #if CFG_UEC2_UCC_NUM == 1 /* UCC2 */
  521. p = ft_get_prop(blob, "/" OF_QE "/ucc@3000/mac-address", &len);
  522. if (p != NULL)
  523. memcpy(p, bd->bi_enet1addr, 6);
  524. p = ft_get_prop(blob, "/" OF_QE "/ucc@3000/local-mac-address", &len);
  525. if (p != NULL)
  526. memcpy(p, bd->bi_enet1addr, 6);
  527. #elif CFG_UEC2_UCC_NUM == 3 /* UCC4 */
  528. p = ft_get_prop(blob, "/" OF_QE "/ucc@3200/mac-address", &len);
  529. if (p != NULL)
  530. memcpy(p, bd->bi_enet1addr, 6);
  531. p = ft_get_prop(blob, "/" OF_QE "/ucc@3200/local-mac-address", &len);
  532. if (p != NULL)
  533. memcpy(p, bd->bi_enet1addr, 6);
  534. #endif
  535. #endif
  536. }
  537. #endif
  538. #if defined(CONFIG_DDR_ECC)
  539. void dma_init(void)
  540. {
  541. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  542. volatile dma83xx_t *dma = &immap->dma;
  543. volatile u32 status = swab32(dma->dmasr0);
  544. volatile u32 dmamr0 = swab32(dma->dmamr0);
  545. debug("DMA-init\n");
  546. /* initialize DMASARn, DMADAR and DMAABCRn */
  547. dma->dmadar0 = (u32)0;
  548. dma->dmasar0 = (u32)0;
  549. dma->dmabcr0 = 0;
  550. __asm__ __volatile__ ("sync");
  551. __asm__ __volatile__ ("isync");
  552. /* clear CS bit */
  553. dmamr0 &= ~DMA_CHANNEL_START;
  554. dma->dmamr0 = swab32(dmamr0);
  555. __asm__ __volatile__ ("sync");
  556. __asm__ __volatile__ ("isync");
  557. /* while the channel is busy, spin */
  558. while(status & DMA_CHANNEL_BUSY) {
  559. status = swab32(dma->dmasr0);
  560. }
  561. debug("DMA-init end\n");
  562. }
  563. uint dma_check(void)
  564. {
  565. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  566. volatile dma83xx_t *dma = &immap->dma;
  567. volatile u32 status = swab32(dma->dmasr0);
  568. volatile u32 byte_count = swab32(dma->dmabcr0);
  569. /* while the channel is busy, spin */
  570. while (status & DMA_CHANNEL_BUSY) {
  571. status = swab32(dma->dmasr0);
  572. }
  573. if (status & DMA_CHANNEL_TRANSFER_ERROR) {
  574. printf ("DMA Error: status = %x @ %d\n", status, byte_count);
  575. }
  576. return status;
  577. }
  578. int dma_xfer(void *dest, u32 count, void *src)
  579. {
  580. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  581. volatile dma83xx_t *dma = &immap->dma;
  582. volatile u32 dmamr0;
  583. /* initialize DMASARn, DMADAR and DMAABCRn */
  584. dma->dmadar0 = swab32((u32)dest);
  585. dma->dmasar0 = swab32((u32)src);
  586. dma->dmabcr0 = swab32(count);
  587. __asm__ __volatile__ ("sync");
  588. __asm__ __volatile__ ("isync");
  589. /* init direct transfer, clear CS bit */
  590. dmamr0 = (DMA_CHANNEL_TRANSFER_MODE_DIRECT |
  591. DMA_CHANNEL_SOURCE_ADDRESS_HOLD_8B |
  592. DMA_CHANNEL_SOURCE_ADRESSS_HOLD_EN);
  593. dma->dmamr0 = swab32(dmamr0);
  594. __asm__ __volatile__ ("sync");
  595. __asm__ __volatile__ ("isync");
  596. /* set CS to start DMA transfer */
  597. dmamr0 |= DMA_CHANNEL_START;
  598. dma->dmamr0 = swab32(dmamr0);
  599. __asm__ __volatile__ ("sync");
  600. __asm__ __volatile__ ("isync");
  601. return ((int)dma_check());
  602. }
  603. #endif /*CONFIG_DDR_ECC*/