clock.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423
  1. /*
  2. * Copyright (C) 2010 Samsung Electronics
  3. * Minkyu Kang <mk7.kang@samsung.com>
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <asm/io.h>
  25. #include <asm/arch/clock.h>
  26. #include <asm/arch/clk.h>
  27. #include <asm/arch/periph.h>
  28. /* *
  29. * This structure is to store the src bit, div bit and prediv bit
  30. * positions of the peripheral clocks of the src and div registers
  31. */
  32. struct clk_bit_info {
  33. int8_t src_bit;
  34. int8_t div_bit;
  35. int8_t prediv_bit;
  36. };
  37. /* src_bit div_bit prediv_bit */
  38. static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = {
  39. {0, 0, -1},
  40. {4, 4, -1},
  41. {8, 8, -1},
  42. {12, 12, -1},
  43. {0, 0, 8},
  44. {4, 16, 24},
  45. {8, 0, 8},
  46. {12, 16, 24},
  47. {-1, -1, -1},
  48. {16, 0, 8},
  49. {20, 16, 24},
  50. {24, 0, 8},
  51. {0, 0, 4},
  52. {4, 12, 16},
  53. {-1, -1, -1},
  54. {-1, -1, -1},
  55. {-1, 24, 0},
  56. {-1, 24, 0},
  57. {-1, 24, 0},
  58. {-1, 24, 0},
  59. {-1, 24, 0},
  60. {-1, 24, 0},
  61. {-1, 24, 0},
  62. {-1, 24, 0},
  63. {24, 0, -1},
  64. {24, 0, -1},
  65. {24, 0, -1},
  66. {24, 0, -1},
  67. {24, 0, -1},
  68. };
  69. /* Epll Clock division values to achive different frequency output */
  70. static struct set_epll_con_val exynos5_epll_div[] = {
  71. { 192000000, 0, 48, 3, 1, 0 },
  72. { 180000000, 0, 45, 3, 1, 0 },
  73. { 73728000, 1, 73, 3, 3, 47710 },
  74. { 67737600, 1, 90, 4, 3, 20762 },
  75. { 49152000, 0, 49, 3, 3, 9961 },
  76. { 45158400, 0, 45, 3, 3, 10381 },
  77. { 180633600, 0, 45, 3, 1, 10381 }
  78. };
  79. /* exynos: return pll clock frequency */
  80. static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
  81. {
  82. unsigned long m, p, s = 0, mask, fout;
  83. unsigned int freq;
  84. /*
  85. * APLL_CON: MIDV [25:16]
  86. * MPLL_CON: MIDV [25:16]
  87. * EPLL_CON: MIDV [24:16]
  88. * VPLL_CON: MIDV [24:16]
  89. * BPLL_CON: MIDV [25:16]: Exynos5
  90. */
  91. if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
  92. mask = 0x3ff;
  93. else
  94. mask = 0x1ff;
  95. m = (r >> 16) & mask;
  96. /* PDIV [13:8] */
  97. p = (r >> 8) & 0x3f;
  98. /* SDIV [2:0] */
  99. s = r & 0x7;
  100. freq = CONFIG_SYS_CLK_FREQ;
  101. if (pllreg == EPLL) {
  102. k = k & 0xffff;
  103. /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
  104. fout = (m + k / 65536) * (freq / (p * (1 << s)));
  105. } else if (pllreg == VPLL) {
  106. k = k & 0xfff;
  107. /* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
  108. fout = (m + k / 1024) * (freq / (p * (1 << s)));
  109. } else {
  110. /* FOUT = MDIV * FIN / (PDIV * 2^SDIV) */
  111. fout = m * (freq / (p * (1 << s)));
  112. }
  113. return fout;
  114. }
  115. /* exynos4: return pll clock frequency */
  116. static unsigned long exynos4_get_pll_clk(int pllreg)
  117. {
  118. struct exynos4_clock *clk =
  119. (struct exynos4_clock *)samsung_get_base_clock();
  120. unsigned long r, k = 0;
  121. switch (pllreg) {
  122. case APLL:
  123. r = readl(&clk->apll_con0);
  124. break;
  125. case MPLL:
  126. r = readl(&clk->mpll_con0);
  127. break;
  128. case EPLL:
  129. r = readl(&clk->epll_con0);
  130. k = readl(&clk->epll_con1);
  131. break;
  132. case VPLL:
  133. r = readl(&clk->vpll_con0);
  134. k = readl(&clk->vpll_con1);
  135. break;
  136. default:
  137. printf("Unsupported PLL (%d)\n", pllreg);
  138. return 0;
  139. }
  140. return exynos_get_pll_clk(pllreg, r, k);
  141. }
  142. /* exynos4x12: return pll clock frequency */
  143. static unsigned long exynos4x12_get_pll_clk(int pllreg)
  144. {
  145. struct exynos4x12_clock *clk =
  146. (struct exynos4x12_clock *)samsung_get_base_clock();
  147. unsigned long r, k = 0;
  148. switch (pllreg) {
  149. case APLL:
  150. r = readl(&clk->apll_con0);
  151. break;
  152. case MPLL:
  153. r = readl(&clk->mpll_con0);
  154. break;
  155. case EPLL:
  156. r = readl(&clk->epll_con0);
  157. k = readl(&clk->epll_con1);
  158. break;
  159. case VPLL:
  160. r = readl(&clk->vpll_con0);
  161. k = readl(&clk->vpll_con1);
  162. break;
  163. default:
  164. printf("Unsupported PLL (%d)\n", pllreg);
  165. return 0;
  166. }
  167. return exynos_get_pll_clk(pllreg, r, k);
  168. }
  169. /* exynos5: return pll clock frequency */
  170. static unsigned long exynos5_get_pll_clk(int pllreg)
  171. {
  172. struct exynos5_clock *clk =
  173. (struct exynos5_clock *)samsung_get_base_clock();
  174. unsigned long r, k = 0, fout;
  175. unsigned int pll_div2_sel, fout_sel;
  176. switch (pllreg) {
  177. case APLL:
  178. r = readl(&clk->apll_con0);
  179. break;
  180. case MPLL:
  181. r = readl(&clk->mpll_con0);
  182. break;
  183. case EPLL:
  184. r = readl(&clk->epll_con0);
  185. k = readl(&clk->epll_con1);
  186. break;
  187. case VPLL:
  188. r = readl(&clk->vpll_con0);
  189. k = readl(&clk->vpll_con1);
  190. break;
  191. case BPLL:
  192. r = readl(&clk->bpll_con0);
  193. break;
  194. default:
  195. printf("Unsupported PLL (%d)\n", pllreg);
  196. return 0;
  197. }
  198. fout = exynos_get_pll_clk(pllreg, r, k);
  199. /* According to the user manual, in EVT1 MPLL and BPLL always gives
  200. * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
  201. if (pllreg == MPLL || pllreg == BPLL) {
  202. pll_div2_sel = readl(&clk->pll_div2_sel);
  203. switch (pllreg) {
  204. case MPLL:
  205. fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
  206. & MPLL_FOUT_SEL_MASK;
  207. break;
  208. case BPLL:
  209. fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
  210. & BPLL_FOUT_SEL_MASK;
  211. break;
  212. default:
  213. fout_sel = -1;
  214. break;
  215. }
  216. if (fout_sel == 0)
  217. fout /= 2;
  218. }
  219. return fout;
  220. }
  221. static unsigned long exynos5_get_periph_rate(int peripheral)
  222. {
  223. struct clk_bit_info *bit_info = &clk_bit_info[peripheral];
  224. unsigned long sclk, sub_clk;
  225. unsigned int src, div, sub_div;
  226. struct exynos5_clock *clk =
  227. (struct exynos5_clock *)samsung_get_base_clock();
  228. switch (peripheral) {
  229. case PERIPH_ID_UART0:
  230. case PERIPH_ID_UART1:
  231. case PERIPH_ID_UART2:
  232. case PERIPH_ID_UART3:
  233. src = readl(&clk->src_peric0);
  234. div = readl(&clk->div_peric0);
  235. break;
  236. case PERIPH_ID_PWM0:
  237. case PERIPH_ID_PWM1:
  238. case PERIPH_ID_PWM2:
  239. case PERIPH_ID_PWM3:
  240. case PERIPH_ID_PWM4:
  241. src = readl(&clk->src_peric0);
  242. div = readl(&clk->div_peric3);
  243. break;
  244. case PERIPH_ID_SPI0:
  245. case PERIPH_ID_SPI1:
  246. src = readl(&clk->src_peric1);
  247. div = readl(&clk->div_peric1);
  248. break;
  249. case PERIPH_ID_SPI2:
  250. src = readl(&clk->src_peric1);
  251. div = readl(&clk->div_peric2);
  252. break;
  253. case PERIPH_ID_SPI3:
  254. case PERIPH_ID_SPI4:
  255. src = readl(&clk->sclk_src_isp);
  256. div = readl(&clk->sclk_div_isp);
  257. break;
  258. case PERIPH_ID_SDMMC0:
  259. case PERIPH_ID_SDMMC1:
  260. case PERIPH_ID_SDMMC2:
  261. case PERIPH_ID_SDMMC3:
  262. src = readl(&clk->src_fsys);
  263. div = readl(&clk->div_fsys1);
  264. break;
  265. case PERIPH_ID_I2C0:
  266. case PERIPH_ID_I2C1:
  267. case PERIPH_ID_I2C2:
  268. case PERIPH_ID_I2C3:
  269. case PERIPH_ID_I2C4:
  270. case PERIPH_ID_I2C5:
  271. case PERIPH_ID_I2C6:
  272. case PERIPH_ID_I2C7:
  273. sclk = exynos5_get_pll_clk(MPLL);
  274. sub_div = ((readl(&clk->div_top1) >> bit_info->div_bit)
  275. & 0x7) + 1;
  276. div = ((readl(&clk->div_top0) >> bit_info->prediv_bit)
  277. & 0x7) + 1;
  278. return (sclk / sub_div) / div;
  279. default:
  280. debug("%s: invalid peripheral %d", __func__, peripheral);
  281. return -1;
  282. };
  283. src = (src >> bit_info->src_bit) & 0xf;
  284. switch (src) {
  285. case EXYNOS_SRC_MPLL:
  286. sclk = exynos5_get_pll_clk(MPLL);
  287. break;
  288. case EXYNOS_SRC_EPLL:
  289. sclk = exynos5_get_pll_clk(EPLL);
  290. break;
  291. case EXYNOS_SRC_VPLL:
  292. sclk = exynos5_get_pll_clk(VPLL);
  293. break;
  294. default:
  295. return 0;
  296. }
  297. /* Ratio clock division for this peripheral */
  298. sub_div = (div >> bit_info->div_bit) & 0xf;
  299. sub_clk = sclk / (sub_div + 1);
  300. /* Pre-ratio clock division for SDMMC0 and 2 */
  301. if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) {
  302. div = (div >> bit_info->prediv_bit) & 0xff;
  303. return sub_clk / (div + 1);
  304. }
  305. return sub_clk;
  306. }
  307. unsigned long clock_get_periph_rate(int peripheral)
  308. {
  309. if (cpu_is_exynos5())
  310. return exynos5_get_periph_rate(peripheral);
  311. else
  312. return 0;
  313. }
  314. /* exynos4: return ARM clock frequency */
  315. static unsigned long exynos4_get_arm_clk(void)
  316. {
  317. struct exynos4_clock *clk =
  318. (struct exynos4_clock *)samsung_get_base_clock();
  319. unsigned long div;
  320. unsigned long armclk;
  321. unsigned int core_ratio;
  322. unsigned int core2_ratio;
  323. div = readl(&clk->div_cpu0);
  324. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  325. core_ratio = (div >> 0) & 0x7;
  326. core2_ratio = (div >> 28) & 0x7;
  327. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  328. armclk /= (core2_ratio + 1);
  329. return armclk;
  330. }
  331. /* exynos4x12: return ARM clock frequency */
  332. static unsigned long exynos4x12_get_arm_clk(void)
  333. {
  334. struct exynos4x12_clock *clk =
  335. (struct exynos4x12_clock *)samsung_get_base_clock();
  336. unsigned long div;
  337. unsigned long armclk;
  338. unsigned int core_ratio;
  339. unsigned int core2_ratio;
  340. div = readl(&clk->div_cpu0);
  341. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  342. core_ratio = (div >> 0) & 0x7;
  343. core2_ratio = (div >> 28) & 0x7;
  344. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  345. armclk /= (core2_ratio + 1);
  346. return armclk;
  347. }
  348. /* exynos5: return ARM clock frequency */
  349. static unsigned long exynos5_get_arm_clk(void)
  350. {
  351. struct exynos5_clock *clk =
  352. (struct exynos5_clock *)samsung_get_base_clock();
  353. unsigned long div;
  354. unsigned long armclk;
  355. unsigned int arm_ratio;
  356. unsigned int arm2_ratio;
  357. div = readl(&clk->div_cpu0);
  358. /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
  359. arm_ratio = (div >> 0) & 0x7;
  360. arm2_ratio = (div >> 28) & 0x7;
  361. armclk = get_pll_clk(APLL) / (arm_ratio + 1);
  362. armclk /= (arm2_ratio + 1);
  363. return armclk;
  364. }
  365. /* exynos4: return pwm clock frequency */
  366. static unsigned long exynos4_get_pwm_clk(void)
  367. {
  368. struct exynos4_clock *clk =
  369. (struct exynos4_clock *)samsung_get_base_clock();
  370. unsigned long pclk, sclk;
  371. unsigned int sel;
  372. unsigned int ratio;
  373. if (s5p_get_cpu_rev() == 0) {
  374. /*
  375. * CLK_SRC_PERIL0
  376. * PWM_SEL [27:24]
  377. */
  378. sel = readl(&clk->src_peril0);
  379. sel = (sel >> 24) & 0xf;
  380. if (sel == 0x6)
  381. sclk = get_pll_clk(MPLL);
  382. else if (sel == 0x7)
  383. sclk = get_pll_clk(EPLL);
  384. else if (sel == 0x8)
  385. sclk = get_pll_clk(VPLL);
  386. else
  387. return 0;
  388. /*
  389. * CLK_DIV_PERIL3
  390. * PWM_RATIO [3:0]
  391. */
  392. ratio = readl(&clk->div_peril3);
  393. ratio = ratio & 0xf;
  394. } else if (s5p_get_cpu_rev() == 1) {
  395. sclk = get_pll_clk(MPLL);
  396. ratio = 8;
  397. } else
  398. return 0;
  399. pclk = sclk / (ratio + 1);
  400. return pclk;
  401. }
  402. /* exynos4x12: return pwm clock frequency */
  403. static unsigned long exynos4x12_get_pwm_clk(void)
  404. {
  405. unsigned long pclk, sclk;
  406. unsigned int ratio;
  407. sclk = get_pll_clk(MPLL);
  408. ratio = 8;
  409. pclk = sclk / (ratio + 1);
  410. return pclk;
  411. }
  412. /* exynos4: return uart clock frequency */
  413. static unsigned long exynos4_get_uart_clk(int dev_index)
  414. {
  415. struct exynos4_clock *clk =
  416. (struct exynos4_clock *)samsung_get_base_clock();
  417. unsigned long uclk, sclk;
  418. unsigned int sel;
  419. unsigned int ratio;
  420. /*
  421. * CLK_SRC_PERIL0
  422. * UART0_SEL [3:0]
  423. * UART1_SEL [7:4]
  424. * UART2_SEL [8:11]
  425. * UART3_SEL [12:15]
  426. * UART4_SEL [16:19]
  427. * UART5_SEL [23:20]
  428. */
  429. sel = readl(&clk->src_peril0);
  430. sel = (sel >> (dev_index << 2)) & 0xf;
  431. if (sel == 0x6)
  432. sclk = get_pll_clk(MPLL);
  433. else if (sel == 0x7)
  434. sclk = get_pll_clk(EPLL);
  435. else if (sel == 0x8)
  436. sclk = get_pll_clk(VPLL);
  437. else
  438. return 0;
  439. /*
  440. * CLK_DIV_PERIL0
  441. * UART0_RATIO [3:0]
  442. * UART1_RATIO [7:4]
  443. * UART2_RATIO [8:11]
  444. * UART3_RATIO [12:15]
  445. * UART4_RATIO [16:19]
  446. * UART5_RATIO [23:20]
  447. */
  448. ratio = readl(&clk->div_peril0);
  449. ratio = (ratio >> (dev_index << 2)) & 0xf;
  450. uclk = sclk / (ratio + 1);
  451. return uclk;
  452. }
  453. /* exynos4x12: return uart clock frequency */
  454. static unsigned long exynos4x12_get_uart_clk(int dev_index)
  455. {
  456. struct exynos4x12_clock *clk =
  457. (struct exynos4x12_clock *)samsung_get_base_clock();
  458. unsigned long uclk, sclk;
  459. unsigned int sel;
  460. unsigned int ratio;
  461. /*
  462. * CLK_SRC_PERIL0
  463. * UART0_SEL [3:0]
  464. * UART1_SEL [7:4]
  465. * UART2_SEL [8:11]
  466. * UART3_SEL [12:15]
  467. * UART4_SEL [16:19]
  468. */
  469. sel = readl(&clk->src_peril0);
  470. sel = (sel >> (dev_index << 2)) & 0xf;
  471. if (sel == 0x6)
  472. sclk = get_pll_clk(MPLL);
  473. else if (sel == 0x7)
  474. sclk = get_pll_clk(EPLL);
  475. else if (sel == 0x8)
  476. sclk = get_pll_clk(VPLL);
  477. else
  478. return 0;
  479. /*
  480. * CLK_DIV_PERIL0
  481. * UART0_RATIO [3:0]
  482. * UART1_RATIO [7:4]
  483. * UART2_RATIO [8:11]
  484. * UART3_RATIO [12:15]
  485. * UART4_RATIO [16:19]
  486. */
  487. ratio = readl(&clk->div_peril0);
  488. ratio = (ratio >> (dev_index << 2)) & 0xf;
  489. uclk = sclk / (ratio + 1);
  490. return uclk;
  491. }
  492. /* exynos5: return uart clock frequency */
  493. static unsigned long exynos5_get_uart_clk(int dev_index)
  494. {
  495. struct exynos5_clock *clk =
  496. (struct exynos5_clock *)samsung_get_base_clock();
  497. unsigned long uclk, sclk;
  498. unsigned int sel;
  499. unsigned int ratio;
  500. /*
  501. * CLK_SRC_PERIC0
  502. * UART0_SEL [3:0]
  503. * UART1_SEL [7:4]
  504. * UART2_SEL [8:11]
  505. * UART3_SEL [12:15]
  506. * UART4_SEL [16:19]
  507. * UART5_SEL [23:20]
  508. */
  509. sel = readl(&clk->src_peric0);
  510. sel = (sel >> (dev_index << 2)) & 0xf;
  511. if (sel == 0x6)
  512. sclk = get_pll_clk(MPLL);
  513. else if (sel == 0x7)
  514. sclk = get_pll_clk(EPLL);
  515. else if (sel == 0x8)
  516. sclk = get_pll_clk(VPLL);
  517. else
  518. return 0;
  519. /*
  520. * CLK_DIV_PERIC0
  521. * UART0_RATIO [3:0]
  522. * UART1_RATIO [7:4]
  523. * UART2_RATIO [8:11]
  524. * UART3_RATIO [12:15]
  525. * UART4_RATIO [16:19]
  526. * UART5_RATIO [23:20]
  527. */
  528. ratio = readl(&clk->div_peric0);
  529. ratio = (ratio >> (dev_index << 2)) & 0xf;
  530. uclk = sclk / (ratio + 1);
  531. return uclk;
  532. }
  533. static unsigned long exynos4_get_mmc_clk(int dev_index)
  534. {
  535. struct exynos4_clock *clk =
  536. (struct exynos4_clock *)samsung_get_base_clock();
  537. unsigned long uclk, sclk;
  538. unsigned int sel, ratio, pre_ratio;
  539. int shift = 0;
  540. sel = readl(&clk->src_fsys);
  541. sel = (sel >> (dev_index << 2)) & 0xf;
  542. if (sel == 0x6)
  543. sclk = get_pll_clk(MPLL);
  544. else if (sel == 0x7)
  545. sclk = get_pll_clk(EPLL);
  546. else if (sel == 0x8)
  547. sclk = get_pll_clk(VPLL);
  548. else
  549. return 0;
  550. switch (dev_index) {
  551. case 0:
  552. case 1:
  553. ratio = readl(&clk->div_fsys1);
  554. pre_ratio = readl(&clk->div_fsys1);
  555. break;
  556. case 2:
  557. case 3:
  558. ratio = readl(&clk->div_fsys2);
  559. pre_ratio = readl(&clk->div_fsys2);
  560. break;
  561. case 4:
  562. ratio = readl(&clk->div_fsys3);
  563. pre_ratio = readl(&clk->div_fsys3);
  564. break;
  565. default:
  566. return 0;
  567. }
  568. if (dev_index == 1 || dev_index == 3)
  569. shift = 16;
  570. ratio = (ratio >> shift) & 0xf;
  571. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  572. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  573. return uclk;
  574. }
  575. static unsigned long exynos5_get_mmc_clk(int dev_index)
  576. {
  577. struct exynos5_clock *clk =
  578. (struct exynos5_clock *)samsung_get_base_clock();
  579. unsigned long uclk, sclk;
  580. unsigned int sel, ratio, pre_ratio;
  581. int shift = 0;
  582. sel = readl(&clk->src_fsys);
  583. sel = (sel >> (dev_index << 2)) & 0xf;
  584. if (sel == 0x6)
  585. sclk = get_pll_clk(MPLL);
  586. else if (sel == 0x7)
  587. sclk = get_pll_clk(EPLL);
  588. else if (sel == 0x8)
  589. sclk = get_pll_clk(VPLL);
  590. else
  591. return 0;
  592. switch (dev_index) {
  593. case 0:
  594. case 1:
  595. ratio = readl(&clk->div_fsys1);
  596. pre_ratio = readl(&clk->div_fsys1);
  597. break;
  598. case 2:
  599. case 3:
  600. ratio = readl(&clk->div_fsys2);
  601. pre_ratio = readl(&clk->div_fsys2);
  602. break;
  603. default:
  604. return 0;
  605. }
  606. if (dev_index == 1 || dev_index == 3)
  607. shift = 16;
  608. ratio = (ratio >> shift) & 0xf;
  609. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  610. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  611. return uclk;
  612. }
  613. /* exynos4: set the mmc clock */
  614. static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
  615. {
  616. struct exynos4_clock *clk =
  617. (struct exynos4_clock *)samsung_get_base_clock();
  618. unsigned int addr;
  619. unsigned int val;
  620. /*
  621. * CLK_DIV_FSYS1
  622. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  623. * CLK_DIV_FSYS2
  624. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  625. * CLK_DIV_FSYS3
  626. * MMC4_PRE_RATIO [15:8]
  627. */
  628. if (dev_index < 2) {
  629. addr = (unsigned int)&clk->div_fsys1;
  630. } else if (dev_index == 4) {
  631. addr = (unsigned int)&clk->div_fsys3;
  632. dev_index -= 4;
  633. } else {
  634. addr = (unsigned int)&clk->div_fsys2;
  635. dev_index -= 2;
  636. }
  637. val = readl(addr);
  638. val &= ~(0xff << ((dev_index << 4) + 8));
  639. val |= (div & 0xff) << ((dev_index << 4) + 8);
  640. writel(val, addr);
  641. }
  642. /* exynos4x12: set the mmc clock */
  643. static void exynos4x12_set_mmc_clk(int dev_index, unsigned int div)
  644. {
  645. struct exynos4x12_clock *clk =
  646. (struct exynos4x12_clock *)samsung_get_base_clock();
  647. unsigned int addr;
  648. unsigned int val;
  649. /*
  650. * CLK_DIV_FSYS1
  651. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  652. * CLK_DIV_FSYS2
  653. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  654. */
  655. if (dev_index < 2) {
  656. addr = (unsigned int)&clk->div_fsys1;
  657. } else {
  658. addr = (unsigned int)&clk->div_fsys2;
  659. dev_index -= 2;
  660. }
  661. val = readl(addr);
  662. val &= ~(0xff << ((dev_index << 4) + 8));
  663. val |= (div & 0xff) << ((dev_index << 4) + 8);
  664. writel(val, addr);
  665. }
  666. /* exynos5: set the mmc clock */
  667. static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
  668. {
  669. struct exynos5_clock *clk =
  670. (struct exynos5_clock *)samsung_get_base_clock();
  671. unsigned int addr;
  672. unsigned int val;
  673. /*
  674. * CLK_DIV_FSYS1
  675. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  676. * CLK_DIV_FSYS2
  677. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  678. */
  679. if (dev_index < 2) {
  680. addr = (unsigned int)&clk->div_fsys1;
  681. } else {
  682. addr = (unsigned int)&clk->div_fsys2;
  683. dev_index -= 2;
  684. }
  685. val = readl(addr);
  686. val &= ~(0xff << ((dev_index << 4) + 8));
  687. val |= (div & 0xff) << ((dev_index << 4) + 8);
  688. writel(val, addr);
  689. }
  690. /* get_lcd_clk: return lcd clock frequency */
  691. static unsigned long exynos4_get_lcd_clk(void)
  692. {
  693. struct exynos4_clock *clk =
  694. (struct exynos4_clock *)samsung_get_base_clock();
  695. unsigned long pclk, sclk;
  696. unsigned int sel;
  697. unsigned int ratio;
  698. /*
  699. * CLK_SRC_LCD0
  700. * FIMD0_SEL [3:0]
  701. */
  702. sel = readl(&clk->src_lcd0);
  703. sel = sel & 0xf;
  704. /*
  705. * 0x6: SCLK_MPLL
  706. * 0x7: SCLK_EPLL
  707. * 0x8: SCLK_VPLL
  708. */
  709. if (sel == 0x6)
  710. sclk = get_pll_clk(MPLL);
  711. else if (sel == 0x7)
  712. sclk = get_pll_clk(EPLL);
  713. else if (sel == 0x8)
  714. sclk = get_pll_clk(VPLL);
  715. else
  716. return 0;
  717. /*
  718. * CLK_DIV_LCD0
  719. * FIMD0_RATIO [3:0]
  720. */
  721. ratio = readl(&clk->div_lcd0);
  722. ratio = ratio & 0xf;
  723. pclk = sclk / (ratio + 1);
  724. return pclk;
  725. }
  726. /* get_lcd_clk: return lcd clock frequency */
  727. static unsigned long exynos5_get_lcd_clk(void)
  728. {
  729. struct exynos5_clock *clk =
  730. (struct exynos5_clock *)samsung_get_base_clock();
  731. unsigned long pclk, sclk;
  732. unsigned int sel;
  733. unsigned int ratio;
  734. /*
  735. * CLK_SRC_LCD0
  736. * FIMD0_SEL [3:0]
  737. */
  738. sel = readl(&clk->src_disp1_0);
  739. sel = sel & 0xf;
  740. /*
  741. * 0x6: SCLK_MPLL
  742. * 0x7: SCLK_EPLL
  743. * 0x8: SCLK_VPLL
  744. */
  745. if (sel == 0x6)
  746. sclk = get_pll_clk(MPLL);
  747. else if (sel == 0x7)
  748. sclk = get_pll_clk(EPLL);
  749. else if (sel == 0x8)
  750. sclk = get_pll_clk(VPLL);
  751. else
  752. return 0;
  753. /*
  754. * CLK_DIV_LCD0
  755. * FIMD0_RATIO [3:0]
  756. */
  757. ratio = readl(&clk->div_disp1_0);
  758. ratio = ratio & 0xf;
  759. pclk = sclk / (ratio + 1);
  760. return pclk;
  761. }
  762. void exynos4_set_lcd_clk(void)
  763. {
  764. struct exynos4_clock *clk =
  765. (struct exynos4_clock *)samsung_get_base_clock();
  766. unsigned int cfg = 0;
  767. /*
  768. * CLK_GATE_BLOCK
  769. * CLK_CAM [0]
  770. * CLK_TV [1]
  771. * CLK_MFC [2]
  772. * CLK_G3D [3]
  773. * CLK_LCD0 [4]
  774. * CLK_LCD1 [5]
  775. * CLK_GPS [7]
  776. */
  777. cfg = readl(&clk->gate_block);
  778. cfg |= 1 << 4;
  779. writel(cfg, &clk->gate_block);
  780. /*
  781. * CLK_SRC_LCD0
  782. * FIMD0_SEL [3:0]
  783. * MDNIE0_SEL [7:4]
  784. * MDNIE_PWM0_SEL [8:11]
  785. * MIPI0_SEL [12:15]
  786. * set lcd0 src clock 0x6: SCLK_MPLL
  787. */
  788. cfg = readl(&clk->src_lcd0);
  789. cfg &= ~(0xf);
  790. cfg |= 0x6;
  791. writel(cfg, &clk->src_lcd0);
  792. /*
  793. * CLK_GATE_IP_LCD0
  794. * CLK_FIMD0 [0]
  795. * CLK_MIE0 [1]
  796. * CLK_MDNIE0 [2]
  797. * CLK_DSIM0 [3]
  798. * CLK_SMMUFIMD0 [4]
  799. * CLK_PPMULCD0 [5]
  800. * Gating all clocks for FIMD0
  801. */
  802. cfg = readl(&clk->gate_ip_lcd0);
  803. cfg |= 1 << 0;
  804. writel(cfg, &clk->gate_ip_lcd0);
  805. /*
  806. * CLK_DIV_LCD0
  807. * FIMD0_RATIO [3:0]
  808. * MDNIE0_RATIO [7:4]
  809. * MDNIE_PWM0_RATIO [11:8]
  810. * MDNIE_PWM_PRE_RATIO [15:12]
  811. * MIPI0_RATIO [19:16]
  812. * MIPI0_PRE_RATIO [23:20]
  813. * set fimd ratio
  814. */
  815. cfg &= ~(0xf);
  816. cfg |= 0x1;
  817. writel(cfg, &clk->div_lcd0);
  818. }
  819. void exynos5_set_lcd_clk(void)
  820. {
  821. struct exynos5_clock *clk =
  822. (struct exynos5_clock *)samsung_get_base_clock();
  823. unsigned int cfg = 0;
  824. /*
  825. * CLK_GATE_BLOCK
  826. * CLK_CAM [0]
  827. * CLK_TV [1]
  828. * CLK_MFC [2]
  829. * CLK_G3D [3]
  830. * CLK_LCD0 [4]
  831. * CLK_LCD1 [5]
  832. * CLK_GPS [7]
  833. */
  834. cfg = readl(&clk->gate_block);
  835. cfg |= 1 << 4;
  836. writel(cfg, &clk->gate_block);
  837. /*
  838. * CLK_SRC_LCD0
  839. * FIMD0_SEL [3:0]
  840. * MDNIE0_SEL [7:4]
  841. * MDNIE_PWM0_SEL [8:11]
  842. * MIPI0_SEL [12:15]
  843. * set lcd0 src clock 0x6: SCLK_MPLL
  844. */
  845. cfg = readl(&clk->src_disp1_0);
  846. cfg &= ~(0xf);
  847. cfg |= 0x6;
  848. writel(cfg, &clk->src_disp1_0);
  849. /*
  850. * CLK_GATE_IP_LCD0
  851. * CLK_FIMD0 [0]
  852. * CLK_MIE0 [1]
  853. * CLK_MDNIE0 [2]
  854. * CLK_DSIM0 [3]
  855. * CLK_SMMUFIMD0 [4]
  856. * CLK_PPMULCD0 [5]
  857. * Gating all clocks for FIMD0
  858. */
  859. cfg = readl(&clk->gate_ip_disp1);
  860. cfg |= 1 << 0;
  861. writel(cfg, &clk->gate_ip_disp1);
  862. /*
  863. * CLK_DIV_LCD0
  864. * FIMD0_RATIO [3:0]
  865. * MDNIE0_RATIO [7:4]
  866. * MDNIE_PWM0_RATIO [11:8]
  867. * MDNIE_PWM_PRE_RATIO [15:12]
  868. * MIPI0_RATIO [19:16]
  869. * MIPI0_PRE_RATIO [23:20]
  870. * set fimd ratio
  871. */
  872. cfg &= ~(0xf);
  873. cfg |= 0x0;
  874. writel(cfg, &clk->div_disp1_0);
  875. }
  876. void exynos4_set_mipi_clk(void)
  877. {
  878. struct exynos4_clock *clk =
  879. (struct exynos4_clock *)samsung_get_base_clock();
  880. unsigned int cfg = 0;
  881. /*
  882. * CLK_SRC_LCD0
  883. * FIMD0_SEL [3:0]
  884. * MDNIE0_SEL [7:4]
  885. * MDNIE_PWM0_SEL [8:11]
  886. * MIPI0_SEL [12:15]
  887. * set mipi0 src clock 0x6: SCLK_MPLL
  888. */
  889. cfg = readl(&clk->src_lcd0);
  890. cfg &= ~(0xf << 12);
  891. cfg |= (0x6 << 12);
  892. writel(cfg, &clk->src_lcd0);
  893. /*
  894. * CLK_SRC_MASK_LCD0
  895. * FIMD0_MASK [0]
  896. * MDNIE0_MASK [4]
  897. * MDNIE_PWM0_MASK [8]
  898. * MIPI0_MASK [12]
  899. * set src mask mipi0 0x1: Unmask
  900. */
  901. cfg = readl(&clk->src_mask_lcd0);
  902. cfg |= (0x1 << 12);
  903. writel(cfg, &clk->src_mask_lcd0);
  904. /*
  905. * CLK_GATE_IP_LCD0
  906. * CLK_FIMD0 [0]
  907. * CLK_MIE0 [1]
  908. * CLK_MDNIE0 [2]
  909. * CLK_DSIM0 [3]
  910. * CLK_SMMUFIMD0 [4]
  911. * CLK_PPMULCD0 [5]
  912. * Gating all clocks for MIPI0
  913. */
  914. cfg = readl(&clk->gate_ip_lcd0);
  915. cfg |= 1 << 3;
  916. writel(cfg, &clk->gate_ip_lcd0);
  917. /*
  918. * CLK_DIV_LCD0
  919. * FIMD0_RATIO [3:0]
  920. * MDNIE0_RATIO [7:4]
  921. * MDNIE_PWM0_RATIO [11:8]
  922. * MDNIE_PWM_PRE_RATIO [15:12]
  923. * MIPI0_RATIO [19:16]
  924. * MIPI0_PRE_RATIO [23:20]
  925. * set mipi ratio
  926. */
  927. cfg &= ~(0xf << 16);
  928. cfg |= (0x1 << 16);
  929. writel(cfg, &clk->div_lcd0);
  930. }
  931. /*
  932. * I2C
  933. *
  934. * exynos5: obtaining the I2C clock
  935. */
  936. static unsigned long exynos5_get_i2c_clk(void)
  937. {
  938. struct exynos5_clock *clk =
  939. (struct exynos5_clock *)samsung_get_base_clock();
  940. unsigned long aclk_66, aclk_66_pre, sclk;
  941. unsigned int ratio;
  942. sclk = get_pll_clk(MPLL);
  943. ratio = (readl(&clk->div_top1)) >> 24;
  944. ratio &= 0x7;
  945. aclk_66_pre = sclk / (ratio + 1);
  946. ratio = readl(&clk->div_top0);
  947. ratio &= 0x7;
  948. aclk_66 = aclk_66_pre / (ratio + 1);
  949. return aclk_66;
  950. }
  951. int exynos5_set_epll_clk(unsigned long rate)
  952. {
  953. unsigned int epll_con, epll_con_k;
  954. unsigned int i;
  955. unsigned int lockcnt;
  956. unsigned int start;
  957. struct exynos5_clock *clk =
  958. (struct exynos5_clock *)samsung_get_base_clock();
  959. epll_con = readl(&clk->epll_con0);
  960. epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
  961. EPLL_CON0_LOCK_DET_EN_SHIFT) |
  962. EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
  963. EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
  964. EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
  965. for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
  966. if (exynos5_epll_div[i].freq_out == rate)
  967. break;
  968. }
  969. if (i == ARRAY_SIZE(exynos5_epll_div))
  970. return -1;
  971. epll_con_k = exynos5_epll_div[i].k_dsm << 0;
  972. epll_con |= exynos5_epll_div[i].en_lock_det <<
  973. EPLL_CON0_LOCK_DET_EN_SHIFT;
  974. epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
  975. epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
  976. epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
  977. /*
  978. * Required period ( in cycles) to genarate a stable clock output.
  979. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs
  980. * frequency input (as per spec)
  981. */
  982. lockcnt = 3000 * exynos5_epll_div[i].p_div;
  983. writel(lockcnt, &clk->epll_lock);
  984. writel(epll_con, &clk->epll_con0);
  985. writel(epll_con_k, &clk->epll_con1);
  986. start = get_timer(0);
  987. while (!(readl(&clk->epll_con0) &
  988. (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
  989. if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
  990. debug("%s: Timeout waiting for EPLL lock\n", __func__);
  991. return -1;
  992. }
  993. }
  994. return 0;
  995. }
  996. void exynos5_set_i2s_clk_source(void)
  997. {
  998. struct exynos5_clock *clk =
  999. (struct exynos5_clock *)samsung_get_base_clock();
  1000. clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
  1001. (CLK_SRC_SCLK_EPLL));
  1002. }
  1003. int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
  1004. unsigned int dst_frq)
  1005. {
  1006. struct exynos5_clock *clk =
  1007. (struct exynos5_clock *)samsung_get_base_clock();
  1008. unsigned int div;
  1009. if ((dst_frq == 0) || (src_frq == 0)) {
  1010. debug("%s: Invalid requency input for prescaler\n", __func__);
  1011. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1012. return -1;
  1013. }
  1014. div = (src_frq / dst_frq);
  1015. if (div > AUDIO_1_RATIO_MASK) {
  1016. debug("%s: Frequency ratio is out of range\n", __func__);
  1017. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1018. return -1;
  1019. }
  1020. clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
  1021. (div & AUDIO_1_RATIO_MASK));
  1022. return 0;
  1023. }
  1024. /**
  1025. * Linearly searches for the most accurate main and fine stage clock scalars
  1026. * (divisors) for a specified target frequency and scalar bit sizes by checking
  1027. * all multiples of main_scalar_bits values. Will always return scalars up to or
  1028. * slower than target.
  1029. *
  1030. * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
  1031. * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
  1032. * @param input_freq Clock frequency to be scaled in Hz
  1033. * @param target_freq Desired clock frequency in Hz
  1034. * @param best_fine_scalar Pointer to store the fine stage divisor
  1035. *
  1036. * @return best_main_scalar Main scalar for desired frequency or -1 if none
  1037. * found
  1038. */
  1039. static int clock_calc_best_scalar(unsigned int main_scaler_bits,
  1040. unsigned int fine_scalar_bits, unsigned int input_rate,
  1041. unsigned int target_rate, unsigned int *best_fine_scalar)
  1042. {
  1043. int i;
  1044. int best_main_scalar = -1;
  1045. unsigned int best_error = target_rate;
  1046. const unsigned int cap = (1 << fine_scalar_bits) - 1;
  1047. const unsigned int loops = 1 << main_scaler_bits;
  1048. debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
  1049. target_rate, cap);
  1050. assert(best_fine_scalar != NULL);
  1051. assert(main_scaler_bits <= fine_scalar_bits);
  1052. *best_fine_scalar = 1;
  1053. if (input_rate == 0 || target_rate == 0)
  1054. return -1;
  1055. if (target_rate >= input_rate)
  1056. return 1;
  1057. for (i = 1; i <= loops; i++) {
  1058. const unsigned int effective_div = max(min(input_rate / i /
  1059. target_rate, cap), 1);
  1060. const unsigned int effective_rate = input_rate / i /
  1061. effective_div;
  1062. const int error = target_rate - effective_rate;
  1063. debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
  1064. effective_rate, error);
  1065. if (error >= 0 && error <= best_error) {
  1066. best_error = error;
  1067. best_main_scalar = i;
  1068. *best_fine_scalar = effective_div;
  1069. }
  1070. }
  1071. return best_main_scalar;
  1072. }
  1073. static int exynos5_set_spi_clk(enum periph_id periph_id,
  1074. unsigned int rate)
  1075. {
  1076. struct exynos5_clock *clk =
  1077. (struct exynos5_clock *)samsung_get_base_clock();
  1078. int main;
  1079. unsigned int fine;
  1080. unsigned shift, pre_shift;
  1081. unsigned mask = 0xff;
  1082. u32 *reg;
  1083. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  1084. if (main < 0) {
  1085. debug("%s: Cannot set clock rate for periph %d",
  1086. __func__, periph_id);
  1087. return -1;
  1088. }
  1089. main = main - 1;
  1090. fine = fine - 1;
  1091. switch (periph_id) {
  1092. case PERIPH_ID_SPI0:
  1093. reg = &clk->div_peric1;
  1094. shift = 0;
  1095. pre_shift = 8;
  1096. break;
  1097. case PERIPH_ID_SPI1:
  1098. reg = &clk->div_peric1;
  1099. shift = 16;
  1100. pre_shift = 24;
  1101. break;
  1102. case PERIPH_ID_SPI2:
  1103. reg = &clk->div_peric2;
  1104. shift = 0;
  1105. pre_shift = 8;
  1106. break;
  1107. case PERIPH_ID_SPI3:
  1108. reg = &clk->sclk_div_isp;
  1109. shift = 0;
  1110. pre_shift = 4;
  1111. break;
  1112. case PERIPH_ID_SPI4:
  1113. reg = &clk->sclk_div_isp;
  1114. shift = 12;
  1115. pre_shift = 16;
  1116. break;
  1117. default:
  1118. debug("%s: Unsupported peripheral ID %d\n", __func__,
  1119. periph_id);
  1120. return -1;
  1121. }
  1122. clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
  1123. clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
  1124. return 0;
  1125. }
  1126. static unsigned long exynos4_get_i2c_clk(void)
  1127. {
  1128. struct exynos4_clock *clk =
  1129. (struct exynos4_clock *)samsung_get_base_clock();
  1130. unsigned long sclk, aclk_100;
  1131. unsigned int ratio;
  1132. sclk = get_pll_clk(APLL);
  1133. ratio = (readl(&clk->div_top)) >> 4;
  1134. ratio &= 0xf;
  1135. aclk_100 = sclk / (ratio + 1);
  1136. return aclk_100;
  1137. }
  1138. unsigned long get_pll_clk(int pllreg)
  1139. {
  1140. if (cpu_is_exynos5())
  1141. return exynos5_get_pll_clk(pllreg);
  1142. else {
  1143. if (proid_is_exynos4412())
  1144. return exynos4x12_get_pll_clk(pllreg);
  1145. return exynos4_get_pll_clk(pllreg);
  1146. }
  1147. }
  1148. unsigned long get_arm_clk(void)
  1149. {
  1150. if (cpu_is_exynos5())
  1151. return exynos5_get_arm_clk();
  1152. else {
  1153. if (proid_is_exynos4412())
  1154. return exynos4x12_get_arm_clk();
  1155. return exynos4_get_arm_clk();
  1156. }
  1157. }
  1158. unsigned long get_i2c_clk(void)
  1159. {
  1160. if (cpu_is_exynos5()) {
  1161. return exynos5_get_i2c_clk();
  1162. } else if (cpu_is_exynos4()) {
  1163. return exynos4_get_i2c_clk();
  1164. } else {
  1165. debug("I2C clock is not set for this CPU\n");
  1166. return 0;
  1167. }
  1168. }
  1169. unsigned long get_pwm_clk(void)
  1170. {
  1171. if (cpu_is_exynos5())
  1172. return clock_get_periph_rate(PERIPH_ID_PWM0);
  1173. else {
  1174. if (proid_is_exynos4412())
  1175. return exynos4x12_get_pwm_clk();
  1176. return exynos4_get_pwm_clk();
  1177. }
  1178. }
  1179. unsigned long get_uart_clk(int dev_index)
  1180. {
  1181. if (cpu_is_exynos5())
  1182. return exynos5_get_uart_clk(dev_index);
  1183. else {
  1184. if (proid_is_exynos4412())
  1185. return exynos4x12_get_uart_clk(dev_index);
  1186. return exynos4_get_uart_clk(dev_index);
  1187. }
  1188. }
  1189. unsigned long get_mmc_clk(int dev_index)
  1190. {
  1191. if (cpu_is_exynos5())
  1192. return exynos5_get_mmc_clk(dev_index);
  1193. else
  1194. return exynos4_get_mmc_clk(dev_index);
  1195. }
  1196. void set_mmc_clk(int dev_index, unsigned int div)
  1197. {
  1198. if (cpu_is_exynos5())
  1199. exynos5_set_mmc_clk(dev_index, div);
  1200. else {
  1201. if (proid_is_exynos4412())
  1202. exynos4x12_set_mmc_clk(dev_index, div);
  1203. exynos4_set_mmc_clk(dev_index, div);
  1204. }
  1205. }
  1206. unsigned long get_lcd_clk(void)
  1207. {
  1208. if (cpu_is_exynos4())
  1209. return exynos4_get_lcd_clk();
  1210. else
  1211. return exynos5_get_lcd_clk();
  1212. }
  1213. void set_lcd_clk(void)
  1214. {
  1215. if (cpu_is_exynos4())
  1216. exynos4_set_lcd_clk();
  1217. else
  1218. exynos5_set_lcd_clk();
  1219. }
  1220. void set_mipi_clk(void)
  1221. {
  1222. if (cpu_is_exynos4())
  1223. exynos4_set_mipi_clk();
  1224. }
  1225. int set_spi_clk(int periph_id, unsigned int rate)
  1226. {
  1227. if (cpu_is_exynos5())
  1228. return exynos5_set_spi_clk(periph_id, rate);
  1229. else
  1230. return 0;
  1231. }
  1232. int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
  1233. {
  1234. if (cpu_is_exynos5())
  1235. return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq);
  1236. else
  1237. return 0;
  1238. }
  1239. void set_i2s_clk_source(void)
  1240. {
  1241. if (cpu_is_exynos5())
  1242. exynos5_set_i2s_clk_source();
  1243. }
  1244. int set_epll_clk(unsigned long rate)
  1245. {
  1246. if (cpu_is_exynos5())
  1247. return exynos5_set_epll_clk(rate);
  1248. else
  1249. return 0;
  1250. }