fsl_i2c.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. /*
  2. * Copyright 2006,2009 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * Version 2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  16. * MA 02111-1307 USA
  17. */
  18. #include <common.h>
  19. #ifdef CONFIG_HARD_I2C
  20. #include <command.h>
  21. #include <i2c.h> /* Functional interface */
  22. #include <asm/io.h>
  23. #include <asm/fsl_i2c.h> /* HW definitions */
  24. /* The maximum number of microseconds we will wait until another master has
  25. * released the bus. If not defined in the board header file, then use a
  26. * generic value.
  27. */
  28. #ifndef CONFIG_I2C_MBB_TIMEOUT
  29. #define CONFIG_I2C_MBB_TIMEOUT 100000
  30. #endif
  31. /* The maximum number of microseconds we will wait for a read or write
  32. * operation to complete. If not defined in the board header file, then use a
  33. * generic value.
  34. */
  35. #ifndef CONFIG_I2C_TIMEOUT
  36. #define CONFIG_I2C_TIMEOUT 10000
  37. #endif
  38. #define I2C_READ_BIT 1
  39. #define I2C_WRITE_BIT 0
  40. DECLARE_GLOBAL_DATA_PTR;
  41. /* Initialize the bus pointer to whatever one the SPD EEPROM is on.
  42. * Default is bus 0. This is necessary because the DDR initialization
  43. * runs from ROM, and we can't switch buses because we can't modify
  44. * the global variables.
  45. */
  46. #ifndef CONFIG_SYS_SPD_BUS_NUM
  47. #define CONFIG_SYS_SPD_BUS_NUM 0
  48. #endif
  49. static unsigned int i2c_bus_num __attribute__ ((section (".data"))) = CONFIG_SYS_SPD_BUS_NUM;
  50. #if defined(CONFIG_I2C_MUX)
  51. static unsigned int i2c_bus_num_mux __attribute__ ((section ("data"))) = 0;
  52. #endif
  53. static unsigned int i2c_bus_speed[2] = {CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SPEED};
  54. static const struct fsl_i2c *i2c_dev[2] = {
  55. (struct fsl_i2c *) (CONFIG_SYS_IMMR + CONFIG_SYS_I2C_OFFSET),
  56. #ifdef CONFIG_SYS_I2C2_OFFSET
  57. (struct fsl_i2c *) (CONFIG_SYS_IMMR + CONFIG_SYS_I2C2_OFFSET)
  58. #endif
  59. };
  60. /* I2C speed map for a DFSR value of 1 */
  61. /*
  62. * Map I2C frequency dividers to FDR and DFSR values
  63. *
  64. * This structure is used to define the elements of a table that maps I2C
  65. * frequency divider (I2C clock rate divided by I2C bus speed) to a value to be
  66. * programmed into the Frequency Divider Ratio (FDR) and Digital Filter
  67. * Sampling Rate (DFSR) registers.
  68. *
  69. * The actual table should be defined in the board file, and it must be called
  70. * fsl_i2c_speed_map[].
  71. *
  72. * The last entry of the table must have a value of {-1, X}, where X is same
  73. * FDR/DFSR values as the second-to-last entry. This guarantees that any
  74. * search through the array will always find a match.
  75. *
  76. * The values of the divider must be in increasing numerical order, i.e.
  77. * fsl_i2c_speed_map[x+1].divider > fsl_i2c_speed_map[x].divider.
  78. *
  79. * For this table, the values are based on a value of 1 for the DFSR
  80. * register. See the application note AN2919 "Determining the I2C Frequency
  81. * Divider Ratio for SCL"
  82. *
  83. * ColdFire I2C frequency dividers for FDR values are different from
  84. * PowerPC. The protocol to use the I2C module is still the same.
  85. * A different table is defined and are based on MCF5xxx user manual.
  86. *
  87. */
  88. static const struct {
  89. unsigned short divider;
  90. #ifdef __PPC__
  91. u8 dfsr;
  92. #endif
  93. u8 fdr;
  94. } fsl_i2c_speed_map[] = {
  95. #ifdef __PPC__
  96. {160, 1, 32}, {192, 1, 33}, {224, 1, 34}, {256, 1, 35},
  97. {288, 1, 0}, {320, 1, 1}, {352, 6, 1}, {384, 1, 2}, {416, 6, 2},
  98. {448, 1, 38}, {480, 1, 3}, {512, 1, 39}, {544, 11, 3}, {576, 1, 4},
  99. {608, 22, 3}, {640, 1, 5}, {672, 32, 3}, {704, 11, 5}, {736, 43, 3},
  100. {768, 1, 6}, {800, 54, 3}, {832, 11, 6}, {896, 1, 42}, {960, 1, 7},
  101. {1024, 1, 43}, {1088, 22, 7}, {1152, 1, 8}, {1216, 43, 7}, {1280, 1, 9},
  102. {1408, 22, 9}, {1536, 1, 10}, {1664, 22, 10}, {1792, 1, 46},
  103. {1920, 1, 11}, {2048, 1, 47}, {2176, 43, 11}, {2304, 1, 12},
  104. {2560, 1, 13}, {2816, 43, 13}, {3072, 1, 14}, {3328, 43, 14},
  105. {3584, 1, 50}, {3840, 1, 15}, {4096, 1, 51}, {4608, 1, 16},
  106. {5120, 1, 17}, {6144, 1, 18}, {7168, 1, 54}, {7680, 1, 19},
  107. {8192, 1, 55}, {9216, 1, 20}, {10240, 1, 21}, {12288, 1, 22},
  108. {14336, 1, 58}, {15360, 1, 23}, {16384, 1, 59}, {18432, 1, 24},
  109. {20480, 1, 25}, {24576, 1, 26}, {28672, 1, 62}, {30720, 1, 27},
  110. {32768, 1, 63}, {36864, 1, 28}, {40960, 1, 29}, {49152, 1, 30},
  111. {61440, 1, 31}, {-1, 1, 31}
  112. #elif defined(__M68K__)
  113. {20, 32}, {22, 33}, {24, 34}, {26, 35},
  114. {28, 0}, {28, 36}, {30, 1}, {32, 37},
  115. {34, 2}, {36, 38}, {40, 3}, {40, 39},
  116. {44, 4}, {48, 5}, {48, 40}, {56, 6},
  117. {56, 41}, {64, 42}, {68, 7}, {72, 43},
  118. {80, 8}, {80, 44}, {88, 9}, {96, 41},
  119. {104, 10}, {112, 42}, {128, 11}, {128, 43},
  120. {144, 12}, {160, 13}, {160, 48}, {192, 14},
  121. {192, 49}, {224, 50}, {240, 15}, {256, 51},
  122. {288, 16}, {320, 17}, {320, 52}, {384, 18},
  123. {384, 53}, {448, 54}, {480, 19}, {512, 55},
  124. {576, 20}, {640, 21}, {640, 56}, {768, 22},
  125. {768, 57}, {960, 23}, {896, 58}, {1024, 59},
  126. {1152, 24}, {1280, 25}, {1280, 60}, {1536, 26},
  127. {1536, 61}, {1792, 62}, {1920, 27}, {2048, 63},
  128. {2304, 28}, {2560, 29}, {3072, 30}, {3840, 31},
  129. {-1, 31}
  130. #endif
  131. };
  132. /**
  133. * Set the I2C bus speed for a given I2C device
  134. *
  135. * @param dev: the I2C device
  136. * @i2c_clk: I2C bus clock frequency
  137. * @speed: the desired speed of the bus
  138. *
  139. * The I2C device must be stopped before calling this function.
  140. *
  141. * The return value is the actual bus speed that is set.
  142. */
  143. static unsigned int set_i2c_bus_speed(const struct fsl_i2c *dev,
  144. unsigned int i2c_clk, unsigned int speed)
  145. {
  146. unsigned short divider = min(i2c_clk / speed, (unsigned short) -1);
  147. unsigned int i;
  148. /*
  149. * We want to choose an FDR/DFSR that generates an I2C bus speed that
  150. * is equal to or lower than the requested speed. That means that we
  151. * want the first divider that is equal to or greater than the
  152. * calculated divider.
  153. */
  154. for (i = 0; i < ARRAY_SIZE(fsl_i2c_speed_map); i++)
  155. if (fsl_i2c_speed_map[i].divider >= divider) {
  156. u8 fdr;
  157. #ifdef __PPC__
  158. u8 dfsr;
  159. dfsr = fsl_i2c_speed_map[i].dfsr;
  160. #endif
  161. fdr = fsl_i2c_speed_map[i].fdr;
  162. speed = i2c_clk / fsl_i2c_speed_map[i].divider;
  163. writeb(fdr, &dev->fdr); /* set bus speed */
  164. #ifdef __PPC__
  165. writeb(dfsr, &dev->dfsrr); /* set default filter */
  166. #endif
  167. break;
  168. }
  169. return speed;
  170. }
  171. void
  172. i2c_init(int speed, int slaveadd)
  173. {
  174. struct fsl_i2c *dev;
  175. unsigned int temp;
  176. #ifdef CONFIG_SYS_I2C_INIT_BOARD
  177. /* call board specific i2c bus reset routine before accessing the */
  178. /* environment, which might be in a chip on that bus. For details */
  179. /* about this problem see doc/I2C_Edge_Conditions. */
  180. i2c_init_board();
  181. #endif
  182. dev = (struct fsl_i2c *) (CONFIG_SYS_IMMR + CONFIG_SYS_I2C_OFFSET);
  183. writeb(0, &dev->cr); /* stop I2C controller */
  184. udelay(5); /* let it shutdown in peace */
  185. temp = set_i2c_bus_speed(dev, gd->i2c1_clk, speed);
  186. if (gd->flags & GD_FLG_RELOC)
  187. i2c_bus_speed[0] = temp;
  188. writeb(slaveadd << 1, &dev->adr); /* write slave address */
  189. writeb(0x0, &dev->sr); /* clear status register */
  190. writeb(I2C_CR_MEN, &dev->cr); /* start I2C controller */
  191. #ifdef CONFIG_SYS_I2C2_OFFSET
  192. dev = (struct fsl_i2c *) (CONFIG_SYS_IMMR + CONFIG_SYS_I2C2_OFFSET);
  193. writeb(0, &dev->cr); /* stop I2C controller */
  194. udelay(5); /* let it shutdown in peace */
  195. temp = set_i2c_bus_speed(dev, gd->i2c2_clk, speed);
  196. if (gd->flags & GD_FLG_RELOC)
  197. i2c_bus_speed[1] = temp;
  198. writeb(slaveadd << 1, &dev->adr); /* write slave address */
  199. writeb(0x0, &dev->sr); /* clear status register */
  200. writeb(I2C_CR_MEN, &dev->cr); /* start I2C controller */
  201. #endif
  202. }
  203. static int
  204. i2c_wait4bus(void)
  205. {
  206. unsigned long long timeval = get_ticks();
  207. const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
  208. while (readb(&i2c_dev[i2c_bus_num]->sr) & I2C_SR_MBB) {
  209. if ((get_ticks() - timeval) > timeout)
  210. return -1;
  211. }
  212. return 0;
  213. }
  214. static __inline__ int
  215. i2c_wait(int write)
  216. {
  217. u32 csr;
  218. unsigned long long timeval = get_ticks();
  219. const unsigned long long timeout = usec2ticks(CONFIG_I2C_TIMEOUT);
  220. do {
  221. csr = readb(&i2c_dev[i2c_bus_num]->sr);
  222. if (!(csr & I2C_SR_MIF))
  223. continue;
  224. /* Read again to allow register to stabilise */
  225. csr = readb(&i2c_dev[i2c_bus_num]->sr);
  226. writeb(0x0, &i2c_dev[i2c_bus_num]->sr);
  227. if (csr & I2C_SR_MAL) {
  228. debug("i2c_wait: MAL\n");
  229. return -1;
  230. }
  231. if (!(csr & I2C_SR_MCF)) {
  232. debug("i2c_wait: unfinished\n");
  233. return -1;
  234. }
  235. if (write == I2C_WRITE_BIT && (csr & I2C_SR_RXAK)) {
  236. debug("i2c_wait: No RXACK\n");
  237. return -1;
  238. }
  239. return 0;
  240. } while ((get_ticks() - timeval) < timeout);
  241. debug("i2c_wait: timed out\n");
  242. return -1;
  243. }
  244. static __inline__ int
  245. i2c_write_addr (u8 dev, u8 dir, int rsta)
  246. {
  247. writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX
  248. | (rsta ? I2C_CR_RSTA : 0),
  249. &i2c_dev[i2c_bus_num]->cr);
  250. writeb((dev << 1) | dir, &i2c_dev[i2c_bus_num]->dr);
  251. if (i2c_wait(I2C_WRITE_BIT) < 0)
  252. return 0;
  253. return 1;
  254. }
  255. static __inline__ int
  256. __i2c_write(u8 *data, int length)
  257. {
  258. int i;
  259. for (i = 0; i < length; i++) {
  260. writeb(data[i], &i2c_dev[i2c_bus_num]->dr);
  261. if (i2c_wait(I2C_WRITE_BIT) < 0)
  262. break;
  263. }
  264. return i;
  265. }
  266. static __inline__ int
  267. __i2c_read(u8 *data, int length)
  268. {
  269. int i;
  270. writeb(I2C_CR_MEN | I2C_CR_MSTA | ((length == 1) ? I2C_CR_TXAK : 0),
  271. &i2c_dev[i2c_bus_num]->cr);
  272. /* dummy read */
  273. readb(&i2c_dev[i2c_bus_num]->dr);
  274. for (i = 0; i < length; i++) {
  275. if (i2c_wait(I2C_READ_BIT) < 0)
  276. break;
  277. /* Generate ack on last next to last byte */
  278. if (i == length - 2)
  279. writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_TXAK,
  280. &i2c_dev[i2c_bus_num]->cr);
  281. /* Generate stop on last byte */
  282. if (i == length - 1)
  283. writeb(I2C_CR_MEN | I2C_CR_TXAK, &i2c_dev[i2c_bus_num]->cr);
  284. data[i] = readb(&i2c_dev[i2c_bus_num]->dr);
  285. }
  286. return i;
  287. }
  288. int
  289. i2c_read(u8 dev, uint addr, int alen, u8 *data, int length)
  290. {
  291. int i = -1; /* signal error */
  292. u8 *a = (u8*)&addr;
  293. if (i2c_wait4bus() >= 0
  294. && i2c_write_addr(dev, I2C_WRITE_BIT, 0) != 0
  295. && __i2c_write(&a[4 - alen], alen) == alen)
  296. i = 0; /* No error so far */
  297. if (length
  298. && i2c_write_addr(dev, I2C_READ_BIT, 1) != 0)
  299. i = __i2c_read(data, length);
  300. if (length && i2c_wait4bus()) /* Wait until STOP */
  301. debug("i2c_read: wait4bus timed out\n");
  302. writeb(I2C_CR_MEN, &i2c_dev[i2c_bus_num]->cr);
  303. if (i == length)
  304. return 0;
  305. return -1;
  306. }
  307. int
  308. i2c_write(u8 dev, uint addr, int alen, u8 *data, int length)
  309. {
  310. int i = -1; /* signal error */
  311. u8 *a = (u8*)&addr;
  312. if (i2c_wait4bus() >= 0
  313. && i2c_write_addr(dev, I2C_WRITE_BIT, 0) != 0
  314. && __i2c_write(&a[4 - alen], alen) == alen) {
  315. i = __i2c_write(data, length);
  316. }
  317. writeb(I2C_CR_MEN, &i2c_dev[i2c_bus_num]->cr);
  318. if (i2c_wait4bus()) /* Wait until STOP */
  319. debug("i2c_write: wait4bus timed out\n");
  320. if (i == length)
  321. return 0;
  322. return -1;
  323. }
  324. int
  325. i2c_probe(uchar chip)
  326. {
  327. /* For unknow reason the controller will ACK when
  328. * probing for a slave with the same address, so skip
  329. * it.
  330. */
  331. if (chip == (readb(&i2c_dev[i2c_bus_num]->adr) >> 1))
  332. return -1;
  333. return i2c_read(chip, 0, 0, NULL, 0);
  334. }
  335. int i2c_set_bus_num(unsigned int bus)
  336. {
  337. #if defined(CONFIG_I2C_MUX)
  338. if (bus < CONFIG_SYS_MAX_I2C_BUS) {
  339. i2c_bus_num = bus;
  340. } else {
  341. int ret;
  342. ret = i2x_mux_select_mux(bus);
  343. if (ret)
  344. return ret;
  345. i2c_bus_num = 0;
  346. }
  347. i2c_bus_num_mux = bus;
  348. #else
  349. #ifdef CONFIG_SYS_I2C2_OFFSET
  350. if (bus > 1) {
  351. #else
  352. if (bus > 0) {
  353. #endif
  354. return -1;
  355. }
  356. i2c_bus_num = bus;
  357. #endif
  358. return 0;
  359. }
  360. int i2c_set_bus_speed(unsigned int speed)
  361. {
  362. unsigned int i2c_clk = (i2c_bus_num == 1) ? gd->i2c2_clk : gd->i2c1_clk;
  363. writeb(0, &i2c_dev[i2c_bus_num]->cr); /* stop controller */
  364. i2c_bus_speed[i2c_bus_num] =
  365. set_i2c_bus_speed(i2c_dev[i2c_bus_num], i2c_clk, speed);
  366. writeb(I2C_CR_MEN, &i2c_dev[i2c_bus_num]->cr); /* start controller */
  367. return 0;
  368. }
  369. unsigned int i2c_get_bus_num(void)
  370. {
  371. #if defined(CONFIG_I2C_MUX)
  372. return i2c_bus_num_mux;
  373. #else
  374. return i2c_bus_num;
  375. #endif
  376. }
  377. unsigned int i2c_get_bus_speed(void)
  378. {
  379. return i2c_bus_speed[i2c_bus_num];
  380. }
  381. #endif /* CONFIG_HARD_I2C */