clock.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843
  1. /*
  2. * (C) Copyright 2007
  3. * Sascha Hauer, Pengutronix
  4. *
  5. * (C) Copyright 2009 Freescale Semiconductor, Inc.
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <asm/io.h>
  27. #include <asm/errno.h>
  28. #include <asm/arch/imx-regs.h>
  29. #include <asm/arch/crm_regs.h>
  30. #include <asm/arch/clock.h>
  31. #include <div64.h>
  32. #include <asm/arch/sys_proto.h>
  33. enum pll_clocks {
  34. PLL1_CLOCK = 0,
  35. PLL2_CLOCK,
  36. PLL3_CLOCK,
  37. PLL4_CLOCK,
  38. PLL_CLOCKS,
  39. };
  40. struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
  41. [PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
  42. [PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
  43. [PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
  44. #ifdef CONFIG_MX53
  45. [PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
  46. #endif
  47. };
  48. #define AHB_CLK_ROOT 133333333
  49. #define SZ_DEC_1M 1000000
  50. #define PLL_PD_MAX 16 /* Actual pd+1 */
  51. #define PLL_MFI_MAX 15
  52. #define PLL_MFI_MIN 5
  53. #define ARM_DIV_MAX 8
  54. #define IPG_DIV_MAX 4
  55. #define AHB_DIV_MAX 8
  56. #define EMI_DIV_MAX 8
  57. #define NFC_DIV_MAX 8
  58. #define MX5_CBCMR 0x00015154
  59. #define MX5_CBCDR 0x02888945
  60. struct fixed_pll_mfd {
  61. u32 ref_clk_hz;
  62. u32 mfd;
  63. };
  64. const struct fixed_pll_mfd fixed_mfd[] = {
  65. {MXC_HCLK, 24 * 16},
  66. };
  67. struct pll_param {
  68. u32 pd;
  69. u32 mfi;
  70. u32 mfn;
  71. u32 mfd;
  72. };
  73. #define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
  74. #define PLL_FREQ_MIN(ref_clk) \
  75. ((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
  76. #define MAX_DDR_CLK 420000000
  77. #define NFC_CLK_MAX 34000000
  78. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
  79. void set_usboh3_clk(void)
  80. {
  81. clrsetbits_le32(&mxc_ccm->cscmr1,
  82. MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
  83. MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
  84. clrsetbits_le32(&mxc_ccm->cscdr1,
  85. MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
  86. MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
  87. MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
  88. MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
  89. }
  90. void enable_usboh3_clk(unsigned char enable)
  91. {
  92. if (enable)
  93. setbits_le32(&mxc_ccm->CCGR2, MXC_CCM_CCGR2_USBOH3_60M(1));
  94. else
  95. clrbits_le32(&mxc_ccm->CCGR2, MXC_CCM_CCGR2_USBOH3_60M(1));
  96. }
  97. #ifdef CONFIG_I2C_MXC
  98. /* i2c_num can be from 0 - 2 */
  99. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  100. {
  101. u32 mask;
  102. if (i2c_num > 2)
  103. return -EINVAL;
  104. mask = MXC_CCM_CCGR_CG_MASK <<
  105. (MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
  106. if (enable)
  107. setbits_le32(&mxc_ccm->CCGR1, mask);
  108. else
  109. clrbits_le32(&mxc_ccm->CCGR1, mask);
  110. return 0;
  111. }
  112. #endif
  113. void set_usb_phy1_clk(void)
  114. {
  115. clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
  116. }
  117. void enable_usb_phy1_clk(unsigned char enable)
  118. {
  119. if (enable)
  120. setbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_USB_PHY1(1));
  121. else
  122. clrbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_USB_PHY1(1));
  123. }
  124. void set_usb_phy2_clk(void)
  125. {
  126. clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
  127. }
  128. void enable_usb_phy2_clk(unsigned char enable)
  129. {
  130. if (enable)
  131. setbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_USB_PHY2(1));
  132. else
  133. clrbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_USB_PHY2(1));
  134. }
  135. /*
  136. * Calculate the frequency of PLLn.
  137. */
  138. static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
  139. {
  140. uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
  141. uint64_t refclk, temp;
  142. int32_t mfn_abs;
  143. ctrl = readl(&pll->ctrl);
  144. if (ctrl & MXC_DPLLC_CTL_HFSM) {
  145. mfn = readl(&pll->hfs_mfn);
  146. mfd = readl(&pll->hfs_mfd);
  147. op = readl(&pll->hfs_op);
  148. } else {
  149. mfn = readl(&pll->mfn);
  150. mfd = readl(&pll->mfd);
  151. op = readl(&pll->op);
  152. }
  153. mfd &= MXC_DPLLC_MFD_MFD_MASK;
  154. mfn &= MXC_DPLLC_MFN_MFN_MASK;
  155. pdf = op & MXC_DPLLC_OP_PDF_MASK;
  156. mfi = MXC_DPLLC_OP_MFI_RD(op);
  157. /* 21.2.3 */
  158. if (mfi < 5)
  159. mfi = 5;
  160. /* Sign extend */
  161. if (mfn >= 0x04000000) {
  162. mfn |= 0xfc000000;
  163. mfn_abs = -mfn;
  164. } else
  165. mfn_abs = mfn;
  166. refclk = infreq * 2;
  167. if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
  168. refclk *= 2;
  169. do_div(refclk, pdf + 1);
  170. temp = refclk * mfn_abs;
  171. do_div(temp, mfd + 1);
  172. ret = refclk * mfi;
  173. if ((int)mfn < 0)
  174. ret -= temp;
  175. else
  176. ret += temp;
  177. return ret;
  178. }
  179. /*
  180. * Get mcu main rate
  181. */
  182. u32 get_mcu_main_clk(void)
  183. {
  184. u32 reg, freq;
  185. reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
  186. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  187. return freq / (reg + 1);
  188. }
  189. /*
  190. * Get the rate of peripheral's root clock.
  191. */
  192. u32 get_periph_clk(void)
  193. {
  194. u32 reg;
  195. reg = readl(&mxc_ccm->cbcdr);
  196. if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
  197. return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  198. reg = readl(&mxc_ccm->cbcmr);
  199. switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
  200. case 0:
  201. return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  202. case 1:
  203. return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  204. default:
  205. return 0;
  206. }
  207. /* NOTREACHED */
  208. }
  209. /*
  210. * Get the rate of ipg clock.
  211. */
  212. static u32 get_ipg_clk(void)
  213. {
  214. uint32_t freq, reg, div;
  215. freq = get_ahb_clk();
  216. reg = readl(&mxc_ccm->cbcdr);
  217. div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
  218. return freq / div;
  219. }
  220. /*
  221. * Get the rate of ipg_per clock.
  222. */
  223. static u32 get_ipg_per_clk(void)
  224. {
  225. u32 pred1, pred2, podf;
  226. if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
  227. return get_ipg_clk();
  228. /* Fixme: not handle what about lpm*/
  229. podf = readl(&mxc_ccm->cbcdr);
  230. pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
  231. pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
  232. podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
  233. return get_periph_clk() / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
  234. }
  235. /*
  236. * Get the rate of uart clk.
  237. */
  238. static u32 get_uart_clk(void)
  239. {
  240. unsigned int freq, reg, pred, podf;
  241. reg = readl(&mxc_ccm->cscmr1);
  242. switch (MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg)) {
  243. case 0x0:
  244. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  245. break;
  246. case 0x1:
  247. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  248. break;
  249. case 0x2:
  250. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  251. break;
  252. default:
  253. return 66500000;
  254. }
  255. reg = readl(&mxc_ccm->cscdr1);
  256. pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
  257. podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
  258. freq /= (pred + 1) * (podf + 1);
  259. return freq;
  260. }
  261. /*
  262. * This function returns the low power audio clock.
  263. */
  264. static u32 get_lp_apm(void)
  265. {
  266. u32 ret_val = 0;
  267. u32 ccsr = readl(&mxc_ccm->ccsr);
  268. if (((ccsr >> 9) & 1) == 0)
  269. ret_val = MXC_HCLK;
  270. else
  271. ret_val = MXC_CLK32 * 1024;
  272. return ret_val;
  273. }
  274. /*
  275. * get cspi clock rate.
  276. */
  277. static u32 imx_get_cspiclk(void)
  278. {
  279. u32 ret_val = 0, pdf, pre_pdf, clk_sel;
  280. u32 cscmr1 = readl(&mxc_ccm->cscmr1);
  281. u32 cscdr2 = readl(&mxc_ccm->cscdr2);
  282. pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
  283. pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
  284. clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
  285. switch (clk_sel) {
  286. case 0:
  287. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK) /
  288. ((pre_pdf + 1) * (pdf + 1));
  289. break;
  290. case 1:
  291. ret_val = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK) /
  292. ((pre_pdf + 1) * (pdf + 1));
  293. break;
  294. case 2:
  295. ret_val = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK) /
  296. ((pre_pdf + 1) * (pdf + 1));
  297. break;
  298. default:
  299. ret_val = get_lp_apm() / ((pre_pdf + 1) * (pdf + 1));
  300. break;
  301. }
  302. return ret_val;
  303. }
  304. static u32 get_axi_a_clk(void)
  305. {
  306. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  307. u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
  308. return get_periph_clk() / (pdf + 1);
  309. }
  310. static u32 get_axi_b_clk(void)
  311. {
  312. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  313. u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
  314. return get_periph_clk() / (pdf + 1);
  315. }
  316. static u32 get_emi_slow_clk(void)
  317. {
  318. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  319. u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
  320. u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
  321. if (emi_clk_sel)
  322. return get_ahb_clk() / (pdf + 1);
  323. return get_periph_clk() / (pdf + 1);
  324. }
  325. static u32 get_ddr_clk(void)
  326. {
  327. u32 ret_val = 0;
  328. u32 cbcmr = readl(&mxc_ccm->cbcmr);
  329. u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
  330. #ifdef CONFIG_MX51
  331. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  332. if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
  333. u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
  334. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  335. ret_val /= ddr_clk_podf + 1;
  336. return ret_val;
  337. }
  338. #endif
  339. switch (ddr_clk_sel) {
  340. case 0:
  341. ret_val = get_axi_a_clk();
  342. break;
  343. case 1:
  344. ret_val = get_axi_b_clk();
  345. break;
  346. case 2:
  347. ret_val = get_emi_slow_clk();
  348. break;
  349. case 3:
  350. ret_val = get_ahb_clk();
  351. break;
  352. default:
  353. break;
  354. }
  355. return ret_val;
  356. }
  357. /*
  358. * The API of get mxc clocks.
  359. */
  360. unsigned int mxc_get_clock(enum mxc_clock clk)
  361. {
  362. switch (clk) {
  363. case MXC_ARM_CLK:
  364. return get_mcu_main_clk();
  365. case MXC_AHB_CLK:
  366. return get_ahb_clk();
  367. case MXC_IPG_CLK:
  368. return get_ipg_clk();
  369. case MXC_IPG_PERCLK:
  370. case MXC_I2C_CLK:
  371. return get_ipg_per_clk();
  372. case MXC_UART_CLK:
  373. return get_uart_clk();
  374. case MXC_CSPI_CLK:
  375. return imx_get_cspiclk();
  376. case MXC_FEC_CLK:
  377. return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  378. case MXC_SATA_CLK:
  379. return get_ahb_clk();
  380. case MXC_DDR_CLK:
  381. return get_ddr_clk();
  382. default:
  383. break;
  384. }
  385. return -EINVAL;
  386. }
  387. u32 imx_get_uartclk(void)
  388. {
  389. return get_uart_clk();
  390. }
  391. u32 imx_get_fecclk(void)
  392. {
  393. return mxc_get_clock(MXC_IPG_CLK);
  394. }
  395. static int gcd(int m, int n)
  396. {
  397. int t;
  398. while (m > 0) {
  399. if (n > m) {
  400. t = m;
  401. m = n;
  402. n = t;
  403. } /* swap */
  404. m -= n;
  405. }
  406. return n;
  407. }
  408. /*
  409. * This is to calculate various parameters based on reference clock and
  410. * targeted clock based on the equation:
  411. * t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
  412. * This calculation is based on a fixed MFD value for simplicity.
  413. */
  414. static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
  415. {
  416. u64 pd, mfi = 1, mfn, mfd, t1;
  417. u32 n_target = target;
  418. u32 n_ref = ref, i;
  419. /*
  420. * Make sure targeted freq is in the valid range.
  421. * Otherwise the following calculation might be wrong!!!
  422. */
  423. if (n_target < PLL_FREQ_MIN(ref) ||
  424. n_target > PLL_FREQ_MAX(ref)) {
  425. printf("Targeted peripheral clock should be"
  426. "within [%d - %d]\n",
  427. PLL_FREQ_MIN(ref) / SZ_DEC_1M,
  428. PLL_FREQ_MAX(ref) / SZ_DEC_1M);
  429. return -EINVAL;
  430. }
  431. for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
  432. if (fixed_mfd[i].ref_clk_hz == ref) {
  433. mfd = fixed_mfd[i].mfd;
  434. break;
  435. }
  436. }
  437. if (i == ARRAY_SIZE(fixed_mfd))
  438. return -EINVAL;
  439. /* Use n_target and n_ref to avoid overflow */
  440. for (pd = 1; pd <= PLL_PD_MAX; pd++) {
  441. t1 = n_target * pd;
  442. do_div(t1, (4 * n_ref));
  443. mfi = t1;
  444. if (mfi > PLL_MFI_MAX)
  445. return -EINVAL;
  446. else if (mfi < 5)
  447. continue;
  448. break;
  449. }
  450. /*
  451. * Now got pd and mfi already
  452. *
  453. * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
  454. */
  455. t1 = n_target * pd;
  456. do_div(t1, 4);
  457. t1 -= n_ref * mfi;
  458. t1 *= mfd;
  459. do_div(t1, n_ref);
  460. mfn = t1;
  461. debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
  462. ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
  463. i = 1;
  464. if (mfn != 0)
  465. i = gcd(mfd, mfn);
  466. pll->pd = (u32)pd;
  467. pll->mfi = (u32)mfi;
  468. do_div(mfn, i);
  469. pll->mfn = (u32)mfn;
  470. do_div(mfd, i);
  471. pll->mfd = (u32)mfd;
  472. return 0;
  473. }
  474. #define calc_div(tgt_clk, src_clk, limit) ({ \
  475. u32 v = 0; \
  476. if (((src_clk) % (tgt_clk)) <= 100) \
  477. v = (src_clk) / (tgt_clk); \
  478. else \
  479. v = ((src_clk) / (tgt_clk)) + 1;\
  480. if (v > limit) \
  481. v = limit; \
  482. (v - 1); \
  483. })
  484. #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
  485. { \
  486. writel(0x1232, &pll->ctrl); \
  487. writel(0x2, &pll->config); \
  488. writel((((pd) - 1) << 0) | ((fi) << 4), \
  489. &pll->op); \
  490. writel(fn, &(pll->mfn)); \
  491. writel((fd) - 1, &pll->mfd); \
  492. writel((((pd) - 1) << 0) | ((fi) << 4), \
  493. &pll->hfs_op); \
  494. writel(fn, &pll->hfs_mfn); \
  495. writel((fd) - 1, &pll->hfs_mfd); \
  496. writel(0x1232, &pll->ctrl); \
  497. while (!readl(&pll->ctrl) & 0x1) \
  498. ;\
  499. }
  500. static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
  501. {
  502. u32 ccsr = readl(&mxc_ccm->ccsr);
  503. struct mxc_pll_reg *pll = mxc_plls[index];
  504. switch (index) {
  505. case PLL1_CLOCK:
  506. /* Switch ARM to PLL2 clock */
  507. writel(ccsr | 0x4, &mxc_ccm->ccsr);
  508. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  509. pll_param->mfi, pll_param->mfn,
  510. pll_param->mfd);
  511. /* Switch back */
  512. writel(ccsr & ~0x4, &mxc_ccm->ccsr);
  513. break;
  514. case PLL2_CLOCK:
  515. /* Switch to pll2 bypass clock */
  516. writel(ccsr | 0x2, &mxc_ccm->ccsr);
  517. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  518. pll_param->mfi, pll_param->mfn,
  519. pll_param->mfd);
  520. /* Switch back */
  521. writel(ccsr & ~0x2, &mxc_ccm->ccsr);
  522. break;
  523. case PLL3_CLOCK:
  524. /* Switch to pll3 bypass clock */
  525. writel(ccsr | 0x1, &mxc_ccm->ccsr);
  526. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  527. pll_param->mfi, pll_param->mfn,
  528. pll_param->mfd);
  529. /* Switch back */
  530. writel(ccsr & ~0x1, &mxc_ccm->ccsr);
  531. break;
  532. case PLL4_CLOCK:
  533. /* Switch to pll4 bypass clock */
  534. writel(ccsr | 0x20, &mxc_ccm->ccsr);
  535. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  536. pll_param->mfi, pll_param->mfn,
  537. pll_param->mfd);
  538. /* Switch back */
  539. writel(ccsr & ~0x20, &mxc_ccm->ccsr);
  540. break;
  541. default:
  542. return -EINVAL;
  543. }
  544. return 0;
  545. }
  546. /* Config CPU clock */
  547. static int config_core_clk(u32 ref, u32 freq)
  548. {
  549. int ret = 0;
  550. struct pll_param pll_param;
  551. memset(&pll_param, 0, sizeof(struct pll_param));
  552. /* The case that periph uses PLL1 is not considered here */
  553. ret = calc_pll_params(ref, freq, &pll_param);
  554. if (ret != 0) {
  555. printf("Error:Can't find pll parameters: %d\n", ret);
  556. return ret;
  557. }
  558. return config_pll_clk(PLL1_CLOCK, &pll_param);
  559. }
  560. static int config_nfc_clk(u32 nfc_clk)
  561. {
  562. u32 parent_rate = get_emi_slow_clk();
  563. u32 div = parent_rate / nfc_clk;
  564. if (nfc_clk <= 0)
  565. return -EINVAL;
  566. if (div == 0)
  567. div++;
  568. if (parent_rate / div > NFC_CLK_MAX)
  569. div++;
  570. clrsetbits_le32(&mxc_ccm->cbcdr,
  571. MXC_CCM_CBCDR_NFC_PODF_MASK,
  572. MXC_CCM_CBCDR_NFC_PODF(div - 1));
  573. while (readl(&mxc_ccm->cdhipr) != 0)
  574. ;
  575. return 0;
  576. }
  577. /* Config main_bus_clock for periphs */
  578. static int config_periph_clk(u32 ref, u32 freq)
  579. {
  580. int ret = 0;
  581. struct pll_param pll_param;
  582. memset(&pll_param, 0, sizeof(struct pll_param));
  583. if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  584. ret = calc_pll_params(ref, freq, &pll_param);
  585. if (ret != 0) {
  586. printf("Error:Can't find pll parameters: %d\n",
  587. ret);
  588. return ret;
  589. }
  590. switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
  591. readl(&mxc_ccm->cbcmr))) {
  592. case 0:
  593. return config_pll_clk(PLL1_CLOCK, &pll_param);
  594. break;
  595. case 1:
  596. return config_pll_clk(PLL3_CLOCK, &pll_param);
  597. break;
  598. default:
  599. return -EINVAL;
  600. }
  601. }
  602. return 0;
  603. }
  604. static int config_ddr_clk(u32 emi_clk)
  605. {
  606. u32 clk_src;
  607. s32 shift = 0, clk_sel, div = 1;
  608. u32 cbcmr = readl(&mxc_ccm->cbcmr);
  609. if (emi_clk > MAX_DDR_CLK) {
  610. printf("Warning:DDR clock should not exceed %d MHz\n",
  611. MAX_DDR_CLK / SZ_DEC_1M);
  612. emi_clk = MAX_DDR_CLK;
  613. }
  614. clk_src = get_periph_clk();
  615. /* Find DDR clock input */
  616. clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
  617. switch (clk_sel) {
  618. case 0:
  619. shift = 16;
  620. break;
  621. case 1:
  622. shift = 19;
  623. break;
  624. case 2:
  625. shift = 22;
  626. break;
  627. case 3:
  628. shift = 10;
  629. break;
  630. default:
  631. return -EINVAL;
  632. }
  633. if ((clk_src % emi_clk) < 10000000)
  634. div = clk_src / emi_clk;
  635. else
  636. div = (clk_src / emi_clk) + 1;
  637. if (div > 8)
  638. div = 8;
  639. clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
  640. while (readl(&mxc_ccm->cdhipr) != 0)
  641. ;
  642. writel(0x0, &mxc_ccm->ccdr);
  643. return 0;
  644. }
  645. /*
  646. * This function assumes the expected core clock has to be changed by
  647. * modifying the PLL. This is NOT true always but for most of the times,
  648. * it is. So it assumes the PLL output freq is the same as the expected
  649. * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
  650. * In the latter case, it will try to increase the presc value until
  651. * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
  652. * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
  653. * on the targeted PLL and reference input clock to the PLL. Lastly,
  654. * it sets the register based on these values along with the dividers.
  655. * Note 1) There is no value checking for the passed-in divider values
  656. * so the caller has to make sure those values are sensible.
  657. * 2) Also adjust the NFC divider such that the NFC clock doesn't
  658. * exceed NFC_CLK_MAX.
  659. * 3) IPU HSP clock is independent of AHB clock. Even it can go up to
  660. * 177MHz for higher voltage, this function fixes the max to 133MHz.
  661. * 4) This function should not have allowed diag_printf() calls since
  662. * the serial driver has been stoped. But leave then here to allow
  663. * easy debugging by NOT calling the cyg_hal_plf_serial_stop().
  664. */
  665. int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
  666. {
  667. freq *= SZ_DEC_1M;
  668. switch (clk) {
  669. case MXC_ARM_CLK:
  670. if (config_core_clk(ref, freq))
  671. return -EINVAL;
  672. break;
  673. case MXC_PERIPH_CLK:
  674. if (config_periph_clk(ref, freq))
  675. return -EINVAL;
  676. break;
  677. case MXC_DDR_CLK:
  678. if (config_ddr_clk(freq))
  679. return -EINVAL;
  680. break;
  681. case MXC_NFC_CLK:
  682. if (config_nfc_clk(freq))
  683. return -EINVAL;
  684. break;
  685. default:
  686. printf("Warning:Unsupported or invalid clock type\n");
  687. }
  688. return 0;
  689. }
  690. #ifdef CONFIG_MX53
  691. /*
  692. * The clock for the external interface can be set to use internal clock
  693. * if fuse bank 4, row 3, bit 2 is set.
  694. * This is an undocumented feature and it was confirmed by Freescale's support:
  695. * Fuses (but not pins) may be used to configure SATA clocks.
  696. * Particularly the i.MX53 Fuse_Map contains the next information
  697. * about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
  698. * '00' - 100MHz (External)
  699. * '01' - 50MHz (External)
  700. * '10' - 120MHz, internal (USB PHY)
  701. * '11' - Reserved
  702. */
  703. void mxc_set_sata_internal_clock(void)
  704. {
  705. u32 *tmp_base =
  706. (u32 *)(IIM_BASE_ADDR + 0x180c);
  707. set_usb_phy1_clk();
  708. clrsetbits_le32(tmp_base, 0x6, 0x4);
  709. }
  710. #endif
  711. /*
  712. * Dump some core clockes.
  713. */
  714. int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  715. {
  716. u32 freq;
  717. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  718. printf("PLL1 %8d MHz\n", freq / 1000000);
  719. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  720. printf("PLL2 %8d MHz\n", freq / 1000000);
  721. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  722. printf("PLL3 %8d MHz\n", freq / 1000000);
  723. #ifdef CONFIG_MX53
  724. freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
  725. printf("PLL4 %8d MHz\n", freq / 1000000);
  726. #endif
  727. printf("\n");
  728. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  729. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  730. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  731. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  732. return 0;
  733. }
  734. /***************************************************/
  735. U_BOOT_CMD(
  736. clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
  737. "display clocks",
  738. ""
  739. );