i2c.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744
  1. /*
  2. * (C) Copyright 2000
  3. * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
  4. *
  5. * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  6. * Marius Groeger <mgroeger@sysgo.de>
  7. *
  8. * See file CREDITS for list of people who contributed to this
  9. * project.
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation; either version 2 of
  14. * the License, or (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  24. * MA 02111-1307 USA
  25. *
  26. * Back ported to the 8xx platform (from the 8260 platform) by
  27. * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
  28. */
  29. #include <common.h>
  30. #ifdef CONFIG_HARD_I2C
  31. #include <commproc.h>
  32. #include <i2c.h>
  33. #ifdef CONFIG_LWMON
  34. #include <watchdog.h>
  35. #endif
  36. /* define to enable debug messages */
  37. #undef DEBUG_I2C
  38. /*-----------------------------------------------------------------------
  39. * Set default values
  40. */
  41. #ifndef CFG_I2C_SPEED
  42. #define CFG_I2C_SPEED 50000
  43. #endif
  44. #ifndef CFG_I2C_SLAVE
  45. #define CFG_I2C_SLAVE 0xFE
  46. #endif
  47. /*-----------------------------------------------------------------------
  48. */
  49. /* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */
  50. #define TOUT_LOOP 1000000
  51. #define NUM_RX_BDS 4
  52. #define NUM_TX_BDS 4
  53. #define MAX_TX_SPACE 256
  54. #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
  55. typedef struct I2C_BD
  56. {
  57. unsigned short status;
  58. unsigned short length;
  59. unsigned char *addr;
  60. } I2C_BD;
  61. #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
  62. #define BD_I2C_TX_CL 0x0001 /* collision error */
  63. #define BD_I2C_TX_UN 0x0002 /* underflow error */
  64. #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
  65. #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
  66. #define BD_I2C_RX_ERR BD_SC_OV
  67. typedef void (*i2c_ecb_t)(int, int); /* error callback function */
  68. /* This structure keeps track of the bd and buffer space usage. */
  69. typedef struct i2c_state {
  70. int rx_idx; /* index to next free Rx BD */
  71. int tx_idx; /* index to next free Tx BD */
  72. void *rxbd; /* pointer to next free Rx BD */
  73. void *txbd; /* pointer to next free Tx BD */
  74. int tx_space; /* number of Tx bytes left */
  75. unsigned char *tx_buf; /* pointer to free Tx area */
  76. i2c_ecb_t err_cb; /* error callback function */
  77. } i2c_state_t;
  78. /* flags for i2c_send() and i2c_receive() */
  79. #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
  80. #define I2CF_START_COND 0x02 /* tx: generate start condition */
  81. #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
  82. /* return codes */
  83. #define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */
  84. #define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */
  85. #define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */
  86. #define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */
  87. /* error callback flags */
  88. #define I2CECB_RX_ERR 0x10 /* this is a receive error */
  89. #define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */
  90. #define I2CECB_RX_MASK 0x0f /* mask for error bits */
  91. #define I2CECB_TX_ERR 0x20 /* this is a transmit error */
  92. #define I2CECB_TX_CL 0x01 /* transmit collision error */
  93. #define I2CECB_TX_UN 0x02 /* transmit underflow error */
  94. #define I2CECB_TX_NAK 0x04 /* transmit no ack error */
  95. #define I2CECB_TX_MASK 0x0f /* mask for error bits */
  96. #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
  97. #ifdef DEBUG_I2C
  98. #define PRINTD(x) printf x
  99. #else
  100. #define PRINTD(x)
  101. #endif
  102. /*
  103. * Returns the best value of I2BRG to meet desired clock speed of I2C with
  104. * input parameters (clock speed, filter, and predivider value).
  105. * It returns computer speed value and the difference between it and desired
  106. * speed.
  107. */
  108. static inline int
  109. i2c_roundrate(int hz, int speed, int filter, int modval,
  110. int *brgval, int *totspeed)
  111. {
  112. int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
  113. PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
  114. hz, speed, filter, modval));
  115. div = moddiv * speed;
  116. brgdiv = (hz + div - 1) / div;
  117. PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
  118. *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter);
  119. if ((*brgval < 0) || (*brgval > 255)) {
  120. PRINTD(("\t\trejected brgval=%d\n", *brgval));
  121. return -1;
  122. }
  123. brgdiv = 2 * (*brgval + 3 + (2 * filter));
  124. div = moddiv * brgdiv ;
  125. *totspeed = hz / div;
  126. PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
  127. return 0;
  128. }
  129. /*
  130. * Sets the I2C clock predivider and divider to meet required clock speed.
  131. */
  132. static int
  133. i2c_setrate (int hz, int speed)
  134. {
  135. immap_t *immap = (immap_t *) CFG_IMMR;
  136. volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c;
  137. int brgval,
  138. modval, /* 0-3 */
  139. bestspeed_diff = speed,
  140. bestspeed_brgval = 0,
  141. bestspeed_modval = 0,
  142. bestspeed_filter = 0,
  143. totspeed,
  144. filter = 0; /* Use this fixed value */
  145. for (modval = 0; modval < 4; modval++) {
  146. if (i2c_roundrate(hz,speed,filter,modval,&brgval,&totspeed) == 0) {
  147. int diff = speed - totspeed;
  148. if ((diff >= 0) && (diff < bestspeed_diff)) {
  149. bestspeed_diff = diff;
  150. bestspeed_modval = modval;
  151. bestspeed_brgval = brgval;
  152. bestspeed_filter = filter;
  153. }
  154. }
  155. }
  156. PRINTD (("[I2C] Best is:\n"));
  157. PRINTD (("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
  158. hz,
  159. speed,
  160. bestspeed_filter,
  161. bestspeed_modval,
  162. bestspeed_brgval,
  163. bestspeed_diff));
  164. i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
  165. i2c->i2c_i2brg = bestspeed_brgval & 0xff;
  166. PRINTD (("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod,
  167. i2c->i2c_i2brg));
  168. return 1;
  169. }
  170. void
  171. i2c_init(int speed, int slaveaddr)
  172. {
  173. DECLARE_GLOBAL_DATA_PTR;
  174. volatile immap_t *immap = (immap_t *)CFG_IMMR ;
  175. volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
  176. volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
  177. volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
  178. ulong rbase, tbase;
  179. volatile I2C_BD *rxbd, *txbd;
  180. uint dpaddr;
  181. #ifdef CFG_I2C_INIT_BOARD
  182. /* call board specific i2c bus reset routine before accessing the */
  183. /* environment, which might be in a chip on that bus. For details */
  184. /* about this problem see doc/I2C_Edge_Conditions. */
  185. i2c_init_board();
  186. #endif
  187. #ifdef CFG_I2C_UCODE_PATCH
  188. iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
  189. #else
  190. /* Disable relocation */
  191. iip->iic_rpbase = 0;
  192. #endif
  193. #ifdef CFG_ALLOC_DPRAM
  194. dpaddr = iip->iic_rbase;
  195. if (dpaddr == 0) {
  196. /* need to allocate dual port ram */
  197. dpaddr = dpram_alloc_align(
  198. (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
  199. MAX_TX_SPACE, 8);
  200. }
  201. #else
  202. dpaddr = CPM_I2C_BASE;
  203. #endif
  204. /*
  205. * initialise data in dual port ram:
  206. *
  207. * dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
  208. * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
  209. * tx buffer (MAX_TX_SPACE bytes)
  210. */
  211. rbase = dpaddr;
  212. tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
  213. /* Initialize Port B I2C pins. */
  214. cp->cp_pbpar |= 0x00000030;
  215. cp->cp_pbdir |= 0x00000030;
  216. cp->cp_pbodr |= 0x00000030;
  217. /* Disable interrupts */
  218. i2c->i2c_i2mod = 0x00;
  219. i2c->i2c_i2cmr = 0x00;
  220. i2c->i2c_i2cer = 0xff;
  221. i2c->i2c_i2add = slaveaddr;
  222. /*
  223. * Set the I2C BRG Clock division factor from desired i2c rate
  224. * and current CPU rate (we assume sccr dfbgr field is 0;
  225. * divide BRGCLK by 1)
  226. */
  227. PRINTD(("[I2C] Setting rate...\n"));
  228. i2c_setrate (gd->cpu_clk, CFG_I2C_SPEED) ;
  229. /* Set I2C controller in master mode */
  230. i2c->i2c_i2com = 0x01;
  231. /* Set SDMA bus arbitration level to 5 (SDCR) */
  232. immap->im_siu_conf.sc_sdcr = 0x0001 ;
  233. /* Initialize Tx/Rx parameters */
  234. iip->iic_rbase = rbase;
  235. iip->iic_tbase = tbase;
  236. rxbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_rbase]);
  237. txbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_tbase]);
  238. PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
  239. PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
  240. PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
  241. PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
  242. /* Set big endian byte order */
  243. iip->iic_tfcr = 0x10;
  244. iip->iic_rfcr = 0x10;
  245. /* Set maximum receive size. */
  246. iip->iic_mrblr = I2C_RXTX_LEN;
  247. #ifdef CFG_I2C_UCODE_PATCH
  248. /*
  249. * Initialize required parameters if using microcode patch.
  250. */
  251. iip->iic_rbptr = iip->iic_rbase;
  252. iip->iic_tbptr = iip->iic_tbase;
  253. iip->iic_rstate = 0;
  254. iip->iic_tstate = 0;
  255. #else
  256. cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG;
  257. do {
  258. __asm__ __volatile__ ("eieio");
  259. } while (cp->cp_cpcr & CPM_CR_FLG);
  260. #endif
  261. /* Clear events and interrupts */
  262. i2c->i2c_i2cer = 0xff;
  263. i2c->i2c_i2cmr = 0x00;
  264. }
  265. static void
  266. i2c_newio(i2c_state_t *state)
  267. {
  268. volatile immap_t *immap = (immap_t *)CFG_IMMR ;
  269. volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
  270. volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
  271. PRINTD(("[I2C] i2c_newio\n"));
  272. #ifdef CFG_I2C_UCODE_PATCH
  273. iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
  274. #endif
  275. state->rx_idx = 0;
  276. state->tx_idx = 0;
  277. state->rxbd = (void*)&cp->cp_dpmem[iip->iic_rbase];
  278. state->txbd = (void*)&cp->cp_dpmem[iip->iic_tbase];
  279. state->tx_space = MAX_TX_SPACE;
  280. state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
  281. state->err_cb = NULL;
  282. PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
  283. PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
  284. PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
  285. /* clear the buffer memory */
  286. memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
  287. }
  288. static int
  289. i2c_send(i2c_state_t *state,
  290. unsigned char address,
  291. unsigned char secondary_address,
  292. unsigned int flags,
  293. unsigned short size,
  294. unsigned char *dataout)
  295. {
  296. volatile I2C_BD *txbd;
  297. int i,j;
  298. PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
  299. address, secondary_address, flags, size));
  300. /* trying to send message larger than BD */
  301. if (size > I2C_RXTX_LEN)
  302. return I2CERR_MSG_TOO_LONG;
  303. /* no more free bds */
  304. if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
  305. return I2CERR_NO_BUFFERS;
  306. txbd = (I2C_BD *)state->txbd;
  307. txbd->addr = state->tx_buf;
  308. PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
  309. if (flags & I2CF_START_COND) {
  310. PRINTD(("[I2C] Formatting addresses...\n"));
  311. if (flags & I2CF_ENABLE_SECONDARY) {
  312. txbd->length = size + 2; /* Length of msg + dest addr */
  313. txbd->addr[0] = address << 1;
  314. txbd->addr[1] = secondary_address;
  315. i = 2;
  316. } else {
  317. txbd->length = size + 1; /* Length of msg + dest addr */
  318. txbd->addr[0] = address << 1; /* Write dest addr to BD */
  319. i = 1;
  320. }
  321. } else {
  322. txbd->length = size; /* Length of message */
  323. i = 0;
  324. }
  325. /* set up txbd */
  326. txbd->status = BD_SC_READY;
  327. if (flags & I2CF_START_COND)
  328. txbd->status |= BD_I2C_TX_START;
  329. if (flags & I2CF_STOP_COND)
  330. txbd->status |= BD_SC_LAST | BD_SC_WRAP;
  331. /* Copy data to send into buffer */
  332. PRINTD(("[I2C] copy data...\n"));
  333. for(j = 0; j < size; i++, j++)
  334. txbd->addr[i] = dataout[j];
  335. PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
  336. txbd->length,
  337. txbd->status,
  338. txbd->addr[0],
  339. txbd->addr[1]));
  340. /* advance state */
  341. state->tx_buf += txbd->length;
  342. state->tx_space -= txbd->length;
  343. state->tx_idx++;
  344. state->txbd = (void*)(txbd + 1);
  345. return 0;
  346. }
  347. static int
  348. i2c_receive(i2c_state_t *state,
  349. unsigned char address,
  350. unsigned char secondary_address,
  351. unsigned int flags,
  352. unsigned short size_to_expect,
  353. unsigned char *datain)
  354. {
  355. volatile I2C_BD *rxbd, *txbd;
  356. PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
  357. /* Expected to receive too much */
  358. if (size_to_expect > I2C_RXTX_LEN)
  359. return I2CERR_MSG_TOO_LONG;
  360. /* no more free bds */
  361. if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
  362. || state->tx_space < 2)
  363. return I2CERR_NO_BUFFERS;
  364. rxbd = (I2C_BD *)state->rxbd;
  365. txbd = (I2C_BD *)state->txbd;
  366. PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
  367. PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
  368. txbd->addr = state->tx_buf;
  369. /* set up TXBD for destination address */
  370. if (flags & I2CF_ENABLE_SECONDARY) {
  371. txbd->length = 2;
  372. txbd->addr[0] = address << 1; /* Write data */
  373. txbd->addr[1] = secondary_address; /* Internal address */
  374. txbd->status = BD_SC_READY;
  375. } else {
  376. txbd->length = 1 + size_to_expect;
  377. txbd->addr[0] = (address << 1) | 0x01;
  378. txbd->status = BD_SC_READY;
  379. memset(&txbd->addr[1], 0, txbd->length);
  380. }
  381. /* set up rxbd for reception */
  382. rxbd->status = BD_SC_EMPTY;
  383. rxbd->length = size_to_expect;
  384. rxbd->addr = datain;
  385. txbd->status |= BD_I2C_TX_START;
  386. if (flags & I2CF_STOP_COND) {
  387. txbd->status |= BD_SC_LAST | BD_SC_WRAP;
  388. rxbd->status |= BD_SC_WRAP;
  389. }
  390. PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
  391. txbd->length,
  392. txbd->status,
  393. txbd->addr[0],
  394. txbd->addr[1]));
  395. PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
  396. rxbd->length,
  397. rxbd->status,
  398. rxbd->addr[0],
  399. rxbd->addr[1]));
  400. /* advance state */
  401. state->tx_buf += txbd->length;
  402. state->tx_space -= txbd->length;
  403. state->tx_idx++;
  404. state->txbd = (void*)(txbd + 1);
  405. state->rx_idx++;
  406. state->rxbd = (void*)(rxbd + 1);
  407. return 0;
  408. }
  409. static int i2c_doio(i2c_state_t *state)
  410. {
  411. volatile immap_t *immap = (immap_t *)CFG_IMMR ;
  412. volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
  413. volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
  414. volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
  415. volatile I2C_BD *txbd, *rxbd;
  416. volatile int j = 0;
  417. PRINTD(("[I2C] i2c_doio\n"));
  418. #ifdef CFG_I2C_UCODE_PATCH
  419. iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
  420. #endif
  421. if (state->tx_idx <= 0 && state->rx_idx <= 0) {
  422. PRINTD(("[I2C] No I/O is queued\n"));
  423. return I2CERR_QUEUE_EMPTY;
  424. }
  425. iip->iic_rbptr = iip->iic_rbase;
  426. iip->iic_tbptr = iip->iic_tbase;
  427. /* Enable I2C */
  428. PRINTD(("[I2C] Enabling I2C...\n"));
  429. i2c->i2c_i2mod |= 0x01;
  430. /* Begin transmission */
  431. i2c->i2c_i2com |= 0x80;
  432. /* Loop until transmit & receive completed */
  433. if (state->tx_idx > 0) {
  434. txbd = ((I2C_BD*)state->txbd) - 1;
  435. PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
  436. while((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) {
  437. if (ctrlc()) {
  438. return (-1);
  439. }
  440. __asm__ __volatile__ ("eieio");
  441. }
  442. }
  443. if ((state->rx_idx > 0) && (j < TOUT_LOOP)) {
  444. rxbd = ((I2C_BD*)state->rxbd) - 1;
  445. PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
  446. while((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) {
  447. if (ctrlc()) {
  448. return (-1);
  449. }
  450. __asm__ __volatile__ ("eieio");
  451. }
  452. }
  453. /* Turn off I2C */
  454. i2c->i2c_i2mod &= ~0x01;
  455. if (state->err_cb != NULL) {
  456. int n, i, b;
  457. /*
  458. * if we have an error callback function, look at the
  459. * error bits in the bd status and pass them back
  460. */
  461. if ((n = state->tx_idx) > 0) {
  462. for (i = 0; i < n; i++) {
  463. txbd = ((I2C_BD*)state->txbd) - (n - i);
  464. if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
  465. (*state->err_cb)(I2CECB_TX_ERR|b, i);
  466. }
  467. }
  468. if ((n = state->rx_idx) > 0) {
  469. for (i = 0; i < n; i++) {
  470. rxbd = ((I2C_BD*)state->rxbd) - (n - i);
  471. if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
  472. (*state->err_cb)(I2CECB_RX_ERR|b, i);
  473. }
  474. }
  475. if (j >= TOUT_LOOP)
  476. (*state->err_cb)(I2CECB_TIMEOUT, 0);
  477. }
  478. return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;
  479. }
  480. static int had_tx_nak;
  481. static void
  482. i2c_test_callback(int flags, int xnum)
  483. {
  484. if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
  485. had_tx_nak = 1;
  486. }
  487. int i2c_probe(uchar chip)
  488. {
  489. i2c_state_t state;
  490. int rc;
  491. uchar buf[1];
  492. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  493. i2c_newio(&state);
  494. state.err_cb = i2c_test_callback;
  495. had_tx_nak = 0;
  496. rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
  497. if (rc != 0)
  498. return (rc);
  499. rc = i2c_doio(&state);
  500. if ((rc != 0) && (rc != I2CERR_TIMEOUT))
  501. return (rc);
  502. return (had_tx_nak);
  503. }
  504. int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
  505. {
  506. DECLARE_GLOBAL_DATA_PTR;
  507. i2c_state_t state;
  508. uchar xaddr[4];
  509. int rc;
  510. #ifdef CONFIG_LWMON
  511. WATCHDOG_RESET();
  512. #endif
  513. xaddr[0] = (addr >> 24) & 0xFF;
  514. xaddr[1] = (addr >> 16) & 0xFF;
  515. xaddr[2] = (addr >> 8) & 0xFF;
  516. xaddr[3] = addr & 0xFF;
  517. #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
  518. /*
  519. * EEPROM chips that implement "address overflow" are ones like
  520. * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
  521. * extra bits end up in the "chip address" bit slots. This makes
  522. * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
  523. *
  524. * Note that we consider the length of the address field to still
  525. * be one byte because the extra address bits are hidden in the
  526. * chip address.
  527. */
  528. chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
  529. #endif
  530. i2c_newio(&state);
  531. rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
  532. if (rc != 0) {
  533. if (gd->have_console)
  534. printf("i2c_read: i2c_send failed (%d)\n", rc);
  535. return 1;
  536. }
  537. rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
  538. if (rc != 0) {
  539. if (gd->have_console)
  540. printf("i2c_read: i2c_receive failed (%d)\n", rc);
  541. return 1;
  542. }
  543. rc = i2c_doio(&state);
  544. if (rc != 0) {
  545. if (gd->have_console)
  546. printf("i2c_read: i2c_doio failed (%d)\n", rc);
  547. return 1;
  548. }
  549. return 0;
  550. }
  551. int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
  552. {
  553. DECLARE_GLOBAL_DATA_PTR;
  554. i2c_state_t state;
  555. uchar xaddr[4];
  556. int rc;
  557. xaddr[0] = (addr >> 24) & 0xFF;
  558. xaddr[1] = (addr >> 16) & 0xFF;
  559. xaddr[2] = (addr >> 8) & 0xFF;
  560. xaddr[3] = addr & 0xFF;
  561. #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
  562. /*
  563. * EEPROM chips that implement "address overflow" are ones like
  564. * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
  565. * extra bits end up in the "chip address" bit slots. This makes
  566. * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
  567. *
  568. * Note that we consider the length of the address field to still
  569. * be one byte because the extra address bits are hidden in the
  570. * chip address.
  571. */
  572. chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
  573. #endif
  574. i2c_newio(&state);
  575. rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
  576. if (rc != 0) {
  577. if (gd->have_console)
  578. printf("i2c_write: first i2c_send failed (%d)\n", rc);
  579. return 1;
  580. }
  581. rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
  582. if (rc != 0) {
  583. if (gd->have_console)
  584. printf("i2c_write: second i2c_send failed (%d)\n", rc);
  585. return 1;
  586. }
  587. rc = i2c_doio(&state);
  588. if (rc != 0) {
  589. if (gd->have_console)
  590. printf("i2c_write: i2c_doio failed (%d)\n", rc);
  591. return 1;
  592. }
  593. return 0;
  594. }
  595. uchar
  596. i2c_reg_read(uchar i2c_addr, uchar reg)
  597. {
  598. char buf;
  599. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  600. i2c_read(i2c_addr, reg, 1, &buf, 1);
  601. return (buf);
  602. }
  603. void
  604. i2c_reg_write(uchar i2c_addr, uchar reg, uchar val)
  605. {
  606. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  607. i2c_write(i2c_addr, reg, 1, &val, 1);
  608. }
  609. #endif /* CONFIG_HARD_I2C */