uec.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. /*
  2. * Copyright (C) 2006-2011 Freescale Semiconductor, Inc.
  3. *
  4. * Dave Liu <daveliu@freescale.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 of
  9. * the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  19. * MA 02111-1307 USA
  20. */
  21. #include "common.h"
  22. #include "net.h"
  23. #include "malloc.h"
  24. #include "asm/errno.h"
  25. #include "asm/io.h"
  26. #include "asm/immap_qe.h"
  27. #include "qe.h"
  28. #include "uccf.h"
  29. #include "uec.h"
  30. #include "uec_phy.h"
  31. #include "miiphy.h"
  32. /* Default UTBIPAR SMI address */
  33. #ifndef CONFIG_UTBIPAR_INIT_TBIPA
  34. #define CONFIG_UTBIPAR_INIT_TBIPA 0x1F
  35. #endif
  36. static uec_info_t uec_info[] = {
  37. #ifdef CONFIG_UEC_ETH1
  38. STD_UEC_INFO(1), /* UEC1 */
  39. #endif
  40. #ifdef CONFIG_UEC_ETH2
  41. STD_UEC_INFO(2), /* UEC2 */
  42. #endif
  43. #ifdef CONFIG_UEC_ETH3
  44. STD_UEC_INFO(3), /* UEC3 */
  45. #endif
  46. #ifdef CONFIG_UEC_ETH4
  47. STD_UEC_INFO(4), /* UEC4 */
  48. #endif
  49. #ifdef CONFIG_UEC_ETH5
  50. STD_UEC_INFO(5), /* UEC5 */
  51. #endif
  52. #ifdef CONFIG_UEC_ETH6
  53. STD_UEC_INFO(6), /* UEC6 */
  54. #endif
  55. #ifdef CONFIG_UEC_ETH7
  56. STD_UEC_INFO(7), /* UEC7 */
  57. #endif
  58. #ifdef CONFIG_UEC_ETH8
  59. STD_UEC_INFO(8), /* UEC8 */
  60. #endif
  61. };
  62. #define MAXCONTROLLERS (8)
  63. static struct eth_device *devlist[MAXCONTROLLERS];
  64. u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
  65. void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
  66. static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
  67. {
  68. uec_t *uec_regs;
  69. u32 maccfg1;
  70. if (!uec) {
  71. printf("%s: uec not initial\n", __FUNCTION__);
  72. return -EINVAL;
  73. }
  74. uec_regs = uec->uec_regs;
  75. maccfg1 = in_be32(&uec_regs->maccfg1);
  76. if (mode & COMM_DIR_TX) {
  77. maccfg1 |= MACCFG1_ENABLE_TX;
  78. out_be32(&uec_regs->maccfg1, maccfg1);
  79. uec->mac_tx_enabled = 1;
  80. }
  81. if (mode & COMM_DIR_RX) {
  82. maccfg1 |= MACCFG1_ENABLE_RX;
  83. out_be32(&uec_regs->maccfg1, maccfg1);
  84. uec->mac_rx_enabled = 1;
  85. }
  86. return 0;
  87. }
  88. static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
  89. {
  90. uec_t *uec_regs;
  91. u32 maccfg1;
  92. if (!uec) {
  93. printf("%s: uec not initial\n", __FUNCTION__);
  94. return -EINVAL;
  95. }
  96. uec_regs = uec->uec_regs;
  97. maccfg1 = in_be32(&uec_regs->maccfg1);
  98. if (mode & COMM_DIR_TX) {
  99. maccfg1 &= ~MACCFG1_ENABLE_TX;
  100. out_be32(&uec_regs->maccfg1, maccfg1);
  101. uec->mac_tx_enabled = 0;
  102. }
  103. if (mode & COMM_DIR_RX) {
  104. maccfg1 &= ~MACCFG1_ENABLE_RX;
  105. out_be32(&uec_regs->maccfg1, maccfg1);
  106. uec->mac_rx_enabled = 0;
  107. }
  108. return 0;
  109. }
  110. static int uec_graceful_stop_tx(uec_private_t *uec)
  111. {
  112. ucc_fast_t *uf_regs;
  113. u32 cecr_subblock;
  114. u32 ucce;
  115. if (!uec || !uec->uccf) {
  116. printf("%s: No handle passed.\n", __FUNCTION__);
  117. return -EINVAL;
  118. }
  119. uf_regs = uec->uccf->uf_regs;
  120. /* Clear the grace stop event */
  121. out_be32(&uf_regs->ucce, UCCE_GRA);
  122. /* Issue host command */
  123. cecr_subblock =
  124. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  125. qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
  126. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  127. /* Wait for command to complete */
  128. do {
  129. ucce = in_be32(&uf_regs->ucce);
  130. } while (! (ucce & UCCE_GRA));
  131. uec->grace_stopped_tx = 1;
  132. return 0;
  133. }
  134. static int uec_graceful_stop_rx(uec_private_t *uec)
  135. {
  136. u32 cecr_subblock;
  137. u8 ack;
  138. if (!uec) {
  139. printf("%s: No handle passed.\n", __FUNCTION__);
  140. return -EINVAL;
  141. }
  142. if (!uec->p_rx_glbl_pram) {
  143. printf("%s: No init rx global parameter\n", __FUNCTION__);
  144. return -EINVAL;
  145. }
  146. /* Clear acknowledge bit */
  147. ack = uec->p_rx_glbl_pram->rxgstpack;
  148. ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
  149. uec->p_rx_glbl_pram->rxgstpack = ack;
  150. /* Keep issuing cmd and checking ack bit until it is asserted */
  151. do {
  152. /* Issue host command */
  153. cecr_subblock =
  154. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  155. qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
  156. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  157. ack = uec->p_rx_glbl_pram->rxgstpack;
  158. } while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
  159. uec->grace_stopped_rx = 1;
  160. return 0;
  161. }
  162. static int uec_restart_tx(uec_private_t *uec)
  163. {
  164. u32 cecr_subblock;
  165. if (!uec || !uec->uec_info) {
  166. printf("%s: No handle passed.\n", __FUNCTION__);
  167. return -EINVAL;
  168. }
  169. cecr_subblock =
  170. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  171. qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
  172. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  173. uec->grace_stopped_tx = 0;
  174. return 0;
  175. }
  176. static int uec_restart_rx(uec_private_t *uec)
  177. {
  178. u32 cecr_subblock;
  179. if (!uec || !uec->uec_info) {
  180. printf("%s: No handle passed.\n", __FUNCTION__);
  181. return -EINVAL;
  182. }
  183. cecr_subblock =
  184. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  185. qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
  186. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  187. uec->grace_stopped_rx = 0;
  188. return 0;
  189. }
  190. static int uec_open(uec_private_t *uec, comm_dir_e mode)
  191. {
  192. ucc_fast_private_t *uccf;
  193. if (!uec || !uec->uccf) {
  194. printf("%s: No handle passed.\n", __FUNCTION__);
  195. return -EINVAL;
  196. }
  197. uccf = uec->uccf;
  198. /* check if the UCC number is in range. */
  199. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  200. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  201. return -EINVAL;
  202. }
  203. /* Enable MAC */
  204. uec_mac_enable(uec, mode);
  205. /* Enable UCC fast */
  206. ucc_fast_enable(uccf, mode);
  207. /* RISC microcode start */
  208. if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
  209. uec_restart_tx(uec);
  210. }
  211. if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
  212. uec_restart_rx(uec);
  213. }
  214. return 0;
  215. }
  216. static int uec_stop(uec_private_t *uec, comm_dir_e mode)
  217. {
  218. ucc_fast_private_t *uccf;
  219. if (!uec || !uec->uccf) {
  220. printf("%s: No handle passed.\n", __FUNCTION__);
  221. return -EINVAL;
  222. }
  223. uccf = uec->uccf;
  224. /* check if the UCC number is in range. */
  225. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  226. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  227. return -EINVAL;
  228. }
  229. /* Stop any transmissions */
  230. if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
  231. uec_graceful_stop_tx(uec);
  232. }
  233. /* Stop any receptions */
  234. if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
  235. uec_graceful_stop_rx(uec);
  236. }
  237. /* Disable the UCC fast */
  238. ucc_fast_disable(uec->uccf, mode);
  239. /* Disable the MAC */
  240. uec_mac_disable(uec, mode);
  241. return 0;
  242. }
  243. static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
  244. {
  245. uec_t *uec_regs;
  246. u32 maccfg2;
  247. if (!uec) {
  248. printf("%s: uec not initial\n", __FUNCTION__);
  249. return -EINVAL;
  250. }
  251. uec_regs = uec->uec_regs;
  252. if (duplex == DUPLEX_HALF) {
  253. maccfg2 = in_be32(&uec_regs->maccfg2);
  254. maccfg2 &= ~MACCFG2_FDX;
  255. out_be32(&uec_regs->maccfg2, maccfg2);
  256. }
  257. if (duplex == DUPLEX_FULL) {
  258. maccfg2 = in_be32(&uec_regs->maccfg2);
  259. maccfg2 |= MACCFG2_FDX;
  260. out_be32(&uec_regs->maccfg2, maccfg2);
  261. }
  262. return 0;
  263. }
  264. static int uec_set_mac_if_mode(uec_private_t *uec,
  265. enum fsl_phy_enet_if if_mode, int speed)
  266. {
  267. enum fsl_phy_enet_if enet_if_mode;
  268. uec_info_t *uec_info;
  269. uec_t *uec_regs;
  270. u32 upsmr;
  271. u32 maccfg2;
  272. if (!uec) {
  273. printf("%s: uec not initial\n", __FUNCTION__);
  274. return -EINVAL;
  275. }
  276. uec_info = uec->uec_info;
  277. uec_regs = uec->uec_regs;
  278. enet_if_mode = if_mode;
  279. maccfg2 = in_be32(&uec_regs->maccfg2);
  280. maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
  281. upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
  282. upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
  283. switch (speed) {
  284. case 10:
  285. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  286. switch (enet_if_mode) {
  287. case MII:
  288. break;
  289. case RGMII:
  290. upsmr |= (UPSMR_RPM | UPSMR_R10M);
  291. break;
  292. case RMII:
  293. upsmr |= (UPSMR_R10M | UPSMR_RMM);
  294. break;
  295. default:
  296. return -EINVAL;
  297. break;
  298. }
  299. break;
  300. case 100:
  301. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  302. switch (enet_if_mode) {
  303. case MII:
  304. break;
  305. case RGMII:
  306. upsmr |= UPSMR_RPM;
  307. break;
  308. case RMII:
  309. upsmr |= UPSMR_RMM;
  310. break;
  311. default:
  312. return -EINVAL;
  313. break;
  314. }
  315. break;
  316. case 1000:
  317. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  318. switch (enet_if_mode) {
  319. case GMII:
  320. break;
  321. case TBI:
  322. upsmr |= UPSMR_TBIM;
  323. break;
  324. case RTBI:
  325. upsmr |= (UPSMR_RPM | UPSMR_TBIM);
  326. break;
  327. case RGMII_RXID:
  328. case RGMII_ID:
  329. case RGMII:
  330. upsmr |= UPSMR_RPM;
  331. break;
  332. case SGMII:
  333. upsmr |= UPSMR_SGMM;
  334. break;
  335. default:
  336. return -EINVAL;
  337. break;
  338. }
  339. break;
  340. default:
  341. return -EINVAL;
  342. break;
  343. }
  344. out_be32(&uec_regs->maccfg2, maccfg2);
  345. out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
  346. return 0;
  347. }
  348. static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
  349. {
  350. uint timeout = 0x1000;
  351. u32 miimcfg = 0;
  352. miimcfg = in_be32(&uec_mii_regs->miimcfg);
  353. miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
  354. out_be32(&uec_mii_regs->miimcfg, miimcfg);
  355. /* Wait until the bus is free */
  356. while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
  357. if (timeout <= 0) {
  358. printf("%s: The MII Bus is stuck!", __FUNCTION__);
  359. return -ETIMEDOUT;
  360. }
  361. return 0;
  362. }
  363. static int init_phy(struct eth_device *dev)
  364. {
  365. uec_private_t *uec;
  366. uec_mii_t *umii_regs;
  367. struct uec_mii_info *mii_info;
  368. struct phy_info *curphy;
  369. int err;
  370. uec = (uec_private_t *)dev->priv;
  371. umii_regs = uec->uec_mii_regs;
  372. uec->oldlink = 0;
  373. uec->oldspeed = 0;
  374. uec->oldduplex = -1;
  375. mii_info = malloc(sizeof(*mii_info));
  376. if (!mii_info) {
  377. printf("%s: Could not allocate mii_info", dev->name);
  378. return -ENOMEM;
  379. }
  380. memset(mii_info, 0, sizeof(*mii_info));
  381. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  382. mii_info->speed = SPEED_1000;
  383. } else {
  384. mii_info->speed = SPEED_100;
  385. }
  386. mii_info->duplex = DUPLEX_FULL;
  387. mii_info->pause = 0;
  388. mii_info->link = 1;
  389. mii_info->advertising = (ADVERTISED_10baseT_Half |
  390. ADVERTISED_10baseT_Full |
  391. ADVERTISED_100baseT_Half |
  392. ADVERTISED_100baseT_Full |
  393. ADVERTISED_1000baseT_Full);
  394. mii_info->autoneg = 1;
  395. mii_info->mii_id = uec->uec_info->phy_address;
  396. mii_info->dev = dev;
  397. mii_info->mdio_read = &uec_read_phy_reg;
  398. mii_info->mdio_write = &uec_write_phy_reg;
  399. uec->mii_info = mii_info;
  400. qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
  401. if (init_mii_management_configuration(umii_regs)) {
  402. printf("%s: The MII Bus is stuck!", dev->name);
  403. err = -1;
  404. goto bus_fail;
  405. }
  406. /* get info for this PHY */
  407. curphy = uec_get_phy_info(uec->mii_info);
  408. if (!curphy) {
  409. printf("%s: No PHY found", dev->name);
  410. err = -1;
  411. goto no_phy;
  412. }
  413. mii_info->phyinfo = curphy;
  414. /* Run the commands which initialize the PHY */
  415. if (curphy->init) {
  416. err = curphy->init(uec->mii_info);
  417. if (err)
  418. goto phy_init_fail;
  419. }
  420. return 0;
  421. phy_init_fail:
  422. no_phy:
  423. bus_fail:
  424. free(mii_info);
  425. return err;
  426. }
  427. static void adjust_link(struct eth_device *dev)
  428. {
  429. uec_private_t *uec = (uec_private_t *)dev->priv;
  430. uec_t *uec_regs;
  431. struct uec_mii_info *mii_info = uec->mii_info;
  432. extern void change_phy_interface_mode(struct eth_device *dev,
  433. enum fsl_phy_enet_if mode, int speed);
  434. uec_regs = uec->uec_regs;
  435. if (mii_info->link) {
  436. /* Now we make sure that we can be in full duplex mode.
  437. * If not, we operate in half-duplex mode. */
  438. if (mii_info->duplex != uec->oldduplex) {
  439. if (!(mii_info->duplex)) {
  440. uec_set_mac_duplex(uec, DUPLEX_HALF);
  441. printf("%s: Half Duplex\n", dev->name);
  442. } else {
  443. uec_set_mac_duplex(uec, DUPLEX_FULL);
  444. printf("%s: Full Duplex\n", dev->name);
  445. }
  446. uec->oldduplex = mii_info->duplex;
  447. }
  448. if (mii_info->speed != uec->oldspeed) {
  449. enum fsl_phy_enet_if mode = \
  450. uec->uec_info->enet_interface_type;
  451. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  452. switch (mii_info->speed) {
  453. case 1000:
  454. break;
  455. case 100:
  456. printf ("switching to rgmii 100\n");
  457. mode = RGMII;
  458. break;
  459. case 10:
  460. printf ("switching to rgmii 10\n");
  461. mode = RGMII;
  462. break;
  463. default:
  464. printf("%s: Ack,Speed(%d)is illegal\n",
  465. dev->name, mii_info->speed);
  466. break;
  467. }
  468. }
  469. /* change phy */
  470. change_phy_interface_mode(dev, mode, mii_info->speed);
  471. /* change the MAC interface mode */
  472. uec_set_mac_if_mode(uec, mode, mii_info->speed);
  473. printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
  474. uec->oldspeed = mii_info->speed;
  475. }
  476. if (!uec->oldlink) {
  477. printf("%s: Link is up\n", dev->name);
  478. uec->oldlink = 1;
  479. }
  480. } else { /* if (mii_info->link) */
  481. if (uec->oldlink) {
  482. printf("%s: Link is down\n", dev->name);
  483. uec->oldlink = 0;
  484. uec->oldspeed = 0;
  485. uec->oldduplex = -1;
  486. }
  487. }
  488. }
  489. static void phy_change(struct eth_device *dev)
  490. {
  491. uec_private_t *uec = (uec_private_t *)dev->priv;
  492. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  493. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  494. ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
  495. /* QE9 and QE12 need to be set for enabling QE MII managment signals */
  496. setbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE9);
  497. setbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE12);
  498. #endif
  499. /* Update the link, speed, duplex */
  500. uec->mii_info->phyinfo->read_status(uec->mii_info);
  501. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  502. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  503. /*
  504. * QE12 is muxed with LBCTL, it needs to be released for enabling
  505. * LBCTL signal for LBC usage.
  506. */
  507. clrbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE12);
  508. #endif
  509. /* Adjust the interface according to speed */
  510. adjust_link(dev);
  511. }
  512. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
  513. /*
  514. * Find a device index from the devlist by name
  515. *
  516. * Returns:
  517. * The index where the device is located, -1 on error
  518. */
  519. static int uec_miiphy_find_dev_by_name(const char *devname)
  520. {
  521. int i;
  522. for (i = 0; i < MAXCONTROLLERS; i++) {
  523. if (strncmp(devname, devlist[i]->name, strlen(devname)) == 0) {
  524. break;
  525. }
  526. }
  527. /* If device cannot be found, returns -1 */
  528. if (i == MAXCONTROLLERS) {
  529. debug ("%s: device %s not found in devlist\n", __FUNCTION__, devname);
  530. i = -1;
  531. }
  532. return i;
  533. }
  534. /*
  535. * Read a MII PHY register.
  536. *
  537. * Returns:
  538. * 0 on success
  539. */
  540. static int uec_miiphy_read(const char *devname, unsigned char addr,
  541. unsigned char reg, unsigned short *value)
  542. {
  543. int devindex = 0;
  544. if (devname == NULL || value == NULL) {
  545. debug("%s: NULL pointer given\n", __FUNCTION__);
  546. } else {
  547. devindex = uec_miiphy_find_dev_by_name(devname);
  548. if (devindex >= 0) {
  549. *value = uec_read_phy_reg(devlist[devindex], addr, reg);
  550. }
  551. }
  552. return 0;
  553. }
  554. /*
  555. * Write a MII PHY register.
  556. *
  557. * Returns:
  558. * 0 on success
  559. */
  560. static int uec_miiphy_write(const char *devname, unsigned char addr,
  561. unsigned char reg, unsigned short value)
  562. {
  563. int devindex = 0;
  564. if (devname == NULL) {
  565. debug("%s: NULL pointer given\n", __FUNCTION__);
  566. } else {
  567. devindex = uec_miiphy_find_dev_by_name(devname);
  568. if (devindex >= 0) {
  569. uec_write_phy_reg(devlist[devindex], addr, reg, value);
  570. }
  571. }
  572. return 0;
  573. }
  574. #endif
  575. static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
  576. {
  577. uec_t *uec_regs;
  578. u32 mac_addr1;
  579. u32 mac_addr2;
  580. if (!uec) {
  581. printf("%s: uec not initial\n", __FUNCTION__);
  582. return -EINVAL;
  583. }
  584. uec_regs = uec->uec_regs;
  585. /* if a station address of 0x12345678ABCD, perform a write to
  586. MACSTNADDR1 of 0xCDAB7856,
  587. MACSTNADDR2 of 0x34120000 */
  588. mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
  589. (mac_addr[3] << 8) | (mac_addr[2]);
  590. out_be32(&uec_regs->macstnaddr1, mac_addr1);
  591. mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
  592. out_be32(&uec_regs->macstnaddr2, mac_addr2);
  593. return 0;
  594. }
  595. static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
  596. int *threads_num_ret)
  597. {
  598. int num_threads_numerica;
  599. switch (threads_num) {
  600. case UEC_NUM_OF_THREADS_1:
  601. num_threads_numerica = 1;
  602. break;
  603. case UEC_NUM_OF_THREADS_2:
  604. num_threads_numerica = 2;
  605. break;
  606. case UEC_NUM_OF_THREADS_4:
  607. num_threads_numerica = 4;
  608. break;
  609. case UEC_NUM_OF_THREADS_6:
  610. num_threads_numerica = 6;
  611. break;
  612. case UEC_NUM_OF_THREADS_8:
  613. num_threads_numerica = 8;
  614. break;
  615. default:
  616. printf("%s: Bad number of threads value.",
  617. __FUNCTION__);
  618. return -EINVAL;
  619. }
  620. *threads_num_ret = num_threads_numerica;
  621. return 0;
  622. }
  623. static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
  624. {
  625. uec_info_t *uec_info;
  626. u32 end_bd;
  627. u8 bmrx = 0;
  628. int i;
  629. uec_info = uec->uec_info;
  630. /* Alloc global Tx parameter RAM page */
  631. uec->tx_glbl_pram_offset = qe_muram_alloc(
  632. sizeof(uec_tx_global_pram_t),
  633. UEC_TX_GLOBAL_PRAM_ALIGNMENT);
  634. uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
  635. qe_muram_addr(uec->tx_glbl_pram_offset);
  636. /* Zero the global Tx prameter RAM */
  637. memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
  638. /* Init global Tx parameter RAM */
  639. /* TEMODER, RMON statistics disable, one Tx queue */
  640. out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
  641. /* SQPTR */
  642. uec->send_q_mem_reg_offset = qe_muram_alloc(
  643. sizeof(uec_send_queue_qd_t),
  644. UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
  645. uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
  646. qe_muram_addr(uec->send_q_mem_reg_offset);
  647. out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
  648. /* Setup the table with TxBDs ring */
  649. end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
  650. * SIZEOFBD;
  651. out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
  652. (u32)(uec->p_tx_bd_ring));
  653. out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
  654. end_bd);
  655. /* Scheduler Base Pointer, we have only one Tx queue, no need it */
  656. out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
  657. /* TxRMON Base Pointer, TxRMON disable, we don't need it */
  658. out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
  659. /* TSTATE, global snooping, big endian, the CSB bus selected */
  660. bmrx = BMR_INIT_VALUE;
  661. out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
  662. /* IPH_Offset */
  663. for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
  664. out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
  665. }
  666. /* VTAG table */
  667. for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
  668. out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
  669. }
  670. /* TQPTR */
  671. uec->thread_dat_tx_offset = qe_muram_alloc(
  672. num_threads_tx * sizeof(uec_thread_data_tx_t) +
  673. 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
  674. uec->p_thread_data_tx = (uec_thread_data_tx_t *)
  675. qe_muram_addr(uec->thread_dat_tx_offset);
  676. out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
  677. }
  678. static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
  679. {
  680. u8 bmrx = 0;
  681. int i;
  682. uec_82xx_address_filtering_pram_t *p_af_pram;
  683. /* Allocate global Rx parameter RAM page */
  684. uec->rx_glbl_pram_offset = qe_muram_alloc(
  685. sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
  686. uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
  687. qe_muram_addr(uec->rx_glbl_pram_offset);
  688. /* Zero Global Rx parameter RAM */
  689. memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
  690. /* Init global Rx parameter RAM */
  691. /* REMODER, Extended feature mode disable, VLAN disable,
  692. LossLess flow control disable, Receive firmware statisic disable,
  693. Extended address parsing mode disable, One Rx queues,
  694. Dynamic maximum/minimum frame length disable, IP checksum check
  695. disable, IP address alignment disable
  696. */
  697. out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
  698. /* RQPTR */
  699. uec->thread_dat_rx_offset = qe_muram_alloc(
  700. num_threads_rx * sizeof(uec_thread_data_rx_t),
  701. UEC_THREAD_DATA_ALIGNMENT);
  702. uec->p_thread_data_rx = (uec_thread_data_rx_t *)
  703. qe_muram_addr(uec->thread_dat_rx_offset);
  704. out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
  705. /* Type_or_Len */
  706. out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
  707. /* RxRMON base pointer, we don't need it */
  708. out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
  709. /* IntCoalescingPTR, we don't need it, no interrupt */
  710. out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
  711. /* RSTATE, global snooping, big endian, the CSB bus selected */
  712. bmrx = BMR_INIT_VALUE;
  713. out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
  714. /* MRBLR */
  715. out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
  716. /* RBDQPTR */
  717. uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
  718. sizeof(uec_rx_bd_queues_entry_t) + \
  719. sizeof(uec_rx_prefetched_bds_t),
  720. UEC_RX_BD_QUEUES_ALIGNMENT);
  721. uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
  722. qe_muram_addr(uec->rx_bd_qs_tbl_offset);
  723. /* Zero it */
  724. memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
  725. sizeof(uec_rx_prefetched_bds_t));
  726. out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
  727. out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
  728. (u32)uec->p_rx_bd_ring);
  729. /* MFLR */
  730. out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
  731. /* MINFLR */
  732. out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
  733. /* MAXD1 */
  734. out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
  735. /* MAXD2 */
  736. out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
  737. /* ECAM_PTR */
  738. out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
  739. /* L2QT */
  740. out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
  741. /* L3QT */
  742. for (i = 0; i < 8; i++) {
  743. out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
  744. }
  745. /* VLAN_TYPE */
  746. out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
  747. /* TCI */
  748. out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
  749. /* Clear PQ2 style address filtering hash table */
  750. p_af_pram = (uec_82xx_address_filtering_pram_t *) \
  751. uec->p_rx_glbl_pram->addressfiltering;
  752. p_af_pram->iaddr_h = 0;
  753. p_af_pram->iaddr_l = 0;
  754. p_af_pram->gaddr_h = 0;
  755. p_af_pram->gaddr_l = 0;
  756. }
  757. static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
  758. int thread_tx, int thread_rx)
  759. {
  760. uec_init_cmd_pram_t *p_init_enet_param;
  761. u32 init_enet_param_offset;
  762. uec_info_t *uec_info;
  763. int i;
  764. int snum;
  765. u32 init_enet_offset;
  766. u32 entry_val;
  767. u32 command;
  768. u32 cecr_subblock;
  769. uec_info = uec->uec_info;
  770. /* Allocate init enet command parameter */
  771. uec->init_enet_param_offset = qe_muram_alloc(
  772. sizeof(uec_init_cmd_pram_t), 4);
  773. init_enet_param_offset = uec->init_enet_param_offset;
  774. uec->p_init_enet_param = (uec_init_cmd_pram_t *)
  775. qe_muram_addr(uec->init_enet_param_offset);
  776. /* Zero init enet command struct */
  777. memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
  778. /* Init the command struct */
  779. p_init_enet_param = uec->p_init_enet_param;
  780. p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
  781. p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
  782. p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
  783. p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
  784. p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
  785. p_init_enet_param->largestexternallookupkeysize = 0;
  786. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
  787. << ENET_INIT_PARAM_RGF_SHIFT;
  788. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
  789. << ENET_INIT_PARAM_TGF_SHIFT;
  790. /* Init Rx global parameter pointer */
  791. p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
  792. (u32)uec_info->risc_rx;
  793. /* Init Rx threads */
  794. for (i = 0; i < (thread_rx + 1); i++) {
  795. if ((snum = qe_get_snum()) < 0) {
  796. printf("%s can not get snum\n", __FUNCTION__);
  797. return -ENOMEM;
  798. }
  799. if (i==0) {
  800. init_enet_offset = 0;
  801. } else {
  802. init_enet_offset = qe_muram_alloc(
  803. sizeof(uec_thread_rx_pram_t),
  804. UEC_THREAD_RX_PRAM_ALIGNMENT);
  805. }
  806. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  807. init_enet_offset | (u32)uec_info->risc_rx;
  808. p_init_enet_param->rxthread[i] = entry_val;
  809. }
  810. /* Init Tx global parameter pointer */
  811. p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
  812. (u32)uec_info->risc_tx;
  813. /* Init Tx threads */
  814. for (i = 0; i < thread_tx; i++) {
  815. if ((snum = qe_get_snum()) < 0) {
  816. printf("%s can not get snum\n", __FUNCTION__);
  817. return -ENOMEM;
  818. }
  819. init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
  820. UEC_THREAD_TX_PRAM_ALIGNMENT);
  821. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  822. init_enet_offset | (u32)uec_info->risc_tx;
  823. p_init_enet_param->txthread[i] = entry_val;
  824. }
  825. __asm__ __volatile__("sync");
  826. /* Issue QE command */
  827. command = QE_INIT_TX_RX;
  828. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  829. uec->uec_info->uf_info.ucc_num);
  830. qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
  831. init_enet_param_offset);
  832. return 0;
  833. }
  834. static int uec_startup(uec_private_t *uec)
  835. {
  836. uec_info_t *uec_info;
  837. ucc_fast_info_t *uf_info;
  838. ucc_fast_private_t *uccf;
  839. ucc_fast_t *uf_regs;
  840. uec_t *uec_regs;
  841. int num_threads_tx;
  842. int num_threads_rx;
  843. u32 utbipar;
  844. u32 length;
  845. u32 align;
  846. qe_bd_t *bd;
  847. u8 *buf;
  848. int i;
  849. if (!uec || !uec->uec_info) {
  850. printf("%s: uec or uec_info not initial\n", __FUNCTION__);
  851. return -EINVAL;
  852. }
  853. uec_info = uec->uec_info;
  854. uf_info = &(uec_info->uf_info);
  855. /* Check if Rx BD ring len is illegal */
  856. if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
  857. (uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
  858. printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
  859. __FUNCTION__);
  860. return -EINVAL;
  861. }
  862. /* Check if Tx BD ring len is illegal */
  863. if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
  864. printf("%s: Tx BD ring length must not be smaller than 2.\n",
  865. __FUNCTION__);
  866. return -EINVAL;
  867. }
  868. /* Check if MRBLR is illegal */
  869. if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) {
  870. printf("%s: max rx buffer length must be mutliple of 128.\n",
  871. __FUNCTION__);
  872. return -EINVAL;
  873. }
  874. /* Both Rx and Tx are stopped */
  875. uec->grace_stopped_rx = 1;
  876. uec->grace_stopped_tx = 1;
  877. /* Init UCC fast */
  878. if (ucc_fast_init(uf_info, &uccf)) {
  879. printf("%s: failed to init ucc fast\n", __FUNCTION__);
  880. return -ENOMEM;
  881. }
  882. /* Save uccf */
  883. uec->uccf = uccf;
  884. /* Convert the Tx threads number */
  885. if (uec_convert_threads_num(uec_info->num_threads_tx,
  886. &num_threads_tx)) {
  887. return -EINVAL;
  888. }
  889. /* Convert the Rx threads number */
  890. if (uec_convert_threads_num(uec_info->num_threads_rx,
  891. &num_threads_rx)) {
  892. return -EINVAL;
  893. }
  894. uf_regs = uccf->uf_regs;
  895. /* UEC register is following UCC fast registers */
  896. uec_regs = (uec_t *)(&uf_regs->ucc_eth);
  897. /* Save the UEC register pointer to UEC private struct */
  898. uec->uec_regs = uec_regs;
  899. /* Init UPSMR, enable hardware statistics (UCC) */
  900. out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
  901. /* Init MACCFG1, flow control disable, disable Tx and Rx */
  902. out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
  903. /* Init MACCFG2, length check, MAC PAD and CRC enable */
  904. out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
  905. /* Setup MAC interface mode */
  906. uec_set_mac_if_mode(uec, uec_info->enet_interface_type, uec_info->speed);
  907. /* Setup MII management base */
  908. #ifndef CONFIG_eTSEC_MDIO_BUS
  909. uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
  910. #else
  911. uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
  912. #endif
  913. /* Setup MII master clock source */
  914. qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
  915. /* Setup UTBIPAR */
  916. utbipar = in_be32(&uec_regs->utbipar);
  917. utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
  918. /* Initialize UTBIPAR address to CONFIG_UTBIPAR_INIT_TBIPA for ALL UEC.
  919. * This frees up the remaining SMI addresses for use.
  920. */
  921. utbipar |= CONFIG_UTBIPAR_INIT_TBIPA << UTBIPAR_PHY_ADDRESS_SHIFT;
  922. out_be32(&uec_regs->utbipar, utbipar);
  923. /* Configure the TBI for SGMII operation */
  924. if ((uec->uec_info->enet_interface_type == SGMII) &&
  925. (uec->uec_info->speed == 1000)) {
  926. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  927. ENET_TBI_MII_ANA, TBIANA_SETTINGS);
  928. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  929. ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
  930. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  931. ENET_TBI_MII_CR, TBICR_SETTINGS);
  932. }
  933. /* Allocate Tx BDs */
  934. length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
  935. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
  936. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  937. if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
  938. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
  939. length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  940. }
  941. align = UEC_TX_BD_RING_ALIGNMENT;
  942. uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
  943. if (uec->tx_bd_ring_offset != 0) {
  944. uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
  945. & ~(align - 1));
  946. }
  947. /* Zero all of Tx BDs */
  948. memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
  949. /* Allocate Rx BDs */
  950. length = uec_info->rx_bd_ring_len * SIZEOFBD;
  951. align = UEC_RX_BD_RING_ALIGNMENT;
  952. uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
  953. if (uec->rx_bd_ring_offset != 0) {
  954. uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
  955. & ~(align - 1));
  956. }
  957. /* Zero all of Rx BDs */
  958. memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
  959. /* Allocate Rx buffer */
  960. length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
  961. align = UEC_RX_DATA_BUF_ALIGNMENT;
  962. uec->rx_buf_offset = (u32)malloc(length + align);
  963. if (uec->rx_buf_offset != 0) {
  964. uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
  965. & ~(align - 1));
  966. }
  967. /* Zero all of the Rx buffer */
  968. memset((void *)(uec->rx_buf_offset), 0, length + align);
  969. /* Init TxBD ring */
  970. bd = (qe_bd_t *)uec->p_tx_bd_ring;
  971. uec->txBd = bd;
  972. for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
  973. BD_DATA_CLEAR(bd);
  974. BD_STATUS_SET(bd, 0);
  975. BD_LENGTH_SET(bd, 0);
  976. bd ++;
  977. }
  978. BD_STATUS_SET((--bd), TxBD_WRAP);
  979. /* Init RxBD ring */
  980. bd = (qe_bd_t *)uec->p_rx_bd_ring;
  981. uec->rxBd = bd;
  982. buf = uec->p_rx_buf;
  983. for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
  984. BD_DATA_SET(bd, buf);
  985. BD_LENGTH_SET(bd, 0);
  986. BD_STATUS_SET(bd, RxBD_EMPTY);
  987. buf += MAX_RXBUF_LEN;
  988. bd ++;
  989. }
  990. BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
  991. /* Init global Tx parameter RAM */
  992. uec_init_tx_parameter(uec, num_threads_tx);
  993. /* Init global Rx parameter RAM */
  994. uec_init_rx_parameter(uec, num_threads_rx);
  995. /* Init ethernet Tx and Rx parameter command */
  996. if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
  997. num_threads_rx)) {
  998. printf("%s issue init enet cmd failed\n", __FUNCTION__);
  999. return -ENOMEM;
  1000. }
  1001. return 0;
  1002. }
  1003. static int uec_init(struct eth_device* dev, bd_t *bd)
  1004. {
  1005. uec_private_t *uec;
  1006. int err, i;
  1007. struct phy_info *curphy;
  1008. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  1009. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  1010. ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
  1011. #endif
  1012. uec = (uec_private_t *)dev->priv;
  1013. if (uec->the_first_run == 0) {
  1014. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  1015. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  1016. /* QE9 and QE12 need to be set for enabling QE MII managment signals */
  1017. setbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE9);
  1018. setbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE12);
  1019. #endif
  1020. err = init_phy(dev);
  1021. if (err) {
  1022. printf("%s: Cannot initialize PHY, aborting.\n",
  1023. dev->name);
  1024. return err;
  1025. }
  1026. curphy = uec->mii_info->phyinfo;
  1027. if (curphy->config_aneg) {
  1028. err = curphy->config_aneg(uec->mii_info);
  1029. if (err) {
  1030. printf("%s: Can't negotiate PHY\n", dev->name);
  1031. return err;
  1032. }
  1033. }
  1034. /* Give PHYs up to 5 sec to report a link */
  1035. i = 50;
  1036. do {
  1037. err = curphy->read_status(uec->mii_info);
  1038. if (!(((i-- > 0) && !uec->mii_info->link) || err))
  1039. break;
  1040. udelay(100000);
  1041. } while (1);
  1042. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  1043. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  1044. /* QE12 needs to be released for enabling LBCTL signal*/
  1045. clrbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE12);
  1046. #endif
  1047. if (err || i <= 0)
  1048. printf("warning: %s: timeout on PHY link\n", dev->name);
  1049. adjust_link(dev);
  1050. uec->the_first_run = 1;
  1051. }
  1052. /* Set up the MAC address */
  1053. if (dev->enetaddr[0] & 0x01) {
  1054. printf("%s: MacAddress is multcast address\n",
  1055. __FUNCTION__);
  1056. return -1;
  1057. }
  1058. uec_set_mac_address(uec, dev->enetaddr);
  1059. err = uec_open(uec, COMM_DIR_RX_AND_TX);
  1060. if (err) {
  1061. printf("%s: cannot enable UEC device\n", dev->name);
  1062. return -1;
  1063. }
  1064. phy_change(dev);
  1065. return (uec->mii_info->link ? 0 : -1);
  1066. }
  1067. static void uec_halt(struct eth_device* dev)
  1068. {
  1069. uec_private_t *uec = (uec_private_t *)dev->priv;
  1070. uec_stop(uec, COMM_DIR_RX_AND_TX);
  1071. }
  1072. static int uec_send(struct eth_device* dev, volatile void *buf, int len)
  1073. {
  1074. uec_private_t *uec;
  1075. ucc_fast_private_t *uccf;
  1076. volatile qe_bd_t *bd;
  1077. u16 status;
  1078. int i;
  1079. int result = 0;
  1080. uec = (uec_private_t *)dev->priv;
  1081. uccf = uec->uccf;
  1082. bd = uec->txBd;
  1083. /* Find an empty TxBD */
  1084. for (i = 0; bd->status & TxBD_READY; i++) {
  1085. if (i > 0x100000) {
  1086. printf("%s: tx buffer not ready\n", dev->name);
  1087. return result;
  1088. }
  1089. }
  1090. /* Init TxBD */
  1091. BD_DATA_SET(bd, buf);
  1092. BD_LENGTH_SET(bd, len);
  1093. status = bd->status;
  1094. status &= BD_WRAP;
  1095. status |= (TxBD_READY | TxBD_LAST);
  1096. BD_STATUS_SET(bd, status);
  1097. /* Tell UCC to transmit the buffer */
  1098. ucc_fast_transmit_on_demand(uccf);
  1099. /* Wait for buffer to be transmitted */
  1100. for (i = 0; bd->status & TxBD_READY; i++) {
  1101. if (i > 0x100000) {
  1102. printf("%s: tx error\n", dev->name);
  1103. return result;
  1104. }
  1105. }
  1106. /* Ok, the buffer be transimitted */
  1107. BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
  1108. uec->txBd = bd;
  1109. result = 1;
  1110. return result;
  1111. }
  1112. static int uec_recv(struct eth_device* dev)
  1113. {
  1114. uec_private_t *uec = dev->priv;
  1115. volatile qe_bd_t *bd;
  1116. u16 status;
  1117. u16 len;
  1118. u8 *data;
  1119. bd = uec->rxBd;
  1120. status = bd->status;
  1121. while (!(status & RxBD_EMPTY)) {
  1122. if (!(status & RxBD_ERROR)) {
  1123. data = BD_DATA(bd);
  1124. len = BD_LENGTH(bd);
  1125. NetReceive(data, len);
  1126. } else {
  1127. printf("%s: Rx error\n", dev->name);
  1128. }
  1129. status &= BD_CLEAN;
  1130. BD_LENGTH_SET(bd, 0);
  1131. BD_STATUS_SET(bd, status | RxBD_EMPTY);
  1132. BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
  1133. status = bd->status;
  1134. }
  1135. uec->rxBd = bd;
  1136. return 1;
  1137. }
  1138. int uec_initialize(bd_t *bis, uec_info_t *uec_info)
  1139. {
  1140. struct eth_device *dev;
  1141. int i;
  1142. uec_private_t *uec;
  1143. int err;
  1144. dev = (struct eth_device *)malloc(sizeof(struct eth_device));
  1145. if (!dev)
  1146. return 0;
  1147. memset(dev, 0, sizeof(struct eth_device));
  1148. /* Allocate the UEC private struct */
  1149. uec = (uec_private_t *)malloc(sizeof(uec_private_t));
  1150. if (!uec) {
  1151. return -ENOMEM;
  1152. }
  1153. memset(uec, 0, sizeof(uec_private_t));
  1154. /* Adjust uec_info */
  1155. #if (MAX_QE_RISC == 4)
  1156. uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS;
  1157. uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS;
  1158. #endif
  1159. devlist[uec_info->uf_info.ucc_num] = dev;
  1160. uec->uec_info = uec_info;
  1161. uec->dev = dev;
  1162. sprintf(dev->name, "UEC%d", uec_info->uf_info.ucc_num);
  1163. dev->iobase = 0;
  1164. dev->priv = (void *)uec;
  1165. dev->init = uec_init;
  1166. dev->halt = uec_halt;
  1167. dev->send = uec_send;
  1168. dev->recv = uec_recv;
  1169. /* Clear the ethnet address */
  1170. for (i = 0; i < 6; i++)
  1171. dev->enetaddr[i] = 0;
  1172. eth_register(dev);
  1173. err = uec_startup(uec);
  1174. if (err) {
  1175. printf("%s: Cannot configure net device, aborting.",dev->name);
  1176. return err;
  1177. }
  1178. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
  1179. miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
  1180. #endif
  1181. return 1;
  1182. }
  1183. int uec_eth_init(bd_t *bis, uec_info_t *uecs, int num)
  1184. {
  1185. int i;
  1186. for (i = 0; i < num; i++)
  1187. uec_initialize(bis, &uecs[i]);
  1188. return 0;
  1189. }
  1190. int uec_standard_init(bd_t *bis)
  1191. {
  1192. return uec_eth_init(bis, uec_info, ARRAY_SIZE(uec_info));
  1193. }