44x_spd_ddr2.c 99 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those currently are:
  5. *
  6. * 405: 405EX(r)
  7. * 440/460: 440SP/440SPe/460EX/460GT
  8. *
  9. * Copyright (c) 2008 Nuovation System Designs, LLC
  10. * Grant Erickson <gerickson@nuovations.com>
  11. * (C) Copyright 2007-2008
  12. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  13. *
  14. * COPYRIGHT AMCC CORPORATION 2004
  15. *
  16. * See file CREDITS for list of people who contributed to this
  17. * project.
  18. *
  19. * This program is free software; you can redistribute it and/or
  20. * modify it under the terms of the GNU General Public License as
  21. * published by the Free Software Foundation; either version 2 of
  22. * the License, or (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  32. * MA 02111-1307 USA
  33. *
  34. */
  35. /* define DEBUG for debugging output (obviously ;-)) */
  36. #if 0
  37. #define DEBUG
  38. #endif
  39. #include <common.h>
  40. #include <command.h>
  41. #include <ppc4xx.h>
  42. #include <i2c.h>
  43. #include <asm/io.h>
  44. #include <asm/processor.h>
  45. #include <asm/mmu.h>
  46. #include <asm/cache.h>
  47. #include "ecc.h"
  48. #if defined(CONFIG_SPD_EEPROM) && \
  49. (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  50. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  51. /*-----------------------------------------------------------------------------+
  52. * Defines
  53. *-----------------------------------------------------------------------------*/
  54. #ifndef TRUE
  55. #define TRUE 1
  56. #endif
  57. #ifndef FALSE
  58. #define FALSE 0
  59. #endif
  60. #define SDRAM_DDR1 1
  61. #define SDRAM_DDR2 2
  62. #define SDRAM_NONE 0
  63. #define MAXDIMMS 2
  64. #define MAXRANKS 4
  65. #define MAXBXCF 4
  66. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  67. #define ONE_BILLION 1000000000
  68. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  69. #define CMD_NOP (7 << 19)
  70. #define CMD_PRECHARGE (2 << 19)
  71. #define CMD_REFRESH (1 << 19)
  72. #define CMD_EMR (0 << 19)
  73. #define CMD_READ (5 << 19)
  74. #define CMD_WRITE (4 << 19)
  75. #define SELECT_MR (0 << 16)
  76. #define SELECT_EMR (1 << 16)
  77. #define SELECT_EMR2 (2 << 16)
  78. #define SELECT_EMR3 (3 << 16)
  79. /* MR */
  80. #define DLL_RESET 0x00000100
  81. #define WRITE_RECOV_2 (1 << 9)
  82. #define WRITE_RECOV_3 (2 << 9)
  83. #define WRITE_RECOV_4 (3 << 9)
  84. #define WRITE_RECOV_5 (4 << 9)
  85. #define WRITE_RECOV_6 (5 << 9)
  86. #define BURST_LEN_4 0x00000002
  87. /* EMR */
  88. #define ODT_0_OHM 0x00000000
  89. #define ODT_50_OHM 0x00000044
  90. #define ODT_75_OHM 0x00000004
  91. #define ODT_150_OHM 0x00000040
  92. #define ODS_FULL 0x00000000
  93. #define ODS_REDUCED 0x00000002
  94. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  95. #define ODT_EB0R (0x80000000 >> 8)
  96. #define ODT_EB0W (0x80000000 >> 7)
  97. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  98. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  99. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  100. /* Defines for the Read Cycle Delay test */
  101. #define NUMMEMTESTS 8
  102. #define NUMMEMWORDS 8
  103. #define NUMLOOPS 64 /* memory test loops */
  104. /*
  105. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  106. * region. Right now the cache should still be disabled in U-Boot because of the
  107. * EMAC driver, that need it's buffer descriptor to be located in non cached
  108. * memory.
  109. *
  110. * If at some time this restriction doesn't apply anymore, just define
  111. * CONFIG_4xx_DCACHE in the board config file and this code should setup
  112. * everything correctly.
  113. */
  114. #ifdef CONFIG_4xx_DCACHE
  115. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  116. #else
  117. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  118. #endif
  119. /*
  120. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  121. */
  122. void __spd_ddr_init_hang (void)
  123. {
  124. hang ();
  125. }
  126. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  127. /*
  128. * To provide an interface for board specific config values in this common
  129. * DDR setup code, we implement he "weak" default functions here. They return
  130. * the default value back to the caller.
  131. *
  132. * Please see include/configs/yucca.h for an example fora board specific
  133. * implementation.
  134. */
  135. u32 __ddr_wrdtr(u32 default_val)
  136. {
  137. return default_val;
  138. }
  139. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  140. u32 __ddr_clktr(u32 default_val)
  141. {
  142. return default_val;
  143. }
  144. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  145. /* Private Structure Definitions */
  146. /* enum only to ease code for cas latency setting */
  147. typedef enum ddr_cas_id {
  148. DDR_CAS_2 = 20,
  149. DDR_CAS_2_5 = 25,
  150. DDR_CAS_3 = 30,
  151. DDR_CAS_4 = 40,
  152. DDR_CAS_5 = 50
  153. } ddr_cas_id_t;
  154. /*-----------------------------------------------------------------------------+
  155. * Prototypes
  156. *-----------------------------------------------------------------------------*/
  157. static unsigned long sdram_memsize(void);
  158. static void get_spd_info(unsigned long *dimm_populated,
  159. unsigned char *iic0_dimm_addr,
  160. unsigned long num_dimm_banks);
  161. static void check_mem_type(unsigned long *dimm_populated,
  162. unsigned char *iic0_dimm_addr,
  163. unsigned long num_dimm_banks);
  164. static void check_frequency(unsigned long *dimm_populated,
  165. unsigned char *iic0_dimm_addr,
  166. unsigned long num_dimm_banks);
  167. static void check_rank_number(unsigned long *dimm_populated,
  168. unsigned char *iic0_dimm_addr,
  169. unsigned long num_dimm_banks);
  170. static void check_voltage_type(unsigned long *dimm_populated,
  171. unsigned char *iic0_dimm_addr,
  172. unsigned long num_dimm_banks);
  173. static void program_memory_queue(unsigned long *dimm_populated,
  174. unsigned char *iic0_dimm_addr,
  175. unsigned long num_dimm_banks);
  176. static void program_codt(unsigned long *dimm_populated,
  177. unsigned char *iic0_dimm_addr,
  178. unsigned long num_dimm_banks);
  179. static void program_mode(unsigned long *dimm_populated,
  180. unsigned char *iic0_dimm_addr,
  181. unsigned long num_dimm_banks,
  182. ddr_cas_id_t *selected_cas,
  183. int *write_recovery);
  184. static void program_tr(unsigned long *dimm_populated,
  185. unsigned char *iic0_dimm_addr,
  186. unsigned long num_dimm_banks);
  187. static void program_rtr(unsigned long *dimm_populated,
  188. unsigned char *iic0_dimm_addr,
  189. unsigned long num_dimm_banks);
  190. static void program_bxcf(unsigned long *dimm_populated,
  191. unsigned char *iic0_dimm_addr,
  192. unsigned long num_dimm_banks);
  193. static void program_copt1(unsigned long *dimm_populated,
  194. unsigned char *iic0_dimm_addr,
  195. unsigned long num_dimm_banks);
  196. static void program_initplr(unsigned long *dimm_populated,
  197. unsigned char *iic0_dimm_addr,
  198. unsigned long num_dimm_banks,
  199. ddr_cas_id_t selected_cas,
  200. int write_recovery);
  201. static unsigned long is_ecc_enabled(void);
  202. #ifdef CONFIG_DDR_ECC
  203. static void program_ecc(unsigned long *dimm_populated,
  204. unsigned char *iic0_dimm_addr,
  205. unsigned long num_dimm_banks,
  206. unsigned long tlb_word2_i_value);
  207. static void program_ecc_addr(unsigned long start_address,
  208. unsigned long num_bytes,
  209. unsigned long tlb_word2_i_value);
  210. #endif
  211. static void program_DQS_calibration(unsigned long *dimm_populated,
  212. unsigned char *iic0_dimm_addr,
  213. unsigned long num_dimm_banks);
  214. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  215. static void test(void);
  216. #else
  217. static void DQS_calibration_process(void);
  218. #endif
  219. static void ppc440sp_sdram_register_dump(void);
  220. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  221. void dcbz_area(u32 start_address, u32 num_bytes);
  222. static u32 mfdcr_any(u32 dcr)
  223. {
  224. u32 val;
  225. switch (dcr) {
  226. case SDRAM_R0BAS + 0:
  227. val = mfdcr(SDRAM_R0BAS + 0);
  228. break;
  229. case SDRAM_R0BAS + 1:
  230. val = mfdcr(SDRAM_R0BAS + 1);
  231. break;
  232. case SDRAM_R0BAS + 2:
  233. val = mfdcr(SDRAM_R0BAS + 2);
  234. break;
  235. case SDRAM_R0BAS + 3:
  236. val = mfdcr(SDRAM_R0BAS + 3);
  237. break;
  238. default:
  239. printf("DCR %d not defined in case statement!!!\n", dcr);
  240. val = 0; /* just to satisfy the compiler */
  241. }
  242. return val;
  243. }
  244. static void mtdcr_any(u32 dcr, u32 val)
  245. {
  246. switch (dcr) {
  247. case SDRAM_R0BAS + 0:
  248. mtdcr(SDRAM_R0BAS + 0, val);
  249. break;
  250. case SDRAM_R0BAS + 1:
  251. mtdcr(SDRAM_R0BAS + 1, val);
  252. break;
  253. case SDRAM_R0BAS + 2:
  254. mtdcr(SDRAM_R0BAS + 2, val);
  255. break;
  256. case SDRAM_R0BAS + 3:
  257. mtdcr(SDRAM_R0BAS + 3, val);
  258. break;
  259. default:
  260. printf("DCR %d not defined in case statement!!!\n", dcr);
  261. }
  262. }
  263. static unsigned char spd_read(uchar chip, uint addr)
  264. {
  265. unsigned char data[2];
  266. if (i2c_probe(chip) == 0)
  267. if (i2c_read(chip, addr, 1, data, 1) == 0)
  268. return data[0];
  269. return 0;
  270. }
  271. /*-----------------------------------------------------------------------------+
  272. * sdram_memsize
  273. *-----------------------------------------------------------------------------*/
  274. static unsigned long sdram_memsize(void)
  275. {
  276. unsigned long mem_size;
  277. unsigned long mcopt2;
  278. unsigned long mcstat;
  279. unsigned long mb0cf;
  280. unsigned long sdsz;
  281. unsigned long i;
  282. mem_size = 0;
  283. mfsdram(SDRAM_MCOPT2, mcopt2);
  284. mfsdram(SDRAM_MCSTAT, mcstat);
  285. /* DDR controller must be enabled and not in self-refresh. */
  286. /* Otherwise memsize is zero. */
  287. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  288. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  289. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  290. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  291. for (i = 0; i < MAXBXCF; i++) {
  292. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  293. /* Banks enabled */
  294. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  295. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  296. switch(sdsz) {
  297. case SDRAM_RXBAS_SDSZ_8:
  298. mem_size+=8;
  299. break;
  300. case SDRAM_RXBAS_SDSZ_16:
  301. mem_size+=16;
  302. break;
  303. case SDRAM_RXBAS_SDSZ_32:
  304. mem_size+=32;
  305. break;
  306. case SDRAM_RXBAS_SDSZ_64:
  307. mem_size+=64;
  308. break;
  309. case SDRAM_RXBAS_SDSZ_128:
  310. mem_size+=128;
  311. break;
  312. case SDRAM_RXBAS_SDSZ_256:
  313. mem_size+=256;
  314. break;
  315. case SDRAM_RXBAS_SDSZ_512:
  316. mem_size+=512;
  317. break;
  318. case SDRAM_RXBAS_SDSZ_1024:
  319. mem_size+=1024;
  320. break;
  321. case SDRAM_RXBAS_SDSZ_2048:
  322. mem_size+=2048;
  323. break;
  324. case SDRAM_RXBAS_SDSZ_4096:
  325. mem_size+=4096;
  326. break;
  327. default:
  328. mem_size=0;
  329. break;
  330. }
  331. }
  332. }
  333. }
  334. mem_size *= 1024 * 1024;
  335. return(mem_size);
  336. }
  337. /*-----------------------------------------------------------------------------+
  338. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  339. * Note: This routine runs from flash with a stack set up in the chip's
  340. * sram space. It is important that the routine does not require .sbss, .bss or
  341. * .data sections. It also cannot call routines that require these sections.
  342. *-----------------------------------------------------------------------------*/
  343. /*-----------------------------------------------------------------------------
  344. * Function: initdram
  345. * Description: Configures SDRAM memory banks for DDR operation.
  346. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  347. * via the IIC bus and then configures the DDR SDRAM memory
  348. * banks appropriately. If Auto Memory Configuration is
  349. * not used, it is assumed that no DIMM is plugged
  350. *-----------------------------------------------------------------------------*/
  351. long int initdram(int board_type)
  352. {
  353. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  354. unsigned char spd0[MAX_SPD_BYTES];
  355. unsigned char spd1[MAX_SPD_BYTES];
  356. unsigned char *dimm_spd[MAXDIMMS];
  357. unsigned long dimm_populated[MAXDIMMS];
  358. unsigned long num_dimm_banks; /* on board dimm banks */
  359. unsigned long val;
  360. ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */
  361. int write_recovery;
  362. unsigned long dram_size = 0;
  363. num_dimm_banks = sizeof(iic0_dimm_addr);
  364. /*------------------------------------------------------------------
  365. * Set up an array of SPD matrixes.
  366. *-----------------------------------------------------------------*/
  367. dimm_spd[0] = spd0;
  368. dimm_spd[1] = spd1;
  369. /*------------------------------------------------------------------
  370. * Reset the DDR-SDRAM controller.
  371. *-----------------------------------------------------------------*/
  372. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  373. mtsdr(SDR0_SRST, 0x00000000);
  374. /*
  375. * Make sure I2C controller is initialized
  376. * before continuing.
  377. */
  378. /* switch to correct I2C bus */
  379. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  380. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  381. /*------------------------------------------------------------------
  382. * Clear out the serial presence detect buffers.
  383. * Perform IIC reads from the dimm. Fill in the spds.
  384. * Check to see if the dimm slots are populated
  385. *-----------------------------------------------------------------*/
  386. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  387. /*------------------------------------------------------------------
  388. * Check the memory type for the dimms plugged.
  389. *-----------------------------------------------------------------*/
  390. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  391. /*------------------------------------------------------------------
  392. * Check the frequency supported for the dimms plugged.
  393. *-----------------------------------------------------------------*/
  394. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  395. /*------------------------------------------------------------------
  396. * Check the total rank number.
  397. *-----------------------------------------------------------------*/
  398. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  399. /*------------------------------------------------------------------
  400. * Check the voltage type for the dimms plugged.
  401. *-----------------------------------------------------------------*/
  402. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  403. /*------------------------------------------------------------------
  404. * Program SDRAM controller options 2 register
  405. * Except Enabling of the memory controller.
  406. *-----------------------------------------------------------------*/
  407. mfsdram(SDRAM_MCOPT2, val);
  408. mtsdram(SDRAM_MCOPT2,
  409. (val &
  410. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  411. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  412. SDRAM_MCOPT2_ISIE_MASK))
  413. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  414. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  415. SDRAM_MCOPT2_ISIE_ENABLE));
  416. /*------------------------------------------------------------------
  417. * Program SDRAM controller options 1 register
  418. * Note: Does not enable the memory controller.
  419. *-----------------------------------------------------------------*/
  420. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  421. /*------------------------------------------------------------------
  422. * Set the SDRAM Controller On Die Termination Register
  423. *-----------------------------------------------------------------*/
  424. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  425. /*------------------------------------------------------------------
  426. * Program SDRAM refresh register.
  427. *-----------------------------------------------------------------*/
  428. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  429. /*------------------------------------------------------------------
  430. * Program SDRAM mode register.
  431. *-----------------------------------------------------------------*/
  432. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  433. &selected_cas, &write_recovery);
  434. /*------------------------------------------------------------------
  435. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  436. *-----------------------------------------------------------------*/
  437. mfsdram(SDRAM_WRDTR, val);
  438. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  439. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  440. /*------------------------------------------------------------------
  441. * Set the SDRAM Clock Timing Register
  442. *-----------------------------------------------------------------*/
  443. mfsdram(SDRAM_CLKTR, val);
  444. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  445. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  446. /*------------------------------------------------------------------
  447. * Program the BxCF registers.
  448. *-----------------------------------------------------------------*/
  449. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  450. /*------------------------------------------------------------------
  451. * Program SDRAM timing registers.
  452. *-----------------------------------------------------------------*/
  453. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  454. /*------------------------------------------------------------------
  455. * Set the Extended Mode register
  456. *-----------------------------------------------------------------*/
  457. mfsdram(SDRAM_MEMODE, val);
  458. mtsdram(SDRAM_MEMODE,
  459. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  460. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  461. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  462. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  463. /*------------------------------------------------------------------
  464. * Program Initialization preload registers.
  465. *-----------------------------------------------------------------*/
  466. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  467. selected_cas, write_recovery);
  468. /*------------------------------------------------------------------
  469. * Delay to ensure 200usec have elapsed since reset.
  470. *-----------------------------------------------------------------*/
  471. udelay(400);
  472. /*------------------------------------------------------------------
  473. * Set the memory queue core base addr.
  474. *-----------------------------------------------------------------*/
  475. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  476. /*------------------------------------------------------------------
  477. * Program SDRAM controller options 2 register
  478. * Enable the memory controller.
  479. *-----------------------------------------------------------------*/
  480. mfsdram(SDRAM_MCOPT2, val);
  481. mtsdram(SDRAM_MCOPT2,
  482. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  483. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  484. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  485. /*------------------------------------------------------------------
  486. * Wait for SDRAM_CFG0_DC_EN to complete.
  487. *-----------------------------------------------------------------*/
  488. do {
  489. mfsdram(SDRAM_MCSTAT, val);
  490. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  491. /* get installed memory size */
  492. dram_size = sdram_memsize();
  493. /* and program tlb entries for this size (dynamic) */
  494. /*
  495. * Program TLB entries with caches enabled, for best performace
  496. * while auto-calibrating and ECC generation
  497. */
  498. program_tlb(0, 0, dram_size, 0);
  499. /*------------------------------------------------------------------
  500. * DQS calibration.
  501. *-----------------------------------------------------------------*/
  502. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  503. #ifdef CONFIG_DDR_ECC
  504. /*------------------------------------------------------------------
  505. * If ecc is enabled, initialize the parity bits.
  506. *-----------------------------------------------------------------*/
  507. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  508. #endif
  509. /*
  510. * Now after initialization (auto-calibration and ECC generation)
  511. * remove the TLB entries with caches enabled and program again with
  512. * desired cache functionality
  513. */
  514. remove_tlb(0, dram_size);
  515. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  516. ppc440sp_sdram_register_dump();
  517. /*
  518. * Clear potential errors resulting from auto-calibration.
  519. * If not done, then we could get an interrupt later on when
  520. * exceptions are enabled.
  521. */
  522. set_mcsr(get_mcsr());
  523. return dram_size;
  524. }
  525. static void get_spd_info(unsigned long *dimm_populated,
  526. unsigned char *iic0_dimm_addr,
  527. unsigned long num_dimm_banks)
  528. {
  529. unsigned long dimm_num;
  530. unsigned long dimm_found;
  531. unsigned char num_of_bytes;
  532. unsigned char total_size;
  533. dimm_found = FALSE;
  534. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  535. num_of_bytes = 0;
  536. total_size = 0;
  537. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  538. debug("\nspd_read(0x%x) returned %d\n",
  539. iic0_dimm_addr[dimm_num], num_of_bytes);
  540. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  541. debug("spd_read(0x%x) returned %d\n",
  542. iic0_dimm_addr[dimm_num], total_size);
  543. if ((num_of_bytes != 0) && (total_size != 0)) {
  544. dimm_populated[dimm_num] = TRUE;
  545. dimm_found = TRUE;
  546. debug("DIMM slot %lu: populated\n", dimm_num);
  547. } else {
  548. dimm_populated[dimm_num] = FALSE;
  549. debug("DIMM slot %lu: Not populated\n", dimm_num);
  550. }
  551. }
  552. if (dimm_found == FALSE) {
  553. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  554. spd_ddr_init_hang ();
  555. }
  556. }
  557. void board_add_ram_info(int use_default)
  558. {
  559. PPC4xx_SYS_INFO board_cfg;
  560. u32 val;
  561. if (is_ecc_enabled())
  562. puts(" (ECC");
  563. else
  564. puts(" (ECC not");
  565. get_sys_info(&board_cfg);
  566. mfsdr(SDR0_DDR0, val);
  567. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  568. printf(" enabled, %d MHz", (val * 2) / 1000000);
  569. mfsdram(SDRAM_MMODE, val);
  570. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  571. printf(", CL%d)", val);
  572. }
  573. /*------------------------------------------------------------------
  574. * For the memory DIMMs installed, this routine verifies that they
  575. * really are DDR specific DIMMs.
  576. *-----------------------------------------------------------------*/
  577. static void check_mem_type(unsigned long *dimm_populated,
  578. unsigned char *iic0_dimm_addr,
  579. unsigned long num_dimm_banks)
  580. {
  581. unsigned long dimm_num;
  582. unsigned long dimm_type;
  583. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  584. if (dimm_populated[dimm_num] == TRUE) {
  585. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  586. switch (dimm_type) {
  587. case 1:
  588. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  589. "slot %d.\n", (unsigned int)dimm_num);
  590. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  591. printf("Replace the DIMM module with a supported DIMM.\n\n");
  592. spd_ddr_init_hang ();
  593. break;
  594. case 2:
  595. printf("ERROR: EDO DIMM detected in slot %d.\n",
  596. (unsigned int)dimm_num);
  597. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  598. printf("Replace the DIMM module with a supported DIMM.\n\n");
  599. spd_ddr_init_hang ();
  600. break;
  601. case 3:
  602. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  603. (unsigned int)dimm_num);
  604. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  605. printf("Replace the DIMM module with a supported DIMM.\n\n");
  606. spd_ddr_init_hang ();
  607. break;
  608. case 4:
  609. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  610. (unsigned int)dimm_num);
  611. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  612. printf("Replace the DIMM module with a supported DIMM.\n\n");
  613. spd_ddr_init_hang ();
  614. break;
  615. case 5:
  616. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  617. (unsigned int)dimm_num);
  618. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  619. printf("Replace the DIMM module with a supported DIMM.\n\n");
  620. spd_ddr_init_hang ();
  621. break;
  622. case 6:
  623. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  624. (unsigned int)dimm_num);
  625. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  626. printf("Replace the DIMM module with a supported DIMM.\n\n");
  627. spd_ddr_init_hang ();
  628. break;
  629. case 7:
  630. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  631. dimm_populated[dimm_num] = SDRAM_DDR1;
  632. break;
  633. case 8:
  634. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  635. dimm_populated[dimm_num] = SDRAM_DDR2;
  636. break;
  637. default:
  638. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  639. (unsigned int)dimm_num);
  640. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  641. printf("Replace the DIMM module with a supported DIMM.\n\n");
  642. spd_ddr_init_hang ();
  643. break;
  644. }
  645. }
  646. }
  647. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  648. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  649. && (dimm_populated[dimm_num] != SDRAM_NONE)
  650. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  651. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  652. spd_ddr_init_hang ();
  653. }
  654. }
  655. }
  656. /*------------------------------------------------------------------
  657. * For the memory DIMMs installed, this routine verifies that
  658. * frequency previously calculated is supported.
  659. *-----------------------------------------------------------------*/
  660. static void check_frequency(unsigned long *dimm_populated,
  661. unsigned char *iic0_dimm_addr,
  662. unsigned long num_dimm_banks)
  663. {
  664. unsigned long dimm_num;
  665. unsigned long tcyc_reg;
  666. unsigned long cycle_time;
  667. unsigned long calc_cycle_time;
  668. unsigned long sdram_freq;
  669. unsigned long sdr_ddrpll;
  670. PPC4xx_SYS_INFO board_cfg;
  671. /*------------------------------------------------------------------
  672. * Get the board configuration info.
  673. *-----------------------------------------------------------------*/
  674. get_sys_info(&board_cfg);
  675. mfsdr(SDR0_DDR0, sdr_ddrpll);
  676. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  677. /*
  678. * calc_cycle_time is calculated from DDR frequency set by board/chip
  679. * and is expressed in multiple of 10 picoseconds
  680. * to match the way DIMM cycle time is calculated below.
  681. */
  682. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  683. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  684. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  685. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  686. /*
  687. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  688. * the higher order nibble (bits 4-7) designates the cycle time
  689. * to a granularity of 1ns;
  690. * the value presented by the lower order nibble (bits 0-3)
  691. * has a granularity of .1ns and is added to the value designated
  692. * by the higher nibble. In addition, four lines of the lower order
  693. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  694. */
  695. /* Convert from hex to decimal */
  696. if ((tcyc_reg & 0x0F) == 0x0D)
  697. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  698. else if ((tcyc_reg & 0x0F) == 0x0C)
  699. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  700. else if ((tcyc_reg & 0x0F) == 0x0B)
  701. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  702. else if ((tcyc_reg & 0x0F) == 0x0A)
  703. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  704. else
  705. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  706. ((tcyc_reg & 0x0F)*10);
  707. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  708. if (cycle_time > (calc_cycle_time + 10)) {
  709. /*
  710. * the provided sdram cycle_time is too small
  711. * for the available DIMM cycle_time.
  712. * The additionnal 100ps is here to accept a small incertainty.
  713. */
  714. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  715. "slot %d \n while calculated cycle time is %d ps.\n",
  716. (unsigned int)(cycle_time*10),
  717. (unsigned int)dimm_num,
  718. (unsigned int)(calc_cycle_time*10));
  719. printf("Replace the DIMM, or change DDR frequency via "
  720. "strapping bits.\n\n");
  721. spd_ddr_init_hang ();
  722. }
  723. }
  724. }
  725. }
  726. /*------------------------------------------------------------------
  727. * For the memory DIMMs installed, this routine verifies two
  728. * ranks/banks maximum are availables.
  729. *-----------------------------------------------------------------*/
  730. static void check_rank_number(unsigned long *dimm_populated,
  731. unsigned char *iic0_dimm_addr,
  732. unsigned long num_dimm_banks)
  733. {
  734. unsigned long dimm_num;
  735. unsigned long dimm_rank;
  736. unsigned long total_rank = 0;
  737. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  738. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  739. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  740. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  741. dimm_rank = (dimm_rank & 0x0F) +1;
  742. else
  743. dimm_rank = dimm_rank & 0x0F;
  744. if (dimm_rank > MAXRANKS) {
  745. printf("ERROR: DRAM DIMM detected with %d ranks in "
  746. "slot %d is not supported.\n", dimm_rank, dimm_num);
  747. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  748. printf("Replace the DIMM module with a supported DIMM.\n\n");
  749. spd_ddr_init_hang ();
  750. } else
  751. total_rank += dimm_rank;
  752. }
  753. if (total_rank > MAXRANKS) {
  754. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  755. "for all slots.\n", (unsigned int)total_rank);
  756. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  757. printf("Remove one of the DIMM modules.\n\n");
  758. spd_ddr_init_hang ();
  759. }
  760. }
  761. }
  762. /*------------------------------------------------------------------
  763. * only support 2.5V modules.
  764. * This routine verifies this.
  765. *-----------------------------------------------------------------*/
  766. static void check_voltage_type(unsigned long *dimm_populated,
  767. unsigned char *iic0_dimm_addr,
  768. unsigned long num_dimm_banks)
  769. {
  770. unsigned long dimm_num;
  771. unsigned long voltage_type;
  772. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  773. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  774. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  775. switch (voltage_type) {
  776. case 0x00:
  777. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  778. printf("This DIMM is 5.0 Volt/TTL.\n");
  779. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  780. (unsigned int)dimm_num);
  781. spd_ddr_init_hang ();
  782. break;
  783. case 0x01:
  784. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  785. printf("This DIMM is LVTTL.\n");
  786. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  787. (unsigned int)dimm_num);
  788. spd_ddr_init_hang ();
  789. break;
  790. case 0x02:
  791. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  792. printf("This DIMM is 1.5 Volt.\n");
  793. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  794. (unsigned int)dimm_num);
  795. spd_ddr_init_hang ();
  796. break;
  797. case 0x03:
  798. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  799. printf("This DIMM is 3.3 Volt/TTL.\n");
  800. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  801. (unsigned int)dimm_num);
  802. spd_ddr_init_hang ();
  803. break;
  804. case 0x04:
  805. /* 2.5 Voltage only for DDR1 */
  806. break;
  807. case 0x05:
  808. /* 1.8 Voltage only for DDR2 */
  809. break;
  810. default:
  811. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  812. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  813. (unsigned int)dimm_num);
  814. spd_ddr_init_hang ();
  815. break;
  816. }
  817. }
  818. }
  819. }
  820. /*-----------------------------------------------------------------------------+
  821. * program_copt1.
  822. *-----------------------------------------------------------------------------*/
  823. static void program_copt1(unsigned long *dimm_populated,
  824. unsigned char *iic0_dimm_addr,
  825. unsigned long num_dimm_banks)
  826. {
  827. unsigned long dimm_num;
  828. unsigned long mcopt1;
  829. unsigned long ecc_enabled;
  830. unsigned long ecc = 0;
  831. unsigned long data_width = 0;
  832. unsigned long dimm_32bit;
  833. unsigned long dimm_64bit;
  834. unsigned long registered = 0;
  835. unsigned long attribute = 0;
  836. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  837. unsigned long bankcount;
  838. unsigned long ddrtype;
  839. unsigned long val;
  840. #ifdef CONFIG_DDR_ECC
  841. ecc_enabled = TRUE;
  842. #else
  843. ecc_enabled = FALSE;
  844. #endif
  845. dimm_32bit = FALSE;
  846. dimm_64bit = FALSE;
  847. buf0 = FALSE;
  848. buf1 = FALSE;
  849. /*------------------------------------------------------------------
  850. * Set memory controller options reg 1, SDRAM_MCOPT1.
  851. *-----------------------------------------------------------------*/
  852. mfsdram(SDRAM_MCOPT1, val);
  853. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  854. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  855. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  856. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  857. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  858. SDRAM_MCOPT1_DREF_MASK);
  859. mcopt1 |= SDRAM_MCOPT1_QDEP;
  860. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  861. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  862. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  863. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  864. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  865. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  866. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  867. /* test ecc support */
  868. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  869. if (ecc != 0x02) /* ecc not supported */
  870. ecc_enabled = FALSE;
  871. /* test bank count */
  872. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  873. if (bankcount == 0x04) /* bank count = 4 */
  874. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  875. else /* bank count = 8 */
  876. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  877. /* test DDR type */
  878. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  879. /* test for buffered/unbuffered, registered, differential clocks */
  880. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  881. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  882. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  883. if (dimm_num == 0) {
  884. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  885. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  886. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  887. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  888. if (registered == 1) { /* DDR2 always buffered */
  889. /* TODO: what about above comments ? */
  890. mcopt1 |= SDRAM_MCOPT1_RDEN;
  891. buf0 = TRUE;
  892. } else {
  893. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  894. if ((attribute & 0x02) == 0x00) {
  895. /* buffered not supported */
  896. buf0 = FALSE;
  897. } else {
  898. mcopt1 |= SDRAM_MCOPT1_RDEN;
  899. buf0 = TRUE;
  900. }
  901. }
  902. }
  903. else if (dimm_num == 1) {
  904. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  905. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  906. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  907. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  908. if (registered == 1) {
  909. /* DDR2 always buffered */
  910. mcopt1 |= SDRAM_MCOPT1_RDEN;
  911. buf1 = TRUE;
  912. } else {
  913. if ((attribute & 0x02) == 0x00) {
  914. /* buffered not supported */
  915. buf1 = FALSE;
  916. } else {
  917. mcopt1 |= SDRAM_MCOPT1_RDEN;
  918. buf1 = TRUE;
  919. }
  920. }
  921. }
  922. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  923. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  924. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  925. switch (data_width) {
  926. case 72:
  927. case 64:
  928. dimm_64bit = TRUE;
  929. break;
  930. case 40:
  931. case 32:
  932. dimm_32bit = TRUE;
  933. break;
  934. default:
  935. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  936. data_width);
  937. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  938. break;
  939. }
  940. }
  941. }
  942. /* verify matching properties */
  943. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  944. if (buf0 != buf1) {
  945. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  946. spd_ddr_init_hang ();
  947. }
  948. }
  949. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  950. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  951. spd_ddr_init_hang ();
  952. }
  953. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  954. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  955. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  956. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  957. } else {
  958. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  959. spd_ddr_init_hang ();
  960. }
  961. if (ecc_enabled == TRUE)
  962. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  963. else
  964. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  965. mtsdram(SDRAM_MCOPT1, mcopt1);
  966. }
  967. /*-----------------------------------------------------------------------------+
  968. * program_codt.
  969. *-----------------------------------------------------------------------------*/
  970. static void program_codt(unsigned long *dimm_populated,
  971. unsigned char *iic0_dimm_addr,
  972. unsigned long num_dimm_banks)
  973. {
  974. unsigned long codt;
  975. unsigned long modt0 = 0;
  976. unsigned long modt1 = 0;
  977. unsigned long modt2 = 0;
  978. unsigned long modt3 = 0;
  979. unsigned char dimm_num;
  980. unsigned char dimm_rank;
  981. unsigned char total_rank = 0;
  982. unsigned char total_dimm = 0;
  983. unsigned char dimm_type = 0;
  984. unsigned char firstSlot = 0;
  985. /*------------------------------------------------------------------
  986. * Set the SDRAM Controller On Die Termination Register
  987. *-----------------------------------------------------------------*/
  988. mfsdram(SDRAM_CODT, codt);
  989. codt |= (SDRAM_CODT_IO_NMODE
  990. & (~SDRAM_CODT_DQS_SINGLE_END
  991. & ~SDRAM_CODT_CKSE_SINGLE_END
  992. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  993. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  994. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  995. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  996. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  997. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  998. dimm_rank = (dimm_rank & 0x0F) + 1;
  999. dimm_type = SDRAM_DDR2;
  1000. } else {
  1001. dimm_rank = dimm_rank & 0x0F;
  1002. dimm_type = SDRAM_DDR1;
  1003. }
  1004. total_rank += dimm_rank;
  1005. total_dimm++;
  1006. if ((dimm_num == 0) && (total_dimm == 1))
  1007. firstSlot = TRUE;
  1008. else
  1009. firstSlot = FALSE;
  1010. }
  1011. }
  1012. if (dimm_type == SDRAM_DDR2) {
  1013. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1014. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1015. if (total_rank == 1) {
  1016. codt |= CALC_ODT_R(0);
  1017. modt0 = CALC_ODT_W(0);
  1018. modt1 = 0x00000000;
  1019. modt2 = 0x00000000;
  1020. modt3 = 0x00000000;
  1021. }
  1022. if (total_rank == 2) {
  1023. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1024. modt0 = CALC_ODT_W(0);
  1025. modt1 = CALC_ODT_W(0);
  1026. modt2 = 0x00000000;
  1027. modt3 = 0x00000000;
  1028. }
  1029. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1030. if (total_rank == 1) {
  1031. codt |= CALC_ODT_R(2);
  1032. modt0 = 0x00000000;
  1033. modt1 = 0x00000000;
  1034. modt2 = CALC_ODT_W(2);
  1035. modt3 = 0x00000000;
  1036. }
  1037. if (total_rank == 2) {
  1038. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1039. modt0 = 0x00000000;
  1040. modt1 = 0x00000000;
  1041. modt2 = CALC_ODT_W(2);
  1042. modt3 = CALC_ODT_W(2);
  1043. }
  1044. }
  1045. if (total_dimm == 2) {
  1046. if (total_rank == 2) {
  1047. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1048. modt0 = CALC_ODT_RW(2);
  1049. modt1 = 0x00000000;
  1050. modt2 = CALC_ODT_RW(0);
  1051. modt3 = 0x00000000;
  1052. }
  1053. if (total_rank == 4) {
  1054. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1055. CALC_ODT_R(2) | CALC_ODT_R(3);
  1056. modt0 = CALC_ODT_RW(2);
  1057. modt1 = 0x00000000;
  1058. modt2 = CALC_ODT_RW(0);
  1059. modt3 = 0x00000000;
  1060. }
  1061. }
  1062. } else {
  1063. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1064. modt0 = 0x00000000;
  1065. modt1 = 0x00000000;
  1066. modt2 = 0x00000000;
  1067. modt3 = 0x00000000;
  1068. if (total_dimm == 1) {
  1069. if (total_rank == 1)
  1070. codt |= 0x00800000;
  1071. if (total_rank == 2)
  1072. codt |= 0x02800000;
  1073. }
  1074. if (total_dimm == 2) {
  1075. if (total_rank == 2)
  1076. codt |= 0x08800000;
  1077. if (total_rank == 4)
  1078. codt |= 0x2a800000;
  1079. }
  1080. }
  1081. debug("nb of dimm %d\n", total_dimm);
  1082. debug("nb of rank %d\n", total_rank);
  1083. if (total_dimm == 1)
  1084. debug("dimm in slot %d\n", firstSlot);
  1085. mtsdram(SDRAM_CODT, codt);
  1086. mtsdram(SDRAM_MODT0, modt0);
  1087. mtsdram(SDRAM_MODT1, modt1);
  1088. mtsdram(SDRAM_MODT2, modt2);
  1089. mtsdram(SDRAM_MODT3, modt3);
  1090. }
  1091. /*-----------------------------------------------------------------------------+
  1092. * program_initplr.
  1093. *-----------------------------------------------------------------------------*/
  1094. static void program_initplr(unsigned long *dimm_populated,
  1095. unsigned char *iic0_dimm_addr,
  1096. unsigned long num_dimm_banks,
  1097. ddr_cas_id_t selected_cas,
  1098. int write_recovery)
  1099. {
  1100. u32 cas = 0;
  1101. u32 odt = 0;
  1102. u32 ods = 0;
  1103. u32 mr;
  1104. u32 wr;
  1105. u32 emr;
  1106. u32 emr2;
  1107. u32 emr3;
  1108. int dimm_num;
  1109. int total_dimm = 0;
  1110. /******************************************************
  1111. ** Assumption: if more than one DIMM, all DIMMs are the same
  1112. ** as already checked in check_memory_type
  1113. ******************************************************/
  1114. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1115. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1116. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1117. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1118. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1119. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1120. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1121. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1122. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1123. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1124. switch (selected_cas) {
  1125. case DDR_CAS_3:
  1126. cas = 3 << 4;
  1127. break;
  1128. case DDR_CAS_4:
  1129. cas = 4 << 4;
  1130. break;
  1131. case DDR_CAS_5:
  1132. cas = 5 << 4;
  1133. break;
  1134. default:
  1135. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1136. spd_ddr_init_hang ();
  1137. break;
  1138. }
  1139. #if 0
  1140. /*
  1141. * ToDo - Still a problem with the write recovery:
  1142. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1143. * in the INITPLR reg to the value calculated in program_mode()
  1144. * results in not correctly working DDR2 memory (crash after
  1145. * relocation).
  1146. *
  1147. * So for now, set the write recovery to 3. This seems to work
  1148. * on the Corair module too.
  1149. *
  1150. * 2007-03-01, sr
  1151. */
  1152. switch (write_recovery) {
  1153. case 3:
  1154. wr = WRITE_RECOV_3;
  1155. break;
  1156. case 4:
  1157. wr = WRITE_RECOV_4;
  1158. break;
  1159. case 5:
  1160. wr = WRITE_RECOV_5;
  1161. break;
  1162. case 6:
  1163. wr = WRITE_RECOV_6;
  1164. break;
  1165. default:
  1166. printf("ERROR: write recovery not support (%d)", write_recovery);
  1167. spd_ddr_init_hang ();
  1168. break;
  1169. }
  1170. #else
  1171. wr = WRITE_RECOV_3; /* test-only, see description above */
  1172. #endif
  1173. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1174. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1175. total_dimm++;
  1176. if (total_dimm == 1) {
  1177. odt = ODT_150_OHM;
  1178. ods = ODS_FULL;
  1179. } else if (total_dimm == 2) {
  1180. odt = ODT_75_OHM;
  1181. ods = ODS_REDUCED;
  1182. } else {
  1183. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1184. spd_ddr_init_hang ();
  1185. }
  1186. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1187. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1188. emr2 = CMD_EMR | SELECT_EMR2;
  1189. emr3 = CMD_EMR | SELECT_EMR3;
  1190. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1191. udelay(1000);
  1192. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1193. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1194. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1195. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1196. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1197. udelay(1000);
  1198. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1199. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1200. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1201. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1202. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1203. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1204. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1205. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1206. } else {
  1207. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1208. spd_ddr_init_hang ();
  1209. }
  1210. }
  1211. /*------------------------------------------------------------------
  1212. * This routine programs the SDRAM_MMODE register.
  1213. * the selected_cas is an output parameter, that will be passed
  1214. * by caller to call the above program_initplr( )
  1215. *-----------------------------------------------------------------*/
  1216. static void program_mode(unsigned long *dimm_populated,
  1217. unsigned char *iic0_dimm_addr,
  1218. unsigned long num_dimm_banks,
  1219. ddr_cas_id_t *selected_cas,
  1220. int *write_recovery)
  1221. {
  1222. unsigned long dimm_num;
  1223. unsigned long sdram_ddr1;
  1224. unsigned long t_wr_ns;
  1225. unsigned long t_wr_clk;
  1226. unsigned long cas_bit;
  1227. unsigned long cas_index;
  1228. unsigned long sdram_freq;
  1229. unsigned long ddr_check;
  1230. unsigned long mmode;
  1231. unsigned long tcyc_reg;
  1232. unsigned long cycle_2_0_clk;
  1233. unsigned long cycle_2_5_clk;
  1234. unsigned long cycle_3_0_clk;
  1235. unsigned long cycle_4_0_clk;
  1236. unsigned long cycle_5_0_clk;
  1237. unsigned long max_2_0_tcyc_ns_x_100;
  1238. unsigned long max_2_5_tcyc_ns_x_100;
  1239. unsigned long max_3_0_tcyc_ns_x_100;
  1240. unsigned long max_4_0_tcyc_ns_x_100;
  1241. unsigned long max_5_0_tcyc_ns_x_100;
  1242. unsigned long cycle_time_ns_x_100[3];
  1243. PPC4xx_SYS_INFO board_cfg;
  1244. unsigned char cas_2_0_available;
  1245. unsigned char cas_2_5_available;
  1246. unsigned char cas_3_0_available;
  1247. unsigned char cas_4_0_available;
  1248. unsigned char cas_5_0_available;
  1249. unsigned long sdr_ddrpll;
  1250. /*------------------------------------------------------------------
  1251. * Get the board configuration info.
  1252. *-----------------------------------------------------------------*/
  1253. get_sys_info(&board_cfg);
  1254. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1255. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1256. debug("sdram_freq=%d\n", sdram_freq);
  1257. /*------------------------------------------------------------------
  1258. * Handle the timing. We need to find the worst case timing of all
  1259. * the dimm modules installed.
  1260. *-----------------------------------------------------------------*/
  1261. t_wr_ns = 0;
  1262. cas_2_0_available = TRUE;
  1263. cas_2_5_available = TRUE;
  1264. cas_3_0_available = TRUE;
  1265. cas_4_0_available = TRUE;
  1266. cas_5_0_available = TRUE;
  1267. max_2_0_tcyc_ns_x_100 = 10;
  1268. max_2_5_tcyc_ns_x_100 = 10;
  1269. max_3_0_tcyc_ns_x_100 = 10;
  1270. max_4_0_tcyc_ns_x_100 = 10;
  1271. max_5_0_tcyc_ns_x_100 = 10;
  1272. sdram_ddr1 = TRUE;
  1273. /* loop through all the DIMM slots on the board */
  1274. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1275. /* If a dimm is installed in a particular slot ... */
  1276. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1277. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1278. sdram_ddr1 = TRUE;
  1279. else
  1280. sdram_ddr1 = FALSE;
  1281. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1282. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1283. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1284. /* For a particular DIMM, grab the three CAS values it supports */
  1285. for (cas_index = 0; cas_index < 3; cas_index++) {
  1286. switch (cas_index) {
  1287. case 0:
  1288. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1289. break;
  1290. case 1:
  1291. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1292. break;
  1293. default:
  1294. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1295. break;
  1296. }
  1297. if ((tcyc_reg & 0x0F) >= 10) {
  1298. if ((tcyc_reg & 0x0F) == 0x0D) {
  1299. /* Convert from hex to decimal */
  1300. cycle_time_ns_x_100[cas_index] =
  1301. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1302. } else {
  1303. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1304. "in slot %d\n", (unsigned int)dimm_num);
  1305. spd_ddr_init_hang ();
  1306. }
  1307. } else {
  1308. /* Convert from hex to decimal */
  1309. cycle_time_ns_x_100[cas_index] =
  1310. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1311. ((tcyc_reg & 0x0F)*10);
  1312. }
  1313. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1314. cycle_time_ns_x_100[cas_index]);
  1315. }
  1316. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1317. /* supported for a particular DIMM. */
  1318. cas_index = 0;
  1319. if (sdram_ddr1) {
  1320. /*
  1321. * DDR devices use the following bitmask for CAS latency:
  1322. * Bit 7 6 5 4 3 2 1 0
  1323. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1324. */
  1325. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1326. (cycle_time_ns_x_100[cas_index] != 0)) {
  1327. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1328. cycle_time_ns_x_100[cas_index]);
  1329. cas_index++;
  1330. } else {
  1331. if (cas_index != 0)
  1332. cas_index++;
  1333. cas_4_0_available = FALSE;
  1334. }
  1335. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1336. (cycle_time_ns_x_100[cas_index] != 0)) {
  1337. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1338. cycle_time_ns_x_100[cas_index]);
  1339. cas_index++;
  1340. } else {
  1341. if (cas_index != 0)
  1342. cas_index++;
  1343. cas_3_0_available = FALSE;
  1344. }
  1345. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1346. (cycle_time_ns_x_100[cas_index] != 0)) {
  1347. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1348. cycle_time_ns_x_100[cas_index]);
  1349. cas_index++;
  1350. } else {
  1351. if (cas_index != 0)
  1352. cas_index++;
  1353. cas_2_5_available = FALSE;
  1354. }
  1355. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1356. (cycle_time_ns_x_100[cas_index] != 0)) {
  1357. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1358. cycle_time_ns_x_100[cas_index]);
  1359. cas_index++;
  1360. } else {
  1361. if (cas_index != 0)
  1362. cas_index++;
  1363. cas_2_0_available = FALSE;
  1364. }
  1365. } else {
  1366. /*
  1367. * DDR2 devices use the following bitmask for CAS latency:
  1368. * Bit 7 6 5 4 3 2 1 0
  1369. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1370. */
  1371. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1372. (cycle_time_ns_x_100[cas_index] != 0)) {
  1373. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1374. cycle_time_ns_x_100[cas_index]);
  1375. cas_index++;
  1376. } else {
  1377. if (cas_index != 0)
  1378. cas_index++;
  1379. cas_5_0_available = FALSE;
  1380. }
  1381. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1382. (cycle_time_ns_x_100[cas_index] != 0)) {
  1383. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1384. cycle_time_ns_x_100[cas_index]);
  1385. cas_index++;
  1386. } else {
  1387. if (cas_index != 0)
  1388. cas_index++;
  1389. cas_4_0_available = FALSE;
  1390. }
  1391. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1392. (cycle_time_ns_x_100[cas_index] != 0)) {
  1393. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1394. cycle_time_ns_x_100[cas_index]);
  1395. cas_index++;
  1396. } else {
  1397. if (cas_index != 0)
  1398. cas_index++;
  1399. cas_3_0_available = FALSE;
  1400. }
  1401. }
  1402. }
  1403. }
  1404. /*------------------------------------------------------------------
  1405. * Set the SDRAM mode, SDRAM_MMODE
  1406. *-----------------------------------------------------------------*/
  1407. mfsdram(SDRAM_MMODE, mmode);
  1408. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1409. /* add 10 here because of rounding problems */
  1410. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1411. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1412. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1413. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1414. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1415. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1416. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1417. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1418. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1419. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1420. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1421. *selected_cas = DDR_CAS_2;
  1422. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1423. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1424. *selected_cas = DDR_CAS_2_5;
  1425. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1426. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1427. *selected_cas = DDR_CAS_3;
  1428. } else {
  1429. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1430. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1431. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1432. spd_ddr_init_hang ();
  1433. }
  1434. } else { /* DDR2 */
  1435. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1436. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1437. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1438. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1439. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1440. *selected_cas = DDR_CAS_3;
  1441. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1442. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1443. *selected_cas = DDR_CAS_4;
  1444. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1445. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1446. *selected_cas = DDR_CAS_5;
  1447. } else {
  1448. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1449. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1450. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1451. printf("cas3=%d cas4=%d cas5=%d\n",
  1452. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1453. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1454. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1455. spd_ddr_init_hang ();
  1456. }
  1457. }
  1458. if (sdram_ddr1 == TRUE)
  1459. mmode |= SDRAM_MMODE_WR_DDR1;
  1460. else {
  1461. /* loop through all the DIMM slots on the board */
  1462. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1463. /* If a dimm is installed in a particular slot ... */
  1464. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1465. t_wr_ns = max(t_wr_ns,
  1466. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1467. }
  1468. /*
  1469. * convert from nanoseconds to ddr clocks
  1470. * round up if necessary
  1471. */
  1472. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1473. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1474. if (sdram_freq != ddr_check)
  1475. t_wr_clk++;
  1476. switch (t_wr_clk) {
  1477. case 0:
  1478. case 1:
  1479. case 2:
  1480. case 3:
  1481. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1482. break;
  1483. case 4:
  1484. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1485. break;
  1486. case 5:
  1487. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1488. break;
  1489. default:
  1490. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1491. break;
  1492. }
  1493. *write_recovery = t_wr_clk;
  1494. }
  1495. debug("CAS latency = %d\n", *selected_cas);
  1496. debug("Write recovery = %d\n", *write_recovery);
  1497. mtsdram(SDRAM_MMODE, mmode);
  1498. }
  1499. /*-----------------------------------------------------------------------------+
  1500. * program_rtr.
  1501. *-----------------------------------------------------------------------------*/
  1502. static void program_rtr(unsigned long *dimm_populated,
  1503. unsigned char *iic0_dimm_addr,
  1504. unsigned long num_dimm_banks)
  1505. {
  1506. PPC4xx_SYS_INFO board_cfg;
  1507. unsigned long max_refresh_rate;
  1508. unsigned long dimm_num;
  1509. unsigned long refresh_rate_type;
  1510. unsigned long refresh_rate;
  1511. unsigned long rint;
  1512. unsigned long sdram_freq;
  1513. unsigned long sdr_ddrpll;
  1514. unsigned long val;
  1515. /*------------------------------------------------------------------
  1516. * Get the board configuration info.
  1517. *-----------------------------------------------------------------*/
  1518. get_sys_info(&board_cfg);
  1519. /*------------------------------------------------------------------
  1520. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1521. *-----------------------------------------------------------------*/
  1522. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1523. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1524. max_refresh_rate = 0;
  1525. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1526. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1527. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1528. refresh_rate_type &= 0x7F;
  1529. switch (refresh_rate_type) {
  1530. case 0:
  1531. refresh_rate = 15625;
  1532. break;
  1533. case 1:
  1534. refresh_rate = 3906;
  1535. break;
  1536. case 2:
  1537. refresh_rate = 7812;
  1538. break;
  1539. case 3:
  1540. refresh_rate = 31250;
  1541. break;
  1542. case 4:
  1543. refresh_rate = 62500;
  1544. break;
  1545. case 5:
  1546. refresh_rate = 125000;
  1547. break;
  1548. default:
  1549. refresh_rate = 0;
  1550. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1551. (unsigned int)dimm_num);
  1552. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1553. spd_ddr_init_hang ();
  1554. break;
  1555. }
  1556. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1557. }
  1558. }
  1559. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1560. mfsdram(SDRAM_RTR, val);
  1561. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1562. (SDRAM_RTR_RINT_ENCODE(rint)));
  1563. }
  1564. /*------------------------------------------------------------------
  1565. * This routine programs the SDRAM_TRx registers.
  1566. *-----------------------------------------------------------------*/
  1567. static void program_tr(unsigned long *dimm_populated,
  1568. unsigned char *iic0_dimm_addr,
  1569. unsigned long num_dimm_banks)
  1570. {
  1571. unsigned long dimm_num;
  1572. unsigned long sdram_ddr1;
  1573. unsigned long t_rp_ns;
  1574. unsigned long t_rcd_ns;
  1575. unsigned long t_rrd_ns;
  1576. unsigned long t_ras_ns;
  1577. unsigned long t_rc_ns;
  1578. unsigned long t_rfc_ns;
  1579. unsigned long t_wpc_ns;
  1580. unsigned long t_wtr_ns;
  1581. unsigned long t_rpc_ns;
  1582. unsigned long t_rp_clk;
  1583. unsigned long t_rcd_clk;
  1584. unsigned long t_rrd_clk;
  1585. unsigned long t_ras_clk;
  1586. unsigned long t_rc_clk;
  1587. unsigned long t_rfc_clk;
  1588. unsigned long t_wpc_clk;
  1589. unsigned long t_wtr_clk;
  1590. unsigned long t_rpc_clk;
  1591. unsigned long sdtr1, sdtr2, sdtr3;
  1592. unsigned long ddr_check;
  1593. unsigned long sdram_freq;
  1594. unsigned long sdr_ddrpll;
  1595. PPC4xx_SYS_INFO board_cfg;
  1596. /*------------------------------------------------------------------
  1597. * Get the board configuration info.
  1598. *-----------------------------------------------------------------*/
  1599. get_sys_info(&board_cfg);
  1600. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1601. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1602. /*------------------------------------------------------------------
  1603. * Handle the timing. We need to find the worst case timing of all
  1604. * the dimm modules installed.
  1605. *-----------------------------------------------------------------*/
  1606. t_rp_ns = 0;
  1607. t_rrd_ns = 0;
  1608. t_rcd_ns = 0;
  1609. t_ras_ns = 0;
  1610. t_rc_ns = 0;
  1611. t_rfc_ns = 0;
  1612. t_wpc_ns = 0;
  1613. t_wtr_ns = 0;
  1614. t_rpc_ns = 0;
  1615. sdram_ddr1 = TRUE;
  1616. /* loop through all the DIMM slots on the board */
  1617. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1618. /* If a dimm is installed in a particular slot ... */
  1619. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1620. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1621. sdram_ddr1 = TRUE;
  1622. else
  1623. sdram_ddr1 = FALSE;
  1624. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1625. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1626. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1627. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1628. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1629. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1630. }
  1631. }
  1632. /*------------------------------------------------------------------
  1633. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1634. *-----------------------------------------------------------------*/
  1635. mfsdram(SDRAM_SDTR1, sdtr1);
  1636. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1637. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1638. /* default values */
  1639. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1640. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1641. /* normal operations */
  1642. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1643. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1644. mtsdram(SDRAM_SDTR1, sdtr1);
  1645. /*------------------------------------------------------------------
  1646. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1647. *-----------------------------------------------------------------*/
  1648. mfsdram(SDRAM_SDTR2, sdtr2);
  1649. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1650. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1651. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1652. SDRAM_SDTR2_RRD_MASK);
  1653. /*
  1654. * convert t_rcd from nanoseconds to ddr clocks
  1655. * round up if necessary
  1656. */
  1657. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1658. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1659. if (sdram_freq != ddr_check)
  1660. t_rcd_clk++;
  1661. switch (t_rcd_clk) {
  1662. case 0:
  1663. case 1:
  1664. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1665. break;
  1666. case 2:
  1667. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1668. break;
  1669. case 3:
  1670. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1671. break;
  1672. case 4:
  1673. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1674. break;
  1675. default:
  1676. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1677. break;
  1678. }
  1679. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1680. if (sdram_freq < 200000000) {
  1681. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1682. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1683. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1684. } else {
  1685. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1686. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1687. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1688. }
  1689. } else { /* DDR2 */
  1690. /* loop through all the DIMM slots on the board */
  1691. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1692. /* If a dimm is installed in a particular slot ... */
  1693. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1694. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1695. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1696. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1697. }
  1698. }
  1699. /*
  1700. * convert from nanoseconds to ddr clocks
  1701. * round up if necessary
  1702. */
  1703. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1704. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1705. if (sdram_freq != ddr_check)
  1706. t_wpc_clk++;
  1707. switch (t_wpc_clk) {
  1708. case 0:
  1709. case 1:
  1710. case 2:
  1711. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1712. break;
  1713. case 3:
  1714. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1715. break;
  1716. case 4:
  1717. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1718. break;
  1719. case 5:
  1720. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1721. break;
  1722. default:
  1723. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1724. break;
  1725. }
  1726. /*
  1727. * convert from nanoseconds to ddr clocks
  1728. * round up if necessary
  1729. */
  1730. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1731. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1732. if (sdram_freq != ddr_check)
  1733. t_wtr_clk++;
  1734. switch (t_wtr_clk) {
  1735. case 0:
  1736. case 1:
  1737. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1738. break;
  1739. case 2:
  1740. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1741. break;
  1742. case 3:
  1743. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1744. break;
  1745. default:
  1746. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1747. break;
  1748. }
  1749. /*
  1750. * convert from nanoseconds to ddr clocks
  1751. * round up if necessary
  1752. */
  1753. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1754. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1755. if (sdram_freq != ddr_check)
  1756. t_rpc_clk++;
  1757. switch (t_rpc_clk) {
  1758. case 0:
  1759. case 1:
  1760. case 2:
  1761. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1762. break;
  1763. case 3:
  1764. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1765. break;
  1766. default:
  1767. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1768. break;
  1769. }
  1770. }
  1771. /* default value */
  1772. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1773. /*
  1774. * convert t_rrd from nanoseconds to ddr clocks
  1775. * round up if necessary
  1776. */
  1777. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1778. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1779. if (sdram_freq != ddr_check)
  1780. t_rrd_clk++;
  1781. if (t_rrd_clk == 3)
  1782. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1783. else
  1784. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1785. /*
  1786. * convert t_rp from nanoseconds to ddr clocks
  1787. * round up if necessary
  1788. */
  1789. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1790. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1791. if (sdram_freq != ddr_check)
  1792. t_rp_clk++;
  1793. switch (t_rp_clk) {
  1794. case 0:
  1795. case 1:
  1796. case 2:
  1797. case 3:
  1798. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1799. break;
  1800. case 4:
  1801. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1802. break;
  1803. case 5:
  1804. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1805. break;
  1806. case 6:
  1807. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1808. break;
  1809. default:
  1810. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1811. break;
  1812. }
  1813. mtsdram(SDRAM_SDTR2, sdtr2);
  1814. /*------------------------------------------------------------------
  1815. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1816. *-----------------------------------------------------------------*/
  1817. mfsdram(SDRAM_SDTR3, sdtr3);
  1818. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1819. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1820. /*
  1821. * convert t_ras from nanoseconds to ddr clocks
  1822. * round up if necessary
  1823. */
  1824. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1825. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1826. if (sdram_freq != ddr_check)
  1827. t_ras_clk++;
  1828. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1829. /*
  1830. * convert t_rc from nanoseconds to ddr clocks
  1831. * round up if necessary
  1832. */
  1833. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1834. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1835. if (sdram_freq != ddr_check)
  1836. t_rc_clk++;
  1837. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1838. /* default xcs value */
  1839. sdtr3 |= SDRAM_SDTR3_XCS;
  1840. /*
  1841. * convert t_rfc from nanoseconds to ddr clocks
  1842. * round up if necessary
  1843. */
  1844. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1845. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1846. if (sdram_freq != ddr_check)
  1847. t_rfc_clk++;
  1848. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1849. mtsdram(SDRAM_SDTR3, sdtr3);
  1850. }
  1851. /*-----------------------------------------------------------------------------+
  1852. * program_bxcf.
  1853. *-----------------------------------------------------------------------------*/
  1854. static void program_bxcf(unsigned long *dimm_populated,
  1855. unsigned char *iic0_dimm_addr,
  1856. unsigned long num_dimm_banks)
  1857. {
  1858. unsigned long dimm_num;
  1859. unsigned long num_col_addr;
  1860. unsigned long num_ranks;
  1861. unsigned long num_banks;
  1862. unsigned long mode;
  1863. unsigned long ind_rank;
  1864. unsigned long ind;
  1865. unsigned long ind_bank;
  1866. unsigned long bank_0_populated;
  1867. /*------------------------------------------------------------------
  1868. * Set the BxCF regs. First, wipe out the bank config registers.
  1869. *-----------------------------------------------------------------*/
  1870. mtsdram(SDRAM_MB0CF, 0x00000000);
  1871. mtsdram(SDRAM_MB1CF, 0x00000000);
  1872. mtsdram(SDRAM_MB2CF, 0x00000000);
  1873. mtsdram(SDRAM_MB3CF, 0x00000000);
  1874. mode = SDRAM_BXCF_M_BE_ENABLE;
  1875. bank_0_populated = 0;
  1876. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1877. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1878. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1879. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1880. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1881. num_ranks = (num_ranks & 0x0F) +1;
  1882. else
  1883. num_ranks = num_ranks & 0x0F;
  1884. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1885. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1886. if (num_banks == 4)
  1887. ind = 0;
  1888. else
  1889. ind = 5 << 8;
  1890. switch (num_col_addr) {
  1891. case 0x08:
  1892. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1893. break;
  1894. case 0x09:
  1895. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1896. break;
  1897. case 0x0A:
  1898. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1899. break;
  1900. case 0x0B:
  1901. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1902. break;
  1903. case 0x0C:
  1904. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1905. break;
  1906. default:
  1907. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1908. (unsigned int)dimm_num);
  1909. printf("ERROR: Unsupported value for number of "
  1910. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1911. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1912. spd_ddr_init_hang ();
  1913. }
  1914. }
  1915. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1916. bank_0_populated = 1;
  1917. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1918. mtsdram(SDRAM_MB0CF +
  1919. ((dimm_num + bank_0_populated + ind_rank) << 2),
  1920. mode);
  1921. }
  1922. }
  1923. }
  1924. }
  1925. /*------------------------------------------------------------------
  1926. * program memory queue.
  1927. *-----------------------------------------------------------------*/
  1928. static void program_memory_queue(unsigned long *dimm_populated,
  1929. unsigned char *iic0_dimm_addr,
  1930. unsigned long num_dimm_banks)
  1931. {
  1932. unsigned long dimm_num;
  1933. unsigned long rank_base_addr;
  1934. unsigned long rank_reg;
  1935. unsigned long rank_size_bytes;
  1936. unsigned long rank_size_id;
  1937. unsigned long num_ranks;
  1938. unsigned long baseadd_size;
  1939. unsigned long i;
  1940. unsigned long bank_0_populated = 0;
  1941. unsigned long total_size = 0;
  1942. /*------------------------------------------------------------------
  1943. * Reset the rank_base_address.
  1944. *-----------------------------------------------------------------*/
  1945. rank_reg = SDRAM_R0BAS;
  1946. rank_base_addr = 0x00000000;
  1947. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1948. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1949. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1950. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1951. num_ranks = (num_ranks & 0x0F) + 1;
  1952. else
  1953. num_ranks = num_ranks & 0x0F;
  1954. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1955. /*------------------------------------------------------------------
  1956. * Set the sizes
  1957. *-----------------------------------------------------------------*/
  1958. baseadd_size = 0;
  1959. switch (rank_size_id) {
  1960. case 0x01:
  1961. baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
  1962. total_size = 1024;
  1963. break;
  1964. case 0x02:
  1965. baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
  1966. total_size = 2048;
  1967. break;
  1968. case 0x04:
  1969. baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
  1970. total_size = 4096;
  1971. break;
  1972. case 0x08:
  1973. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1974. total_size = 32;
  1975. break;
  1976. case 0x10:
  1977. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1978. total_size = 64;
  1979. break;
  1980. case 0x20:
  1981. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1982. total_size = 128;
  1983. break;
  1984. case 0x40:
  1985. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1986. total_size = 256;
  1987. break;
  1988. case 0x80:
  1989. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1990. total_size = 512;
  1991. break;
  1992. default:
  1993. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1994. (unsigned int)dimm_num);
  1995. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1996. (unsigned int)rank_size_id);
  1997. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1998. spd_ddr_init_hang ();
  1999. }
  2000. rank_size_bytes = total_size << 20;
  2001. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  2002. bank_0_populated = 1;
  2003. for (i = 0; i < num_ranks; i++) {
  2004. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  2005. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  2006. baseadd_size));
  2007. rank_base_addr += rank_size_bytes;
  2008. }
  2009. }
  2010. }
  2011. #if defined(CONFIG_460EX) || defined(CONFIG_460GT)
  2012. /*
  2013. * Enable high bandwidth access on 460EX/GT.
  2014. * This should/could probably be done on other
  2015. * PPC's too, like 440SPe.
  2016. * This is currently not used, but with this setup
  2017. * it is possible to use it later on in e.g. the Linux
  2018. * EMAC driver for performance gain.
  2019. */
  2020. mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
  2021. mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
  2022. #endif
  2023. }
  2024. /*-----------------------------------------------------------------------------+
  2025. * is_ecc_enabled.
  2026. *-----------------------------------------------------------------------------*/
  2027. static unsigned long is_ecc_enabled(void)
  2028. {
  2029. unsigned long dimm_num;
  2030. unsigned long ecc;
  2031. unsigned long val;
  2032. ecc = 0;
  2033. /* loop through all the DIMM slots on the board */
  2034. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2035. mfsdram(SDRAM_MCOPT1, val);
  2036. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  2037. }
  2038. return ecc;
  2039. }
  2040. static void blank_string(int size)
  2041. {
  2042. int i;
  2043. for (i=0; i<size; i++)
  2044. putc('\b');
  2045. for (i=0; i<size; i++)
  2046. putc(' ');
  2047. for (i=0; i<size; i++)
  2048. putc('\b');
  2049. }
  2050. #ifdef CONFIG_DDR_ECC
  2051. /*-----------------------------------------------------------------------------+
  2052. * program_ecc.
  2053. *-----------------------------------------------------------------------------*/
  2054. static void program_ecc(unsigned long *dimm_populated,
  2055. unsigned char *iic0_dimm_addr,
  2056. unsigned long num_dimm_banks,
  2057. unsigned long tlb_word2_i_value)
  2058. {
  2059. unsigned long mcopt1;
  2060. unsigned long mcopt2;
  2061. unsigned long mcstat;
  2062. unsigned long dimm_num;
  2063. unsigned long ecc;
  2064. ecc = 0;
  2065. /* loop through all the DIMM slots on the board */
  2066. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2067. /* If a dimm is installed in a particular slot ... */
  2068. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2069. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2070. }
  2071. if (ecc == 0)
  2072. return;
  2073. mfsdram(SDRAM_MCOPT1, mcopt1);
  2074. mfsdram(SDRAM_MCOPT2, mcopt2);
  2075. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2076. /* DDR controller must be enabled and not in self-refresh. */
  2077. mfsdram(SDRAM_MCSTAT, mcstat);
  2078. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2079. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2080. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2081. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2082. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2083. }
  2084. }
  2085. return;
  2086. }
  2087. static void wait_ddr_idle(void)
  2088. {
  2089. u32 val;
  2090. do {
  2091. mfsdram(SDRAM_MCSTAT, val);
  2092. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2093. }
  2094. /*-----------------------------------------------------------------------------+
  2095. * program_ecc_addr.
  2096. *-----------------------------------------------------------------------------*/
  2097. static void program_ecc_addr(unsigned long start_address,
  2098. unsigned long num_bytes,
  2099. unsigned long tlb_word2_i_value)
  2100. {
  2101. unsigned long current_address;
  2102. unsigned long end_address;
  2103. unsigned long address_increment;
  2104. unsigned long mcopt1;
  2105. char str[] = "ECC generation -";
  2106. char slash[] = "\\|/-\\|/-";
  2107. int loop = 0;
  2108. int loopi = 0;
  2109. current_address = start_address;
  2110. mfsdram(SDRAM_MCOPT1, mcopt1);
  2111. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2112. mtsdram(SDRAM_MCOPT1,
  2113. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2114. sync();
  2115. eieio();
  2116. wait_ddr_idle();
  2117. puts(str);
  2118. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2119. /* ECC bit set method for non-cached memory */
  2120. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2121. address_increment = 4;
  2122. else
  2123. address_increment = 8;
  2124. end_address = current_address + num_bytes;
  2125. while (current_address < end_address) {
  2126. *((unsigned long *)current_address) = 0x00000000;
  2127. current_address += address_increment;
  2128. if ((loop++ % (2 << 20)) == 0) {
  2129. putc('\b');
  2130. putc(slash[loopi++ % 8]);
  2131. }
  2132. }
  2133. } else {
  2134. /* ECC bit set method for cached memory */
  2135. dcbz_area(start_address, num_bytes);
  2136. /* Write modified dcache lines back to memory */
  2137. clean_dcache_range(start_address, start_address + num_bytes);
  2138. }
  2139. blank_string(strlen(str));
  2140. sync();
  2141. eieio();
  2142. wait_ddr_idle();
  2143. /* clear ECC error repoting registers */
  2144. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2145. mtdcr(0x4c, 0xffffffff);
  2146. mtsdram(SDRAM_MCOPT1,
  2147. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2148. sync();
  2149. eieio();
  2150. wait_ddr_idle();
  2151. }
  2152. }
  2153. #endif
  2154. /*-----------------------------------------------------------------------------+
  2155. * program_DQS_calibration.
  2156. *-----------------------------------------------------------------------------*/
  2157. static void program_DQS_calibration(unsigned long *dimm_populated,
  2158. unsigned char *iic0_dimm_addr,
  2159. unsigned long num_dimm_banks)
  2160. {
  2161. unsigned long val;
  2162. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2163. mtsdram(SDRAM_RQDC, 0x80000037);
  2164. mtsdram(SDRAM_RDCC, 0x40000000);
  2165. mtsdram(SDRAM_RFDC, 0x000001DF);
  2166. test();
  2167. #else
  2168. /*------------------------------------------------------------------
  2169. * Program RDCC register
  2170. * Read sample cycle auto-update enable
  2171. *-----------------------------------------------------------------*/
  2172. mfsdram(SDRAM_RDCC, val);
  2173. mtsdram(SDRAM_RDCC,
  2174. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2175. | SDRAM_RDCC_RSAE_ENABLE);
  2176. /*------------------------------------------------------------------
  2177. * Program RQDC register
  2178. * Internal DQS delay mechanism enable
  2179. *-----------------------------------------------------------------*/
  2180. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2181. /*------------------------------------------------------------------
  2182. * Program RFDC register
  2183. * Set Feedback Fractional Oversample
  2184. * Auto-detect read sample cycle enable
  2185. *-----------------------------------------------------------------*/
  2186. mfsdram(SDRAM_RFDC, val);
  2187. mtsdram(SDRAM_RFDC,
  2188. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2189. SDRAM_RFDC_RFFD_MASK))
  2190. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2191. SDRAM_RFDC_RFFD_ENCODE(0)));
  2192. DQS_calibration_process();
  2193. #endif
  2194. }
  2195. static int short_mem_test(void)
  2196. {
  2197. u32 *membase;
  2198. u32 bxcr_num;
  2199. u32 bxcf;
  2200. int i;
  2201. int j;
  2202. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2203. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2204. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2205. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2206. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2207. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2208. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2209. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2210. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2211. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2212. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2213. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2214. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2215. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2216. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2217. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2218. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2219. int l;
  2220. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2221. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2222. /* Banks enabled */
  2223. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2224. /* Bank is enabled */
  2225. /*------------------------------------------------------------------
  2226. * Run the short memory test.
  2227. *-----------------------------------------------------------------*/
  2228. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2229. for (i = 0; i < NUMMEMTESTS; i++) {
  2230. for (j = 0; j < NUMMEMWORDS; j++) {
  2231. membase[j] = test[i][j];
  2232. ppcDcbf((u32)&(membase[j]));
  2233. }
  2234. sync();
  2235. for (l=0; l<NUMLOOPS; l++) {
  2236. for (j = 0; j < NUMMEMWORDS; j++) {
  2237. if (membase[j] != test[i][j]) {
  2238. ppcDcbf((u32)&(membase[j]));
  2239. return 0;
  2240. }
  2241. ppcDcbf((u32)&(membase[j]));
  2242. }
  2243. sync();
  2244. }
  2245. }
  2246. } /* if bank enabled */
  2247. } /* for bxcf_num */
  2248. return 1;
  2249. }
  2250. #ifndef HARD_CODED_DQS
  2251. /*-----------------------------------------------------------------------------+
  2252. * DQS_calibration_process.
  2253. *-----------------------------------------------------------------------------*/
  2254. static void DQS_calibration_process(void)
  2255. {
  2256. unsigned long rfdc_reg;
  2257. unsigned long rffd;
  2258. unsigned long val;
  2259. long rffd_average;
  2260. long max_start;
  2261. long min_end;
  2262. unsigned long begin_rqfd[MAXRANKS];
  2263. unsigned long begin_rffd[MAXRANKS];
  2264. unsigned long end_rqfd[MAXRANKS];
  2265. unsigned long end_rffd[MAXRANKS];
  2266. char window_found;
  2267. unsigned long dlycal;
  2268. unsigned long dly_val;
  2269. unsigned long max_pass_length;
  2270. unsigned long current_pass_length;
  2271. unsigned long current_fail_length;
  2272. unsigned long current_start;
  2273. long max_end;
  2274. unsigned char fail_found;
  2275. unsigned char pass_found;
  2276. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2277. u32 rqdc_reg;
  2278. u32 rqfd;
  2279. u32 rqfd_start;
  2280. u32 rqfd_average;
  2281. int loopi = 0;
  2282. char str[] = "Auto calibration -";
  2283. char slash[] = "\\|/-\\|/-";
  2284. /*------------------------------------------------------------------
  2285. * Test to determine the best read clock delay tuning bits.
  2286. *
  2287. * Before the DDR controller can be used, the read clock delay needs to be
  2288. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2289. * This value cannot be hardcoded into the program because it changes
  2290. * depending on the board's setup and environment.
  2291. * To do this, all delay values are tested to see if they
  2292. * work or not. By doing this, you get groups of fails with groups of
  2293. * passing values. The idea is to find the start and end of a passing
  2294. * window and take the center of it to use as the read clock delay.
  2295. *
  2296. * A failure has to be seen first so that when we hit a pass, we know
  2297. * that it is truely the start of the window. If we get passing values
  2298. * to start off with, we don't know if we are at the start of the window.
  2299. *
  2300. * The code assumes that a failure will always be found.
  2301. * If a failure is not found, there is no easy way to get the middle
  2302. * of the passing window. I guess we can pretty much pick any value
  2303. * but some values will be better than others. Since the lowest speed
  2304. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2305. * from experimentation it is safe to say you will always have a failure.
  2306. *-----------------------------------------------------------------*/
  2307. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2308. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2309. puts(str);
  2310. calibration_loop:
  2311. mfsdram(SDRAM_RQDC, rqdc_reg);
  2312. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2313. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2314. #else /* CONFIG_DDR_RQDC_FIXED */
  2315. /*
  2316. * On Katmai the complete auto-calibration somehow doesn't seem to
  2317. * produce the best results, meaning optimal values for RQFD/RFFD.
  2318. * This was discovered by GDA using a high bandwidth scope,
  2319. * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
  2320. * so now on Katmai "only" RFFD is auto-calibrated.
  2321. */
  2322. mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
  2323. #endif /* CONFIG_DDR_RQDC_FIXED */
  2324. max_start = 0;
  2325. min_end = 0;
  2326. begin_rqfd[0] = 0;
  2327. begin_rffd[0] = 0;
  2328. begin_rqfd[1] = 0;
  2329. begin_rffd[1] = 0;
  2330. end_rqfd[0] = 0;
  2331. end_rffd[0] = 0;
  2332. end_rqfd[1] = 0;
  2333. end_rffd[1] = 0;
  2334. window_found = FALSE;
  2335. max_pass_length = 0;
  2336. max_start = 0;
  2337. max_end = 0;
  2338. current_pass_length = 0;
  2339. current_fail_length = 0;
  2340. current_start = 0;
  2341. window_found = FALSE;
  2342. fail_found = FALSE;
  2343. pass_found = FALSE;
  2344. /*
  2345. * get the delay line calibration register value
  2346. */
  2347. mfsdram(SDRAM_DLCR, dlycal);
  2348. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2349. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2350. mfsdram(SDRAM_RFDC, rfdc_reg);
  2351. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2352. /*------------------------------------------------------------------
  2353. * Set the timing reg for the test.
  2354. *-----------------------------------------------------------------*/
  2355. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2356. /*------------------------------------------------------------------
  2357. * See if the rffd value passed.
  2358. *-----------------------------------------------------------------*/
  2359. if (short_mem_test()) {
  2360. if (fail_found == TRUE) {
  2361. pass_found = TRUE;
  2362. if (current_pass_length == 0)
  2363. current_start = rffd;
  2364. current_fail_length = 0;
  2365. current_pass_length++;
  2366. if (current_pass_length > max_pass_length) {
  2367. max_pass_length = current_pass_length;
  2368. max_start = current_start;
  2369. max_end = rffd;
  2370. }
  2371. }
  2372. } else {
  2373. current_pass_length = 0;
  2374. current_fail_length++;
  2375. if (current_fail_length >= (dly_val >> 2)) {
  2376. if (fail_found == FALSE) {
  2377. fail_found = TRUE;
  2378. } else if (pass_found == TRUE) {
  2379. window_found = TRUE;
  2380. break;
  2381. }
  2382. }
  2383. }
  2384. } /* for rffd */
  2385. /*------------------------------------------------------------------
  2386. * Set the average RFFD value
  2387. *-----------------------------------------------------------------*/
  2388. rffd_average = ((max_start + max_end) >> 1);
  2389. if (rffd_average < 0)
  2390. rffd_average = 0;
  2391. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2392. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2393. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2394. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2395. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2396. max_pass_length = 0;
  2397. max_start = 0;
  2398. max_end = 0;
  2399. current_pass_length = 0;
  2400. current_fail_length = 0;
  2401. current_start = 0;
  2402. window_found = FALSE;
  2403. fail_found = FALSE;
  2404. pass_found = FALSE;
  2405. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2406. mfsdram(SDRAM_RQDC, rqdc_reg);
  2407. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2408. /*------------------------------------------------------------------
  2409. * Set the timing reg for the test.
  2410. *-----------------------------------------------------------------*/
  2411. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2412. /*------------------------------------------------------------------
  2413. * See if the rffd value passed.
  2414. *-----------------------------------------------------------------*/
  2415. if (short_mem_test()) {
  2416. if (fail_found == TRUE) {
  2417. pass_found = TRUE;
  2418. if (current_pass_length == 0)
  2419. current_start = rqfd;
  2420. current_fail_length = 0;
  2421. current_pass_length++;
  2422. if (current_pass_length > max_pass_length) {
  2423. max_pass_length = current_pass_length;
  2424. max_start = current_start;
  2425. max_end = rqfd;
  2426. }
  2427. }
  2428. } else {
  2429. current_pass_length = 0;
  2430. current_fail_length++;
  2431. if (fail_found == FALSE) {
  2432. fail_found = TRUE;
  2433. } else if (pass_found == TRUE) {
  2434. window_found = TRUE;
  2435. break;
  2436. }
  2437. }
  2438. }
  2439. rqfd_average = ((max_start + max_end) >> 1);
  2440. /*------------------------------------------------------------------
  2441. * Make sure we found the valid read passing window. Halt if not
  2442. *-----------------------------------------------------------------*/
  2443. if (window_found == FALSE) {
  2444. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2445. putc('\b');
  2446. putc(slash[loopi++ % 8]);
  2447. /* try again from with a different RQFD start value */
  2448. rqfd_start++;
  2449. goto calibration_loop;
  2450. }
  2451. printf("\nERROR: Cannot determine a common read delay for the "
  2452. "DIMM(s) installed.\n");
  2453. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2454. ppc440sp_sdram_register_dump();
  2455. spd_ddr_init_hang ();
  2456. }
  2457. if (rqfd_average < 0)
  2458. rqfd_average = 0;
  2459. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2460. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2461. mtsdram(SDRAM_RQDC,
  2462. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2463. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2464. blank_string(strlen(str));
  2465. #endif /* CONFIG_DDR_RQDC_FIXED */
  2466. /*
  2467. * Now complete RDSS configuration as mentioned on page 7 of the AMCC
  2468. * PowerPC440SP/SPe DDR2 application note:
  2469. * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
  2470. */
  2471. mfsdram(SDRAM_RTSR, val);
  2472. if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
  2473. mfsdram(SDRAM_RDCC, val);
  2474. if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
  2475. val += 0x40000000;
  2476. mtsdram(SDRAM_RDCC, val);
  2477. }
  2478. }
  2479. mfsdram(SDRAM_DLCR, val);
  2480. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2481. mfsdram(SDRAM_RQDC, val);
  2482. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2483. mfsdram(SDRAM_RFDC, val);
  2484. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2485. mfsdram(SDRAM_RDCC, val);
  2486. debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2487. }
  2488. #else /* calibration test with hardvalues */
  2489. /*-----------------------------------------------------------------------------+
  2490. * DQS_calibration_process.
  2491. *-----------------------------------------------------------------------------*/
  2492. static void test(void)
  2493. {
  2494. unsigned long dimm_num;
  2495. unsigned long ecc_temp;
  2496. unsigned long i, j;
  2497. unsigned long *membase;
  2498. unsigned long bxcf[MAXRANKS];
  2499. unsigned long val;
  2500. char window_found;
  2501. char begin_found[MAXDIMMS];
  2502. char end_found[MAXDIMMS];
  2503. char search_end[MAXDIMMS];
  2504. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2505. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2506. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2507. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2508. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2509. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2510. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2511. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2512. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2513. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2514. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2515. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2516. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2517. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2518. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2519. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2520. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2521. /*------------------------------------------------------------------
  2522. * Test to determine the best read clock delay tuning bits.
  2523. *
  2524. * Before the DDR controller can be used, the read clock delay needs to be
  2525. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2526. * This value cannot be hardcoded into the program because it changes
  2527. * depending on the board's setup and environment.
  2528. * To do this, all delay values are tested to see if they
  2529. * work or not. By doing this, you get groups of fails with groups of
  2530. * passing values. The idea is to find the start and end of a passing
  2531. * window and take the center of it to use as the read clock delay.
  2532. *
  2533. * A failure has to be seen first so that when we hit a pass, we know
  2534. * that it is truely the start of the window. If we get passing values
  2535. * to start off with, we don't know if we are at the start of the window.
  2536. *
  2537. * The code assumes that a failure will always be found.
  2538. * If a failure is not found, there is no easy way to get the middle
  2539. * of the passing window. I guess we can pretty much pick any value
  2540. * but some values will be better than others. Since the lowest speed
  2541. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2542. * from experimentation it is safe to say you will always have a failure.
  2543. *-----------------------------------------------------------------*/
  2544. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2545. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2546. mfsdram(SDRAM_MCOPT1, val);
  2547. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2548. SDRAM_MCOPT1_MCHK_NON);
  2549. window_found = FALSE;
  2550. begin_found[0] = FALSE;
  2551. end_found[0] = FALSE;
  2552. search_end[0] = FALSE;
  2553. begin_found[1] = FALSE;
  2554. end_found[1] = FALSE;
  2555. search_end[1] = FALSE;
  2556. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2557. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2558. /* Banks enabled */
  2559. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2560. /* Bank is enabled */
  2561. membase =
  2562. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2563. /*------------------------------------------------------------------
  2564. * Run the short memory test.
  2565. *-----------------------------------------------------------------*/
  2566. for (i = 0; i < NUMMEMTESTS; i++) {
  2567. for (j = 0; j < NUMMEMWORDS; j++) {
  2568. membase[j] = test[i][j];
  2569. ppcDcbf((u32)&(membase[j]));
  2570. }
  2571. sync();
  2572. for (j = 0; j < NUMMEMWORDS; j++) {
  2573. if (membase[j] != test[i][j]) {
  2574. ppcDcbf((u32)&(membase[j]));
  2575. break;
  2576. }
  2577. ppcDcbf((u32)&(membase[j]));
  2578. }
  2579. sync();
  2580. if (j < NUMMEMWORDS)
  2581. break;
  2582. }
  2583. /*------------------------------------------------------------------
  2584. * See if the rffd value passed.
  2585. *-----------------------------------------------------------------*/
  2586. if (i < NUMMEMTESTS) {
  2587. if ((end_found[dimm_num] == FALSE) &&
  2588. (search_end[dimm_num] == TRUE)) {
  2589. end_found[dimm_num] = TRUE;
  2590. }
  2591. if ((end_found[0] == TRUE) &&
  2592. (end_found[1] == TRUE))
  2593. break;
  2594. } else {
  2595. if (begin_found[dimm_num] == FALSE) {
  2596. begin_found[dimm_num] = TRUE;
  2597. search_end[dimm_num] = TRUE;
  2598. }
  2599. }
  2600. } else {
  2601. begin_found[dimm_num] = TRUE;
  2602. end_found[dimm_num] = TRUE;
  2603. }
  2604. }
  2605. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2606. window_found = TRUE;
  2607. /*------------------------------------------------------------------
  2608. * Make sure we found the valid read passing window. Halt if not
  2609. *-----------------------------------------------------------------*/
  2610. if (window_found == FALSE) {
  2611. printf("ERROR: Cannot determine a common read delay for the "
  2612. "DIMM(s) installed.\n");
  2613. spd_ddr_init_hang ();
  2614. }
  2615. /*------------------------------------------------------------------
  2616. * Restore the ECC variable to what it originally was
  2617. *-----------------------------------------------------------------*/
  2618. mtsdram(SDRAM_MCOPT1,
  2619. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2620. | ecc_temp);
  2621. }
  2622. #endif
  2623. #if defined(DEBUG)
  2624. static void ppc440sp_sdram_register_dump(void)
  2625. {
  2626. unsigned int sdram_reg;
  2627. unsigned int sdram_data;
  2628. unsigned int dcr_data;
  2629. printf("\n Register Dump:\n");
  2630. sdram_reg = SDRAM_MCSTAT;
  2631. mfsdram(sdram_reg, sdram_data);
  2632. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2633. sdram_reg = SDRAM_MCOPT1;
  2634. mfsdram(sdram_reg, sdram_data);
  2635. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2636. sdram_reg = SDRAM_MCOPT2;
  2637. mfsdram(sdram_reg, sdram_data);
  2638. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2639. sdram_reg = SDRAM_MODT0;
  2640. mfsdram(sdram_reg, sdram_data);
  2641. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2642. sdram_reg = SDRAM_MODT1;
  2643. mfsdram(sdram_reg, sdram_data);
  2644. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2645. sdram_reg = SDRAM_MODT2;
  2646. mfsdram(sdram_reg, sdram_data);
  2647. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2648. sdram_reg = SDRAM_MODT3;
  2649. mfsdram(sdram_reg, sdram_data);
  2650. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2651. sdram_reg = SDRAM_CODT;
  2652. mfsdram(sdram_reg, sdram_data);
  2653. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2654. sdram_reg = SDRAM_VVPR;
  2655. mfsdram(sdram_reg, sdram_data);
  2656. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2657. sdram_reg = SDRAM_OPARS;
  2658. mfsdram(sdram_reg, sdram_data);
  2659. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2660. /*
  2661. * OPAR2 is only used as a trigger register.
  2662. * No data is contained in this register, and reading or writing
  2663. * to is can cause bad things to happen (hangs). Just skip it
  2664. * and report NA
  2665. * sdram_reg = SDRAM_OPAR2;
  2666. * mfsdram(sdram_reg, sdram_data);
  2667. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2668. */
  2669. printf(" SDRAM_OPART = N/A ");
  2670. sdram_reg = SDRAM_RTR;
  2671. mfsdram(sdram_reg, sdram_data);
  2672. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2673. sdram_reg = SDRAM_MB0CF;
  2674. mfsdram(sdram_reg, sdram_data);
  2675. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2676. sdram_reg = SDRAM_MB1CF;
  2677. mfsdram(sdram_reg, sdram_data);
  2678. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2679. sdram_reg = SDRAM_MB2CF;
  2680. mfsdram(sdram_reg, sdram_data);
  2681. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2682. sdram_reg = SDRAM_MB3CF;
  2683. mfsdram(sdram_reg, sdram_data);
  2684. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2685. sdram_reg = SDRAM_INITPLR0;
  2686. mfsdram(sdram_reg, sdram_data);
  2687. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2688. sdram_reg = SDRAM_INITPLR1;
  2689. mfsdram(sdram_reg, sdram_data);
  2690. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2691. sdram_reg = SDRAM_INITPLR2;
  2692. mfsdram(sdram_reg, sdram_data);
  2693. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2694. sdram_reg = SDRAM_INITPLR3;
  2695. mfsdram(sdram_reg, sdram_data);
  2696. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2697. sdram_reg = SDRAM_INITPLR4;
  2698. mfsdram(sdram_reg, sdram_data);
  2699. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2700. sdram_reg = SDRAM_INITPLR5;
  2701. mfsdram(sdram_reg, sdram_data);
  2702. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2703. sdram_reg = SDRAM_INITPLR6;
  2704. mfsdram(sdram_reg, sdram_data);
  2705. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2706. sdram_reg = SDRAM_INITPLR7;
  2707. mfsdram(sdram_reg, sdram_data);
  2708. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2709. sdram_reg = SDRAM_INITPLR8;
  2710. mfsdram(sdram_reg, sdram_data);
  2711. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2712. sdram_reg = SDRAM_INITPLR9;
  2713. mfsdram(sdram_reg, sdram_data);
  2714. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2715. sdram_reg = SDRAM_INITPLR10;
  2716. mfsdram(sdram_reg, sdram_data);
  2717. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2718. sdram_reg = SDRAM_INITPLR11;
  2719. mfsdram(sdram_reg, sdram_data);
  2720. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2721. sdram_reg = SDRAM_INITPLR12;
  2722. mfsdram(sdram_reg, sdram_data);
  2723. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2724. sdram_reg = SDRAM_INITPLR13;
  2725. mfsdram(sdram_reg, sdram_data);
  2726. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2727. sdram_reg = SDRAM_INITPLR14;
  2728. mfsdram(sdram_reg, sdram_data);
  2729. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2730. sdram_reg = SDRAM_INITPLR15;
  2731. mfsdram(sdram_reg, sdram_data);
  2732. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2733. sdram_reg = SDRAM_RQDC;
  2734. mfsdram(sdram_reg, sdram_data);
  2735. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2736. sdram_reg = SDRAM_RFDC;
  2737. mfsdram(sdram_reg, sdram_data);
  2738. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2739. sdram_reg = SDRAM_RDCC;
  2740. mfsdram(sdram_reg, sdram_data);
  2741. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2742. sdram_reg = SDRAM_DLCR;
  2743. mfsdram(sdram_reg, sdram_data);
  2744. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2745. sdram_reg = SDRAM_CLKTR;
  2746. mfsdram(sdram_reg, sdram_data);
  2747. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2748. sdram_reg = SDRAM_WRDTR;
  2749. mfsdram(sdram_reg, sdram_data);
  2750. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2751. sdram_reg = SDRAM_SDTR1;
  2752. mfsdram(sdram_reg, sdram_data);
  2753. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2754. sdram_reg = SDRAM_SDTR2;
  2755. mfsdram(sdram_reg, sdram_data);
  2756. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2757. sdram_reg = SDRAM_SDTR3;
  2758. mfsdram(sdram_reg, sdram_data);
  2759. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2760. sdram_reg = SDRAM_MMODE;
  2761. mfsdram(sdram_reg, sdram_data);
  2762. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2763. sdram_reg = SDRAM_MEMODE;
  2764. mfsdram(sdram_reg, sdram_data);
  2765. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2766. sdram_reg = SDRAM_ECCCR;
  2767. mfsdram(sdram_reg, sdram_data);
  2768. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2769. dcr_data = mfdcr(SDRAM_R0BAS);
  2770. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2771. dcr_data = mfdcr(SDRAM_R1BAS);
  2772. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2773. dcr_data = mfdcr(SDRAM_R2BAS);
  2774. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2775. dcr_data = mfdcr(SDRAM_R3BAS);
  2776. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2777. }
  2778. #else /* !defined(DEBUG) */
  2779. static void ppc440sp_sdram_register_dump(void)
  2780. {
  2781. }
  2782. #endif /* defined(DEBUG) */
  2783. #elif defined(CONFIG_405EX)
  2784. /*-----------------------------------------------------------------------------
  2785. * Function: initdram
  2786. * Description: Configures the PPC405EX(r) DDR1/DDR2 SDRAM memory
  2787. * banks. The configuration is performed using static, compile-
  2788. * time parameters.
  2789. *---------------------------------------------------------------------------*/
  2790. long initdram(int board_type)
  2791. {
  2792. /*
  2793. * Only run this SDRAM init code once. For NAND booting
  2794. * targets like Kilauea, we call initdram() early from the
  2795. * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot().
  2796. * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT)
  2797. * which calls initdram() again. This time the controller
  2798. * mustn't be reconfigured again since we're already running
  2799. * from SDRAM.
  2800. */
  2801. #if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL)
  2802. unsigned long val;
  2803. /* Set Memory Bank Configuration Registers */
  2804. mtsdram(SDRAM_MB0CF, CFG_SDRAM0_MB0CF);
  2805. mtsdram(SDRAM_MB1CF, CFG_SDRAM0_MB1CF);
  2806. mtsdram(SDRAM_MB2CF, CFG_SDRAM0_MB2CF);
  2807. mtsdram(SDRAM_MB3CF, CFG_SDRAM0_MB3CF);
  2808. /* Set Memory Clock Timing Register */
  2809. mtsdram(SDRAM_CLKTR, CFG_SDRAM0_CLKTR);
  2810. /* Set Refresh Time Register */
  2811. mtsdram(SDRAM_RTR, CFG_SDRAM0_RTR);
  2812. /* Set SDRAM Timing Registers */
  2813. mtsdram(SDRAM_SDTR1, CFG_SDRAM0_SDTR1);
  2814. mtsdram(SDRAM_SDTR2, CFG_SDRAM0_SDTR2);
  2815. mtsdram(SDRAM_SDTR3, CFG_SDRAM0_SDTR3);
  2816. /* Set Mode and Extended Mode Registers */
  2817. mtsdram(SDRAM_MMODE, CFG_SDRAM0_MMODE);
  2818. mtsdram(SDRAM_MEMODE, CFG_SDRAM0_MEMODE);
  2819. /* Set Memory Controller Options 1 Register */
  2820. mtsdram(SDRAM_MCOPT1, CFG_SDRAM0_MCOPT1);
  2821. /* Set Manual Initialization Control Registers */
  2822. mtsdram(SDRAM_INITPLR0, CFG_SDRAM0_INITPLR0);
  2823. mtsdram(SDRAM_INITPLR1, CFG_SDRAM0_INITPLR1);
  2824. mtsdram(SDRAM_INITPLR2, CFG_SDRAM0_INITPLR2);
  2825. mtsdram(SDRAM_INITPLR3, CFG_SDRAM0_INITPLR3);
  2826. mtsdram(SDRAM_INITPLR4, CFG_SDRAM0_INITPLR4);
  2827. mtsdram(SDRAM_INITPLR5, CFG_SDRAM0_INITPLR5);
  2828. mtsdram(SDRAM_INITPLR6, CFG_SDRAM0_INITPLR6);
  2829. mtsdram(SDRAM_INITPLR7, CFG_SDRAM0_INITPLR7);
  2830. mtsdram(SDRAM_INITPLR8, CFG_SDRAM0_INITPLR8);
  2831. mtsdram(SDRAM_INITPLR9, CFG_SDRAM0_INITPLR9);
  2832. mtsdram(SDRAM_INITPLR10, CFG_SDRAM0_INITPLR10);
  2833. mtsdram(SDRAM_INITPLR11, CFG_SDRAM0_INITPLR11);
  2834. mtsdram(SDRAM_INITPLR12, CFG_SDRAM0_INITPLR12);
  2835. mtsdram(SDRAM_INITPLR13, CFG_SDRAM0_INITPLR13);
  2836. mtsdram(SDRAM_INITPLR14, CFG_SDRAM0_INITPLR14);
  2837. mtsdram(SDRAM_INITPLR15, CFG_SDRAM0_INITPLR15);
  2838. /* Set On-Die Termination Registers */
  2839. mtsdram(SDRAM_CODT, CFG_SDRAM0_CODT);
  2840. mtsdram(SDRAM_MODT0, CFG_SDRAM0_MODT0);
  2841. mtsdram(SDRAM_MODT1, CFG_SDRAM0_MODT1);
  2842. /* Set Write Timing Register */
  2843. mtsdram(SDRAM_WRDTR, CFG_SDRAM0_WRDTR);
  2844. /*
  2845. * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and
  2846. * SDRAM0_MCOPT2[IPTR] = 1
  2847. */
  2848. mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT |
  2849. SDRAM_MCOPT2_IPTR_EXECUTE));
  2850. /*
  2851. * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the
  2852. * completion of initialization.
  2853. */
  2854. do {
  2855. mfsdram(SDRAM_MCSTAT, val);
  2856. } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP);
  2857. /* Set Delay Control Registers */
  2858. mtsdram(SDRAM_DLCR, CFG_SDRAM0_DLCR);
  2859. mtsdram(SDRAM_RDCC, CFG_SDRAM0_RDCC);
  2860. mtsdram(SDRAM_RQDC, CFG_SDRAM0_RQDC);
  2861. mtsdram(SDRAM_RFDC, CFG_SDRAM0_RFDC);
  2862. /*
  2863. * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1:
  2864. */
  2865. mfsdram(SDRAM_MCOPT2, val);
  2866. mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE);
  2867. #if defined(CONFIG_DDR_ECC)
  2868. ecc_init(CFG_SDRAM_BASE, CFG_MBYTES_SDRAM << 20);
  2869. #endif /* defined(CONFIG_DDR_ECC) */
  2870. #endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */
  2871. return (CFG_MBYTES_SDRAM << 20);
  2872. }
  2873. #endif /* defined(CONFIG_SPD_EEPROM) && defined(CONFIG_440SP) || ... */