hashtable.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. /*
  2. * This implementation is based on code from uClibc-0.9.30.3 but was
  3. * modified and extended for use within U-Boot.
  4. *
  5. * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
  6. *
  7. * Original license header:
  8. *
  9. * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
  10. * This file is part of the GNU C Library.
  11. * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
  12. *
  13. * The GNU C Library is free software; you can redistribute it and/or
  14. * modify it under the terms of the GNU Lesser General Public
  15. * License as published by the Free Software Foundation; either
  16. * version 2.1 of the License, or (at your option) any later version.
  17. *
  18. * The GNU C Library is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * Lesser General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU Lesser General Public
  24. * License along with the GNU C Library; if not, write to the Free
  25. * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  26. * 02111-1307 USA.
  27. */
  28. #include <errno.h>
  29. #include <malloc.h>
  30. #ifdef USE_HOSTCC /* HOST build */
  31. # include <string.h>
  32. # include <assert.h>
  33. # include <ctype.h>
  34. # ifndef debug
  35. # ifdef DEBUG
  36. # define debug(fmt,args...) printf(fmt ,##args)
  37. # else
  38. # define debug(fmt,args...)
  39. # endif
  40. # endif
  41. #else /* U-Boot build */
  42. # include <common.h>
  43. # include <linux/string.h>
  44. # include <linux/ctype.h>
  45. #endif
  46. #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */
  47. #define CONFIG_ENV_MIN_ENTRIES 64
  48. #endif
  49. #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */
  50. #define CONFIG_ENV_MAX_ENTRIES 512
  51. #endif
  52. #include <env_callback.h>
  53. #include <search.h>
  54. /*
  55. * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
  56. * [Knuth] The Art of Computer Programming, part 3 (6.4)
  57. */
  58. /*
  59. * The reentrant version has no static variables to maintain the state.
  60. * Instead the interface of all functions is extended to take an argument
  61. * which describes the current status.
  62. */
  63. typedef struct _ENTRY {
  64. int used;
  65. ENTRY entry;
  66. } _ENTRY;
  67. static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
  68. int idx);
  69. /*
  70. * hcreate()
  71. */
  72. /*
  73. * For the used double hash method the table size has to be a prime. To
  74. * correct the user given table size we need a prime test. This trivial
  75. * algorithm is adequate because
  76. * a) the code is (most probably) called a few times per program run and
  77. * b) the number is small because the table must fit in the core
  78. * */
  79. static int isprime(unsigned int number)
  80. {
  81. /* no even number will be passed */
  82. unsigned int div = 3;
  83. while (div * div < number && number % div != 0)
  84. div += 2;
  85. return number % div != 0;
  86. }
  87. /*
  88. * Before using the hash table we must allocate memory for it.
  89. * Test for an existing table are done. We allocate one element
  90. * more as the found prime number says. This is done for more effective
  91. * indexing as explained in the comment for the hsearch function.
  92. * The contents of the table is zeroed, especially the field used
  93. * becomes zero.
  94. */
  95. int hcreate_r(size_t nel, struct hsearch_data *htab)
  96. {
  97. /* Test for correct arguments. */
  98. if (htab == NULL) {
  99. __set_errno(EINVAL);
  100. return 0;
  101. }
  102. /* There is still another table active. Return with error. */
  103. if (htab->table != NULL)
  104. return 0;
  105. /* Change nel to the first prime number not smaller as nel. */
  106. nel |= 1; /* make odd */
  107. while (!isprime(nel))
  108. nel += 2;
  109. htab->size = nel;
  110. htab->filled = 0;
  111. /* allocate memory and zero out */
  112. htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
  113. if (htab->table == NULL)
  114. return 0;
  115. /* everything went alright */
  116. return 1;
  117. }
  118. /*
  119. * hdestroy()
  120. */
  121. /*
  122. * After using the hash table it has to be destroyed. The used memory can
  123. * be freed and the local static variable can be marked as not used.
  124. */
  125. void hdestroy_r(struct hsearch_data *htab)
  126. {
  127. int i;
  128. /* Test for correct arguments. */
  129. if (htab == NULL) {
  130. __set_errno(EINVAL);
  131. return;
  132. }
  133. /* free used memory */
  134. for (i = 1; i <= htab->size; ++i) {
  135. if (htab->table[i].used > 0) {
  136. ENTRY *ep = &htab->table[i].entry;
  137. free((void *)ep->key);
  138. free(ep->data);
  139. }
  140. }
  141. free(htab->table);
  142. /* the sign for an existing table is an value != NULL in htable */
  143. htab->table = NULL;
  144. }
  145. /*
  146. * hsearch()
  147. */
  148. /*
  149. * This is the search function. It uses double hashing with open addressing.
  150. * The argument item.key has to be a pointer to an zero terminated, most
  151. * probably strings of chars. The function for generating a number of the
  152. * strings is simple but fast. It can be replaced by a more complex function
  153. * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
  154. *
  155. * We use an trick to speed up the lookup. The table is created by hcreate
  156. * with one more element available. This enables us to use the index zero
  157. * special. This index will never be used because we store the first hash
  158. * index in the field used where zero means not used. Every other value
  159. * means used. The used field can be used as a first fast comparison for
  160. * equality of the stored and the parameter value. This helps to prevent
  161. * unnecessary expensive calls of strcmp.
  162. *
  163. * This implementation differs from the standard library version of
  164. * this function in a number of ways:
  165. *
  166. * - While the standard version does not make any assumptions about
  167. * the type of the stored data objects at all, this implementation
  168. * works with NUL terminated strings only.
  169. * - Instead of storing just pointers to the original objects, we
  170. * create local copies so the caller does not need to care about the
  171. * data any more.
  172. * - The standard implementation does not provide a way to update an
  173. * existing entry. This version will create a new entry or update an
  174. * existing one when both "action == ENTER" and "item.data != NULL".
  175. * - Instead of returning 1 on success, we return the index into the
  176. * internal hash table, which is also guaranteed to be positive.
  177. * This allows us direct access to the found hash table slot for
  178. * example for functions like hdelete().
  179. */
  180. /*
  181. * hstrstr_r - return index to entry whose key and/or data contains match
  182. */
  183. int hstrstr_r(const char *match, int last_idx, ENTRY ** retval,
  184. struct hsearch_data *htab)
  185. {
  186. unsigned int idx;
  187. for (idx = last_idx + 1; idx < htab->size; ++idx) {
  188. if (htab->table[idx].used <= 0)
  189. continue;
  190. if (strstr(htab->table[idx].entry.key, match) ||
  191. strstr(htab->table[idx].entry.data, match)) {
  192. *retval = &htab->table[idx].entry;
  193. return idx;
  194. }
  195. }
  196. __set_errno(ESRCH);
  197. *retval = NULL;
  198. return 0;
  199. }
  200. int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
  201. struct hsearch_data *htab)
  202. {
  203. unsigned int idx;
  204. size_t key_len = strlen(match);
  205. for (idx = last_idx + 1; idx < htab->size; ++idx) {
  206. if (htab->table[idx].used <= 0)
  207. continue;
  208. if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
  209. *retval = &htab->table[idx].entry;
  210. return idx;
  211. }
  212. }
  213. __set_errno(ESRCH);
  214. *retval = NULL;
  215. return 0;
  216. }
  217. /*
  218. * Compare an existing entry with the desired key, and overwrite if the action
  219. * is ENTER. This is simply a helper function for hsearch_r().
  220. */
  221. static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action,
  222. ENTRY **retval, struct hsearch_data *htab, int flag,
  223. unsigned int hval, unsigned int idx)
  224. {
  225. if (htab->table[idx].used == hval
  226. && strcmp(item.key, htab->table[idx].entry.key) == 0) {
  227. /* Overwrite existing value? */
  228. if ((action == ENTER) && (item.data != NULL)) {
  229. /* check for permission */
  230. if (htab->change_ok != NULL && htab->change_ok(
  231. &htab->table[idx].entry, item.data,
  232. env_op_overwrite, flag)) {
  233. debug("change_ok() rejected setting variable "
  234. "%s, skipping it!\n", item.key);
  235. __set_errno(EPERM);
  236. *retval = NULL;
  237. return 0;
  238. }
  239. /* If there is a callback, call it */
  240. if (htab->table[idx].entry.callback &&
  241. htab->table[idx].entry.callback(item.key,
  242. item.data, env_op_overwrite, flag)) {
  243. debug("callback() rejected setting variable "
  244. "%s, skipping it!\n", item.key);
  245. __set_errno(EINVAL);
  246. *retval = NULL;
  247. return 0;
  248. }
  249. free(htab->table[idx].entry.data);
  250. htab->table[idx].entry.data = strdup(item.data);
  251. if (!htab->table[idx].entry.data) {
  252. __set_errno(ENOMEM);
  253. *retval = NULL;
  254. return 0;
  255. }
  256. }
  257. /* return found entry */
  258. *retval = &htab->table[idx].entry;
  259. return idx;
  260. }
  261. /* keep searching */
  262. return -1;
  263. }
  264. int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
  265. struct hsearch_data *htab, int flag)
  266. {
  267. unsigned int hval;
  268. unsigned int count;
  269. unsigned int len = strlen(item.key);
  270. unsigned int idx;
  271. unsigned int first_deleted = 0;
  272. int ret;
  273. /* Compute an value for the given string. Perhaps use a better method. */
  274. hval = len;
  275. count = len;
  276. while (count-- > 0) {
  277. hval <<= 4;
  278. hval += item.key[count];
  279. }
  280. /*
  281. * First hash function:
  282. * simply take the modul but prevent zero.
  283. */
  284. hval %= htab->size;
  285. if (hval == 0)
  286. ++hval;
  287. /* The first index tried. */
  288. idx = hval;
  289. if (htab->table[idx].used) {
  290. /*
  291. * Further action might be required according to the
  292. * action value.
  293. */
  294. unsigned hval2;
  295. if (htab->table[idx].used == -1
  296. && !first_deleted)
  297. first_deleted = idx;
  298. ret = _compare_and_overwrite_entry(item, action, retval, htab,
  299. flag, hval, idx);
  300. if (ret != -1)
  301. return ret;
  302. /*
  303. * Second hash function:
  304. * as suggested in [Knuth]
  305. */
  306. hval2 = 1 + hval % (htab->size - 2);
  307. do {
  308. /*
  309. * Because SIZE is prime this guarantees to
  310. * step through all available indices.
  311. */
  312. if (idx <= hval2)
  313. idx = htab->size + idx - hval2;
  314. else
  315. idx -= hval2;
  316. /*
  317. * If we visited all entries leave the loop
  318. * unsuccessfully.
  319. */
  320. if (idx == hval)
  321. break;
  322. /* If entry is found use it. */
  323. ret = _compare_and_overwrite_entry(item, action, retval,
  324. htab, flag, hval, idx);
  325. if (ret != -1)
  326. return ret;
  327. }
  328. while (htab->table[idx].used);
  329. }
  330. /* An empty bucket has been found. */
  331. if (action == ENTER) {
  332. /*
  333. * If table is full and another entry should be
  334. * entered return with error.
  335. */
  336. if (htab->filled == htab->size) {
  337. __set_errno(ENOMEM);
  338. *retval = NULL;
  339. return 0;
  340. }
  341. /*
  342. * Create new entry;
  343. * create copies of item.key and item.data
  344. */
  345. if (first_deleted)
  346. idx = first_deleted;
  347. htab->table[idx].used = hval;
  348. htab->table[idx].entry.key = strdup(item.key);
  349. htab->table[idx].entry.data = strdup(item.data);
  350. if (!htab->table[idx].entry.key ||
  351. !htab->table[idx].entry.data) {
  352. __set_errno(ENOMEM);
  353. *retval = NULL;
  354. return 0;
  355. }
  356. ++htab->filled;
  357. /* This is a new entry, so look up a possible callback */
  358. env_callback_init(&htab->table[idx].entry);
  359. /* check for permission */
  360. if (htab->change_ok != NULL && htab->change_ok(
  361. &htab->table[idx].entry, item.data, env_op_create, flag)) {
  362. debug("change_ok() rejected setting variable "
  363. "%s, skipping it!\n", item.key);
  364. _hdelete(item.key, htab, &htab->table[idx].entry, idx);
  365. __set_errno(EPERM);
  366. *retval = NULL;
  367. return 0;
  368. }
  369. /* If there is a callback, call it */
  370. if (htab->table[idx].entry.callback &&
  371. htab->table[idx].entry.callback(item.key, item.data,
  372. env_op_create, flag)) {
  373. debug("callback() rejected setting variable "
  374. "%s, skipping it!\n", item.key);
  375. _hdelete(item.key, htab, &htab->table[idx].entry, idx);
  376. __set_errno(EINVAL);
  377. *retval = NULL;
  378. return 0;
  379. }
  380. /* return new entry */
  381. *retval = &htab->table[idx].entry;
  382. return 1;
  383. }
  384. __set_errno(ESRCH);
  385. *retval = NULL;
  386. return 0;
  387. }
  388. /*
  389. * hdelete()
  390. */
  391. /*
  392. * The standard implementation of hsearch(3) does not provide any way
  393. * to delete any entries from the hash table. We extend the code to
  394. * do that.
  395. */
  396. static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
  397. int idx)
  398. {
  399. /* free used ENTRY */
  400. debug("hdelete: DELETING key \"%s\"\n", key);
  401. free((void *)ep->key);
  402. free(ep->data);
  403. ep->callback = NULL;
  404. htab->table[idx].used = -1;
  405. --htab->filled;
  406. }
  407. int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
  408. {
  409. ENTRY e, *ep;
  410. int idx;
  411. debug("hdelete: DELETE key \"%s\"\n", key);
  412. e.key = (char *)key;
  413. idx = hsearch_r(e, FIND, &ep, htab, 0);
  414. if (idx == 0) {
  415. __set_errno(ESRCH);
  416. return 0; /* not found */
  417. }
  418. /* Check for permission */
  419. if (htab->change_ok != NULL &&
  420. htab->change_ok(ep, NULL, env_op_delete, flag)) {
  421. debug("change_ok() rejected deleting variable "
  422. "%s, skipping it!\n", key);
  423. __set_errno(EPERM);
  424. return 0;
  425. }
  426. /* If there is a callback, call it */
  427. if (htab->table[idx].entry.callback &&
  428. htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) {
  429. debug("callback() rejected deleting variable "
  430. "%s, skipping it!\n", key);
  431. __set_errno(EINVAL);
  432. return 0;
  433. }
  434. _hdelete(key, htab, ep, idx);
  435. return 1;
  436. }
  437. /*
  438. * hexport()
  439. */
  440. #ifndef CONFIG_SPL_BUILD
  441. /*
  442. * Export the data stored in the hash table in linearized form.
  443. *
  444. * Entries are exported as "name=value" strings, separated by an
  445. * arbitrary (non-NUL, of course) separator character. This allows to
  446. * use this function both when formatting the U-Boot environment for
  447. * external storage (using '\0' as separator), but also when using it
  448. * for the "printenv" command to print all variables, simply by using
  449. * as '\n" as separator. This can also be used for new features like
  450. * exporting the environment data as text file, including the option
  451. * for later re-import.
  452. *
  453. * The entries in the result list will be sorted by ascending key
  454. * values.
  455. *
  456. * If the separator character is different from NUL, then any
  457. * separator characters and backslash characters in the values will
  458. * be escaped by a preceeding backslash in output. This is needed for
  459. * example to enable multi-line values, especially when the output
  460. * shall later be parsed (for example, for re-import).
  461. *
  462. * There are several options how the result buffer is handled:
  463. *
  464. * *resp size
  465. * -----------
  466. * NULL 0 A string of sufficient length will be allocated.
  467. * NULL >0 A string of the size given will be
  468. * allocated. An error will be returned if the size is
  469. * not sufficient. Any unused bytes in the string will
  470. * be '\0'-padded.
  471. * !NULL 0 The user-supplied buffer will be used. No length
  472. * checking will be performed, i. e. it is assumed that
  473. * the buffer size will always be big enough. DANGEROUS.
  474. * !NULL >0 The user-supplied buffer will be used. An error will
  475. * be returned if the size is not sufficient. Any unused
  476. * bytes in the string will be '\0'-padded.
  477. */
  478. static int cmpkey(const void *p1, const void *p2)
  479. {
  480. ENTRY *e1 = *(ENTRY **) p1;
  481. ENTRY *e2 = *(ENTRY **) p2;
  482. return (strcmp(e1->key, e2->key));
  483. }
  484. ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
  485. char **resp, size_t size,
  486. int argc, char * const argv[])
  487. {
  488. ENTRY *list[htab->size];
  489. char *res, *p;
  490. size_t totlen;
  491. int i, n;
  492. /* Test for correct arguments. */
  493. if ((resp == NULL) || (htab == NULL)) {
  494. __set_errno(EINVAL);
  495. return (-1);
  496. }
  497. debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, "
  498. "size = %zu\n", htab, htab->size, htab->filled, size);
  499. /*
  500. * Pass 1:
  501. * search used entries,
  502. * save addresses and compute total length
  503. */
  504. for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
  505. if (htab->table[i].used > 0) {
  506. ENTRY *ep = &htab->table[i].entry;
  507. int arg, found = 0;
  508. for (arg = 0; arg < argc; ++arg) {
  509. if (strcmp(argv[arg], ep->key) == 0) {
  510. found = 1;
  511. break;
  512. }
  513. }
  514. if ((argc > 0) && (found == 0))
  515. continue;
  516. if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
  517. continue;
  518. list[n++] = ep;
  519. totlen += strlen(ep->key) + 2;
  520. if (sep == '\0') {
  521. totlen += strlen(ep->data);
  522. } else { /* check if escapes are needed */
  523. char *s = ep->data;
  524. while (*s) {
  525. ++totlen;
  526. /* add room for needed escape chars */
  527. if ((*s == sep) || (*s == '\\'))
  528. ++totlen;
  529. ++s;
  530. }
  531. }
  532. totlen += 2; /* for '=' and 'sep' char */
  533. }
  534. }
  535. #ifdef DEBUG
  536. /* Pass 1a: print unsorted list */
  537. printf("Unsorted: n=%d\n", n);
  538. for (i = 0; i < n; ++i) {
  539. printf("\t%3d: %p ==> %-10s => %s\n",
  540. i, list[i], list[i]->key, list[i]->data);
  541. }
  542. #endif
  543. /* Sort list by keys */
  544. qsort(list, n, sizeof(ENTRY *), cmpkey);
  545. /* Check if the user supplied buffer size is sufficient */
  546. if (size) {
  547. if (size < totlen + 1) { /* provided buffer too small */
  548. printf("Env export buffer too small: %zu, "
  549. "but need %zu\n", size, totlen + 1);
  550. __set_errno(ENOMEM);
  551. return (-1);
  552. }
  553. } else {
  554. size = totlen + 1;
  555. }
  556. /* Check if the user provided a buffer */
  557. if (*resp) {
  558. /* yes; clear it */
  559. res = *resp;
  560. memset(res, '\0', size);
  561. } else {
  562. /* no, allocate and clear one */
  563. *resp = res = calloc(1, size);
  564. if (res == NULL) {
  565. __set_errno(ENOMEM);
  566. return (-1);
  567. }
  568. }
  569. /*
  570. * Pass 2:
  571. * export sorted list of result data
  572. */
  573. for (i = 0, p = res; i < n; ++i) {
  574. const char *s;
  575. s = list[i]->key;
  576. while (*s)
  577. *p++ = *s++;
  578. *p++ = '=';
  579. s = list[i]->data;
  580. while (*s) {
  581. if ((*s == sep) || (*s == '\\'))
  582. *p++ = '\\'; /* escape */
  583. *p++ = *s++;
  584. }
  585. *p++ = sep;
  586. }
  587. *p = '\0'; /* terminate result */
  588. return size;
  589. }
  590. #endif
  591. /*
  592. * himport()
  593. */
  594. /*
  595. * Check whether variable 'name' is amongst vars[],
  596. * and remove all instances by setting the pointer to NULL
  597. */
  598. static int drop_var_from_set(const char *name, int nvars, char * vars[])
  599. {
  600. int i = 0;
  601. int res = 0;
  602. /* No variables specified means process all of them */
  603. if (nvars == 0)
  604. return 1;
  605. for (i = 0; i < nvars; i++) {
  606. if (vars[i] == NULL)
  607. continue;
  608. /* If we found it, delete all of them */
  609. if (!strcmp(name, vars[i])) {
  610. vars[i] = NULL;
  611. res = 1;
  612. }
  613. }
  614. if (!res)
  615. debug("Skipping non-listed variable %s\n", name);
  616. return res;
  617. }
  618. /*
  619. * Import linearized data into hash table.
  620. *
  621. * This is the inverse function to hexport(): it takes a linear list
  622. * of "name=value" pairs and creates hash table entries from it.
  623. *
  624. * Entries without "value", i. e. consisting of only "name" or
  625. * "name=", will cause this entry to be deleted from the hash table.
  626. *
  627. * The "flag" argument can be used to control the behaviour: when the
  628. * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
  629. * new data will be added to an existing hash table; otherwise, old
  630. * data will be discarded and a new hash table will be created.
  631. *
  632. * The separator character for the "name=value" pairs can be selected,
  633. * so we both support importing from externally stored environment
  634. * data (separated by NUL characters) and from plain text files
  635. * (entries separated by newline characters).
  636. *
  637. * To allow for nicely formatted text input, leading white space
  638. * (sequences of SPACE and TAB chars) is ignored, and entries starting
  639. * (after removal of any leading white space) with a '#' character are
  640. * considered comments and ignored.
  641. *
  642. * [NOTE: this means that a variable name cannot start with a '#'
  643. * character.]
  644. *
  645. * When using a non-NUL separator character, backslash is used as
  646. * escape character in the value part, allowing for example for
  647. * multi-line values.
  648. *
  649. * In theory, arbitrary separator characters can be used, but only
  650. * '\0' and '\n' have really been tested.
  651. */
  652. int himport_r(struct hsearch_data *htab,
  653. const char *env, size_t size, const char sep, int flag,
  654. int nvars, char * const vars[])
  655. {
  656. char *data, *sp, *dp, *name, *value;
  657. char *localvars[nvars];
  658. int i;
  659. /* Test for correct arguments. */
  660. if (htab == NULL) {
  661. __set_errno(EINVAL);
  662. return 0;
  663. }
  664. /* we allocate new space to make sure we can write to the array */
  665. if ((data = malloc(size)) == NULL) {
  666. debug("himport_r: can't malloc %zu bytes\n", size);
  667. __set_errno(ENOMEM);
  668. return 0;
  669. }
  670. memcpy(data, env, size);
  671. dp = data;
  672. /* make a local copy of the list of variables */
  673. if (nvars)
  674. memcpy(localvars, vars, sizeof(vars[0]) * nvars);
  675. if ((flag & H_NOCLEAR) == 0) {
  676. /* Destroy old hash table if one exists */
  677. debug("Destroy Hash Table: %p table = %p\n", htab,
  678. htab->table);
  679. if (htab->table)
  680. hdestroy_r(htab);
  681. }
  682. /*
  683. * Create new hash table (if needed). The computation of the hash
  684. * table size is based on heuristics: in a sample of some 70+
  685. * existing systems we found an average size of 39+ bytes per entry
  686. * in the environment (for the whole key=value pair). Assuming a
  687. * size of 8 per entry (= safety factor of ~5) should provide enough
  688. * safety margin for any existing environment definitions and still
  689. * allow for more than enough dynamic additions. Note that the
  690. * "size" argument is supposed to give the maximum enviroment size
  691. * (CONFIG_ENV_SIZE). This heuristics will result in
  692. * unreasonably large numbers (and thus memory footprint) for
  693. * big flash environments (>8,000 entries for 64 KB
  694. * envrionment size), so we clip it to a reasonable value.
  695. * On the other hand we need to add some more entries for free
  696. * space when importing very small buffers. Both boundaries can
  697. * be overwritten in the board config file if needed.
  698. */
  699. if (!htab->table) {
  700. int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
  701. if (nent > CONFIG_ENV_MAX_ENTRIES)
  702. nent = CONFIG_ENV_MAX_ENTRIES;
  703. debug("Create Hash Table: N=%d\n", nent);
  704. if (hcreate_r(nent, htab) == 0) {
  705. free(data);
  706. return 0;
  707. }
  708. }
  709. /* Parse environment; allow for '\0' and 'sep' as separators */
  710. do {
  711. ENTRY e, *rv;
  712. /* skip leading white space */
  713. while (isblank(*dp))
  714. ++dp;
  715. /* skip comment lines */
  716. if (*dp == '#') {
  717. while (*dp && (*dp != sep))
  718. ++dp;
  719. ++dp;
  720. continue;
  721. }
  722. /* parse name */
  723. for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
  724. ;
  725. /* deal with "name" and "name=" entries (delete var) */
  726. if (*dp == '\0' || *(dp + 1) == '\0' ||
  727. *dp == sep || *(dp + 1) == sep) {
  728. if (*dp == '=')
  729. *dp++ = '\0';
  730. *dp++ = '\0'; /* terminate name */
  731. debug("DELETE CANDIDATE: \"%s\"\n", name);
  732. if (!drop_var_from_set(name, nvars, localvars))
  733. continue;
  734. if (hdelete_r(name, htab, flag) == 0)
  735. debug("DELETE ERROR ##############################\n");
  736. continue;
  737. }
  738. *dp++ = '\0'; /* terminate name */
  739. /* parse value; deal with escapes */
  740. for (value = sp = dp; *dp && (*dp != sep); ++dp) {
  741. if ((*dp == '\\') && *(dp + 1))
  742. ++dp;
  743. *sp++ = *dp;
  744. }
  745. *sp++ = '\0'; /* terminate value */
  746. ++dp;
  747. /* Skip variables which are not supposed to be processed */
  748. if (!drop_var_from_set(name, nvars, localvars))
  749. continue;
  750. /* enter into hash table */
  751. e.key = name;
  752. e.data = value;
  753. hsearch_r(e, ENTER, &rv, htab, flag);
  754. if (rv == NULL)
  755. printf("himport_r: can't insert \"%s=%s\" into hash table\n",
  756. name, value);
  757. debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
  758. htab, htab->filled, htab->size,
  759. rv, name, value);
  760. } while ((dp < data + size) && *dp); /* size check needed for text */
  761. /* without '\0' termination */
  762. debug("INSERT: free(data = %p)\n", data);
  763. free(data);
  764. /* process variables which were not considered */
  765. for (i = 0; i < nvars; i++) {
  766. if (localvars[i] == NULL)
  767. continue;
  768. /*
  769. * All variables which were not deleted from the variable list
  770. * were not present in the imported env
  771. * This could mean two things:
  772. * a) if the variable was present in current env, we delete it
  773. * b) if the variable was not present in current env, we notify
  774. * it might be a typo
  775. */
  776. if (hdelete_r(localvars[i], htab, flag) == 0)
  777. printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
  778. else
  779. printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
  780. }
  781. debug("INSERT: done\n");
  782. return 1; /* everything OK */
  783. }
  784. /*
  785. * hwalk_r()
  786. */
  787. /*
  788. * Walk all of the entries in the hash, calling the callback for each one.
  789. * this allows some generic operation to be performed on each element.
  790. */
  791. int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *))
  792. {
  793. int i;
  794. int retval;
  795. for (i = 1; i <= htab->size; ++i) {
  796. if (htab->table[i].used > 0) {
  797. retval = callback(&htab->table[i].entry);
  798. if (retval)
  799. return retval;
  800. }
  801. }
  802. return 0;
  803. }