clock.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425
  1. /*
  2. * Copyright (C) 2010 Samsung Electronics
  3. * Minkyu Kang <mk7.kang@samsung.com>
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <asm/io.h>
  25. #include <asm/arch/clock.h>
  26. #include <asm/arch/clk.h>
  27. #include <asm/arch/periph.h>
  28. /* *
  29. * This structure is to store the src bit, div bit and prediv bit
  30. * positions of the peripheral clocks of the src and div registers
  31. */
  32. struct clk_bit_info {
  33. int8_t src_bit;
  34. int8_t div_bit;
  35. int8_t prediv_bit;
  36. };
  37. /* src_bit div_bit prediv_bit */
  38. static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = {
  39. {0, 0, -1},
  40. {4, 4, -1},
  41. {8, 8, -1},
  42. {12, 12, -1},
  43. {0, 0, 8},
  44. {4, 16, 24},
  45. {8, 0, 8},
  46. {12, 16, 24},
  47. {-1, -1, -1},
  48. {16, 0, 8},
  49. {20, 16, 24},
  50. {24, 0, 8},
  51. {0, 0, 4},
  52. {4, 12, 16},
  53. {-1, -1, -1},
  54. {-1, -1, -1},
  55. {-1, 24, 0},
  56. {-1, 24, 0},
  57. {-1, 24, 0},
  58. {-1, 24, 0},
  59. {-1, 24, 0},
  60. {-1, 24, 0},
  61. {-1, 24, 0},
  62. {-1, 24, 0},
  63. {24, 0, -1},
  64. {24, 0, -1},
  65. {24, 0, -1},
  66. {24, 0, -1},
  67. {24, 0, -1},
  68. };
  69. /* Epll Clock division values to achive different frequency output */
  70. static struct set_epll_con_val exynos5_epll_div[] = {
  71. { 192000000, 0, 48, 3, 1, 0 },
  72. { 180000000, 0, 45, 3, 1, 0 },
  73. { 73728000, 1, 73, 3, 3, 47710 },
  74. { 67737600, 1, 90, 4, 3, 20762 },
  75. { 49152000, 0, 49, 3, 3, 9961 },
  76. { 45158400, 0, 45, 3, 3, 10381 },
  77. { 180633600, 0, 45, 3, 1, 10381 }
  78. };
  79. /* exynos: return pll clock frequency */
  80. static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
  81. {
  82. unsigned long m, p, s = 0, mask, fout;
  83. unsigned int freq;
  84. /*
  85. * APLL_CON: MIDV [25:16]
  86. * MPLL_CON: MIDV [25:16]
  87. * EPLL_CON: MIDV [24:16]
  88. * VPLL_CON: MIDV [24:16]
  89. * BPLL_CON: MIDV [25:16]: Exynos5
  90. */
  91. if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
  92. mask = 0x3ff;
  93. else
  94. mask = 0x1ff;
  95. m = (r >> 16) & mask;
  96. /* PDIV [13:8] */
  97. p = (r >> 8) & 0x3f;
  98. /* SDIV [2:0] */
  99. s = r & 0x7;
  100. freq = CONFIG_SYS_CLK_FREQ;
  101. if (pllreg == EPLL) {
  102. k = k & 0xffff;
  103. /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
  104. fout = (m + k / 65536) * (freq / (p * (1 << s)));
  105. } else if (pllreg == VPLL) {
  106. k = k & 0xfff;
  107. /* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
  108. fout = (m + k / 1024) * (freq / (p * (1 << s)));
  109. } else {
  110. if (s < 1)
  111. s = 1;
  112. /* FOUT = MDIV * FIN / (PDIV * 2^(SDIV - 1)) */
  113. fout = m * (freq / (p * (1 << (s - 1))));
  114. }
  115. return fout;
  116. }
  117. /* exynos4: return pll clock frequency */
  118. static unsigned long exynos4_get_pll_clk(int pllreg)
  119. {
  120. struct exynos4_clock *clk =
  121. (struct exynos4_clock *)samsung_get_base_clock();
  122. unsigned long r, k = 0;
  123. switch (pllreg) {
  124. case APLL:
  125. r = readl(&clk->apll_con0);
  126. break;
  127. case MPLL:
  128. r = readl(&clk->mpll_con0);
  129. break;
  130. case EPLL:
  131. r = readl(&clk->epll_con0);
  132. k = readl(&clk->epll_con1);
  133. break;
  134. case VPLL:
  135. r = readl(&clk->vpll_con0);
  136. k = readl(&clk->vpll_con1);
  137. break;
  138. default:
  139. printf("Unsupported PLL (%d)\n", pllreg);
  140. return 0;
  141. }
  142. return exynos_get_pll_clk(pllreg, r, k);
  143. }
  144. /* exynos4x12: return pll clock frequency */
  145. static unsigned long exynos4x12_get_pll_clk(int pllreg)
  146. {
  147. struct exynos4x12_clock *clk =
  148. (struct exynos4x12_clock *)samsung_get_base_clock();
  149. unsigned long r, k = 0;
  150. switch (pllreg) {
  151. case APLL:
  152. r = readl(&clk->apll_con0);
  153. break;
  154. case MPLL:
  155. r = readl(&clk->mpll_con0);
  156. break;
  157. case EPLL:
  158. r = readl(&clk->epll_con0);
  159. k = readl(&clk->epll_con1);
  160. break;
  161. case VPLL:
  162. r = readl(&clk->vpll_con0);
  163. k = readl(&clk->vpll_con1);
  164. break;
  165. default:
  166. printf("Unsupported PLL (%d)\n", pllreg);
  167. return 0;
  168. }
  169. return exynos_get_pll_clk(pllreg, r, k);
  170. }
  171. /* exynos5: return pll clock frequency */
  172. static unsigned long exynos5_get_pll_clk(int pllreg)
  173. {
  174. struct exynos5_clock *clk =
  175. (struct exynos5_clock *)samsung_get_base_clock();
  176. unsigned long r, k = 0, fout;
  177. unsigned int pll_div2_sel, fout_sel;
  178. switch (pllreg) {
  179. case APLL:
  180. r = readl(&clk->apll_con0);
  181. break;
  182. case MPLL:
  183. r = readl(&clk->mpll_con0);
  184. break;
  185. case EPLL:
  186. r = readl(&clk->epll_con0);
  187. k = readl(&clk->epll_con1);
  188. break;
  189. case VPLL:
  190. r = readl(&clk->vpll_con0);
  191. k = readl(&clk->vpll_con1);
  192. break;
  193. case BPLL:
  194. r = readl(&clk->bpll_con0);
  195. break;
  196. default:
  197. printf("Unsupported PLL (%d)\n", pllreg);
  198. return 0;
  199. }
  200. fout = exynos_get_pll_clk(pllreg, r, k);
  201. /* According to the user manual, in EVT1 MPLL and BPLL always gives
  202. * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
  203. if (pllreg == MPLL || pllreg == BPLL) {
  204. pll_div2_sel = readl(&clk->pll_div2_sel);
  205. switch (pllreg) {
  206. case MPLL:
  207. fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
  208. & MPLL_FOUT_SEL_MASK;
  209. break;
  210. case BPLL:
  211. fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
  212. & BPLL_FOUT_SEL_MASK;
  213. break;
  214. default:
  215. fout_sel = -1;
  216. break;
  217. }
  218. if (fout_sel == 0)
  219. fout /= 2;
  220. }
  221. return fout;
  222. }
  223. static unsigned long exynos5_get_periph_rate(int peripheral)
  224. {
  225. struct clk_bit_info *bit_info = &clk_bit_info[peripheral];
  226. unsigned long sclk, sub_clk;
  227. unsigned int src, div, sub_div;
  228. struct exynos5_clock *clk =
  229. (struct exynos5_clock *)samsung_get_base_clock();
  230. switch (peripheral) {
  231. case PERIPH_ID_UART0:
  232. case PERIPH_ID_UART1:
  233. case PERIPH_ID_UART2:
  234. case PERIPH_ID_UART3:
  235. src = readl(&clk->src_peric0);
  236. div = readl(&clk->div_peric0);
  237. break;
  238. case PERIPH_ID_PWM0:
  239. case PERIPH_ID_PWM1:
  240. case PERIPH_ID_PWM2:
  241. case PERIPH_ID_PWM3:
  242. case PERIPH_ID_PWM4:
  243. src = readl(&clk->src_peric0);
  244. div = readl(&clk->div_peric3);
  245. break;
  246. case PERIPH_ID_SPI0:
  247. case PERIPH_ID_SPI1:
  248. src = readl(&clk->src_peric1);
  249. div = readl(&clk->div_peric1);
  250. break;
  251. case PERIPH_ID_SPI2:
  252. src = readl(&clk->src_peric1);
  253. div = readl(&clk->div_peric2);
  254. break;
  255. case PERIPH_ID_SPI3:
  256. case PERIPH_ID_SPI4:
  257. src = readl(&clk->sclk_src_isp);
  258. div = readl(&clk->sclk_div_isp);
  259. break;
  260. case PERIPH_ID_SDMMC0:
  261. case PERIPH_ID_SDMMC1:
  262. case PERIPH_ID_SDMMC2:
  263. case PERIPH_ID_SDMMC3:
  264. src = readl(&clk->src_fsys);
  265. div = readl(&clk->div_fsys1);
  266. break;
  267. case PERIPH_ID_I2C0:
  268. case PERIPH_ID_I2C1:
  269. case PERIPH_ID_I2C2:
  270. case PERIPH_ID_I2C3:
  271. case PERIPH_ID_I2C4:
  272. case PERIPH_ID_I2C5:
  273. case PERIPH_ID_I2C6:
  274. case PERIPH_ID_I2C7:
  275. sclk = exynos5_get_pll_clk(MPLL);
  276. sub_div = ((readl(&clk->div_top1) >> bit_info->div_bit)
  277. & 0x7) + 1;
  278. div = ((readl(&clk->div_top0) >> bit_info->prediv_bit)
  279. & 0x7) + 1;
  280. return (sclk / sub_div) / div;
  281. default:
  282. debug("%s: invalid peripheral %d", __func__, peripheral);
  283. return -1;
  284. };
  285. src = (src >> bit_info->src_bit) & 0xf;
  286. switch (src) {
  287. case EXYNOS_SRC_MPLL:
  288. sclk = exynos5_get_pll_clk(MPLL);
  289. break;
  290. case EXYNOS_SRC_EPLL:
  291. sclk = exynos5_get_pll_clk(EPLL);
  292. break;
  293. case EXYNOS_SRC_VPLL:
  294. sclk = exynos5_get_pll_clk(VPLL);
  295. break;
  296. default:
  297. return 0;
  298. }
  299. /* Ratio clock division for this peripheral */
  300. sub_div = (div >> bit_info->div_bit) & 0xf;
  301. sub_clk = sclk / (sub_div + 1);
  302. /* Pre-ratio clock division for SDMMC0 and 2 */
  303. if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) {
  304. div = (div >> bit_info->prediv_bit) & 0xff;
  305. return sub_clk / (div + 1);
  306. }
  307. return sub_clk;
  308. }
  309. unsigned long clock_get_periph_rate(int peripheral)
  310. {
  311. if (cpu_is_exynos5())
  312. return exynos5_get_periph_rate(peripheral);
  313. else
  314. return 0;
  315. }
  316. /* exynos4: return ARM clock frequency */
  317. static unsigned long exynos4_get_arm_clk(void)
  318. {
  319. struct exynos4_clock *clk =
  320. (struct exynos4_clock *)samsung_get_base_clock();
  321. unsigned long div;
  322. unsigned long armclk;
  323. unsigned int core_ratio;
  324. unsigned int core2_ratio;
  325. div = readl(&clk->div_cpu0);
  326. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  327. core_ratio = (div >> 0) & 0x7;
  328. core2_ratio = (div >> 28) & 0x7;
  329. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  330. armclk /= (core2_ratio + 1);
  331. return armclk;
  332. }
  333. /* exynos4x12: return ARM clock frequency */
  334. static unsigned long exynos4x12_get_arm_clk(void)
  335. {
  336. struct exynos4x12_clock *clk =
  337. (struct exynos4x12_clock *)samsung_get_base_clock();
  338. unsigned long div;
  339. unsigned long armclk;
  340. unsigned int core_ratio;
  341. unsigned int core2_ratio;
  342. div = readl(&clk->div_cpu0);
  343. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  344. core_ratio = (div >> 0) & 0x7;
  345. core2_ratio = (div >> 28) & 0x7;
  346. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  347. armclk /= (core2_ratio + 1);
  348. return armclk;
  349. }
  350. /* exynos5: return ARM clock frequency */
  351. static unsigned long exynos5_get_arm_clk(void)
  352. {
  353. struct exynos5_clock *clk =
  354. (struct exynos5_clock *)samsung_get_base_clock();
  355. unsigned long div;
  356. unsigned long armclk;
  357. unsigned int arm_ratio;
  358. unsigned int arm2_ratio;
  359. div = readl(&clk->div_cpu0);
  360. /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
  361. arm_ratio = (div >> 0) & 0x7;
  362. arm2_ratio = (div >> 28) & 0x7;
  363. armclk = get_pll_clk(APLL) / (arm_ratio + 1);
  364. armclk /= (arm2_ratio + 1);
  365. return armclk;
  366. }
  367. /* exynos4: return pwm clock frequency */
  368. static unsigned long exynos4_get_pwm_clk(void)
  369. {
  370. struct exynos4_clock *clk =
  371. (struct exynos4_clock *)samsung_get_base_clock();
  372. unsigned long pclk, sclk;
  373. unsigned int sel;
  374. unsigned int ratio;
  375. if (s5p_get_cpu_rev() == 0) {
  376. /*
  377. * CLK_SRC_PERIL0
  378. * PWM_SEL [27:24]
  379. */
  380. sel = readl(&clk->src_peril0);
  381. sel = (sel >> 24) & 0xf;
  382. if (sel == 0x6)
  383. sclk = get_pll_clk(MPLL);
  384. else if (sel == 0x7)
  385. sclk = get_pll_clk(EPLL);
  386. else if (sel == 0x8)
  387. sclk = get_pll_clk(VPLL);
  388. else
  389. return 0;
  390. /*
  391. * CLK_DIV_PERIL3
  392. * PWM_RATIO [3:0]
  393. */
  394. ratio = readl(&clk->div_peril3);
  395. ratio = ratio & 0xf;
  396. } else if (s5p_get_cpu_rev() == 1) {
  397. sclk = get_pll_clk(MPLL);
  398. ratio = 8;
  399. } else
  400. return 0;
  401. pclk = sclk / (ratio + 1);
  402. return pclk;
  403. }
  404. /* exynos4x12: return pwm clock frequency */
  405. static unsigned long exynos4x12_get_pwm_clk(void)
  406. {
  407. unsigned long pclk, sclk;
  408. unsigned int ratio;
  409. sclk = get_pll_clk(MPLL);
  410. ratio = 8;
  411. pclk = sclk / (ratio + 1);
  412. return pclk;
  413. }
  414. /* exynos4: return uart clock frequency */
  415. static unsigned long exynos4_get_uart_clk(int dev_index)
  416. {
  417. struct exynos4_clock *clk =
  418. (struct exynos4_clock *)samsung_get_base_clock();
  419. unsigned long uclk, sclk;
  420. unsigned int sel;
  421. unsigned int ratio;
  422. /*
  423. * CLK_SRC_PERIL0
  424. * UART0_SEL [3:0]
  425. * UART1_SEL [7:4]
  426. * UART2_SEL [8:11]
  427. * UART3_SEL [12:15]
  428. * UART4_SEL [16:19]
  429. * UART5_SEL [23:20]
  430. */
  431. sel = readl(&clk->src_peril0);
  432. sel = (sel >> (dev_index << 2)) & 0xf;
  433. if (sel == 0x6)
  434. sclk = get_pll_clk(MPLL);
  435. else if (sel == 0x7)
  436. sclk = get_pll_clk(EPLL);
  437. else if (sel == 0x8)
  438. sclk = get_pll_clk(VPLL);
  439. else
  440. return 0;
  441. /*
  442. * CLK_DIV_PERIL0
  443. * UART0_RATIO [3:0]
  444. * UART1_RATIO [7:4]
  445. * UART2_RATIO [8:11]
  446. * UART3_RATIO [12:15]
  447. * UART4_RATIO [16:19]
  448. * UART5_RATIO [23:20]
  449. */
  450. ratio = readl(&clk->div_peril0);
  451. ratio = (ratio >> (dev_index << 2)) & 0xf;
  452. uclk = sclk / (ratio + 1);
  453. return uclk;
  454. }
  455. /* exynos4x12: return uart clock frequency */
  456. static unsigned long exynos4x12_get_uart_clk(int dev_index)
  457. {
  458. struct exynos4x12_clock *clk =
  459. (struct exynos4x12_clock *)samsung_get_base_clock();
  460. unsigned long uclk, sclk;
  461. unsigned int sel;
  462. unsigned int ratio;
  463. /*
  464. * CLK_SRC_PERIL0
  465. * UART0_SEL [3:0]
  466. * UART1_SEL [7:4]
  467. * UART2_SEL [8:11]
  468. * UART3_SEL [12:15]
  469. * UART4_SEL [16:19]
  470. */
  471. sel = readl(&clk->src_peril0);
  472. sel = (sel >> (dev_index << 2)) & 0xf;
  473. if (sel == 0x6)
  474. sclk = get_pll_clk(MPLL);
  475. else if (sel == 0x7)
  476. sclk = get_pll_clk(EPLL);
  477. else if (sel == 0x8)
  478. sclk = get_pll_clk(VPLL);
  479. else
  480. return 0;
  481. /*
  482. * CLK_DIV_PERIL0
  483. * UART0_RATIO [3:0]
  484. * UART1_RATIO [7:4]
  485. * UART2_RATIO [8:11]
  486. * UART3_RATIO [12:15]
  487. * UART4_RATIO [16:19]
  488. */
  489. ratio = readl(&clk->div_peril0);
  490. ratio = (ratio >> (dev_index << 2)) & 0xf;
  491. uclk = sclk / (ratio + 1);
  492. return uclk;
  493. }
  494. /* exynos5: return uart clock frequency */
  495. static unsigned long exynos5_get_uart_clk(int dev_index)
  496. {
  497. struct exynos5_clock *clk =
  498. (struct exynos5_clock *)samsung_get_base_clock();
  499. unsigned long uclk, sclk;
  500. unsigned int sel;
  501. unsigned int ratio;
  502. /*
  503. * CLK_SRC_PERIC0
  504. * UART0_SEL [3:0]
  505. * UART1_SEL [7:4]
  506. * UART2_SEL [8:11]
  507. * UART3_SEL [12:15]
  508. * UART4_SEL [16:19]
  509. * UART5_SEL [23:20]
  510. */
  511. sel = readl(&clk->src_peric0);
  512. sel = (sel >> (dev_index << 2)) & 0xf;
  513. if (sel == 0x6)
  514. sclk = get_pll_clk(MPLL);
  515. else if (sel == 0x7)
  516. sclk = get_pll_clk(EPLL);
  517. else if (sel == 0x8)
  518. sclk = get_pll_clk(VPLL);
  519. else
  520. return 0;
  521. /*
  522. * CLK_DIV_PERIC0
  523. * UART0_RATIO [3:0]
  524. * UART1_RATIO [7:4]
  525. * UART2_RATIO [8:11]
  526. * UART3_RATIO [12:15]
  527. * UART4_RATIO [16:19]
  528. * UART5_RATIO [23:20]
  529. */
  530. ratio = readl(&clk->div_peric0);
  531. ratio = (ratio >> (dev_index << 2)) & 0xf;
  532. uclk = sclk / (ratio + 1);
  533. return uclk;
  534. }
  535. static unsigned long exynos4_get_mmc_clk(int dev_index)
  536. {
  537. struct exynos4_clock *clk =
  538. (struct exynos4_clock *)samsung_get_base_clock();
  539. unsigned long uclk, sclk;
  540. unsigned int sel, ratio, pre_ratio;
  541. int shift;
  542. sel = readl(&clk->src_fsys);
  543. sel = (sel >> (dev_index << 2)) & 0xf;
  544. if (sel == 0x6)
  545. sclk = get_pll_clk(MPLL);
  546. else if (sel == 0x7)
  547. sclk = get_pll_clk(EPLL);
  548. else if (sel == 0x8)
  549. sclk = get_pll_clk(VPLL);
  550. else
  551. return 0;
  552. switch (dev_index) {
  553. case 0:
  554. case 1:
  555. ratio = readl(&clk->div_fsys1);
  556. pre_ratio = readl(&clk->div_fsys1);
  557. break;
  558. case 2:
  559. case 3:
  560. ratio = readl(&clk->div_fsys2);
  561. pre_ratio = readl(&clk->div_fsys2);
  562. break;
  563. case 4:
  564. ratio = readl(&clk->div_fsys3);
  565. pre_ratio = readl(&clk->div_fsys3);
  566. break;
  567. default:
  568. return 0;
  569. }
  570. if (dev_index == 1 || dev_index == 3)
  571. shift = 16;
  572. ratio = (ratio >> shift) & 0xf;
  573. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  574. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  575. return uclk;
  576. }
  577. static unsigned long exynos5_get_mmc_clk(int dev_index)
  578. {
  579. struct exynos5_clock *clk =
  580. (struct exynos5_clock *)samsung_get_base_clock();
  581. unsigned long uclk, sclk;
  582. unsigned int sel, ratio, pre_ratio;
  583. int shift;
  584. sel = readl(&clk->src_fsys);
  585. sel = (sel >> (dev_index << 2)) & 0xf;
  586. if (sel == 0x6)
  587. sclk = get_pll_clk(MPLL);
  588. else if (sel == 0x7)
  589. sclk = get_pll_clk(EPLL);
  590. else if (sel == 0x8)
  591. sclk = get_pll_clk(VPLL);
  592. else
  593. return 0;
  594. switch (dev_index) {
  595. case 0:
  596. case 1:
  597. ratio = readl(&clk->div_fsys1);
  598. pre_ratio = readl(&clk->div_fsys1);
  599. break;
  600. case 2:
  601. case 3:
  602. ratio = readl(&clk->div_fsys2);
  603. pre_ratio = readl(&clk->div_fsys2);
  604. break;
  605. default:
  606. return 0;
  607. }
  608. if (dev_index == 1 || dev_index == 3)
  609. shift = 16;
  610. ratio = (ratio >> shift) & 0xf;
  611. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  612. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  613. return uclk;
  614. }
  615. /* exynos4: set the mmc clock */
  616. static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
  617. {
  618. struct exynos4_clock *clk =
  619. (struct exynos4_clock *)samsung_get_base_clock();
  620. unsigned int addr;
  621. unsigned int val;
  622. /*
  623. * CLK_DIV_FSYS1
  624. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  625. * CLK_DIV_FSYS2
  626. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  627. * CLK_DIV_FSYS3
  628. * MMC4_PRE_RATIO [15:8]
  629. */
  630. if (dev_index < 2) {
  631. addr = (unsigned int)&clk->div_fsys1;
  632. } else if (dev_index == 4) {
  633. addr = (unsigned int)&clk->div_fsys3;
  634. dev_index -= 4;
  635. } else {
  636. addr = (unsigned int)&clk->div_fsys2;
  637. dev_index -= 2;
  638. }
  639. val = readl(addr);
  640. val &= ~(0xff << ((dev_index << 4) + 8));
  641. val |= (div & 0xff) << ((dev_index << 4) + 8);
  642. writel(val, addr);
  643. }
  644. /* exynos4x12: set the mmc clock */
  645. static void exynos4x12_set_mmc_clk(int dev_index, unsigned int div)
  646. {
  647. struct exynos4x12_clock *clk =
  648. (struct exynos4x12_clock *)samsung_get_base_clock();
  649. unsigned int addr;
  650. unsigned int val;
  651. /*
  652. * CLK_DIV_FSYS1
  653. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  654. * CLK_DIV_FSYS2
  655. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  656. */
  657. if (dev_index < 2) {
  658. addr = (unsigned int)&clk->div_fsys1;
  659. } else {
  660. addr = (unsigned int)&clk->div_fsys2;
  661. dev_index -= 2;
  662. }
  663. val = readl(addr);
  664. val &= ~(0xff << ((dev_index << 4) + 8));
  665. val |= (div & 0xff) << ((dev_index << 4) + 8);
  666. writel(val, addr);
  667. }
  668. /* exynos5: set the mmc clock */
  669. static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
  670. {
  671. struct exynos5_clock *clk =
  672. (struct exynos5_clock *)samsung_get_base_clock();
  673. unsigned int addr;
  674. unsigned int val;
  675. /*
  676. * CLK_DIV_FSYS1
  677. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  678. * CLK_DIV_FSYS2
  679. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  680. */
  681. if (dev_index < 2) {
  682. addr = (unsigned int)&clk->div_fsys1;
  683. } else {
  684. addr = (unsigned int)&clk->div_fsys2;
  685. dev_index -= 2;
  686. }
  687. val = readl(addr);
  688. val &= ~(0xff << ((dev_index << 4) + 8));
  689. val |= (div & 0xff) << ((dev_index << 4) + 8);
  690. writel(val, addr);
  691. }
  692. /* get_lcd_clk: return lcd clock frequency */
  693. static unsigned long exynos4_get_lcd_clk(void)
  694. {
  695. struct exynos4_clock *clk =
  696. (struct exynos4_clock *)samsung_get_base_clock();
  697. unsigned long pclk, sclk;
  698. unsigned int sel;
  699. unsigned int ratio;
  700. /*
  701. * CLK_SRC_LCD0
  702. * FIMD0_SEL [3:0]
  703. */
  704. sel = readl(&clk->src_lcd0);
  705. sel = sel & 0xf;
  706. /*
  707. * 0x6: SCLK_MPLL
  708. * 0x7: SCLK_EPLL
  709. * 0x8: SCLK_VPLL
  710. */
  711. if (sel == 0x6)
  712. sclk = get_pll_clk(MPLL);
  713. else if (sel == 0x7)
  714. sclk = get_pll_clk(EPLL);
  715. else if (sel == 0x8)
  716. sclk = get_pll_clk(VPLL);
  717. else
  718. return 0;
  719. /*
  720. * CLK_DIV_LCD0
  721. * FIMD0_RATIO [3:0]
  722. */
  723. ratio = readl(&clk->div_lcd0);
  724. ratio = ratio & 0xf;
  725. pclk = sclk / (ratio + 1);
  726. return pclk;
  727. }
  728. /* get_lcd_clk: return lcd clock frequency */
  729. static unsigned long exynos5_get_lcd_clk(void)
  730. {
  731. struct exynos5_clock *clk =
  732. (struct exynos5_clock *)samsung_get_base_clock();
  733. unsigned long pclk, sclk;
  734. unsigned int sel;
  735. unsigned int ratio;
  736. /*
  737. * CLK_SRC_LCD0
  738. * FIMD0_SEL [3:0]
  739. */
  740. sel = readl(&clk->src_disp1_0);
  741. sel = sel & 0xf;
  742. /*
  743. * 0x6: SCLK_MPLL
  744. * 0x7: SCLK_EPLL
  745. * 0x8: SCLK_VPLL
  746. */
  747. if (sel == 0x6)
  748. sclk = get_pll_clk(MPLL);
  749. else if (sel == 0x7)
  750. sclk = get_pll_clk(EPLL);
  751. else if (sel == 0x8)
  752. sclk = get_pll_clk(VPLL);
  753. else
  754. return 0;
  755. /*
  756. * CLK_DIV_LCD0
  757. * FIMD0_RATIO [3:0]
  758. */
  759. ratio = readl(&clk->div_disp1_0);
  760. ratio = ratio & 0xf;
  761. pclk = sclk / (ratio + 1);
  762. return pclk;
  763. }
  764. void exynos4_set_lcd_clk(void)
  765. {
  766. struct exynos4_clock *clk =
  767. (struct exynos4_clock *)samsung_get_base_clock();
  768. unsigned int cfg = 0;
  769. /*
  770. * CLK_GATE_BLOCK
  771. * CLK_CAM [0]
  772. * CLK_TV [1]
  773. * CLK_MFC [2]
  774. * CLK_G3D [3]
  775. * CLK_LCD0 [4]
  776. * CLK_LCD1 [5]
  777. * CLK_GPS [7]
  778. */
  779. cfg = readl(&clk->gate_block);
  780. cfg |= 1 << 4;
  781. writel(cfg, &clk->gate_block);
  782. /*
  783. * CLK_SRC_LCD0
  784. * FIMD0_SEL [3:0]
  785. * MDNIE0_SEL [7:4]
  786. * MDNIE_PWM0_SEL [8:11]
  787. * MIPI0_SEL [12:15]
  788. * set lcd0 src clock 0x6: SCLK_MPLL
  789. */
  790. cfg = readl(&clk->src_lcd0);
  791. cfg &= ~(0xf);
  792. cfg |= 0x6;
  793. writel(cfg, &clk->src_lcd0);
  794. /*
  795. * CLK_GATE_IP_LCD0
  796. * CLK_FIMD0 [0]
  797. * CLK_MIE0 [1]
  798. * CLK_MDNIE0 [2]
  799. * CLK_DSIM0 [3]
  800. * CLK_SMMUFIMD0 [4]
  801. * CLK_PPMULCD0 [5]
  802. * Gating all clocks for FIMD0
  803. */
  804. cfg = readl(&clk->gate_ip_lcd0);
  805. cfg |= 1 << 0;
  806. writel(cfg, &clk->gate_ip_lcd0);
  807. /*
  808. * CLK_DIV_LCD0
  809. * FIMD0_RATIO [3:0]
  810. * MDNIE0_RATIO [7:4]
  811. * MDNIE_PWM0_RATIO [11:8]
  812. * MDNIE_PWM_PRE_RATIO [15:12]
  813. * MIPI0_RATIO [19:16]
  814. * MIPI0_PRE_RATIO [23:20]
  815. * set fimd ratio
  816. */
  817. cfg &= ~(0xf);
  818. cfg |= 0x1;
  819. writel(cfg, &clk->div_lcd0);
  820. }
  821. void exynos5_set_lcd_clk(void)
  822. {
  823. struct exynos5_clock *clk =
  824. (struct exynos5_clock *)samsung_get_base_clock();
  825. unsigned int cfg = 0;
  826. /*
  827. * CLK_GATE_BLOCK
  828. * CLK_CAM [0]
  829. * CLK_TV [1]
  830. * CLK_MFC [2]
  831. * CLK_G3D [3]
  832. * CLK_LCD0 [4]
  833. * CLK_LCD1 [5]
  834. * CLK_GPS [7]
  835. */
  836. cfg = readl(&clk->gate_block);
  837. cfg |= 1 << 4;
  838. writel(cfg, &clk->gate_block);
  839. /*
  840. * CLK_SRC_LCD0
  841. * FIMD0_SEL [3:0]
  842. * MDNIE0_SEL [7:4]
  843. * MDNIE_PWM0_SEL [8:11]
  844. * MIPI0_SEL [12:15]
  845. * set lcd0 src clock 0x6: SCLK_MPLL
  846. */
  847. cfg = readl(&clk->src_disp1_0);
  848. cfg &= ~(0xf);
  849. cfg |= 0x6;
  850. writel(cfg, &clk->src_disp1_0);
  851. /*
  852. * CLK_GATE_IP_LCD0
  853. * CLK_FIMD0 [0]
  854. * CLK_MIE0 [1]
  855. * CLK_MDNIE0 [2]
  856. * CLK_DSIM0 [3]
  857. * CLK_SMMUFIMD0 [4]
  858. * CLK_PPMULCD0 [5]
  859. * Gating all clocks for FIMD0
  860. */
  861. cfg = readl(&clk->gate_ip_disp1);
  862. cfg |= 1 << 0;
  863. writel(cfg, &clk->gate_ip_disp1);
  864. /*
  865. * CLK_DIV_LCD0
  866. * FIMD0_RATIO [3:0]
  867. * MDNIE0_RATIO [7:4]
  868. * MDNIE_PWM0_RATIO [11:8]
  869. * MDNIE_PWM_PRE_RATIO [15:12]
  870. * MIPI0_RATIO [19:16]
  871. * MIPI0_PRE_RATIO [23:20]
  872. * set fimd ratio
  873. */
  874. cfg &= ~(0xf);
  875. cfg |= 0x0;
  876. writel(cfg, &clk->div_disp1_0);
  877. }
  878. void exynos4_set_mipi_clk(void)
  879. {
  880. struct exynos4_clock *clk =
  881. (struct exynos4_clock *)samsung_get_base_clock();
  882. unsigned int cfg = 0;
  883. /*
  884. * CLK_SRC_LCD0
  885. * FIMD0_SEL [3:0]
  886. * MDNIE0_SEL [7:4]
  887. * MDNIE_PWM0_SEL [8:11]
  888. * MIPI0_SEL [12:15]
  889. * set mipi0 src clock 0x6: SCLK_MPLL
  890. */
  891. cfg = readl(&clk->src_lcd0);
  892. cfg &= ~(0xf << 12);
  893. cfg |= (0x6 << 12);
  894. writel(cfg, &clk->src_lcd0);
  895. /*
  896. * CLK_SRC_MASK_LCD0
  897. * FIMD0_MASK [0]
  898. * MDNIE0_MASK [4]
  899. * MDNIE_PWM0_MASK [8]
  900. * MIPI0_MASK [12]
  901. * set src mask mipi0 0x1: Unmask
  902. */
  903. cfg = readl(&clk->src_mask_lcd0);
  904. cfg |= (0x1 << 12);
  905. writel(cfg, &clk->src_mask_lcd0);
  906. /*
  907. * CLK_GATE_IP_LCD0
  908. * CLK_FIMD0 [0]
  909. * CLK_MIE0 [1]
  910. * CLK_MDNIE0 [2]
  911. * CLK_DSIM0 [3]
  912. * CLK_SMMUFIMD0 [4]
  913. * CLK_PPMULCD0 [5]
  914. * Gating all clocks for MIPI0
  915. */
  916. cfg = readl(&clk->gate_ip_lcd0);
  917. cfg |= 1 << 3;
  918. writel(cfg, &clk->gate_ip_lcd0);
  919. /*
  920. * CLK_DIV_LCD0
  921. * FIMD0_RATIO [3:0]
  922. * MDNIE0_RATIO [7:4]
  923. * MDNIE_PWM0_RATIO [11:8]
  924. * MDNIE_PWM_PRE_RATIO [15:12]
  925. * MIPI0_RATIO [19:16]
  926. * MIPI0_PRE_RATIO [23:20]
  927. * set mipi ratio
  928. */
  929. cfg &= ~(0xf << 16);
  930. cfg |= (0x1 << 16);
  931. writel(cfg, &clk->div_lcd0);
  932. }
  933. /*
  934. * I2C
  935. *
  936. * exynos5: obtaining the I2C clock
  937. */
  938. static unsigned long exynos5_get_i2c_clk(void)
  939. {
  940. struct exynos5_clock *clk =
  941. (struct exynos5_clock *)samsung_get_base_clock();
  942. unsigned long aclk_66, aclk_66_pre, sclk;
  943. unsigned int ratio;
  944. sclk = get_pll_clk(MPLL);
  945. ratio = (readl(&clk->div_top1)) >> 24;
  946. ratio &= 0x7;
  947. aclk_66_pre = sclk / (ratio + 1);
  948. ratio = readl(&clk->div_top0);
  949. ratio &= 0x7;
  950. aclk_66 = aclk_66_pre / (ratio + 1);
  951. return aclk_66;
  952. }
  953. int exynos5_set_epll_clk(unsigned long rate)
  954. {
  955. unsigned int epll_con, epll_con_k;
  956. unsigned int i;
  957. unsigned int lockcnt;
  958. unsigned int start;
  959. struct exynos5_clock *clk =
  960. (struct exynos5_clock *)samsung_get_base_clock();
  961. epll_con = readl(&clk->epll_con0);
  962. epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
  963. EPLL_CON0_LOCK_DET_EN_SHIFT) |
  964. EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
  965. EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
  966. EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
  967. for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
  968. if (exynos5_epll_div[i].freq_out == rate)
  969. break;
  970. }
  971. if (i == ARRAY_SIZE(exynos5_epll_div))
  972. return -1;
  973. epll_con_k = exynos5_epll_div[i].k_dsm << 0;
  974. epll_con |= exynos5_epll_div[i].en_lock_det <<
  975. EPLL_CON0_LOCK_DET_EN_SHIFT;
  976. epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
  977. epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
  978. epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
  979. /*
  980. * Required period ( in cycles) to genarate a stable clock output.
  981. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs
  982. * frequency input (as per spec)
  983. */
  984. lockcnt = 3000 * exynos5_epll_div[i].p_div;
  985. writel(lockcnt, &clk->epll_lock);
  986. writel(epll_con, &clk->epll_con0);
  987. writel(epll_con_k, &clk->epll_con1);
  988. start = get_timer(0);
  989. while (!(readl(&clk->epll_con0) &
  990. (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
  991. if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
  992. debug("%s: Timeout waiting for EPLL lock\n", __func__);
  993. return -1;
  994. }
  995. }
  996. return 0;
  997. }
  998. void exynos5_set_i2s_clk_source(void)
  999. {
  1000. struct exynos5_clock *clk =
  1001. (struct exynos5_clock *)samsung_get_base_clock();
  1002. clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
  1003. (CLK_SRC_SCLK_EPLL));
  1004. }
  1005. int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
  1006. unsigned int dst_frq)
  1007. {
  1008. struct exynos5_clock *clk =
  1009. (struct exynos5_clock *)samsung_get_base_clock();
  1010. unsigned int div;
  1011. if ((dst_frq == 0) || (src_frq == 0)) {
  1012. debug("%s: Invalid requency input for prescaler\n", __func__);
  1013. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1014. return -1;
  1015. }
  1016. div = (src_frq / dst_frq);
  1017. if (div > AUDIO_1_RATIO_MASK) {
  1018. debug("%s: Frequency ratio is out of range\n", __func__);
  1019. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1020. return -1;
  1021. }
  1022. clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
  1023. (div & AUDIO_1_RATIO_MASK));
  1024. return 0;
  1025. }
  1026. /**
  1027. * Linearly searches for the most accurate main and fine stage clock scalars
  1028. * (divisors) for a specified target frequency and scalar bit sizes by checking
  1029. * all multiples of main_scalar_bits values. Will always return scalars up to or
  1030. * slower than target.
  1031. *
  1032. * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
  1033. * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
  1034. * @param input_freq Clock frequency to be scaled in Hz
  1035. * @param target_freq Desired clock frequency in Hz
  1036. * @param best_fine_scalar Pointer to store the fine stage divisor
  1037. *
  1038. * @return best_main_scalar Main scalar for desired frequency or -1 if none
  1039. * found
  1040. */
  1041. static int clock_calc_best_scalar(unsigned int main_scaler_bits,
  1042. unsigned int fine_scalar_bits, unsigned int input_rate,
  1043. unsigned int target_rate, unsigned int *best_fine_scalar)
  1044. {
  1045. int i;
  1046. int best_main_scalar = -1;
  1047. unsigned int best_error = target_rate;
  1048. const unsigned int cap = (1 << fine_scalar_bits) - 1;
  1049. const unsigned int loops = 1 << main_scaler_bits;
  1050. debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
  1051. target_rate, cap);
  1052. assert(best_fine_scalar != NULL);
  1053. assert(main_scaler_bits <= fine_scalar_bits);
  1054. *best_fine_scalar = 1;
  1055. if (input_rate == 0 || target_rate == 0)
  1056. return -1;
  1057. if (target_rate >= input_rate)
  1058. return 1;
  1059. for (i = 1; i <= loops; i++) {
  1060. const unsigned int effective_div = max(min(input_rate / i /
  1061. target_rate, cap), 1);
  1062. const unsigned int effective_rate = input_rate / i /
  1063. effective_div;
  1064. const int error = target_rate - effective_rate;
  1065. debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
  1066. effective_rate, error);
  1067. if (error >= 0 && error <= best_error) {
  1068. best_error = error;
  1069. best_main_scalar = i;
  1070. *best_fine_scalar = effective_div;
  1071. }
  1072. }
  1073. return best_main_scalar;
  1074. }
  1075. static int exynos5_set_spi_clk(enum periph_id periph_id,
  1076. unsigned int rate)
  1077. {
  1078. struct exynos5_clock *clk =
  1079. (struct exynos5_clock *)samsung_get_base_clock();
  1080. int main;
  1081. unsigned int fine;
  1082. unsigned shift, pre_shift;
  1083. unsigned mask = 0xff;
  1084. u32 *reg;
  1085. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  1086. if (main < 0) {
  1087. debug("%s: Cannot set clock rate for periph %d",
  1088. __func__, periph_id);
  1089. return -1;
  1090. }
  1091. main = main - 1;
  1092. fine = fine - 1;
  1093. switch (periph_id) {
  1094. case PERIPH_ID_SPI0:
  1095. reg = &clk->div_peric1;
  1096. shift = 0;
  1097. pre_shift = 8;
  1098. break;
  1099. case PERIPH_ID_SPI1:
  1100. reg = &clk->div_peric1;
  1101. shift = 16;
  1102. pre_shift = 24;
  1103. break;
  1104. case PERIPH_ID_SPI2:
  1105. reg = &clk->div_peric2;
  1106. shift = 0;
  1107. pre_shift = 8;
  1108. break;
  1109. case PERIPH_ID_SPI3:
  1110. reg = &clk->sclk_div_isp;
  1111. shift = 0;
  1112. pre_shift = 4;
  1113. break;
  1114. case PERIPH_ID_SPI4:
  1115. reg = &clk->sclk_div_isp;
  1116. shift = 12;
  1117. pre_shift = 16;
  1118. break;
  1119. default:
  1120. debug("%s: Unsupported peripheral ID %d\n", __func__,
  1121. periph_id);
  1122. return -1;
  1123. }
  1124. clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
  1125. clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
  1126. return 0;
  1127. }
  1128. static unsigned long exynos4_get_i2c_clk(void)
  1129. {
  1130. struct exynos4_clock *clk =
  1131. (struct exynos4_clock *)samsung_get_base_clock();
  1132. unsigned long sclk, aclk_100;
  1133. unsigned int ratio;
  1134. sclk = get_pll_clk(APLL);
  1135. ratio = (readl(&clk->div_top)) >> 4;
  1136. ratio &= 0xf;
  1137. aclk_100 = sclk / (ratio + 1);
  1138. return aclk_100;
  1139. }
  1140. unsigned long get_pll_clk(int pllreg)
  1141. {
  1142. if (cpu_is_exynos5())
  1143. return exynos5_get_pll_clk(pllreg);
  1144. else {
  1145. if (proid_is_exynos4412())
  1146. return exynos4x12_get_pll_clk(pllreg);
  1147. return exynos4_get_pll_clk(pllreg);
  1148. }
  1149. }
  1150. unsigned long get_arm_clk(void)
  1151. {
  1152. if (cpu_is_exynos5())
  1153. return exynos5_get_arm_clk();
  1154. else {
  1155. if (proid_is_exynos4412())
  1156. return exynos4x12_get_arm_clk();
  1157. return exynos4_get_arm_clk();
  1158. }
  1159. }
  1160. unsigned long get_i2c_clk(void)
  1161. {
  1162. if (cpu_is_exynos5()) {
  1163. return exynos5_get_i2c_clk();
  1164. } else if (cpu_is_exynos4()) {
  1165. return exynos4_get_i2c_clk();
  1166. } else {
  1167. debug("I2C clock is not set for this CPU\n");
  1168. return 0;
  1169. }
  1170. }
  1171. unsigned long get_pwm_clk(void)
  1172. {
  1173. if (cpu_is_exynos5())
  1174. return clock_get_periph_rate(PERIPH_ID_PWM0);
  1175. else {
  1176. if (proid_is_exynos4412())
  1177. return exynos4x12_get_pwm_clk();
  1178. return exynos4_get_pwm_clk();
  1179. }
  1180. }
  1181. unsigned long get_uart_clk(int dev_index)
  1182. {
  1183. if (cpu_is_exynos5())
  1184. return exynos5_get_uart_clk(dev_index);
  1185. else {
  1186. if (proid_is_exynos4412())
  1187. return exynos4x12_get_uart_clk(dev_index);
  1188. return exynos4_get_uart_clk(dev_index);
  1189. }
  1190. }
  1191. unsigned long get_mmc_clk(int dev_index)
  1192. {
  1193. if (cpu_is_exynos5())
  1194. return exynos5_get_mmc_clk(dev_index);
  1195. else
  1196. return exynos4_get_mmc_clk(dev_index);
  1197. }
  1198. void set_mmc_clk(int dev_index, unsigned int div)
  1199. {
  1200. if (cpu_is_exynos5())
  1201. exynos5_set_mmc_clk(dev_index, div);
  1202. else {
  1203. if (proid_is_exynos4412())
  1204. exynos4x12_set_mmc_clk(dev_index, div);
  1205. exynos4_set_mmc_clk(dev_index, div);
  1206. }
  1207. }
  1208. unsigned long get_lcd_clk(void)
  1209. {
  1210. if (cpu_is_exynos4())
  1211. return exynos4_get_lcd_clk();
  1212. else
  1213. return exynos5_get_lcd_clk();
  1214. }
  1215. void set_lcd_clk(void)
  1216. {
  1217. if (cpu_is_exynos4())
  1218. exynos4_set_lcd_clk();
  1219. else
  1220. exynos5_set_lcd_clk();
  1221. }
  1222. void set_mipi_clk(void)
  1223. {
  1224. if (cpu_is_exynos4())
  1225. exynos4_set_mipi_clk();
  1226. }
  1227. int set_spi_clk(int periph_id, unsigned int rate)
  1228. {
  1229. if (cpu_is_exynos5())
  1230. return exynos5_set_spi_clk(periph_id, rate);
  1231. else
  1232. return 0;
  1233. }
  1234. int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
  1235. {
  1236. if (cpu_is_exynos5())
  1237. return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq);
  1238. else
  1239. return 0;
  1240. }
  1241. void set_i2s_clk_source(void)
  1242. {
  1243. if (cpu_is_exynos5())
  1244. exynos5_set_i2s_clk_source();
  1245. }
  1246. int set_epll_clk(unsigned long rate)
  1247. {
  1248. if (cpu_is_exynos5())
  1249. return exynos5_set_epll_clk(rate);
  1250. else
  1251. return 0;
  1252. }