44x_spd_ddr2.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  43. /*-----------------------------------------------------------------------------+
  44. * Defines
  45. *-----------------------------------------------------------------------------*/
  46. #ifndef TRUE
  47. #define TRUE 1
  48. #endif
  49. #ifndef FALSE
  50. #define FALSE 0
  51. #endif
  52. #define SDRAM_DDR1 1
  53. #define SDRAM_DDR2 2
  54. #define SDRAM_NONE 0
  55. #define MAXDIMMS 2
  56. #define MAXRANKS 4
  57. #define MAXBXCF 4
  58. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  59. #define ONE_BILLION 1000000000
  60. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  61. #define CMD_NOP (7 << 19)
  62. #define CMD_PRECHARGE (2 << 19)
  63. #define CMD_REFRESH (1 << 19)
  64. #define CMD_EMR (0 << 19)
  65. #define CMD_READ (5 << 19)
  66. #define CMD_WRITE (4 << 19)
  67. #define SELECT_MR (0 << 16)
  68. #define SELECT_EMR (1 << 16)
  69. #define SELECT_EMR2 (2 << 16)
  70. #define SELECT_EMR3 (3 << 16)
  71. /* MR */
  72. #define DLL_RESET 0x00000100
  73. #define WRITE_RECOV_2 (1 << 9)
  74. #define WRITE_RECOV_3 (2 << 9)
  75. #define WRITE_RECOV_4 (3 << 9)
  76. #define WRITE_RECOV_5 (4 << 9)
  77. #define WRITE_RECOV_6 (5 << 9)
  78. #define BURST_LEN_4 0x00000002
  79. /* EMR */
  80. #define ODT_0_OHM 0x00000000
  81. #define ODT_50_OHM 0x00000044
  82. #define ODT_75_OHM 0x00000004
  83. #define ODT_150_OHM 0x00000040
  84. #define ODS_FULL 0x00000000
  85. #define ODS_REDUCED 0x00000002
  86. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  87. #define ODT_EB0R (0x80000000 >> 8)
  88. #define ODT_EB0W (0x80000000 >> 7)
  89. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  90. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  91. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  92. /* Defines for the Read Cycle Delay test */
  93. #define NUMMEMTESTS 8
  94. #define NUMMEMWORDS 8
  95. #define NUMLOOPS 256 /* memory test loops */
  96. #undef CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
  97. /*
  98. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  99. * region. Right now the cache should still be disabled in U-Boot because of the
  100. * EMAC driver, that need it's buffer descriptor to be located in non cached
  101. * memory.
  102. *
  103. * If at some time this restriction doesn't apply anymore, just define
  104. * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
  105. * everything correctly.
  106. */
  107. #ifdef CFG_ENABLE_SDRAM_CACHE
  108. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  109. #else
  110. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  111. #endif
  112. /* Private Structure Definitions */
  113. /* enum only to ease code for cas latency setting */
  114. typedef enum ddr_cas_id {
  115. DDR_CAS_2 = 20,
  116. DDR_CAS_2_5 = 25,
  117. DDR_CAS_3 = 30,
  118. DDR_CAS_4 = 40,
  119. DDR_CAS_5 = 50
  120. } ddr_cas_id_t;
  121. /*-----------------------------------------------------------------------------+
  122. * Prototypes
  123. *-----------------------------------------------------------------------------*/
  124. static unsigned long sdram_memsize(void);
  125. void program_tlb(u32 phys_addr, u32 virt_addr, u32 size, u32 tlb_word2_i_value);
  126. static void get_spd_info(unsigned long *dimm_populated,
  127. unsigned char *iic0_dimm_addr,
  128. unsigned long num_dimm_banks);
  129. static void check_mem_type(unsigned long *dimm_populated,
  130. unsigned char *iic0_dimm_addr,
  131. unsigned long num_dimm_banks);
  132. static void check_frequency(unsigned long *dimm_populated,
  133. unsigned char *iic0_dimm_addr,
  134. unsigned long num_dimm_banks);
  135. static void check_rank_number(unsigned long *dimm_populated,
  136. unsigned char *iic0_dimm_addr,
  137. unsigned long num_dimm_banks);
  138. static void check_voltage_type(unsigned long *dimm_populated,
  139. unsigned char *iic0_dimm_addr,
  140. unsigned long num_dimm_banks);
  141. static void program_memory_queue(unsigned long *dimm_populated,
  142. unsigned char *iic0_dimm_addr,
  143. unsigned long num_dimm_banks);
  144. static void program_codt(unsigned long *dimm_populated,
  145. unsigned char *iic0_dimm_addr,
  146. unsigned long num_dimm_banks);
  147. static void program_mode(unsigned long *dimm_populated,
  148. unsigned char *iic0_dimm_addr,
  149. unsigned long num_dimm_banks,
  150. ddr_cas_id_t *selected_cas,
  151. int *write_recovery);
  152. static void program_tr(unsigned long *dimm_populated,
  153. unsigned char *iic0_dimm_addr,
  154. unsigned long num_dimm_banks);
  155. static void program_rtr(unsigned long *dimm_populated,
  156. unsigned char *iic0_dimm_addr,
  157. unsigned long num_dimm_banks);
  158. static void program_bxcf(unsigned long *dimm_populated,
  159. unsigned char *iic0_dimm_addr,
  160. unsigned long num_dimm_banks);
  161. static void program_copt1(unsigned long *dimm_populated,
  162. unsigned char *iic0_dimm_addr,
  163. unsigned long num_dimm_banks);
  164. static void program_initplr(unsigned long *dimm_populated,
  165. unsigned char *iic0_dimm_addr,
  166. unsigned long num_dimm_banks,
  167. ddr_cas_id_t selected_cas,
  168. int write_recovery);
  169. static unsigned long is_ecc_enabled(void);
  170. #ifdef CONFIG_DDR_ECC
  171. static void program_ecc(unsigned long *dimm_populated,
  172. unsigned char *iic0_dimm_addr,
  173. unsigned long num_dimm_banks,
  174. unsigned long tlb_word2_i_value);
  175. static void program_ecc_addr(unsigned long start_address,
  176. unsigned long num_bytes,
  177. unsigned long tlb_word2_i_value);
  178. #endif
  179. static void program_DQS_calibration(unsigned long *dimm_populated,
  180. unsigned char *iic0_dimm_addr,
  181. unsigned long num_dimm_banks);
  182. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  183. static void test(void);
  184. #else
  185. static void DQS_calibration_process(void);
  186. #endif
  187. #if defined(DEBUG)
  188. static void ppc440sp_sdram_register_dump(void);
  189. #endif
  190. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  191. void dcbz_area(u32 start_address, u32 num_bytes);
  192. void dflush(void);
  193. static u32 mfdcr_any(u32 dcr)
  194. {
  195. u32 val;
  196. switch (dcr) {
  197. case SDRAM_R0BAS + 0:
  198. val = mfdcr(SDRAM_R0BAS + 0);
  199. break;
  200. case SDRAM_R0BAS + 1:
  201. val = mfdcr(SDRAM_R0BAS + 1);
  202. break;
  203. case SDRAM_R0BAS + 2:
  204. val = mfdcr(SDRAM_R0BAS + 2);
  205. break;
  206. case SDRAM_R0BAS + 3:
  207. val = mfdcr(SDRAM_R0BAS + 3);
  208. break;
  209. default:
  210. printf("DCR %d not defined in case statement!!!\n", dcr);
  211. val = 0; /* just to satisfy the compiler */
  212. }
  213. return val;
  214. }
  215. static void mtdcr_any(u32 dcr, u32 val)
  216. {
  217. switch (dcr) {
  218. case SDRAM_R0BAS + 0:
  219. mtdcr(SDRAM_R0BAS + 0, val);
  220. break;
  221. case SDRAM_R0BAS + 1:
  222. mtdcr(SDRAM_R0BAS + 1, val);
  223. break;
  224. case SDRAM_R0BAS + 2:
  225. mtdcr(SDRAM_R0BAS + 2, val);
  226. break;
  227. case SDRAM_R0BAS + 3:
  228. mtdcr(SDRAM_R0BAS + 3, val);
  229. break;
  230. default:
  231. printf("DCR %d not defined in case statement!!!\n", dcr);
  232. }
  233. }
  234. static unsigned char spd_read(uchar chip, uint addr)
  235. {
  236. unsigned char data[2];
  237. if (i2c_probe(chip) == 0)
  238. if (i2c_read(chip, addr, 1, data, 1) == 0)
  239. return data[0];
  240. return 0;
  241. }
  242. /*-----------------------------------------------------------------------------+
  243. * sdram_memsize
  244. *-----------------------------------------------------------------------------*/
  245. static unsigned long sdram_memsize(void)
  246. {
  247. unsigned long mem_size;
  248. unsigned long mcopt2;
  249. unsigned long mcstat;
  250. unsigned long mb0cf;
  251. unsigned long sdsz;
  252. unsigned long i;
  253. mem_size = 0;
  254. mfsdram(SDRAM_MCOPT2, mcopt2);
  255. mfsdram(SDRAM_MCSTAT, mcstat);
  256. /* DDR controller must be enabled and not in self-refresh. */
  257. /* Otherwise memsize is zero. */
  258. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  259. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  260. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  261. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  262. for (i = 0; i < MAXBXCF; i++) {
  263. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  264. /* Banks enabled */
  265. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  266. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  267. switch(sdsz) {
  268. case SDRAM_RXBAS_SDSZ_8:
  269. mem_size+=8;
  270. break;
  271. case SDRAM_RXBAS_SDSZ_16:
  272. mem_size+=16;
  273. break;
  274. case SDRAM_RXBAS_SDSZ_32:
  275. mem_size+=32;
  276. break;
  277. case SDRAM_RXBAS_SDSZ_64:
  278. mem_size+=64;
  279. break;
  280. case SDRAM_RXBAS_SDSZ_128:
  281. mem_size+=128;
  282. break;
  283. case SDRAM_RXBAS_SDSZ_256:
  284. mem_size+=256;
  285. break;
  286. case SDRAM_RXBAS_SDSZ_512:
  287. mem_size+=512;
  288. break;
  289. case SDRAM_RXBAS_SDSZ_1024:
  290. mem_size+=1024;
  291. break;
  292. case SDRAM_RXBAS_SDSZ_2048:
  293. mem_size+=2048;
  294. break;
  295. case SDRAM_RXBAS_SDSZ_4096:
  296. mem_size+=4096;
  297. break;
  298. default:
  299. mem_size=0;
  300. break;
  301. }
  302. }
  303. }
  304. }
  305. mem_size *= 1024 * 1024;
  306. return(mem_size);
  307. }
  308. /*-----------------------------------------------------------------------------+
  309. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  310. * Note: This routine runs from flash with a stack set up in the chip's
  311. * sram space. It is important that the routine does not require .sbss, .bss or
  312. * .data sections. It also cannot call routines that require these sections.
  313. *-----------------------------------------------------------------------------*/
  314. /*-----------------------------------------------------------------------------
  315. * Function: initdram
  316. * Description: Configures SDRAM memory banks for DDR operation.
  317. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  318. * via the IIC bus and then configures the DDR SDRAM memory
  319. * banks appropriately. If Auto Memory Configuration is
  320. * not used, it is assumed that no DIMM is plugged
  321. *-----------------------------------------------------------------------------*/
  322. long int initdram(int board_type)
  323. {
  324. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  325. unsigned char spd0[MAX_SPD_BYTES];
  326. unsigned char spd1[MAX_SPD_BYTES];
  327. unsigned char *dimm_spd[MAXDIMMS];
  328. unsigned long dimm_populated[MAXDIMMS];
  329. unsigned long num_dimm_banks; /* on board dimm banks */
  330. unsigned long val;
  331. ddr_cas_id_t selected_cas;
  332. int write_recovery;
  333. unsigned long dram_size = 0;
  334. num_dimm_banks = sizeof(iic0_dimm_addr);
  335. /*------------------------------------------------------------------
  336. * Set up an array of SPD matrixes.
  337. *-----------------------------------------------------------------*/
  338. dimm_spd[0] = spd0;
  339. dimm_spd[1] = spd1;
  340. /*------------------------------------------------------------------
  341. * Reset the DDR-SDRAM controller.
  342. *-----------------------------------------------------------------*/
  343. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  344. mtsdr(SDR0_SRST, 0x00000000);
  345. /*
  346. * Make sure I2C controller is initialized
  347. * before continuing.
  348. */
  349. /* switch to correct I2C bus */
  350. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  351. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  352. /*------------------------------------------------------------------
  353. * Clear out the serial presence detect buffers.
  354. * Perform IIC reads from the dimm. Fill in the spds.
  355. * Check to see if the dimm slots are populated
  356. *-----------------------------------------------------------------*/
  357. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  358. /*------------------------------------------------------------------
  359. * Check the memory type for the dimms plugged.
  360. *-----------------------------------------------------------------*/
  361. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  362. /*------------------------------------------------------------------
  363. * Check the frequency supported for the dimms plugged.
  364. *-----------------------------------------------------------------*/
  365. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  366. /*------------------------------------------------------------------
  367. * Check the total rank number.
  368. *-----------------------------------------------------------------*/
  369. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  370. /*------------------------------------------------------------------
  371. * Check the voltage type for the dimms plugged.
  372. *-----------------------------------------------------------------*/
  373. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  374. /*------------------------------------------------------------------
  375. * Program SDRAM controller options 2 register
  376. * Except Enabling of the memory controller.
  377. *-----------------------------------------------------------------*/
  378. mfsdram(SDRAM_MCOPT2, val);
  379. mtsdram(SDRAM_MCOPT2,
  380. (val &
  381. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  382. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  383. SDRAM_MCOPT2_ISIE_MASK))
  384. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  385. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  386. SDRAM_MCOPT2_ISIE_ENABLE));
  387. /*------------------------------------------------------------------
  388. * Program SDRAM controller options 1 register
  389. * Note: Does not enable the memory controller.
  390. *-----------------------------------------------------------------*/
  391. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  392. /*------------------------------------------------------------------
  393. * Set the SDRAM Controller On Die Termination Register
  394. *-----------------------------------------------------------------*/
  395. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  396. /*------------------------------------------------------------------
  397. * Program SDRAM refresh register.
  398. *-----------------------------------------------------------------*/
  399. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  400. /*------------------------------------------------------------------
  401. * Program SDRAM mode register.
  402. *-----------------------------------------------------------------*/
  403. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  404. &selected_cas, &write_recovery);
  405. /*------------------------------------------------------------------
  406. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  407. *-----------------------------------------------------------------*/
  408. mfsdram(SDRAM_WRDTR, val);
  409. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  410. (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  411. /*------------------------------------------------------------------
  412. * Set the SDRAM Clock Timing Register
  413. *-----------------------------------------------------------------*/
  414. mfsdram(SDRAM_CLKTR, val);
  415. #ifdef CFG_44x_DDR2_CKTR_180
  416. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_180_DEG_ADV);
  417. #else
  418. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
  419. #endif
  420. /*------------------------------------------------------------------
  421. * Program the BxCF registers.
  422. *-----------------------------------------------------------------*/
  423. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  424. /*------------------------------------------------------------------
  425. * Program SDRAM timing registers.
  426. *-----------------------------------------------------------------*/
  427. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  428. /*------------------------------------------------------------------
  429. * Set the Extended Mode register
  430. *-----------------------------------------------------------------*/
  431. mfsdram(SDRAM_MEMODE, val);
  432. mtsdram(SDRAM_MEMODE,
  433. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  434. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  435. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  436. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  437. /*------------------------------------------------------------------
  438. * Program Initialization preload registers.
  439. *-----------------------------------------------------------------*/
  440. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  441. selected_cas, write_recovery);
  442. /*------------------------------------------------------------------
  443. * Delay to ensure 200usec have elapsed since reset.
  444. *-----------------------------------------------------------------*/
  445. udelay(400);
  446. /*------------------------------------------------------------------
  447. * Set the memory queue core base addr.
  448. *-----------------------------------------------------------------*/
  449. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  450. /*------------------------------------------------------------------
  451. * Program SDRAM controller options 2 register
  452. * Enable the memory controller.
  453. *-----------------------------------------------------------------*/
  454. mfsdram(SDRAM_MCOPT2, val);
  455. mtsdram(SDRAM_MCOPT2,
  456. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  457. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  458. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  459. /*------------------------------------------------------------------
  460. * Wait for SDRAM_CFG0_DC_EN to complete.
  461. *-----------------------------------------------------------------*/
  462. do {
  463. mfsdram(SDRAM_MCSTAT, val);
  464. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  465. /* get installed memory size */
  466. dram_size = sdram_memsize();
  467. /* and program tlb entries for this size (dynamic) */
  468. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  469. /*------------------------------------------------------------------
  470. * DQS calibration.
  471. *-----------------------------------------------------------------*/
  472. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  473. #ifdef CONFIG_DDR_ECC
  474. /*------------------------------------------------------------------
  475. * If ecc is enabled, initialize the parity bits.
  476. *-----------------------------------------------------------------*/
  477. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
  478. #endif
  479. #ifdef DEBUG
  480. ppc440sp_sdram_register_dump();
  481. #endif
  482. return dram_size;
  483. }
  484. static void get_spd_info(unsigned long *dimm_populated,
  485. unsigned char *iic0_dimm_addr,
  486. unsigned long num_dimm_banks)
  487. {
  488. unsigned long dimm_num;
  489. unsigned long dimm_found;
  490. unsigned char num_of_bytes;
  491. unsigned char total_size;
  492. dimm_found = FALSE;
  493. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  494. num_of_bytes = 0;
  495. total_size = 0;
  496. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  497. debug("\nspd_read(0x%x) returned %d\n",
  498. iic0_dimm_addr[dimm_num], num_of_bytes);
  499. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  500. debug("spd_read(0x%x) returned %d\n",
  501. iic0_dimm_addr[dimm_num], total_size);
  502. if ((num_of_bytes != 0) && (total_size != 0)) {
  503. dimm_populated[dimm_num] = TRUE;
  504. dimm_found = TRUE;
  505. debug("DIMM slot %lu: populated\n", dimm_num);
  506. } else {
  507. dimm_populated[dimm_num] = FALSE;
  508. debug("DIMM slot %lu: Not populated\n", dimm_num);
  509. }
  510. }
  511. if (dimm_found == FALSE) {
  512. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  513. hang();
  514. }
  515. }
  516. #ifdef CONFIG_ADD_RAM_INFO
  517. void board_add_ram_info(int use_default)
  518. {
  519. PPC440_SYS_INFO board_cfg;
  520. u32 val;
  521. if (is_ecc_enabled())
  522. puts(" (ECC");
  523. else
  524. puts(" (ECC not");
  525. get_sys_info(&board_cfg);
  526. mfsdr(SDR0_DDR0, val);
  527. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  528. printf(" enabled, %d MHz", (val * 2) / 1000000);
  529. mfsdram(SDRAM_MMODE, val);
  530. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  531. printf(", CL%d)", val);
  532. }
  533. #endif
  534. /*------------------------------------------------------------------
  535. * For the memory DIMMs installed, this routine verifies that they
  536. * really are DDR specific DIMMs.
  537. *-----------------------------------------------------------------*/
  538. static void check_mem_type(unsigned long *dimm_populated,
  539. unsigned char *iic0_dimm_addr,
  540. unsigned long num_dimm_banks)
  541. {
  542. unsigned long dimm_num;
  543. unsigned long dimm_type;
  544. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  545. if (dimm_populated[dimm_num] == TRUE) {
  546. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  547. switch (dimm_type) {
  548. case 1:
  549. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  550. "slot %d.\n", (unsigned int)dimm_num);
  551. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  552. printf("Replace the DIMM module with a supported DIMM.\n\n");
  553. hang();
  554. break;
  555. case 2:
  556. printf("ERROR: EDO DIMM detected in slot %d.\n",
  557. (unsigned int)dimm_num);
  558. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  559. printf("Replace the DIMM module with a supported DIMM.\n\n");
  560. hang();
  561. break;
  562. case 3:
  563. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  564. (unsigned int)dimm_num);
  565. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  566. printf("Replace the DIMM module with a supported DIMM.\n\n");
  567. hang();
  568. break;
  569. case 4:
  570. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  571. (unsigned int)dimm_num);
  572. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  573. printf("Replace the DIMM module with a supported DIMM.\n\n");
  574. hang();
  575. break;
  576. case 5:
  577. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  578. (unsigned int)dimm_num);
  579. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  580. printf("Replace the DIMM module with a supported DIMM.\n\n");
  581. hang();
  582. break;
  583. case 6:
  584. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  585. (unsigned int)dimm_num);
  586. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  587. printf("Replace the DIMM module with a supported DIMM.\n\n");
  588. hang();
  589. break;
  590. case 7:
  591. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  592. dimm_populated[dimm_num] = SDRAM_DDR1;
  593. break;
  594. case 8:
  595. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  596. dimm_populated[dimm_num] = SDRAM_DDR2;
  597. break;
  598. default:
  599. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  600. (unsigned int)dimm_num);
  601. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  602. printf("Replace the DIMM module with a supported DIMM.\n\n");
  603. hang();
  604. break;
  605. }
  606. }
  607. }
  608. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  609. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  610. && (dimm_populated[dimm_num] != SDRAM_NONE)
  611. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  612. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  613. hang();
  614. }
  615. }
  616. }
  617. /*------------------------------------------------------------------
  618. * For the memory DIMMs installed, this routine verifies that
  619. * frequency previously calculated is supported.
  620. *-----------------------------------------------------------------*/
  621. static void check_frequency(unsigned long *dimm_populated,
  622. unsigned char *iic0_dimm_addr,
  623. unsigned long num_dimm_banks)
  624. {
  625. unsigned long dimm_num;
  626. unsigned long tcyc_reg;
  627. unsigned long cycle_time;
  628. unsigned long calc_cycle_time;
  629. unsigned long sdram_freq;
  630. unsigned long sdr_ddrpll;
  631. PPC440_SYS_INFO board_cfg;
  632. /*------------------------------------------------------------------
  633. * Get the board configuration info.
  634. *-----------------------------------------------------------------*/
  635. get_sys_info(&board_cfg);
  636. mfsdr(SDR0_DDR0, sdr_ddrpll);
  637. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  638. /*
  639. * calc_cycle_time is calculated from DDR frequency set by board/chip
  640. * and is expressed in multiple of 10 picoseconds
  641. * to match the way DIMM cycle time is calculated below.
  642. */
  643. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  644. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  645. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  646. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  647. /*
  648. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  649. * the higher order nibble (bits 4-7) designates the cycle time
  650. * to a granularity of 1ns;
  651. * the value presented by the lower order nibble (bits 0-3)
  652. * has a granularity of .1ns and is added to the value designated
  653. * by the higher nibble. In addition, four lines of the lower order
  654. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  655. */
  656. /* Convert from hex to decimal */
  657. if ((tcyc_reg & 0x0F) == 0x0D)
  658. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  659. else if ((tcyc_reg & 0x0F) == 0x0C)
  660. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  661. else if ((tcyc_reg & 0x0F) == 0x0B)
  662. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  663. else if ((tcyc_reg & 0x0F) == 0x0A)
  664. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  665. else
  666. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  667. ((tcyc_reg & 0x0F)*10);
  668. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  669. if (cycle_time > (calc_cycle_time + 10)) {
  670. /*
  671. * the provided sdram cycle_time is too small
  672. * for the available DIMM cycle_time.
  673. * The additionnal 100ps is here to accept a small incertainty.
  674. */
  675. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  676. "slot %d \n while calculated cycle time is %d ps.\n",
  677. (unsigned int)(cycle_time*10),
  678. (unsigned int)dimm_num,
  679. (unsigned int)(calc_cycle_time*10));
  680. printf("Replace the DIMM, or change DDR frequency via "
  681. "strapping bits.\n\n");
  682. hang();
  683. }
  684. }
  685. }
  686. }
  687. /*------------------------------------------------------------------
  688. * For the memory DIMMs installed, this routine verifies two
  689. * ranks/banks maximum are availables.
  690. *-----------------------------------------------------------------*/
  691. static void check_rank_number(unsigned long *dimm_populated,
  692. unsigned char *iic0_dimm_addr,
  693. unsigned long num_dimm_banks)
  694. {
  695. unsigned long dimm_num;
  696. unsigned long dimm_rank;
  697. unsigned long total_rank = 0;
  698. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  699. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  700. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  701. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  702. dimm_rank = (dimm_rank & 0x0F) +1;
  703. else
  704. dimm_rank = dimm_rank & 0x0F;
  705. if (dimm_rank > MAXRANKS) {
  706. printf("ERROR: DRAM DIMM detected with %d ranks in "
  707. "slot %d is not supported.\n", dimm_rank, dimm_num);
  708. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  709. printf("Replace the DIMM module with a supported DIMM.\n\n");
  710. hang();
  711. } else
  712. total_rank += dimm_rank;
  713. }
  714. if (total_rank > MAXRANKS) {
  715. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  716. "for all slots.\n", (unsigned int)total_rank);
  717. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  718. printf("Remove one of the DIMM modules.\n\n");
  719. hang();
  720. }
  721. }
  722. }
  723. /*------------------------------------------------------------------
  724. * only support 2.5V modules.
  725. * This routine verifies this.
  726. *-----------------------------------------------------------------*/
  727. static void check_voltage_type(unsigned long *dimm_populated,
  728. unsigned char *iic0_dimm_addr,
  729. unsigned long num_dimm_banks)
  730. {
  731. unsigned long dimm_num;
  732. unsigned long voltage_type;
  733. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  734. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  735. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  736. switch (voltage_type) {
  737. case 0x00:
  738. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  739. printf("This DIMM is 5.0 Volt/TTL.\n");
  740. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  741. (unsigned int)dimm_num);
  742. hang();
  743. break;
  744. case 0x01:
  745. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  746. printf("This DIMM is LVTTL.\n");
  747. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  748. (unsigned int)dimm_num);
  749. hang();
  750. break;
  751. case 0x02:
  752. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  753. printf("This DIMM is 1.5 Volt.\n");
  754. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  755. (unsigned int)dimm_num);
  756. hang();
  757. break;
  758. case 0x03:
  759. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  760. printf("This DIMM is 3.3 Volt/TTL.\n");
  761. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  762. (unsigned int)dimm_num);
  763. hang();
  764. break;
  765. case 0x04:
  766. /* 2.5 Voltage only for DDR1 */
  767. break;
  768. case 0x05:
  769. /* 1.8 Voltage only for DDR2 */
  770. break;
  771. default:
  772. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  773. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  774. (unsigned int)dimm_num);
  775. hang();
  776. break;
  777. }
  778. }
  779. }
  780. }
  781. /*-----------------------------------------------------------------------------+
  782. * program_copt1.
  783. *-----------------------------------------------------------------------------*/
  784. static void program_copt1(unsigned long *dimm_populated,
  785. unsigned char *iic0_dimm_addr,
  786. unsigned long num_dimm_banks)
  787. {
  788. unsigned long dimm_num;
  789. unsigned long mcopt1;
  790. unsigned long ecc_enabled;
  791. unsigned long ecc = 0;
  792. unsigned long data_width = 0;
  793. unsigned long dimm_32bit;
  794. unsigned long dimm_64bit;
  795. unsigned long registered = 0;
  796. unsigned long attribute = 0;
  797. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  798. unsigned long bankcount;
  799. unsigned long ddrtype;
  800. unsigned long val;
  801. #ifdef CONFIG_DDR_ECC
  802. ecc_enabled = TRUE;
  803. #else
  804. ecc_enabled = FALSE;
  805. #endif
  806. dimm_32bit = FALSE;
  807. dimm_64bit = FALSE;
  808. buf0 = FALSE;
  809. buf1 = FALSE;
  810. /*------------------------------------------------------------------
  811. * Set memory controller options reg 1, SDRAM_MCOPT1.
  812. *-----------------------------------------------------------------*/
  813. mfsdram(SDRAM_MCOPT1, val);
  814. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  815. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  816. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  817. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  818. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  819. SDRAM_MCOPT1_DREF_MASK);
  820. mcopt1 |= SDRAM_MCOPT1_QDEP;
  821. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  822. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  823. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  824. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  825. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  826. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  827. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  828. /* test ecc support */
  829. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  830. if (ecc != 0x02) /* ecc not supported */
  831. ecc_enabled = FALSE;
  832. /* test bank count */
  833. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  834. if (bankcount == 0x04) /* bank count = 4 */
  835. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  836. else /* bank count = 8 */
  837. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  838. /* test DDR type */
  839. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  840. /* test for buffered/unbuffered, registered, differential clocks */
  841. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  842. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  843. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  844. if (dimm_num == 0) {
  845. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  846. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  847. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  848. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  849. if (registered == 1) { /* DDR2 always buffered */
  850. /* TODO: what about above comments ? */
  851. mcopt1 |= SDRAM_MCOPT1_RDEN;
  852. buf0 = TRUE;
  853. } else {
  854. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  855. if ((attribute & 0x02) == 0x00) {
  856. /* buffered not supported */
  857. buf0 = FALSE;
  858. } else {
  859. mcopt1 |= SDRAM_MCOPT1_RDEN;
  860. buf0 = TRUE;
  861. }
  862. }
  863. }
  864. else if (dimm_num == 1) {
  865. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  866. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  867. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  868. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  869. if (registered == 1) {
  870. /* DDR2 always buffered */
  871. mcopt1 |= SDRAM_MCOPT1_RDEN;
  872. buf1 = TRUE;
  873. } else {
  874. if ((attribute & 0x02) == 0x00) {
  875. /* buffered not supported */
  876. buf1 = FALSE;
  877. } else {
  878. mcopt1 |= SDRAM_MCOPT1_RDEN;
  879. buf1 = TRUE;
  880. }
  881. }
  882. }
  883. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  884. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  885. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  886. switch (data_width) {
  887. case 72:
  888. case 64:
  889. dimm_64bit = TRUE;
  890. break;
  891. case 40:
  892. case 32:
  893. dimm_32bit = TRUE;
  894. break;
  895. default:
  896. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  897. data_width);
  898. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  899. break;
  900. }
  901. }
  902. }
  903. /* verify matching properties */
  904. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  905. if (buf0 != buf1) {
  906. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  907. hang();
  908. }
  909. }
  910. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  911. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  912. hang();
  913. }
  914. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  915. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  916. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  917. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  918. } else {
  919. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  920. hang();
  921. }
  922. if (ecc_enabled == TRUE)
  923. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  924. else
  925. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  926. mtsdram(SDRAM_MCOPT1, mcopt1);
  927. }
  928. /*-----------------------------------------------------------------------------+
  929. * program_codt.
  930. *-----------------------------------------------------------------------------*/
  931. static void program_codt(unsigned long *dimm_populated,
  932. unsigned char *iic0_dimm_addr,
  933. unsigned long num_dimm_banks)
  934. {
  935. unsigned long codt;
  936. unsigned long modt0 = 0;
  937. unsigned long modt1 = 0;
  938. unsigned long modt2 = 0;
  939. unsigned long modt3 = 0;
  940. unsigned char dimm_num;
  941. unsigned char dimm_rank;
  942. unsigned char total_rank = 0;
  943. unsigned char total_dimm = 0;
  944. unsigned char dimm_type = 0;
  945. unsigned char firstSlot = 0;
  946. /*------------------------------------------------------------------
  947. * Set the SDRAM Controller On Die Termination Register
  948. *-----------------------------------------------------------------*/
  949. mfsdram(SDRAM_CODT, codt);
  950. codt |= (SDRAM_CODT_IO_NMODE
  951. & (~SDRAM_CODT_DQS_SINGLE_END
  952. & ~SDRAM_CODT_CKSE_SINGLE_END
  953. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  954. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  955. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  956. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  957. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  958. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  959. dimm_rank = (dimm_rank & 0x0F) + 1;
  960. dimm_type = SDRAM_DDR2;
  961. } else {
  962. dimm_rank = dimm_rank & 0x0F;
  963. dimm_type = SDRAM_DDR1;
  964. }
  965. total_rank += dimm_rank;
  966. total_dimm++;
  967. if ((dimm_num == 0) && (total_dimm == 1))
  968. firstSlot = TRUE;
  969. else
  970. firstSlot = FALSE;
  971. }
  972. }
  973. if (dimm_type == SDRAM_DDR2) {
  974. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  975. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  976. if (total_rank == 1) {
  977. codt |= CALC_ODT_R(0);
  978. modt0 = CALC_ODT_W(0);
  979. modt1 = 0x00000000;
  980. modt2 = 0x00000000;
  981. modt3 = 0x00000000;
  982. }
  983. if (total_rank == 2) {
  984. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  985. modt0 = CALC_ODT_W(0);
  986. modt1 = CALC_ODT_W(0);
  987. modt2 = 0x00000000;
  988. modt3 = 0x00000000;
  989. }
  990. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  991. if (total_rank == 1) {
  992. codt |= CALC_ODT_R(2);
  993. modt0 = 0x00000000;
  994. modt1 = 0x00000000;
  995. modt2 = CALC_ODT_W(2);
  996. modt3 = 0x00000000;
  997. }
  998. if (total_rank == 2) {
  999. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1000. modt0 = 0x00000000;
  1001. modt1 = 0x00000000;
  1002. modt2 = CALC_ODT_W(2);
  1003. modt3 = CALC_ODT_W(2);
  1004. }
  1005. }
  1006. if (total_dimm == 2) {
  1007. if (total_rank == 2) {
  1008. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1009. modt0 = CALC_ODT_RW(2);
  1010. modt1 = 0x00000000;
  1011. modt2 = CALC_ODT_RW(0);
  1012. modt3 = 0x00000000;
  1013. }
  1014. if (total_rank == 4) {
  1015. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1016. CALC_ODT_R(2) | CALC_ODT_R(3);
  1017. modt0 = CALC_ODT_RW(2);
  1018. modt1 = 0x00000000;
  1019. modt2 = CALC_ODT_RW(0);
  1020. modt3 = 0x00000000;
  1021. }
  1022. }
  1023. } else {
  1024. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1025. modt0 = 0x00000000;
  1026. modt1 = 0x00000000;
  1027. modt2 = 0x00000000;
  1028. modt3 = 0x00000000;
  1029. if (total_dimm == 1) {
  1030. if (total_rank == 1)
  1031. codt |= 0x00800000;
  1032. if (total_rank == 2)
  1033. codt |= 0x02800000;
  1034. }
  1035. if (total_dimm == 2) {
  1036. if (total_rank == 2)
  1037. codt |= 0x08800000;
  1038. if (total_rank == 4)
  1039. codt |= 0x2a800000;
  1040. }
  1041. }
  1042. debug("nb of dimm %d\n", total_dimm);
  1043. debug("nb of rank %d\n", total_rank);
  1044. if (total_dimm == 1)
  1045. debug("dimm in slot %d\n", firstSlot);
  1046. mtsdram(SDRAM_CODT, codt);
  1047. mtsdram(SDRAM_MODT0, modt0);
  1048. mtsdram(SDRAM_MODT1, modt1);
  1049. mtsdram(SDRAM_MODT2, modt2);
  1050. mtsdram(SDRAM_MODT3, modt3);
  1051. }
  1052. /*-----------------------------------------------------------------------------+
  1053. * program_initplr.
  1054. *-----------------------------------------------------------------------------*/
  1055. static void program_initplr(unsigned long *dimm_populated,
  1056. unsigned char *iic0_dimm_addr,
  1057. unsigned long num_dimm_banks,
  1058. ddr_cas_id_t selected_cas,
  1059. int write_recovery)
  1060. {
  1061. u32 cas = 0;
  1062. u32 odt = 0;
  1063. u32 ods = 0;
  1064. u32 mr;
  1065. u32 wr;
  1066. u32 emr;
  1067. u32 emr2;
  1068. u32 emr3;
  1069. int dimm_num;
  1070. int total_dimm = 0;
  1071. /******************************************************
  1072. ** Assumption: if more than one DIMM, all DIMMs are the same
  1073. ** as already checked in check_memory_type
  1074. ******************************************************/
  1075. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1076. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1077. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1078. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1079. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1080. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1081. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1082. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1083. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1084. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1085. switch (selected_cas) {
  1086. case DDR_CAS_3:
  1087. cas = 3 << 4;
  1088. break;
  1089. case DDR_CAS_4:
  1090. cas = 4 << 4;
  1091. break;
  1092. case DDR_CAS_5:
  1093. cas = 5 << 4;
  1094. break;
  1095. default:
  1096. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1097. hang();
  1098. break;
  1099. }
  1100. #if 0
  1101. /*
  1102. * ToDo - Still a problem with the write recovery:
  1103. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1104. * in the INITPLR reg to the value calculated in program_mode()
  1105. * results in not correctly working DDR2 memory (crash after
  1106. * relocation).
  1107. *
  1108. * So for now, set the write recovery to 3. This seems to work
  1109. * on the Corair module too.
  1110. *
  1111. * 2007-03-01, sr
  1112. */
  1113. switch (write_recovery) {
  1114. case 3:
  1115. wr = WRITE_RECOV_3;
  1116. break;
  1117. case 4:
  1118. wr = WRITE_RECOV_4;
  1119. break;
  1120. case 5:
  1121. wr = WRITE_RECOV_5;
  1122. break;
  1123. case 6:
  1124. wr = WRITE_RECOV_6;
  1125. break;
  1126. default:
  1127. printf("ERROR: write recovery not support (%d)", write_recovery);
  1128. hang();
  1129. break;
  1130. }
  1131. #else
  1132. wr = WRITE_RECOV_3; /* test-only, see description above */
  1133. #endif
  1134. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1135. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1136. total_dimm++;
  1137. if (total_dimm == 1) {
  1138. odt = ODT_150_OHM;
  1139. ods = ODS_FULL;
  1140. } else if (total_dimm == 2) {
  1141. odt = ODT_75_OHM;
  1142. ods = ODS_REDUCED;
  1143. } else {
  1144. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1145. hang();
  1146. }
  1147. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1148. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1149. emr2 = CMD_EMR | SELECT_EMR2;
  1150. emr3 = CMD_EMR | SELECT_EMR3;
  1151. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1152. udelay(1000);
  1153. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1154. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1155. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1156. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1157. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1158. udelay(1000);
  1159. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1160. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1161. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1162. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1163. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1164. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1165. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1166. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1167. } else {
  1168. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1169. hang();
  1170. }
  1171. }
  1172. /*------------------------------------------------------------------
  1173. * This routine programs the SDRAM_MMODE register.
  1174. * the selected_cas is an output parameter, that will be passed
  1175. * by caller to call the above program_initplr( )
  1176. *-----------------------------------------------------------------*/
  1177. static void program_mode(unsigned long *dimm_populated,
  1178. unsigned char *iic0_dimm_addr,
  1179. unsigned long num_dimm_banks,
  1180. ddr_cas_id_t *selected_cas,
  1181. int *write_recovery)
  1182. {
  1183. unsigned long dimm_num;
  1184. unsigned long sdram_ddr1;
  1185. unsigned long t_wr_ns;
  1186. unsigned long t_wr_clk;
  1187. unsigned long cas_bit;
  1188. unsigned long cas_index;
  1189. unsigned long sdram_freq;
  1190. unsigned long ddr_check;
  1191. unsigned long mmode;
  1192. unsigned long tcyc_reg;
  1193. unsigned long cycle_2_0_clk;
  1194. unsigned long cycle_2_5_clk;
  1195. unsigned long cycle_3_0_clk;
  1196. unsigned long cycle_4_0_clk;
  1197. unsigned long cycle_5_0_clk;
  1198. unsigned long max_2_0_tcyc_ns_x_100;
  1199. unsigned long max_2_5_tcyc_ns_x_100;
  1200. unsigned long max_3_0_tcyc_ns_x_100;
  1201. unsigned long max_4_0_tcyc_ns_x_100;
  1202. unsigned long max_5_0_tcyc_ns_x_100;
  1203. unsigned long cycle_time_ns_x_100[3];
  1204. PPC440_SYS_INFO board_cfg;
  1205. unsigned char cas_2_0_available;
  1206. unsigned char cas_2_5_available;
  1207. unsigned char cas_3_0_available;
  1208. unsigned char cas_4_0_available;
  1209. unsigned char cas_5_0_available;
  1210. unsigned long sdr_ddrpll;
  1211. /*------------------------------------------------------------------
  1212. * Get the board configuration info.
  1213. *-----------------------------------------------------------------*/
  1214. get_sys_info(&board_cfg);
  1215. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1216. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1217. debug("sdram_freq=%d\n", sdram_freq);
  1218. /*------------------------------------------------------------------
  1219. * Handle the timing. We need to find the worst case timing of all
  1220. * the dimm modules installed.
  1221. *-----------------------------------------------------------------*/
  1222. t_wr_ns = 0;
  1223. cas_2_0_available = TRUE;
  1224. cas_2_5_available = TRUE;
  1225. cas_3_0_available = TRUE;
  1226. cas_4_0_available = TRUE;
  1227. cas_5_0_available = TRUE;
  1228. max_2_0_tcyc_ns_x_100 = 10;
  1229. max_2_5_tcyc_ns_x_100 = 10;
  1230. max_3_0_tcyc_ns_x_100 = 10;
  1231. max_4_0_tcyc_ns_x_100 = 10;
  1232. max_5_0_tcyc_ns_x_100 = 10;
  1233. sdram_ddr1 = TRUE;
  1234. /* loop through all the DIMM slots on the board */
  1235. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1236. /* If a dimm is installed in a particular slot ... */
  1237. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1238. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1239. sdram_ddr1 = TRUE;
  1240. else
  1241. sdram_ddr1 = FALSE;
  1242. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1243. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1244. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1245. /* For a particular DIMM, grab the three CAS values it supports */
  1246. for (cas_index = 0; cas_index < 3; cas_index++) {
  1247. switch (cas_index) {
  1248. case 0:
  1249. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1250. break;
  1251. case 1:
  1252. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1253. break;
  1254. default:
  1255. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1256. break;
  1257. }
  1258. if ((tcyc_reg & 0x0F) >= 10) {
  1259. if ((tcyc_reg & 0x0F) == 0x0D) {
  1260. /* Convert from hex to decimal */
  1261. cycle_time_ns_x_100[cas_index] =
  1262. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1263. } else {
  1264. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1265. "in slot %d\n", (unsigned int)dimm_num);
  1266. hang();
  1267. }
  1268. } else {
  1269. /* Convert from hex to decimal */
  1270. cycle_time_ns_x_100[cas_index] =
  1271. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1272. ((tcyc_reg & 0x0F)*10);
  1273. }
  1274. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1275. cycle_time_ns_x_100[cas_index]);
  1276. }
  1277. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1278. /* supported for a particular DIMM. */
  1279. cas_index = 0;
  1280. if (sdram_ddr1) {
  1281. /*
  1282. * DDR devices use the following bitmask for CAS latency:
  1283. * Bit 7 6 5 4 3 2 1 0
  1284. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1285. */
  1286. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1287. (cycle_time_ns_x_100[cas_index] != 0)) {
  1288. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1289. cycle_time_ns_x_100[cas_index]);
  1290. cas_index++;
  1291. } else {
  1292. if (cas_index != 0)
  1293. cas_index++;
  1294. cas_4_0_available = FALSE;
  1295. }
  1296. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1297. (cycle_time_ns_x_100[cas_index] != 0)) {
  1298. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1299. cycle_time_ns_x_100[cas_index]);
  1300. cas_index++;
  1301. } else {
  1302. if (cas_index != 0)
  1303. cas_index++;
  1304. cas_3_0_available = FALSE;
  1305. }
  1306. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1307. (cycle_time_ns_x_100[cas_index] != 0)) {
  1308. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1309. cycle_time_ns_x_100[cas_index]);
  1310. cas_index++;
  1311. } else {
  1312. if (cas_index != 0)
  1313. cas_index++;
  1314. cas_2_5_available = FALSE;
  1315. }
  1316. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1317. (cycle_time_ns_x_100[cas_index] != 0)) {
  1318. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1319. cycle_time_ns_x_100[cas_index]);
  1320. cas_index++;
  1321. } else {
  1322. if (cas_index != 0)
  1323. cas_index++;
  1324. cas_2_0_available = FALSE;
  1325. }
  1326. } else {
  1327. /*
  1328. * DDR2 devices use the following bitmask for CAS latency:
  1329. * Bit 7 6 5 4 3 2 1 0
  1330. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1331. */
  1332. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1333. (cycle_time_ns_x_100[cas_index] != 0)) {
  1334. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1335. cycle_time_ns_x_100[cas_index]);
  1336. cas_index++;
  1337. } else {
  1338. if (cas_index != 0)
  1339. cas_index++;
  1340. cas_5_0_available = FALSE;
  1341. }
  1342. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1343. (cycle_time_ns_x_100[cas_index] != 0)) {
  1344. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1345. cycle_time_ns_x_100[cas_index]);
  1346. cas_index++;
  1347. } else {
  1348. if (cas_index != 0)
  1349. cas_index++;
  1350. cas_4_0_available = FALSE;
  1351. }
  1352. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1353. (cycle_time_ns_x_100[cas_index] != 0)) {
  1354. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1355. cycle_time_ns_x_100[cas_index]);
  1356. cas_index++;
  1357. } else {
  1358. if (cas_index != 0)
  1359. cas_index++;
  1360. cas_3_0_available = FALSE;
  1361. }
  1362. }
  1363. }
  1364. }
  1365. /*------------------------------------------------------------------
  1366. * Set the SDRAM mode, SDRAM_MMODE
  1367. *-----------------------------------------------------------------*/
  1368. mfsdram(SDRAM_MMODE, mmode);
  1369. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1370. /* add 10 here because of rounding problems */
  1371. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1372. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1373. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1374. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1375. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1376. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1377. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1378. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1379. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1380. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1381. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1382. *selected_cas = DDR_CAS_2;
  1383. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1384. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1385. *selected_cas = DDR_CAS_2_5;
  1386. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1387. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1388. *selected_cas = DDR_CAS_3;
  1389. } else {
  1390. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1391. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1392. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1393. hang();
  1394. }
  1395. } else { /* DDR2 */
  1396. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1397. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1398. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1399. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1400. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1401. *selected_cas = DDR_CAS_3;
  1402. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1403. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1404. *selected_cas = DDR_CAS_4;
  1405. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1406. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1407. *selected_cas = DDR_CAS_5;
  1408. } else {
  1409. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1410. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1411. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1412. printf("cas3=%d cas4=%d cas5=%d\n",
  1413. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1414. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1415. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1416. hang();
  1417. }
  1418. }
  1419. if (sdram_ddr1 == TRUE)
  1420. mmode |= SDRAM_MMODE_WR_DDR1;
  1421. else {
  1422. /* loop through all the DIMM slots on the board */
  1423. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1424. /* If a dimm is installed in a particular slot ... */
  1425. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1426. t_wr_ns = max(t_wr_ns,
  1427. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1428. }
  1429. /*
  1430. * convert from nanoseconds to ddr clocks
  1431. * round up if necessary
  1432. */
  1433. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1434. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1435. if (sdram_freq != ddr_check)
  1436. t_wr_clk++;
  1437. switch (t_wr_clk) {
  1438. case 0:
  1439. case 1:
  1440. case 2:
  1441. case 3:
  1442. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1443. break;
  1444. case 4:
  1445. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1446. break;
  1447. case 5:
  1448. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1449. break;
  1450. default:
  1451. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1452. break;
  1453. }
  1454. *write_recovery = t_wr_clk;
  1455. }
  1456. debug("CAS latency = %d\n", *selected_cas);
  1457. debug("Write recovery = %d\n", *write_recovery);
  1458. mtsdram(SDRAM_MMODE, mmode);
  1459. }
  1460. /*-----------------------------------------------------------------------------+
  1461. * program_rtr.
  1462. *-----------------------------------------------------------------------------*/
  1463. static void program_rtr(unsigned long *dimm_populated,
  1464. unsigned char *iic0_dimm_addr,
  1465. unsigned long num_dimm_banks)
  1466. {
  1467. PPC440_SYS_INFO board_cfg;
  1468. unsigned long max_refresh_rate;
  1469. unsigned long dimm_num;
  1470. unsigned long refresh_rate_type;
  1471. unsigned long refresh_rate;
  1472. unsigned long rint;
  1473. unsigned long sdram_freq;
  1474. unsigned long sdr_ddrpll;
  1475. unsigned long val;
  1476. /*------------------------------------------------------------------
  1477. * Get the board configuration info.
  1478. *-----------------------------------------------------------------*/
  1479. get_sys_info(&board_cfg);
  1480. /*------------------------------------------------------------------
  1481. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1482. *-----------------------------------------------------------------*/
  1483. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1484. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1485. max_refresh_rate = 0;
  1486. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1487. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1488. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1489. refresh_rate_type &= 0x7F;
  1490. switch (refresh_rate_type) {
  1491. case 0:
  1492. refresh_rate = 15625;
  1493. break;
  1494. case 1:
  1495. refresh_rate = 3906;
  1496. break;
  1497. case 2:
  1498. refresh_rate = 7812;
  1499. break;
  1500. case 3:
  1501. refresh_rate = 31250;
  1502. break;
  1503. case 4:
  1504. refresh_rate = 62500;
  1505. break;
  1506. case 5:
  1507. refresh_rate = 125000;
  1508. break;
  1509. default:
  1510. refresh_rate = 0;
  1511. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1512. (unsigned int)dimm_num);
  1513. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1514. hang();
  1515. break;
  1516. }
  1517. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1518. }
  1519. }
  1520. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1521. mfsdram(SDRAM_RTR, val);
  1522. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1523. (SDRAM_RTR_RINT_ENCODE(rint)));
  1524. }
  1525. /*------------------------------------------------------------------
  1526. * This routine programs the SDRAM_TRx registers.
  1527. *-----------------------------------------------------------------*/
  1528. static void program_tr(unsigned long *dimm_populated,
  1529. unsigned char *iic0_dimm_addr,
  1530. unsigned long num_dimm_banks)
  1531. {
  1532. unsigned long dimm_num;
  1533. unsigned long sdram_ddr1;
  1534. unsigned long t_rp_ns;
  1535. unsigned long t_rcd_ns;
  1536. unsigned long t_rrd_ns;
  1537. unsigned long t_ras_ns;
  1538. unsigned long t_rc_ns;
  1539. unsigned long t_rfc_ns;
  1540. unsigned long t_wpc_ns;
  1541. unsigned long t_wtr_ns;
  1542. unsigned long t_rpc_ns;
  1543. unsigned long t_rp_clk;
  1544. unsigned long t_rcd_clk;
  1545. unsigned long t_rrd_clk;
  1546. unsigned long t_ras_clk;
  1547. unsigned long t_rc_clk;
  1548. unsigned long t_rfc_clk;
  1549. unsigned long t_wpc_clk;
  1550. unsigned long t_wtr_clk;
  1551. unsigned long t_rpc_clk;
  1552. unsigned long sdtr1, sdtr2, sdtr3;
  1553. unsigned long ddr_check;
  1554. unsigned long sdram_freq;
  1555. unsigned long sdr_ddrpll;
  1556. PPC440_SYS_INFO board_cfg;
  1557. /*------------------------------------------------------------------
  1558. * Get the board configuration info.
  1559. *-----------------------------------------------------------------*/
  1560. get_sys_info(&board_cfg);
  1561. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1562. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1563. /*------------------------------------------------------------------
  1564. * Handle the timing. We need to find the worst case timing of all
  1565. * the dimm modules installed.
  1566. *-----------------------------------------------------------------*/
  1567. t_rp_ns = 0;
  1568. t_rrd_ns = 0;
  1569. t_rcd_ns = 0;
  1570. t_ras_ns = 0;
  1571. t_rc_ns = 0;
  1572. t_rfc_ns = 0;
  1573. t_wpc_ns = 0;
  1574. t_wtr_ns = 0;
  1575. t_rpc_ns = 0;
  1576. sdram_ddr1 = TRUE;
  1577. /* loop through all the DIMM slots on the board */
  1578. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1579. /* If a dimm is installed in a particular slot ... */
  1580. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1581. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1582. sdram_ddr1 = TRUE;
  1583. else
  1584. sdram_ddr1 = FALSE;
  1585. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1586. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1587. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1588. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1589. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1590. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1591. }
  1592. }
  1593. /*------------------------------------------------------------------
  1594. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1595. *-----------------------------------------------------------------*/
  1596. mfsdram(SDRAM_SDTR1, sdtr1);
  1597. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1598. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1599. /* default values */
  1600. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1601. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1602. /* normal operations */
  1603. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1604. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1605. mtsdram(SDRAM_SDTR1, sdtr1);
  1606. /*------------------------------------------------------------------
  1607. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1608. *-----------------------------------------------------------------*/
  1609. mfsdram(SDRAM_SDTR2, sdtr2);
  1610. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1611. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1612. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1613. SDRAM_SDTR2_RRD_MASK);
  1614. /*
  1615. * convert t_rcd from nanoseconds to ddr clocks
  1616. * round up if necessary
  1617. */
  1618. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1619. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1620. if (sdram_freq != ddr_check)
  1621. t_rcd_clk++;
  1622. switch (t_rcd_clk) {
  1623. case 0:
  1624. case 1:
  1625. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1626. break;
  1627. case 2:
  1628. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1629. break;
  1630. case 3:
  1631. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1632. break;
  1633. case 4:
  1634. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1635. break;
  1636. default:
  1637. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1638. break;
  1639. }
  1640. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1641. if (sdram_freq < 200000000) {
  1642. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1643. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1644. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1645. } else {
  1646. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1647. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1648. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1649. }
  1650. } else { /* DDR2 */
  1651. /* loop through all the DIMM slots on the board */
  1652. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1653. /* If a dimm is installed in a particular slot ... */
  1654. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1655. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1656. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1657. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1658. }
  1659. }
  1660. /*
  1661. * convert from nanoseconds to ddr clocks
  1662. * round up if necessary
  1663. */
  1664. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1665. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1666. if (sdram_freq != ddr_check)
  1667. t_wpc_clk++;
  1668. switch (t_wpc_clk) {
  1669. case 0:
  1670. case 1:
  1671. case 2:
  1672. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1673. break;
  1674. case 3:
  1675. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1676. break;
  1677. case 4:
  1678. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1679. break;
  1680. case 5:
  1681. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1682. break;
  1683. default:
  1684. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1685. break;
  1686. }
  1687. /*
  1688. * convert from nanoseconds to ddr clocks
  1689. * round up if necessary
  1690. */
  1691. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1692. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1693. if (sdram_freq != ddr_check)
  1694. t_wtr_clk++;
  1695. switch (t_wtr_clk) {
  1696. case 0:
  1697. case 1:
  1698. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1699. break;
  1700. case 2:
  1701. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1702. break;
  1703. case 3:
  1704. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1705. break;
  1706. default:
  1707. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1708. break;
  1709. }
  1710. /*
  1711. * convert from nanoseconds to ddr clocks
  1712. * round up if necessary
  1713. */
  1714. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1715. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1716. if (sdram_freq != ddr_check)
  1717. t_rpc_clk++;
  1718. switch (t_rpc_clk) {
  1719. case 0:
  1720. case 1:
  1721. case 2:
  1722. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1723. break;
  1724. case 3:
  1725. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1726. break;
  1727. default:
  1728. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1729. break;
  1730. }
  1731. }
  1732. /* default value */
  1733. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1734. /*
  1735. * convert t_rrd from nanoseconds to ddr clocks
  1736. * round up if necessary
  1737. */
  1738. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1739. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1740. if (sdram_freq != ddr_check)
  1741. t_rrd_clk++;
  1742. if (t_rrd_clk == 3)
  1743. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1744. else
  1745. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1746. /*
  1747. * convert t_rp from nanoseconds to ddr clocks
  1748. * round up if necessary
  1749. */
  1750. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1751. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1752. if (sdram_freq != ddr_check)
  1753. t_rp_clk++;
  1754. switch (t_rp_clk) {
  1755. case 0:
  1756. case 1:
  1757. case 2:
  1758. case 3:
  1759. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1760. break;
  1761. case 4:
  1762. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1763. break;
  1764. case 5:
  1765. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1766. break;
  1767. case 6:
  1768. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1769. break;
  1770. default:
  1771. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1772. break;
  1773. }
  1774. mtsdram(SDRAM_SDTR2, sdtr2);
  1775. /*------------------------------------------------------------------
  1776. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1777. *-----------------------------------------------------------------*/
  1778. mfsdram(SDRAM_SDTR3, sdtr3);
  1779. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1780. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1781. /*
  1782. * convert t_ras from nanoseconds to ddr clocks
  1783. * round up if necessary
  1784. */
  1785. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1786. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1787. if (sdram_freq != ddr_check)
  1788. t_ras_clk++;
  1789. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1790. /*
  1791. * convert t_rc from nanoseconds to ddr clocks
  1792. * round up if necessary
  1793. */
  1794. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1795. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1796. if (sdram_freq != ddr_check)
  1797. t_rc_clk++;
  1798. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1799. /* default xcs value */
  1800. sdtr3 |= SDRAM_SDTR3_XCS;
  1801. /*
  1802. * convert t_rfc from nanoseconds to ddr clocks
  1803. * round up if necessary
  1804. */
  1805. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1806. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1807. if (sdram_freq != ddr_check)
  1808. t_rfc_clk++;
  1809. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1810. mtsdram(SDRAM_SDTR3, sdtr3);
  1811. }
  1812. /*-----------------------------------------------------------------------------+
  1813. * program_bxcf.
  1814. *-----------------------------------------------------------------------------*/
  1815. static void program_bxcf(unsigned long *dimm_populated,
  1816. unsigned char *iic0_dimm_addr,
  1817. unsigned long num_dimm_banks)
  1818. {
  1819. unsigned long dimm_num;
  1820. unsigned long num_col_addr;
  1821. unsigned long num_ranks;
  1822. unsigned long num_banks;
  1823. unsigned long mode;
  1824. unsigned long ind_rank;
  1825. unsigned long ind;
  1826. unsigned long ind_bank;
  1827. unsigned long bank_0_populated;
  1828. /*------------------------------------------------------------------
  1829. * Set the BxCF regs. First, wipe out the bank config registers.
  1830. *-----------------------------------------------------------------*/
  1831. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
  1832. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1833. mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
  1834. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1835. mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
  1836. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1837. mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
  1838. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1839. mode = SDRAM_BXCF_M_BE_ENABLE;
  1840. bank_0_populated = 0;
  1841. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1842. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1843. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1844. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1845. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1846. num_ranks = (num_ranks & 0x0F) +1;
  1847. else
  1848. num_ranks = num_ranks & 0x0F;
  1849. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1850. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1851. if (num_banks == 4)
  1852. ind = 0;
  1853. else
  1854. ind = 5;
  1855. switch (num_col_addr) {
  1856. case 0x08:
  1857. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1858. break;
  1859. case 0x09:
  1860. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1861. break;
  1862. case 0x0A:
  1863. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1864. break;
  1865. case 0x0B:
  1866. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1867. break;
  1868. case 0x0C:
  1869. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1870. break;
  1871. default:
  1872. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1873. (unsigned int)dimm_num);
  1874. printf("ERROR: Unsupported value for number of "
  1875. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1876. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1877. hang();
  1878. }
  1879. }
  1880. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1881. bank_0_populated = 1;
  1882. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1883. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
  1884. mtdcr(SDRAMC_CFGDATA, mode);
  1885. }
  1886. }
  1887. }
  1888. }
  1889. /*------------------------------------------------------------------
  1890. * program memory queue.
  1891. *-----------------------------------------------------------------*/
  1892. static void program_memory_queue(unsigned long *dimm_populated,
  1893. unsigned char *iic0_dimm_addr,
  1894. unsigned long num_dimm_banks)
  1895. {
  1896. unsigned long dimm_num;
  1897. unsigned long rank_base_addr;
  1898. unsigned long rank_reg;
  1899. unsigned long rank_size_bytes;
  1900. unsigned long rank_size_id;
  1901. unsigned long num_ranks;
  1902. unsigned long baseadd_size;
  1903. unsigned long i;
  1904. unsigned long bank_0_populated = 0;
  1905. /*------------------------------------------------------------------
  1906. * Reset the rank_base_address.
  1907. *-----------------------------------------------------------------*/
  1908. rank_reg = SDRAM_R0BAS;
  1909. rank_base_addr = 0x00000000;
  1910. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1911. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1912. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1913. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1914. num_ranks = (num_ranks & 0x0F) + 1;
  1915. else
  1916. num_ranks = num_ranks & 0x0F;
  1917. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1918. /*------------------------------------------------------------------
  1919. * Set the sizes
  1920. *-----------------------------------------------------------------*/
  1921. baseadd_size = 0;
  1922. rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
  1923. switch (rank_size_id) {
  1924. case 0x02:
  1925. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1926. break;
  1927. case 0x04:
  1928. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1929. break;
  1930. case 0x08:
  1931. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1932. break;
  1933. case 0x10:
  1934. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1935. break;
  1936. case 0x20:
  1937. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1938. break;
  1939. case 0x40:
  1940. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1941. break;
  1942. case 0x80:
  1943. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1944. break;
  1945. default:
  1946. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1947. (unsigned int)dimm_num);
  1948. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1949. (unsigned int)rank_size_id);
  1950. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1951. hang();
  1952. }
  1953. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1954. bank_0_populated = 1;
  1955. for (i = 0; i < num_ranks; i++) {
  1956. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1957. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  1958. baseadd_size));
  1959. rank_base_addr += rank_size_bytes;
  1960. }
  1961. }
  1962. }
  1963. }
  1964. /*-----------------------------------------------------------------------------+
  1965. * is_ecc_enabled.
  1966. *-----------------------------------------------------------------------------*/
  1967. static unsigned long is_ecc_enabled(void)
  1968. {
  1969. unsigned long dimm_num;
  1970. unsigned long ecc;
  1971. unsigned long val;
  1972. ecc = 0;
  1973. /* loop through all the DIMM slots on the board */
  1974. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1975. mfsdram(SDRAM_MCOPT1, val);
  1976. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  1977. }
  1978. return ecc;
  1979. }
  1980. static void blank_string(int size)
  1981. {
  1982. int i;
  1983. for (i=0; i<size; i++)
  1984. putc('\b');
  1985. for (i=0; i<size; i++)
  1986. putc(' ');
  1987. for (i=0; i<size; i++)
  1988. putc('\b');
  1989. }
  1990. #ifdef CONFIG_DDR_ECC
  1991. /*-----------------------------------------------------------------------------+
  1992. * program_ecc.
  1993. *-----------------------------------------------------------------------------*/
  1994. static void program_ecc(unsigned long *dimm_populated,
  1995. unsigned char *iic0_dimm_addr,
  1996. unsigned long num_dimm_banks,
  1997. unsigned long tlb_word2_i_value)
  1998. {
  1999. unsigned long mcopt1;
  2000. unsigned long mcopt2;
  2001. unsigned long mcstat;
  2002. unsigned long dimm_num;
  2003. unsigned long ecc;
  2004. ecc = 0;
  2005. /* loop through all the DIMM slots on the board */
  2006. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2007. /* If a dimm is installed in a particular slot ... */
  2008. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2009. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2010. }
  2011. if (ecc == 0)
  2012. return;
  2013. mfsdram(SDRAM_MCOPT1, mcopt1);
  2014. mfsdram(SDRAM_MCOPT2, mcopt2);
  2015. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2016. /* DDR controller must be enabled and not in self-refresh. */
  2017. mfsdram(SDRAM_MCSTAT, mcstat);
  2018. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2019. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2020. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2021. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2022. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2023. }
  2024. }
  2025. return;
  2026. }
  2027. #ifdef CONFIG_ECC_ERROR_RESET
  2028. /*
  2029. * Check for ECC errors and reset board upon any error here
  2030. *
  2031. * On the Katmai 440SPe eval board, from time to time, the first
  2032. * lword write access after DDR2 initializazion with ECC checking
  2033. * enabled, leads to an ECC error. I couldn't find a configuration
  2034. * without this happening. On my board with the current setup it
  2035. * happens about 1 from 10 times.
  2036. *
  2037. * The ECC modules used for testing are:
  2038. * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
  2039. *
  2040. * This has to get fixed for the Katmai and tested for the other
  2041. * board (440SP/440SPe) that will eventually use this code in the
  2042. * future.
  2043. *
  2044. * 2007-03-01, sr
  2045. */
  2046. static void check_ecc(void)
  2047. {
  2048. u32 val;
  2049. mfsdram(SDRAM_ECCCR, val);
  2050. if (val != 0) {
  2051. printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
  2052. val, mfdcr(0x4c), mfdcr(0x4e));
  2053. printf("ECC error occured, resetting board...\n");
  2054. do_reset(NULL, 0, 0, NULL);
  2055. }
  2056. }
  2057. #endif
  2058. static void wait_ddr_idle(void)
  2059. {
  2060. u32 val;
  2061. do {
  2062. mfsdram(SDRAM_MCSTAT, val);
  2063. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2064. }
  2065. /*-----------------------------------------------------------------------------+
  2066. * program_ecc_addr.
  2067. *-----------------------------------------------------------------------------*/
  2068. static void program_ecc_addr(unsigned long start_address,
  2069. unsigned long num_bytes,
  2070. unsigned long tlb_word2_i_value)
  2071. {
  2072. unsigned long current_address;
  2073. unsigned long end_address;
  2074. unsigned long address_increment;
  2075. unsigned long mcopt1;
  2076. char str[] = "ECC generation -";
  2077. char slash[] = "\\|/-\\|/-";
  2078. int loop = 0;
  2079. int loopi = 0;
  2080. current_address = start_address;
  2081. mfsdram(SDRAM_MCOPT1, mcopt1);
  2082. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2083. mtsdram(SDRAM_MCOPT1,
  2084. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2085. sync();
  2086. eieio();
  2087. wait_ddr_idle();
  2088. puts(str);
  2089. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2090. /* ECC bit set method for non-cached memory */
  2091. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2092. address_increment = 4;
  2093. else
  2094. address_increment = 8;
  2095. end_address = current_address + num_bytes;
  2096. while (current_address < end_address) {
  2097. *((unsigned long *)current_address) = 0x00000000;
  2098. current_address += address_increment;
  2099. if ((loop++ % (2 << 20)) == 0) {
  2100. putc('\b');
  2101. putc(slash[loopi++ % 8]);
  2102. }
  2103. }
  2104. } else {
  2105. /* ECC bit set method for cached memory */
  2106. dcbz_area(start_address, num_bytes);
  2107. dflush();
  2108. }
  2109. blank_string(strlen(str));
  2110. sync();
  2111. eieio();
  2112. wait_ddr_idle();
  2113. /* clear ECC error repoting registers */
  2114. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2115. mtdcr(0x4c, 0xffffffff);
  2116. mtsdram(SDRAM_MCOPT1,
  2117. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2118. sync();
  2119. eieio();
  2120. wait_ddr_idle();
  2121. #ifdef CONFIG_ECC_ERROR_RESET
  2122. /*
  2123. * One write to 0 is enough to trigger this ECC error
  2124. * (see description above)
  2125. */
  2126. out_be32(0, 0x12345678);
  2127. check_ecc();
  2128. #endif
  2129. }
  2130. }
  2131. #endif
  2132. /*-----------------------------------------------------------------------------+
  2133. * program_DQS_calibration.
  2134. *-----------------------------------------------------------------------------*/
  2135. static void program_DQS_calibration(unsigned long *dimm_populated,
  2136. unsigned char *iic0_dimm_addr,
  2137. unsigned long num_dimm_banks)
  2138. {
  2139. unsigned long val;
  2140. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2141. mtsdram(SDRAM_RQDC, 0x80000037);
  2142. mtsdram(SDRAM_RDCC, 0x40000000);
  2143. mtsdram(SDRAM_RFDC, 0x000001DF);
  2144. test();
  2145. #else
  2146. /*------------------------------------------------------------------
  2147. * Program RDCC register
  2148. * Read sample cycle auto-update enable
  2149. *-----------------------------------------------------------------*/
  2150. /*
  2151. * Modified for the Katmai platform: with some DIMMs, the DDR2
  2152. * controller automatically selects the T2 read cycle, but this
  2153. * proves unreliable. Go ahead and force the DDR2 controller
  2154. * to use the T4 sample and disable the automatic update of the
  2155. * RDSS field.
  2156. */
  2157. mfsdram(SDRAM_RDCC, val);
  2158. mtsdram(SDRAM_RDCC,
  2159. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2160. | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
  2161. /*------------------------------------------------------------------
  2162. * Program RQDC register
  2163. * Internal DQS delay mechanism enable
  2164. *-----------------------------------------------------------------*/
  2165. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2166. /*------------------------------------------------------------------
  2167. * Program RFDC register
  2168. * Set Feedback Fractional Oversample
  2169. * Auto-detect read sample cycle enable
  2170. *-----------------------------------------------------------------*/
  2171. mfsdram(SDRAM_RFDC, val);
  2172. mtsdram(SDRAM_RFDC,
  2173. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2174. SDRAM_RFDC_RFFD_MASK))
  2175. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2176. SDRAM_RFDC_RFFD_ENCODE(0)));
  2177. DQS_calibration_process();
  2178. #endif
  2179. }
  2180. static int short_mem_test(void)
  2181. {
  2182. u32 *membase;
  2183. u32 bxcr_num;
  2184. u32 bxcf;
  2185. int i;
  2186. int j;
  2187. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2188. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2189. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2190. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2191. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2192. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2193. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2194. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2195. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2196. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2197. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2198. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2199. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2200. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2201. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2202. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2203. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2204. int l;
  2205. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2206. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2207. /* Banks enabled */
  2208. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2209. /* Bank is enabled */
  2210. /*------------------------------------------------------------------
  2211. * Run the short memory test.
  2212. *-----------------------------------------------------------------*/
  2213. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2214. for (i = 0; i < NUMMEMTESTS; i++) {
  2215. for (j = 0; j < NUMMEMWORDS; j++) {
  2216. membase[j] = test[i][j];
  2217. ppcDcbf((u32)&(membase[j]));
  2218. }
  2219. sync();
  2220. for (l=0; l<NUMLOOPS; l++) {
  2221. for (j = 0; j < NUMMEMWORDS; j++) {
  2222. if (membase[j] != test[i][j]) {
  2223. ppcDcbf((u32)&(membase[j]));
  2224. return 0;
  2225. }
  2226. ppcDcbf((u32)&(membase[j]));
  2227. }
  2228. sync();
  2229. }
  2230. }
  2231. } /* if bank enabled */
  2232. } /* for bxcf_num */
  2233. return 1;
  2234. }
  2235. #ifndef HARD_CODED_DQS
  2236. /*-----------------------------------------------------------------------------+
  2237. * DQS_calibration_process.
  2238. *-----------------------------------------------------------------------------*/
  2239. static void DQS_calibration_process(void)
  2240. {
  2241. unsigned long rfdc_reg;
  2242. unsigned long rffd;
  2243. unsigned long rqdc_reg;
  2244. unsigned long rqfd;
  2245. unsigned long val;
  2246. long rqfd_average;
  2247. long rffd_average;
  2248. long max_start;
  2249. long min_end;
  2250. unsigned long begin_rqfd[MAXRANKS];
  2251. unsigned long begin_rffd[MAXRANKS];
  2252. unsigned long end_rqfd[MAXRANKS];
  2253. unsigned long end_rffd[MAXRANKS];
  2254. char window_found;
  2255. unsigned long dlycal;
  2256. unsigned long dly_val;
  2257. unsigned long max_pass_length;
  2258. unsigned long current_pass_length;
  2259. unsigned long current_fail_length;
  2260. unsigned long current_start;
  2261. long max_end;
  2262. unsigned char fail_found;
  2263. unsigned char pass_found;
  2264. u32 rqfd_start;
  2265. char str[] = "Auto calibration -";
  2266. char slash[] = "\\|/-\\|/-";
  2267. int loopi = 0;
  2268. /*------------------------------------------------------------------
  2269. * Test to determine the best read clock delay tuning bits.
  2270. *
  2271. * Before the DDR controller can be used, the read clock delay needs to be
  2272. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2273. * This value cannot be hardcoded into the program because it changes
  2274. * depending on the board's setup and environment.
  2275. * To do this, all delay values are tested to see if they
  2276. * work or not. By doing this, you get groups of fails with groups of
  2277. * passing values. The idea is to find the start and end of a passing
  2278. * window and take the center of it to use as the read clock delay.
  2279. *
  2280. * A failure has to be seen first so that when we hit a pass, we know
  2281. * that it is truely the start of the window. If we get passing values
  2282. * to start off with, we don't know if we are at the start of the window.
  2283. *
  2284. * The code assumes that a failure will always be found.
  2285. * If a failure is not found, there is no easy way to get the middle
  2286. * of the passing window. I guess we can pretty much pick any value
  2287. * but some values will be better than others. Since the lowest speed
  2288. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2289. * from experimentation it is safe to say you will always have a failure.
  2290. *-----------------------------------------------------------------*/
  2291. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2292. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2293. puts(str);
  2294. calibration_loop:
  2295. mfsdram(SDRAM_RQDC, rqdc_reg);
  2296. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2297. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2298. max_start = 0;
  2299. min_end = 0;
  2300. begin_rqfd[0] = 0;
  2301. begin_rffd[0] = 0;
  2302. begin_rqfd[1] = 0;
  2303. begin_rffd[1] = 0;
  2304. end_rqfd[0] = 0;
  2305. end_rffd[0] = 0;
  2306. end_rqfd[1] = 0;
  2307. end_rffd[1] = 0;
  2308. window_found = FALSE;
  2309. max_pass_length = 0;
  2310. max_start = 0;
  2311. max_end = 0;
  2312. current_pass_length = 0;
  2313. current_fail_length = 0;
  2314. current_start = 0;
  2315. window_found = FALSE;
  2316. fail_found = FALSE;
  2317. pass_found = FALSE;
  2318. /*
  2319. * get the delay line calibration register value
  2320. */
  2321. mfsdram(SDRAM_DLCR, dlycal);
  2322. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2323. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2324. mfsdram(SDRAM_RFDC, rfdc_reg);
  2325. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2326. /*------------------------------------------------------------------
  2327. * Set the timing reg for the test.
  2328. *-----------------------------------------------------------------*/
  2329. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2330. /*------------------------------------------------------------------
  2331. * See if the rffd value passed.
  2332. *-----------------------------------------------------------------*/
  2333. if (short_mem_test()) {
  2334. if (fail_found == TRUE) {
  2335. pass_found = TRUE;
  2336. if (current_pass_length == 0)
  2337. current_start = rffd;
  2338. current_fail_length = 0;
  2339. current_pass_length++;
  2340. if (current_pass_length > max_pass_length) {
  2341. max_pass_length = current_pass_length;
  2342. max_start = current_start;
  2343. max_end = rffd;
  2344. }
  2345. }
  2346. } else {
  2347. current_pass_length = 0;
  2348. current_fail_length++;
  2349. if (current_fail_length >= (dly_val >> 2)) {
  2350. if (fail_found == FALSE) {
  2351. fail_found = TRUE;
  2352. } else if (pass_found == TRUE) {
  2353. window_found = TRUE;
  2354. break;
  2355. }
  2356. }
  2357. }
  2358. } /* for rffd */
  2359. /*------------------------------------------------------------------
  2360. * Set the average RFFD value
  2361. *-----------------------------------------------------------------*/
  2362. rffd_average = ((max_start + max_end) >> 1);
  2363. if (rffd_average < 0)
  2364. rffd_average = 0;
  2365. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2366. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2367. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2368. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2369. max_pass_length = 0;
  2370. max_start = 0;
  2371. max_end = 0;
  2372. current_pass_length = 0;
  2373. current_fail_length = 0;
  2374. current_start = 0;
  2375. window_found = FALSE;
  2376. fail_found = FALSE;
  2377. pass_found = FALSE;
  2378. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2379. mfsdram(SDRAM_RQDC, rqdc_reg);
  2380. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2381. /*------------------------------------------------------------------
  2382. * Set the timing reg for the test.
  2383. *-----------------------------------------------------------------*/
  2384. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2385. /*------------------------------------------------------------------
  2386. * See if the rffd value passed.
  2387. *-----------------------------------------------------------------*/
  2388. if (short_mem_test()) {
  2389. if (fail_found == TRUE) {
  2390. pass_found = TRUE;
  2391. if (current_pass_length == 0)
  2392. current_start = rqfd;
  2393. current_fail_length = 0;
  2394. current_pass_length++;
  2395. if (current_pass_length > max_pass_length) {
  2396. max_pass_length = current_pass_length;
  2397. max_start = current_start;
  2398. max_end = rqfd;
  2399. }
  2400. }
  2401. } else {
  2402. current_pass_length = 0;
  2403. current_fail_length++;
  2404. if (fail_found == FALSE) {
  2405. fail_found = TRUE;
  2406. } else if (pass_found == TRUE) {
  2407. window_found = TRUE;
  2408. break;
  2409. }
  2410. }
  2411. }
  2412. rqfd_average = ((max_start + max_end) >> 1);
  2413. /*------------------------------------------------------------------
  2414. * Make sure we found the valid read passing window. Halt if not
  2415. *-----------------------------------------------------------------*/
  2416. if (window_found == FALSE) {
  2417. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2418. putc('\b');
  2419. putc(slash[loopi++ % 8]);
  2420. /* try again from with a different RQFD start value */
  2421. rqfd_start++;
  2422. goto calibration_loop;
  2423. }
  2424. printf("\nERROR: Cannot determine a common read delay for the "
  2425. "DIMM(s) installed.\n");
  2426. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2427. hang();
  2428. }
  2429. blank_string(strlen(str));
  2430. if (rqfd_average < 0)
  2431. rqfd_average = 0;
  2432. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2433. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2434. mtsdram(SDRAM_RQDC,
  2435. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2436. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2437. mfsdram(SDRAM_DLCR, val);
  2438. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2439. mfsdram(SDRAM_RQDC, val);
  2440. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2441. mfsdram(SDRAM_RFDC, val);
  2442. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2443. }
  2444. #else /* calibration test with hardvalues */
  2445. /*-----------------------------------------------------------------------------+
  2446. * DQS_calibration_process.
  2447. *-----------------------------------------------------------------------------*/
  2448. static void test(void)
  2449. {
  2450. unsigned long dimm_num;
  2451. unsigned long ecc_temp;
  2452. unsigned long i, j;
  2453. unsigned long *membase;
  2454. unsigned long bxcf[MAXRANKS];
  2455. unsigned long val;
  2456. char window_found;
  2457. char begin_found[MAXDIMMS];
  2458. char end_found[MAXDIMMS];
  2459. char search_end[MAXDIMMS];
  2460. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2461. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2462. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2463. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2464. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2465. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2466. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2467. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2468. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2469. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2470. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2471. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2472. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2473. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2474. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2475. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2476. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2477. /*------------------------------------------------------------------
  2478. * Test to determine the best read clock delay tuning bits.
  2479. *
  2480. * Before the DDR controller can be used, the read clock delay needs to be
  2481. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2482. * This value cannot be hardcoded into the program because it changes
  2483. * depending on the board's setup and environment.
  2484. * To do this, all delay values are tested to see if they
  2485. * work or not. By doing this, you get groups of fails with groups of
  2486. * passing values. The idea is to find the start and end of a passing
  2487. * window and take the center of it to use as the read clock delay.
  2488. *
  2489. * A failure has to be seen first so that when we hit a pass, we know
  2490. * that it is truely the start of the window. If we get passing values
  2491. * to start off with, we don't know if we are at the start of the window.
  2492. *
  2493. * The code assumes that a failure will always be found.
  2494. * If a failure is not found, there is no easy way to get the middle
  2495. * of the passing window. I guess we can pretty much pick any value
  2496. * but some values will be better than others. Since the lowest speed
  2497. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2498. * from experimentation it is safe to say you will always have a failure.
  2499. *-----------------------------------------------------------------*/
  2500. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2501. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2502. mfsdram(SDRAM_MCOPT1, val);
  2503. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2504. SDRAM_MCOPT1_MCHK_NON);
  2505. window_found = FALSE;
  2506. begin_found[0] = FALSE;
  2507. end_found[0] = FALSE;
  2508. search_end[0] = FALSE;
  2509. begin_found[1] = FALSE;
  2510. end_found[1] = FALSE;
  2511. search_end[1] = FALSE;
  2512. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2513. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2514. /* Banks enabled */
  2515. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2516. /* Bank is enabled */
  2517. membase =
  2518. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2519. /*------------------------------------------------------------------
  2520. * Run the short memory test.
  2521. *-----------------------------------------------------------------*/
  2522. for (i = 0; i < NUMMEMTESTS; i++) {
  2523. for (j = 0; j < NUMMEMWORDS; j++) {
  2524. membase[j] = test[i][j];
  2525. ppcDcbf((u32)&(membase[j]));
  2526. }
  2527. sync();
  2528. for (j = 0; j < NUMMEMWORDS; j++) {
  2529. if (membase[j] != test[i][j]) {
  2530. ppcDcbf((u32)&(membase[j]));
  2531. break;
  2532. }
  2533. ppcDcbf((u32)&(membase[j]));
  2534. }
  2535. sync();
  2536. if (j < NUMMEMWORDS)
  2537. break;
  2538. }
  2539. /*------------------------------------------------------------------
  2540. * See if the rffd value passed.
  2541. *-----------------------------------------------------------------*/
  2542. if (i < NUMMEMTESTS) {
  2543. if ((end_found[dimm_num] == FALSE) &&
  2544. (search_end[dimm_num] == TRUE)) {
  2545. end_found[dimm_num] = TRUE;
  2546. }
  2547. if ((end_found[0] == TRUE) &&
  2548. (end_found[1] == TRUE))
  2549. break;
  2550. } else {
  2551. if (begin_found[dimm_num] == FALSE) {
  2552. begin_found[dimm_num] = TRUE;
  2553. search_end[dimm_num] = TRUE;
  2554. }
  2555. }
  2556. } else {
  2557. begin_found[dimm_num] = TRUE;
  2558. end_found[dimm_num] = TRUE;
  2559. }
  2560. }
  2561. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2562. window_found = TRUE;
  2563. /*------------------------------------------------------------------
  2564. * Make sure we found the valid read passing window. Halt if not
  2565. *-----------------------------------------------------------------*/
  2566. if (window_found == FALSE) {
  2567. printf("ERROR: Cannot determine a common read delay for the "
  2568. "DIMM(s) installed.\n");
  2569. hang();
  2570. }
  2571. /*------------------------------------------------------------------
  2572. * Restore the ECC variable to what it originally was
  2573. *-----------------------------------------------------------------*/
  2574. mtsdram(SDRAM_MCOPT1,
  2575. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2576. | ecc_temp);
  2577. }
  2578. #endif
  2579. #if defined(DEBUG)
  2580. static void ppc440sp_sdram_register_dump(void)
  2581. {
  2582. unsigned int sdram_reg;
  2583. unsigned int sdram_data;
  2584. unsigned int dcr_data;
  2585. printf("\n Register Dump:\n");
  2586. sdram_reg = SDRAM_MCSTAT;
  2587. mfsdram(sdram_reg, sdram_data);
  2588. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2589. sdram_reg = SDRAM_MCOPT1;
  2590. mfsdram(sdram_reg, sdram_data);
  2591. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2592. sdram_reg = SDRAM_MCOPT2;
  2593. mfsdram(sdram_reg, sdram_data);
  2594. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2595. sdram_reg = SDRAM_MODT0;
  2596. mfsdram(sdram_reg, sdram_data);
  2597. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2598. sdram_reg = SDRAM_MODT1;
  2599. mfsdram(sdram_reg, sdram_data);
  2600. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2601. sdram_reg = SDRAM_MODT2;
  2602. mfsdram(sdram_reg, sdram_data);
  2603. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2604. sdram_reg = SDRAM_MODT3;
  2605. mfsdram(sdram_reg, sdram_data);
  2606. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2607. sdram_reg = SDRAM_CODT;
  2608. mfsdram(sdram_reg, sdram_data);
  2609. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2610. sdram_reg = SDRAM_VVPR;
  2611. mfsdram(sdram_reg, sdram_data);
  2612. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2613. sdram_reg = SDRAM_OPARS;
  2614. mfsdram(sdram_reg, sdram_data);
  2615. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2616. /*
  2617. * OPAR2 is only used as a trigger register.
  2618. * No data is contained in this register, and reading or writing
  2619. * to is can cause bad things to happen (hangs). Just skip it
  2620. * and report NA
  2621. * sdram_reg = SDRAM_OPAR2;
  2622. * mfsdram(sdram_reg, sdram_data);
  2623. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2624. */
  2625. printf(" SDRAM_OPART = N/A ");
  2626. sdram_reg = SDRAM_RTR;
  2627. mfsdram(sdram_reg, sdram_data);
  2628. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2629. sdram_reg = SDRAM_MB0CF;
  2630. mfsdram(sdram_reg, sdram_data);
  2631. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2632. sdram_reg = SDRAM_MB1CF;
  2633. mfsdram(sdram_reg, sdram_data);
  2634. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2635. sdram_reg = SDRAM_MB2CF;
  2636. mfsdram(sdram_reg, sdram_data);
  2637. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2638. sdram_reg = SDRAM_MB3CF;
  2639. mfsdram(sdram_reg, sdram_data);
  2640. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2641. sdram_reg = SDRAM_INITPLR0;
  2642. mfsdram(sdram_reg, sdram_data);
  2643. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2644. sdram_reg = SDRAM_INITPLR1;
  2645. mfsdram(sdram_reg, sdram_data);
  2646. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2647. sdram_reg = SDRAM_INITPLR2;
  2648. mfsdram(sdram_reg, sdram_data);
  2649. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2650. sdram_reg = SDRAM_INITPLR3;
  2651. mfsdram(sdram_reg, sdram_data);
  2652. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2653. sdram_reg = SDRAM_INITPLR4;
  2654. mfsdram(sdram_reg, sdram_data);
  2655. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2656. sdram_reg = SDRAM_INITPLR5;
  2657. mfsdram(sdram_reg, sdram_data);
  2658. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2659. sdram_reg = SDRAM_INITPLR6;
  2660. mfsdram(sdram_reg, sdram_data);
  2661. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2662. sdram_reg = SDRAM_INITPLR7;
  2663. mfsdram(sdram_reg, sdram_data);
  2664. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2665. sdram_reg = SDRAM_INITPLR8;
  2666. mfsdram(sdram_reg, sdram_data);
  2667. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2668. sdram_reg = SDRAM_INITPLR9;
  2669. mfsdram(sdram_reg, sdram_data);
  2670. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2671. sdram_reg = SDRAM_INITPLR10;
  2672. mfsdram(sdram_reg, sdram_data);
  2673. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2674. sdram_reg = SDRAM_INITPLR11;
  2675. mfsdram(sdram_reg, sdram_data);
  2676. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2677. sdram_reg = SDRAM_INITPLR12;
  2678. mfsdram(sdram_reg, sdram_data);
  2679. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2680. sdram_reg = SDRAM_INITPLR13;
  2681. mfsdram(sdram_reg, sdram_data);
  2682. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2683. sdram_reg = SDRAM_INITPLR14;
  2684. mfsdram(sdram_reg, sdram_data);
  2685. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2686. sdram_reg = SDRAM_INITPLR15;
  2687. mfsdram(sdram_reg, sdram_data);
  2688. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2689. sdram_reg = SDRAM_RQDC;
  2690. mfsdram(sdram_reg, sdram_data);
  2691. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2692. sdram_reg = SDRAM_RFDC;
  2693. mfsdram(sdram_reg, sdram_data);
  2694. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2695. sdram_reg = SDRAM_RDCC;
  2696. mfsdram(sdram_reg, sdram_data);
  2697. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2698. sdram_reg = SDRAM_DLCR;
  2699. mfsdram(sdram_reg, sdram_data);
  2700. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2701. sdram_reg = SDRAM_CLKTR;
  2702. mfsdram(sdram_reg, sdram_data);
  2703. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2704. sdram_reg = SDRAM_WRDTR;
  2705. mfsdram(sdram_reg, sdram_data);
  2706. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2707. sdram_reg = SDRAM_SDTR1;
  2708. mfsdram(sdram_reg, sdram_data);
  2709. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2710. sdram_reg = SDRAM_SDTR2;
  2711. mfsdram(sdram_reg, sdram_data);
  2712. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2713. sdram_reg = SDRAM_SDTR3;
  2714. mfsdram(sdram_reg, sdram_data);
  2715. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2716. sdram_reg = SDRAM_MMODE;
  2717. mfsdram(sdram_reg, sdram_data);
  2718. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2719. sdram_reg = SDRAM_MEMODE;
  2720. mfsdram(sdram_reg, sdram_data);
  2721. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2722. sdram_reg = SDRAM_ECCCR;
  2723. mfsdram(sdram_reg, sdram_data);
  2724. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2725. dcr_data = mfdcr(SDRAM_R0BAS);
  2726. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2727. dcr_data = mfdcr(SDRAM_R1BAS);
  2728. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2729. dcr_data = mfdcr(SDRAM_R2BAS);
  2730. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2731. dcr_data = mfdcr(SDRAM_R3BAS);
  2732. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2733. }
  2734. #endif
  2735. #endif /* CONFIG_SPD_EEPROM */