clock.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302
  1. /*
  2. * Copyright (C) 2010 Samsung Electronics
  3. * Minkyu Kang <mk7.kang@samsung.com>
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <asm/io.h>
  25. #include <asm/arch/clock.h>
  26. #include <asm/arch/clk.h>
  27. #include <asm/arch/periph.h>
  28. /* Epll Clock division values to achive different frequency output */
  29. static struct set_epll_con_val exynos5_epll_div[] = {
  30. { 192000000, 0, 48, 3, 1, 0 },
  31. { 180000000, 0, 45, 3, 1, 0 },
  32. { 73728000, 1, 73, 3, 3, 47710 },
  33. { 67737600, 1, 90, 4, 3, 20762 },
  34. { 49152000, 0, 49, 3, 3, 9961 },
  35. { 45158400, 0, 45, 3, 3, 10381 },
  36. { 180633600, 0, 45, 3, 1, 10381 }
  37. };
  38. /* exynos: return pll clock frequency */
  39. static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
  40. {
  41. unsigned long m, p, s = 0, mask, fout;
  42. unsigned int freq;
  43. /*
  44. * APLL_CON: MIDV [25:16]
  45. * MPLL_CON: MIDV [25:16]
  46. * EPLL_CON: MIDV [24:16]
  47. * VPLL_CON: MIDV [24:16]
  48. * BPLL_CON: MIDV [25:16]: Exynos5
  49. */
  50. if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
  51. mask = 0x3ff;
  52. else
  53. mask = 0x1ff;
  54. m = (r >> 16) & mask;
  55. /* PDIV [13:8] */
  56. p = (r >> 8) & 0x3f;
  57. /* SDIV [2:0] */
  58. s = r & 0x7;
  59. freq = CONFIG_SYS_CLK_FREQ;
  60. if (pllreg == EPLL) {
  61. k = k & 0xffff;
  62. /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
  63. fout = (m + k / 65536) * (freq / (p * (1 << s)));
  64. } else if (pllreg == VPLL) {
  65. k = k & 0xfff;
  66. /* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
  67. fout = (m + k / 1024) * (freq / (p * (1 << s)));
  68. } else {
  69. if (s < 1)
  70. s = 1;
  71. /* FOUT = MDIV * FIN / (PDIV * 2^(SDIV - 1)) */
  72. fout = m * (freq / (p * (1 << (s - 1))));
  73. }
  74. return fout;
  75. }
  76. /* exynos4: return pll clock frequency */
  77. static unsigned long exynos4_get_pll_clk(int pllreg)
  78. {
  79. struct exynos4_clock *clk =
  80. (struct exynos4_clock *)samsung_get_base_clock();
  81. unsigned long r, k = 0;
  82. switch (pllreg) {
  83. case APLL:
  84. r = readl(&clk->apll_con0);
  85. break;
  86. case MPLL:
  87. r = readl(&clk->mpll_con0);
  88. break;
  89. case EPLL:
  90. r = readl(&clk->epll_con0);
  91. k = readl(&clk->epll_con1);
  92. break;
  93. case VPLL:
  94. r = readl(&clk->vpll_con0);
  95. k = readl(&clk->vpll_con1);
  96. break;
  97. default:
  98. printf("Unsupported PLL (%d)\n", pllreg);
  99. return 0;
  100. }
  101. return exynos_get_pll_clk(pllreg, r, k);
  102. }
  103. /* exynos4x12: return pll clock frequency */
  104. static unsigned long exynos4x12_get_pll_clk(int pllreg)
  105. {
  106. struct exynos4x12_clock *clk =
  107. (struct exynos4x12_clock *)samsung_get_base_clock();
  108. unsigned long r, k = 0;
  109. switch (pllreg) {
  110. case APLL:
  111. r = readl(&clk->apll_con0);
  112. break;
  113. case MPLL:
  114. r = readl(&clk->mpll_con0);
  115. break;
  116. case EPLL:
  117. r = readl(&clk->epll_con0);
  118. k = readl(&clk->epll_con1);
  119. break;
  120. case VPLL:
  121. r = readl(&clk->vpll_con0);
  122. k = readl(&clk->vpll_con1);
  123. break;
  124. default:
  125. printf("Unsupported PLL (%d)\n", pllreg);
  126. return 0;
  127. }
  128. return exynos_get_pll_clk(pllreg, r, k);
  129. }
  130. /* exynos5: return pll clock frequency */
  131. static unsigned long exynos5_get_pll_clk(int pllreg)
  132. {
  133. struct exynos5_clock *clk =
  134. (struct exynos5_clock *)samsung_get_base_clock();
  135. unsigned long r, k = 0, fout;
  136. unsigned int pll_div2_sel, fout_sel;
  137. switch (pllreg) {
  138. case APLL:
  139. r = readl(&clk->apll_con0);
  140. break;
  141. case MPLL:
  142. r = readl(&clk->mpll_con0);
  143. break;
  144. case EPLL:
  145. r = readl(&clk->epll_con0);
  146. k = readl(&clk->epll_con1);
  147. break;
  148. case VPLL:
  149. r = readl(&clk->vpll_con0);
  150. k = readl(&clk->vpll_con1);
  151. break;
  152. case BPLL:
  153. r = readl(&clk->bpll_con0);
  154. break;
  155. default:
  156. printf("Unsupported PLL (%d)\n", pllreg);
  157. return 0;
  158. }
  159. fout = exynos_get_pll_clk(pllreg, r, k);
  160. /* According to the user manual, in EVT1 MPLL and BPLL always gives
  161. * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
  162. if (pllreg == MPLL || pllreg == BPLL) {
  163. pll_div2_sel = readl(&clk->pll_div2_sel);
  164. switch (pllreg) {
  165. case MPLL:
  166. fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
  167. & MPLL_FOUT_SEL_MASK;
  168. break;
  169. case BPLL:
  170. fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
  171. & BPLL_FOUT_SEL_MASK;
  172. break;
  173. default:
  174. fout_sel = -1;
  175. break;
  176. }
  177. if (fout_sel == 0)
  178. fout /= 2;
  179. }
  180. return fout;
  181. }
  182. /* exynos4: return ARM clock frequency */
  183. static unsigned long exynos4_get_arm_clk(void)
  184. {
  185. struct exynos4_clock *clk =
  186. (struct exynos4_clock *)samsung_get_base_clock();
  187. unsigned long div;
  188. unsigned long armclk;
  189. unsigned int core_ratio;
  190. unsigned int core2_ratio;
  191. div = readl(&clk->div_cpu0);
  192. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  193. core_ratio = (div >> 0) & 0x7;
  194. core2_ratio = (div >> 28) & 0x7;
  195. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  196. armclk /= (core2_ratio + 1);
  197. return armclk;
  198. }
  199. /* exynos4x12: return ARM clock frequency */
  200. static unsigned long exynos4x12_get_arm_clk(void)
  201. {
  202. struct exynos4x12_clock *clk =
  203. (struct exynos4x12_clock *)samsung_get_base_clock();
  204. unsigned long div;
  205. unsigned long armclk;
  206. unsigned int core_ratio;
  207. unsigned int core2_ratio;
  208. div = readl(&clk->div_cpu0);
  209. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  210. core_ratio = (div >> 0) & 0x7;
  211. core2_ratio = (div >> 28) & 0x7;
  212. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  213. armclk /= (core2_ratio + 1);
  214. return armclk;
  215. }
  216. /* exynos5: return ARM clock frequency */
  217. static unsigned long exynos5_get_arm_clk(void)
  218. {
  219. struct exynos5_clock *clk =
  220. (struct exynos5_clock *)samsung_get_base_clock();
  221. unsigned long div;
  222. unsigned long armclk;
  223. unsigned int arm_ratio;
  224. unsigned int arm2_ratio;
  225. div = readl(&clk->div_cpu0);
  226. /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
  227. arm_ratio = (div >> 0) & 0x7;
  228. arm2_ratio = (div >> 28) & 0x7;
  229. armclk = get_pll_clk(APLL) / (arm_ratio + 1);
  230. armclk /= (arm2_ratio + 1);
  231. return armclk;
  232. }
  233. /* exynos4: return pwm clock frequency */
  234. static unsigned long exynos4_get_pwm_clk(void)
  235. {
  236. struct exynos4_clock *clk =
  237. (struct exynos4_clock *)samsung_get_base_clock();
  238. unsigned long pclk, sclk;
  239. unsigned int sel;
  240. unsigned int ratio;
  241. if (s5p_get_cpu_rev() == 0) {
  242. /*
  243. * CLK_SRC_PERIL0
  244. * PWM_SEL [27:24]
  245. */
  246. sel = readl(&clk->src_peril0);
  247. sel = (sel >> 24) & 0xf;
  248. if (sel == 0x6)
  249. sclk = get_pll_clk(MPLL);
  250. else if (sel == 0x7)
  251. sclk = get_pll_clk(EPLL);
  252. else if (sel == 0x8)
  253. sclk = get_pll_clk(VPLL);
  254. else
  255. return 0;
  256. /*
  257. * CLK_DIV_PERIL3
  258. * PWM_RATIO [3:0]
  259. */
  260. ratio = readl(&clk->div_peril3);
  261. ratio = ratio & 0xf;
  262. } else if (s5p_get_cpu_rev() == 1) {
  263. sclk = get_pll_clk(MPLL);
  264. ratio = 8;
  265. } else
  266. return 0;
  267. pclk = sclk / (ratio + 1);
  268. return pclk;
  269. }
  270. /* exynos4x12: return pwm clock frequency */
  271. static unsigned long exynos4x12_get_pwm_clk(void)
  272. {
  273. unsigned long pclk, sclk;
  274. unsigned int ratio;
  275. sclk = get_pll_clk(MPLL);
  276. ratio = 8;
  277. pclk = sclk / (ratio + 1);
  278. return pclk;
  279. }
  280. /* exynos5: return pwm clock frequency */
  281. static unsigned long exynos5_get_pwm_clk(void)
  282. {
  283. struct exynos5_clock *clk =
  284. (struct exynos5_clock *)samsung_get_base_clock();
  285. unsigned long pclk, sclk;
  286. unsigned int ratio;
  287. /*
  288. * CLK_DIV_PERIC3
  289. * PWM_RATIO [3:0]
  290. */
  291. ratio = readl(&clk->div_peric3);
  292. ratio = ratio & 0xf;
  293. sclk = get_pll_clk(MPLL);
  294. pclk = sclk / (ratio + 1);
  295. return pclk;
  296. }
  297. /* exynos4: return uart clock frequency */
  298. static unsigned long exynos4_get_uart_clk(int dev_index)
  299. {
  300. struct exynos4_clock *clk =
  301. (struct exynos4_clock *)samsung_get_base_clock();
  302. unsigned long uclk, sclk;
  303. unsigned int sel;
  304. unsigned int ratio;
  305. /*
  306. * CLK_SRC_PERIL0
  307. * UART0_SEL [3:0]
  308. * UART1_SEL [7:4]
  309. * UART2_SEL [8:11]
  310. * UART3_SEL [12:15]
  311. * UART4_SEL [16:19]
  312. * UART5_SEL [23:20]
  313. */
  314. sel = readl(&clk->src_peril0);
  315. sel = (sel >> (dev_index << 2)) & 0xf;
  316. if (sel == 0x6)
  317. sclk = get_pll_clk(MPLL);
  318. else if (sel == 0x7)
  319. sclk = get_pll_clk(EPLL);
  320. else if (sel == 0x8)
  321. sclk = get_pll_clk(VPLL);
  322. else
  323. return 0;
  324. /*
  325. * CLK_DIV_PERIL0
  326. * UART0_RATIO [3:0]
  327. * UART1_RATIO [7:4]
  328. * UART2_RATIO [8:11]
  329. * UART3_RATIO [12:15]
  330. * UART4_RATIO [16:19]
  331. * UART5_RATIO [23:20]
  332. */
  333. ratio = readl(&clk->div_peril0);
  334. ratio = (ratio >> (dev_index << 2)) & 0xf;
  335. uclk = sclk / (ratio + 1);
  336. return uclk;
  337. }
  338. /* exynos4x12: return uart clock frequency */
  339. static unsigned long exynos4x12_get_uart_clk(int dev_index)
  340. {
  341. struct exynos4x12_clock *clk =
  342. (struct exynos4x12_clock *)samsung_get_base_clock();
  343. unsigned long uclk, sclk;
  344. unsigned int sel;
  345. unsigned int ratio;
  346. /*
  347. * CLK_SRC_PERIL0
  348. * UART0_SEL [3:0]
  349. * UART1_SEL [7:4]
  350. * UART2_SEL [8:11]
  351. * UART3_SEL [12:15]
  352. * UART4_SEL [16:19]
  353. */
  354. sel = readl(&clk->src_peril0);
  355. sel = (sel >> (dev_index << 2)) & 0xf;
  356. if (sel == 0x6)
  357. sclk = get_pll_clk(MPLL);
  358. else if (sel == 0x7)
  359. sclk = get_pll_clk(EPLL);
  360. else if (sel == 0x8)
  361. sclk = get_pll_clk(VPLL);
  362. else
  363. return 0;
  364. /*
  365. * CLK_DIV_PERIL0
  366. * UART0_RATIO [3:0]
  367. * UART1_RATIO [7:4]
  368. * UART2_RATIO [8:11]
  369. * UART3_RATIO [12:15]
  370. * UART4_RATIO [16:19]
  371. */
  372. ratio = readl(&clk->div_peril0);
  373. ratio = (ratio >> (dev_index << 2)) & 0xf;
  374. uclk = sclk / (ratio + 1);
  375. return uclk;
  376. }
  377. /* exynos5: return uart clock frequency */
  378. static unsigned long exynos5_get_uart_clk(int dev_index)
  379. {
  380. struct exynos5_clock *clk =
  381. (struct exynos5_clock *)samsung_get_base_clock();
  382. unsigned long uclk, sclk;
  383. unsigned int sel;
  384. unsigned int ratio;
  385. /*
  386. * CLK_SRC_PERIC0
  387. * UART0_SEL [3:0]
  388. * UART1_SEL [7:4]
  389. * UART2_SEL [8:11]
  390. * UART3_SEL [12:15]
  391. * UART4_SEL [16:19]
  392. * UART5_SEL [23:20]
  393. */
  394. sel = readl(&clk->src_peric0);
  395. sel = (sel >> (dev_index << 2)) & 0xf;
  396. if (sel == 0x6)
  397. sclk = get_pll_clk(MPLL);
  398. else if (sel == 0x7)
  399. sclk = get_pll_clk(EPLL);
  400. else if (sel == 0x8)
  401. sclk = get_pll_clk(VPLL);
  402. else
  403. return 0;
  404. /*
  405. * CLK_DIV_PERIC0
  406. * UART0_RATIO [3:0]
  407. * UART1_RATIO [7:4]
  408. * UART2_RATIO [8:11]
  409. * UART3_RATIO [12:15]
  410. * UART4_RATIO [16:19]
  411. * UART5_RATIO [23:20]
  412. */
  413. ratio = readl(&clk->div_peric0);
  414. ratio = (ratio >> (dev_index << 2)) & 0xf;
  415. uclk = sclk / (ratio + 1);
  416. return uclk;
  417. }
  418. static unsigned long exynos4_get_mmc_clk(int dev_index)
  419. {
  420. struct exynos4_clock *clk =
  421. (struct exynos4_clock *)samsung_get_base_clock();
  422. unsigned long uclk, sclk;
  423. unsigned int sel, ratio, pre_ratio;
  424. int shift;
  425. sel = readl(&clk->src_fsys);
  426. sel = (sel >> (dev_index << 2)) & 0xf;
  427. if (sel == 0x6)
  428. sclk = get_pll_clk(MPLL);
  429. else if (sel == 0x7)
  430. sclk = get_pll_clk(EPLL);
  431. else if (sel == 0x8)
  432. sclk = get_pll_clk(VPLL);
  433. else
  434. return 0;
  435. switch (dev_index) {
  436. case 0:
  437. case 1:
  438. ratio = readl(&clk->div_fsys1);
  439. pre_ratio = readl(&clk->div_fsys1);
  440. break;
  441. case 2:
  442. case 3:
  443. ratio = readl(&clk->div_fsys2);
  444. pre_ratio = readl(&clk->div_fsys2);
  445. break;
  446. case 4:
  447. ratio = readl(&clk->div_fsys3);
  448. pre_ratio = readl(&clk->div_fsys3);
  449. break;
  450. default:
  451. return 0;
  452. }
  453. if (dev_index == 1 || dev_index == 3)
  454. shift = 16;
  455. ratio = (ratio >> shift) & 0xf;
  456. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  457. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  458. return uclk;
  459. }
  460. static unsigned long exynos5_get_mmc_clk(int dev_index)
  461. {
  462. struct exynos5_clock *clk =
  463. (struct exynos5_clock *)samsung_get_base_clock();
  464. unsigned long uclk, sclk;
  465. unsigned int sel, ratio, pre_ratio;
  466. int shift;
  467. sel = readl(&clk->src_fsys);
  468. sel = (sel >> (dev_index << 2)) & 0xf;
  469. if (sel == 0x6)
  470. sclk = get_pll_clk(MPLL);
  471. else if (sel == 0x7)
  472. sclk = get_pll_clk(EPLL);
  473. else if (sel == 0x8)
  474. sclk = get_pll_clk(VPLL);
  475. else
  476. return 0;
  477. switch (dev_index) {
  478. case 0:
  479. case 1:
  480. ratio = readl(&clk->div_fsys1);
  481. pre_ratio = readl(&clk->div_fsys1);
  482. break;
  483. case 2:
  484. case 3:
  485. ratio = readl(&clk->div_fsys2);
  486. pre_ratio = readl(&clk->div_fsys2);
  487. break;
  488. default:
  489. return 0;
  490. }
  491. if (dev_index == 1 || dev_index == 3)
  492. shift = 16;
  493. ratio = (ratio >> shift) & 0xf;
  494. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  495. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  496. return uclk;
  497. }
  498. /* exynos4: set the mmc clock */
  499. static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
  500. {
  501. struct exynos4_clock *clk =
  502. (struct exynos4_clock *)samsung_get_base_clock();
  503. unsigned int addr;
  504. unsigned int val;
  505. /*
  506. * CLK_DIV_FSYS1
  507. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  508. * CLK_DIV_FSYS2
  509. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  510. * CLK_DIV_FSYS3
  511. * MMC4_PRE_RATIO [15:8]
  512. */
  513. if (dev_index < 2) {
  514. addr = (unsigned int)&clk->div_fsys1;
  515. } else if (dev_index == 4) {
  516. addr = (unsigned int)&clk->div_fsys3;
  517. dev_index -= 4;
  518. } else {
  519. addr = (unsigned int)&clk->div_fsys2;
  520. dev_index -= 2;
  521. }
  522. val = readl(addr);
  523. val &= ~(0xff << ((dev_index << 4) + 8));
  524. val |= (div & 0xff) << ((dev_index << 4) + 8);
  525. writel(val, addr);
  526. }
  527. /* exynos4x12: set the mmc clock */
  528. static void exynos4x12_set_mmc_clk(int dev_index, unsigned int div)
  529. {
  530. struct exynos4x12_clock *clk =
  531. (struct exynos4x12_clock *)samsung_get_base_clock();
  532. unsigned int addr;
  533. unsigned int val;
  534. /*
  535. * CLK_DIV_FSYS1
  536. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  537. * CLK_DIV_FSYS2
  538. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  539. */
  540. if (dev_index < 2) {
  541. addr = (unsigned int)&clk->div_fsys1;
  542. } else {
  543. addr = (unsigned int)&clk->div_fsys2;
  544. dev_index -= 2;
  545. }
  546. val = readl(addr);
  547. val &= ~(0xff << ((dev_index << 4) + 8));
  548. val |= (div & 0xff) << ((dev_index << 4) + 8);
  549. writel(val, addr);
  550. }
  551. /* exynos5: set the mmc clock */
  552. static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
  553. {
  554. struct exynos5_clock *clk =
  555. (struct exynos5_clock *)samsung_get_base_clock();
  556. unsigned int addr;
  557. unsigned int val;
  558. /*
  559. * CLK_DIV_FSYS1
  560. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  561. * CLK_DIV_FSYS2
  562. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  563. */
  564. if (dev_index < 2) {
  565. addr = (unsigned int)&clk->div_fsys1;
  566. } else {
  567. addr = (unsigned int)&clk->div_fsys2;
  568. dev_index -= 2;
  569. }
  570. val = readl(addr);
  571. val &= ~(0xff << ((dev_index << 4) + 8));
  572. val |= (div & 0xff) << ((dev_index << 4) + 8);
  573. writel(val, addr);
  574. }
  575. /* get_lcd_clk: return lcd clock frequency */
  576. static unsigned long exynos4_get_lcd_clk(void)
  577. {
  578. struct exynos4_clock *clk =
  579. (struct exynos4_clock *)samsung_get_base_clock();
  580. unsigned long pclk, sclk;
  581. unsigned int sel;
  582. unsigned int ratio;
  583. /*
  584. * CLK_SRC_LCD0
  585. * FIMD0_SEL [3:0]
  586. */
  587. sel = readl(&clk->src_lcd0);
  588. sel = sel & 0xf;
  589. /*
  590. * 0x6: SCLK_MPLL
  591. * 0x7: SCLK_EPLL
  592. * 0x8: SCLK_VPLL
  593. */
  594. if (sel == 0x6)
  595. sclk = get_pll_clk(MPLL);
  596. else if (sel == 0x7)
  597. sclk = get_pll_clk(EPLL);
  598. else if (sel == 0x8)
  599. sclk = get_pll_clk(VPLL);
  600. else
  601. return 0;
  602. /*
  603. * CLK_DIV_LCD0
  604. * FIMD0_RATIO [3:0]
  605. */
  606. ratio = readl(&clk->div_lcd0);
  607. ratio = ratio & 0xf;
  608. pclk = sclk / (ratio + 1);
  609. return pclk;
  610. }
  611. /* get_lcd_clk: return lcd clock frequency */
  612. static unsigned long exynos5_get_lcd_clk(void)
  613. {
  614. struct exynos5_clock *clk =
  615. (struct exynos5_clock *)samsung_get_base_clock();
  616. unsigned long pclk, sclk;
  617. unsigned int sel;
  618. unsigned int ratio;
  619. /*
  620. * CLK_SRC_LCD0
  621. * FIMD0_SEL [3:0]
  622. */
  623. sel = readl(&clk->src_disp1_0);
  624. sel = sel & 0xf;
  625. /*
  626. * 0x6: SCLK_MPLL
  627. * 0x7: SCLK_EPLL
  628. * 0x8: SCLK_VPLL
  629. */
  630. if (sel == 0x6)
  631. sclk = get_pll_clk(MPLL);
  632. else if (sel == 0x7)
  633. sclk = get_pll_clk(EPLL);
  634. else if (sel == 0x8)
  635. sclk = get_pll_clk(VPLL);
  636. else
  637. return 0;
  638. /*
  639. * CLK_DIV_LCD0
  640. * FIMD0_RATIO [3:0]
  641. */
  642. ratio = readl(&clk->div_disp1_0);
  643. ratio = ratio & 0xf;
  644. pclk = sclk / (ratio + 1);
  645. return pclk;
  646. }
  647. void exynos4_set_lcd_clk(void)
  648. {
  649. struct exynos4_clock *clk =
  650. (struct exynos4_clock *)samsung_get_base_clock();
  651. unsigned int cfg = 0;
  652. /*
  653. * CLK_GATE_BLOCK
  654. * CLK_CAM [0]
  655. * CLK_TV [1]
  656. * CLK_MFC [2]
  657. * CLK_G3D [3]
  658. * CLK_LCD0 [4]
  659. * CLK_LCD1 [5]
  660. * CLK_GPS [7]
  661. */
  662. cfg = readl(&clk->gate_block);
  663. cfg |= 1 << 4;
  664. writel(cfg, &clk->gate_block);
  665. /*
  666. * CLK_SRC_LCD0
  667. * FIMD0_SEL [3:0]
  668. * MDNIE0_SEL [7:4]
  669. * MDNIE_PWM0_SEL [8:11]
  670. * MIPI0_SEL [12:15]
  671. * set lcd0 src clock 0x6: SCLK_MPLL
  672. */
  673. cfg = readl(&clk->src_lcd0);
  674. cfg &= ~(0xf);
  675. cfg |= 0x6;
  676. writel(cfg, &clk->src_lcd0);
  677. /*
  678. * CLK_GATE_IP_LCD0
  679. * CLK_FIMD0 [0]
  680. * CLK_MIE0 [1]
  681. * CLK_MDNIE0 [2]
  682. * CLK_DSIM0 [3]
  683. * CLK_SMMUFIMD0 [4]
  684. * CLK_PPMULCD0 [5]
  685. * Gating all clocks for FIMD0
  686. */
  687. cfg = readl(&clk->gate_ip_lcd0);
  688. cfg |= 1 << 0;
  689. writel(cfg, &clk->gate_ip_lcd0);
  690. /*
  691. * CLK_DIV_LCD0
  692. * FIMD0_RATIO [3:0]
  693. * MDNIE0_RATIO [7:4]
  694. * MDNIE_PWM0_RATIO [11:8]
  695. * MDNIE_PWM_PRE_RATIO [15:12]
  696. * MIPI0_RATIO [19:16]
  697. * MIPI0_PRE_RATIO [23:20]
  698. * set fimd ratio
  699. */
  700. cfg &= ~(0xf);
  701. cfg |= 0x1;
  702. writel(cfg, &clk->div_lcd0);
  703. }
  704. void exynos5_set_lcd_clk(void)
  705. {
  706. struct exynos5_clock *clk =
  707. (struct exynos5_clock *)samsung_get_base_clock();
  708. unsigned int cfg = 0;
  709. /*
  710. * CLK_GATE_BLOCK
  711. * CLK_CAM [0]
  712. * CLK_TV [1]
  713. * CLK_MFC [2]
  714. * CLK_G3D [3]
  715. * CLK_LCD0 [4]
  716. * CLK_LCD1 [5]
  717. * CLK_GPS [7]
  718. */
  719. cfg = readl(&clk->gate_block);
  720. cfg |= 1 << 4;
  721. writel(cfg, &clk->gate_block);
  722. /*
  723. * CLK_SRC_LCD0
  724. * FIMD0_SEL [3:0]
  725. * MDNIE0_SEL [7:4]
  726. * MDNIE_PWM0_SEL [8:11]
  727. * MIPI0_SEL [12:15]
  728. * set lcd0 src clock 0x6: SCLK_MPLL
  729. */
  730. cfg = readl(&clk->src_disp1_0);
  731. cfg &= ~(0xf);
  732. cfg |= 0x6;
  733. writel(cfg, &clk->src_disp1_0);
  734. /*
  735. * CLK_GATE_IP_LCD0
  736. * CLK_FIMD0 [0]
  737. * CLK_MIE0 [1]
  738. * CLK_MDNIE0 [2]
  739. * CLK_DSIM0 [3]
  740. * CLK_SMMUFIMD0 [4]
  741. * CLK_PPMULCD0 [5]
  742. * Gating all clocks for FIMD0
  743. */
  744. cfg = readl(&clk->gate_ip_disp1);
  745. cfg |= 1 << 0;
  746. writel(cfg, &clk->gate_ip_disp1);
  747. /*
  748. * CLK_DIV_LCD0
  749. * FIMD0_RATIO [3:0]
  750. * MDNIE0_RATIO [7:4]
  751. * MDNIE_PWM0_RATIO [11:8]
  752. * MDNIE_PWM_PRE_RATIO [15:12]
  753. * MIPI0_RATIO [19:16]
  754. * MIPI0_PRE_RATIO [23:20]
  755. * set fimd ratio
  756. */
  757. cfg &= ~(0xf);
  758. cfg |= 0x0;
  759. writel(cfg, &clk->div_disp1_0);
  760. }
  761. void exynos4_set_mipi_clk(void)
  762. {
  763. struct exynos4_clock *clk =
  764. (struct exynos4_clock *)samsung_get_base_clock();
  765. unsigned int cfg = 0;
  766. /*
  767. * CLK_SRC_LCD0
  768. * FIMD0_SEL [3:0]
  769. * MDNIE0_SEL [7:4]
  770. * MDNIE_PWM0_SEL [8:11]
  771. * MIPI0_SEL [12:15]
  772. * set mipi0 src clock 0x6: SCLK_MPLL
  773. */
  774. cfg = readl(&clk->src_lcd0);
  775. cfg &= ~(0xf << 12);
  776. cfg |= (0x6 << 12);
  777. writel(cfg, &clk->src_lcd0);
  778. /*
  779. * CLK_SRC_MASK_LCD0
  780. * FIMD0_MASK [0]
  781. * MDNIE0_MASK [4]
  782. * MDNIE_PWM0_MASK [8]
  783. * MIPI0_MASK [12]
  784. * set src mask mipi0 0x1: Unmask
  785. */
  786. cfg = readl(&clk->src_mask_lcd0);
  787. cfg |= (0x1 << 12);
  788. writel(cfg, &clk->src_mask_lcd0);
  789. /*
  790. * CLK_GATE_IP_LCD0
  791. * CLK_FIMD0 [0]
  792. * CLK_MIE0 [1]
  793. * CLK_MDNIE0 [2]
  794. * CLK_DSIM0 [3]
  795. * CLK_SMMUFIMD0 [4]
  796. * CLK_PPMULCD0 [5]
  797. * Gating all clocks for MIPI0
  798. */
  799. cfg = readl(&clk->gate_ip_lcd0);
  800. cfg |= 1 << 3;
  801. writel(cfg, &clk->gate_ip_lcd0);
  802. /*
  803. * CLK_DIV_LCD0
  804. * FIMD0_RATIO [3:0]
  805. * MDNIE0_RATIO [7:4]
  806. * MDNIE_PWM0_RATIO [11:8]
  807. * MDNIE_PWM_PRE_RATIO [15:12]
  808. * MIPI0_RATIO [19:16]
  809. * MIPI0_PRE_RATIO [23:20]
  810. * set mipi ratio
  811. */
  812. cfg &= ~(0xf << 16);
  813. cfg |= (0x1 << 16);
  814. writel(cfg, &clk->div_lcd0);
  815. }
  816. /*
  817. * I2C
  818. *
  819. * exynos5: obtaining the I2C clock
  820. */
  821. static unsigned long exynos5_get_i2c_clk(void)
  822. {
  823. struct exynos5_clock *clk =
  824. (struct exynos5_clock *)samsung_get_base_clock();
  825. unsigned long aclk_66, aclk_66_pre, sclk;
  826. unsigned int ratio;
  827. sclk = get_pll_clk(MPLL);
  828. ratio = (readl(&clk->div_top1)) >> 24;
  829. ratio &= 0x7;
  830. aclk_66_pre = sclk / (ratio + 1);
  831. ratio = readl(&clk->div_top0);
  832. ratio &= 0x7;
  833. aclk_66 = aclk_66_pre / (ratio + 1);
  834. return aclk_66;
  835. }
  836. int exynos5_set_epll_clk(unsigned long rate)
  837. {
  838. unsigned int epll_con, epll_con_k;
  839. unsigned int i;
  840. unsigned int lockcnt;
  841. unsigned int start;
  842. struct exynos5_clock *clk =
  843. (struct exynos5_clock *)samsung_get_base_clock();
  844. epll_con = readl(&clk->epll_con0);
  845. epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
  846. EPLL_CON0_LOCK_DET_EN_SHIFT) |
  847. EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
  848. EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
  849. EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
  850. for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
  851. if (exynos5_epll_div[i].freq_out == rate)
  852. break;
  853. }
  854. if (i == ARRAY_SIZE(exynos5_epll_div))
  855. return -1;
  856. epll_con_k = exynos5_epll_div[i].k_dsm << 0;
  857. epll_con |= exynos5_epll_div[i].en_lock_det <<
  858. EPLL_CON0_LOCK_DET_EN_SHIFT;
  859. epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
  860. epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
  861. epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
  862. /*
  863. * Required period ( in cycles) to genarate a stable clock output.
  864. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs
  865. * frequency input (as per spec)
  866. */
  867. lockcnt = 3000 * exynos5_epll_div[i].p_div;
  868. writel(lockcnt, &clk->epll_lock);
  869. writel(epll_con, &clk->epll_con0);
  870. writel(epll_con_k, &clk->epll_con1);
  871. start = get_timer(0);
  872. while (!(readl(&clk->epll_con0) &
  873. (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
  874. if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
  875. debug("%s: Timeout waiting for EPLL lock\n", __func__);
  876. return -1;
  877. }
  878. }
  879. return 0;
  880. }
  881. void exynos5_set_i2s_clk_source(void)
  882. {
  883. struct exynos5_clock *clk =
  884. (struct exynos5_clock *)samsung_get_base_clock();
  885. clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
  886. (CLK_SRC_SCLK_EPLL));
  887. }
  888. int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
  889. unsigned int dst_frq)
  890. {
  891. struct exynos5_clock *clk =
  892. (struct exynos5_clock *)samsung_get_base_clock();
  893. unsigned int div;
  894. if ((dst_frq == 0) || (src_frq == 0)) {
  895. debug("%s: Invalid requency input for prescaler\n", __func__);
  896. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  897. return -1;
  898. }
  899. div = (src_frq / dst_frq);
  900. if (div > AUDIO_1_RATIO_MASK) {
  901. debug("%s: Frequency ratio is out of range\n", __func__);
  902. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  903. return -1;
  904. }
  905. clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
  906. (div & AUDIO_1_RATIO_MASK));
  907. return 0;
  908. }
  909. /**
  910. * Linearly searches for the most accurate main and fine stage clock scalars
  911. * (divisors) for a specified target frequency and scalar bit sizes by checking
  912. * all multiples of main_scalar_bits values. Will always return scalars up to or
  913. * slower than target.
  914. *
  915. * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
  916. * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
  917. * @param input_freq Clock frequency to be scaled in Hz
  918. * @param target_freq Desired clock frequency in Hz
  919. * @param best_fine_scalar Pointer to store the fine stage divisor
  920. *
  921. * @return best_main_scalar Main scalar for desired frequency or -1 if none
  922. * found
  923. */
  924. static int clock_calc_best_scalar(unsigned int main_scaler_bits,
  925. unsigned int fine_scalar_bits, unsigned int input_rate,
  926. unsigned int target_rate, unsigned int *best_fine_scalar)
  927. {
  928. int i;
  929. int best_main_scalar = -1;
  930. unsigned int best_error = target_rate;
  931. const unsigned int cap = (1 << fine_scalar_bits) - 1;
  932. const unsigned int loops = 1 << main_scaler_bits;
  933. debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
  934. target_rate, cap);
  935. assert(best_fine_scalar != NULL);
  936. assert(main_scaler_bits <= fine_scalar_bits);
  937. *best_fine_scalar = 1;
  938. if (input_rate == 0 || target_rate == 0)
  939. return -1;
  940. if (target_rate >= input_rate)
  941. return 1;
  942. for (i = 1; i <= loops; i++) {
  943. const unsigned int effective_div = max(min(input_rate / i /
  944. target_rate, cap), 1);
  945. const unsigned int effective_rate = input_rate / i /
  946. effective_div;
  947. const int error = target_rate - effective_rate;
  948. debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
  949. effective_rate, error);
  950. if (error >= 0 && error <= best_error) {
  951. best_error = error;
  952. best_main_scalar = i;
  953. *best_fine_scalar = effective_div;
  954. }
  955. }
  956. return best_main_scalar;
  957. }
  958. static int exynos5_set_spi_clk(enum periph_id periph_id,
  959. unsigned int rate)
  960. {
  961. struct exynos5_clock *clk =
  962. (struct exynos5_clock *)samsung_get_base_clock();
  963. int main;
  964. unsigned int fine;
  965. unsigned shift, pre_shift;
  966. unsigned mask = 0xff;
  967. u32 *reg;
  968. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  969. if (main < 0) {
  970. debug("%s: Cannot set clock rate for periph %d",
  971. __func__, periph_id);
  972. return -1;
  973. }
  974. main = main - 1;
  975. fine = fine - 1;
  976. switch (periph_id) {
  977. case PERIPH_ID_SPI0:
  978. reg = &clk->div_peric1;
  979. shift = 0;
  980. pre_shift = 8;
  981. break;
  982. case PERIPH_ID_SPI1:
  983. reg = &clk->div_peric1;
  984. shift = 16;
  985. pre_shift = 24;
  986. break;
  987. case PERIPH_ID_SPI2:
  988. reg = &clk->div_peric2;
  989. shift = 0;
  990. pre_shift = 8;
  991. break;
  992. case PERIPH_ID_SPI3:
  993. reg = &clk->sclk_div_isp;
  994. shift = 0;
  995. pre_shift = 4;
  996. break;
  997. case PERIPH_ID_SPI4:
  998. reg = &clk->sclk_div_isp;
  999. shift = 12;
  1000. pre_shift = 16;
  1001. break;
  1002. default:
  1003. debug("%s: Unsupported peripheral ID %d\n", __func__,
  1004. periph_id);
  1005. return -1;
  1006. }
  1007. clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
  1008. clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
  1009. return 0;
  1010. }
  1011. static unsigned long exynos4_get_i2c_clk(void)
  1012. {
  1013. struct exynos4_clock *clk =
  1014. (struct exynos4_clock *)samsung_get_base_clock();
  1015. unsigned long sclk, aclk_100;
  1016. unsigned int ratio;
  1017. sclk = get_pll_clk(APLL);
  1018. ratio = (readl(&clk->div_top)) >> 4;
  1019. ratio &= 0xf;
  1020. aclk_100 = sclk / (ratio + 1);
  1021. return aclk_100;
  1022. }
  1023. unsigned long get_pll_clk(int pllreg)
  1024. {
  1025. if (cpu_is_exynos5())
  1026. return exynos5_get_pll_clk(pllreg);
  1027. else {
  1028. if (proid_is_exynos4412())
  1029. return exynos4x12_get_pll_clk(pllreg);
  1030. return exynos4_get_pll_clk(pllreg);
  1031. }
  1032. }
  1033. unsigned long get_arm_clk(void)
  1034. {
  1035. if (cpu_is_exynos5())
  1036. return exynos5_get_arm_clk();
  1037. else {
  1038. if (proid_is_exynos4412())
  1039. return exynos4x12_get_arm_clk();
  1040. return exynos4_get_arm_clk();
  1041. }
  1042. }
  1043. unsigned long get_i2c_clk(void)
  1044. {
  1045. if (cpu_is_exynos5()) {
  1046. return exynos5_get_i2c_clk();
  1047. } else if (cpu_is_exynos4()) {
  1048. return exynos4_get_i2c_clk();
  1049. } else {
  1050. debug("I2C clock is not set for this CPU\n");
  1051. return 0;
  1052. }
  1053. }
  1054. unsigned long get_pwm_clk(void)
  1055. {
  1056. if (cpu_is_exynos5())
  1057. return exynos5_get_pwm_clk();
  1058. else {
  1059. if (proid_is_exynos4412())
  1060. return exynos4x12_get_pwm_clk();
  1061. return exynos4_get_pwm_clk();
  1062. }
  1063. }
  1064. unsigned long get_uart_clk(int dev_index)
  1065. {
  1066. if (cpu_is_exynos5())
  1067. return exynos5_get_uart_clk(dev_index);
  1068. else {
  1069. if (proid_is_exynos4412())
  1070. return exynos4x12_get_uart_clk(dev_index);
  1071. return exynos4_get_uart_clk(dev_index);
  1072. }
  1073. }
  1074. unsigned long get_mmc_clk(int dev_index)
  1075. {
  1076. if (cpu_is_exynos5())
  1077. return exynos5_get_mmc_clk(dev_index);
  1078. else
  1079. return exynos4_get_mmc_clk(dev_index);
  1080. }
  1081. void set_mmc_clk(int dev_index, unsigned int div)
  1082. {
  1083. if (cpu_is_exynos5())
  1084. exynos5_set_mmc_clk(dev_index, div);
  1085. else {
  1086. if (proid_is_exynos4412())
  1087. exynos4x12_set_mmc_clk(dev_index, div);
  1088. exynos4_set_mmc_clk(dev_index, div);
  1089. }
  1090. }
  1091. unsigned long get_lcd_clk(void)
  1092. {
  1093. if (cpu_is_exynos4())
  1094. return exynos4_get_lcd_clk();
  1095. else
  1096. return exynos5_get_lcd_clk();
  1097. }
  1098. void set_lcd_clk(void)
  1099. {
  1100. if (cpu_is_exynos4())
  1101. exynos4_set_lcd_clk();
  1102. else
  1103. exynos5_set_lcd_clk();
  1104. }
  1105. void set_mipi_clk(void)
  1106. {
  1107. if (cpu_is_exynos4())
  1108. exynos4_set_mipi_clk();
  1109. }
  1110. int set_spi_clk(int periph_id, unsigned int rate)
  1111. {
  1112. if (cpu_is_exynos5())
  1113. return exynos5_set_spi_clk(periph_id, rate);
  1114. else
  1115. return 0;
  1116. }
  1117. int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
  1118. {
  1119. if (cpu_is_exynos5())
  1120. return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq);
  1121. else
  1122. return 0;
  1123. }
  1124. void set_i2s_clk_source(void)
  1125. {
  1126. if (cpu_is_exynos5())
  1127. exynos5_set_i2s_clk_source();
  1128. }
  1129. int set_epll_clk(unsigned long rate)
  1130. {
  1131. if (cpu_is_exynos5())
  1132. return exynos5_set_epll_clk(rate);
  1133. else
  1134. return 0;
  1135. }