mmc_spi.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. /*
  2. * generic mmc spi driver
  3. *
  4. * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
  5. * Licensed under the GPL-2 or later.
  6. */
  7. #include <common.h>
  8. #include <malloc.h>
  9. #include <part.h>
  10. #include <mmc.h>
  11. #include <spi.h>
  12. #include <crc.h>
  13. #include <linux/crc7.h>
  14. #include <linux/byteorder/swab.h>
  15. /* MMC/SD in SPI mode reports R1 status always */
  16. #define R1_SPI_IDLE (1 << 0)
  17. #define R1_SPI_ERASE_RESET (1 << 1)
  18. #define R1_SPI_ILLEGAL_COMMAND (1 << 2)
  19. #define R1_SPI_COM_CRC (1 << 3)
  20. #define R1_SPI_ERASE_SEQ (1 << 4)
  21. #define R1_SPI_ADDRESS (1 << 5)
  22. #define R1_SPI_PARAMETER (1 << 6)
  23. /* R1 bit 7 is always zero, reuse this bit for error */
  24. #define R1_SPI_ERROR (1 << 7)
  25. /* Response tokens used to ack each block written: */
  26. #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
  27. #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
  28. #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
  29. #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
  30. /* Read and write blocks start with these tokens and end with crc;
  31. * on error, read tokens act like a subset of R2_SPI_* values.
  32. */
  33. #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
  34. #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
  35. #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
  36. /* MMC SPI commands start with a start bit "0" and a transmit bit "1" */
  37. #define MMC_SPI_CMD(x) (0x40 | (x & 0x3f))
  38. /* bus capability */
  39. #define MMC_SPI_VOLTAGE (MMC_VDD_32_33 | MMC_VDD_33_34)
  40. #define MMC_SPI_MIN_CLOCK 400000 /* 400KHz to meet MMC spec */
  41. /* timeout value */
  42. #define CTOUT 8
  43. #define RTOUT 3000000 /* 1 sec */
  44. #define WTOUT 3000000 /* 1 sec */
  45. static uint mmc_spi_sendcmd(struct mmc *mmc, ushort cmdidx, u32 cmdarg)
  46. {
  47. struct spi_slave *spi = mmc->priv;
  48. u8 cmdo[7];
  49. u8 r1;
  50. int i;
  51. cmdo[0] = 0xff;
  52. cmdo[1] = MMC_SPI_CMD(cmdidx);
  53. cmdo[2] = cmdarg >> 24;
  54. cmdo[3] = cmdarg >> 16;
  55. cmdo[4] = cmdarg >> 8;
  56. cmdo[5] = cmdarg;
  57. cmdo[6] = (crc7(0, &cmdo[1], 5) << 1) | 0x01;
  58. spi_xfer(spi, sizeof(cmdo) * 8, cmdo, NULL, 0);
  59. for (i = 0; i < CTOUT; i++) {
  60. spi_xfer(spi, 1 * 8, NULL, &r1, 0);
  61. if (i && (r1 & 0x80) == 0) /* r1 response */
  62. break;
  63. }
  64. debug("%s:cmd%d resp%d %x\n", __func__, cmdidx, i, r1);
  65. return r1;
  66. }
  67. static uint mmc_spi_readdata(struct mmc *mmc, void *xbuf,
  68. u32 bcnt, u32 bsize)
  69. {
  70. struct spi_slave *spi = mmc->priv;
  71. u8 *buf = xbuf;
  72. u8 r1;
  73. u16 crc;
  74. int i;
  75. while (bcnt--) {
  76. for (i = 0; i < RTOUT; i++) {
  77. spi_xfer(spi, 1 * 8, NULL, &r1, 0);
  78. if (r1 != 0xff) /* data token */
  79. break;
  80. }
  81. debug("%s:tok%d %x\n", __func__, i, r1);
  82. if (r1 == SPI_TOKEN_SINGLE) {
  83. spi_xfer(spi, bsize * 8, NULL, buf, 0);
  84. spi_xfer(spi, 2 * 8, NULL, &crc, 0);
  85. #ifdef CONFIG_MMC_SPI_CRC_ON
  86. if (swab16(cyg_crc16(buf, bsize)) != crc) {
  87. debug("%s: CRC error\n", mmc->name);
  88. r1 = R1_SPI_COM_CRC;
  89. break;
  90. }
  91. #endif
  92. r1 = 0;
  93. } else {
  94. r1 = R1_SPI_ERROR;
  95. break;
  96. }
  97. buf += bsize;
  98. }
  99. return r1;
  100. }
  101. static uint mmc_spi_writedata(struct mmc *mmc, const void *xbuf,
  102. u32 bcnt, u32 bsize, int multi)
  103. {
  104. struct spi_slave *spi = mmc->priv;
  105. const u8 *buf = xbuf;
  106. u8 r1;
  107. u16 crc;
  108. u8 tok[2];
  109. int i;
  110. tok[0] = 0xff;
  111. tok[1] = multi ? SPI_TOKEN_MULTI_WRITE : SPI_TOKEN_SINGLE;
  112. while (bcnt--) {
  113. #ifdef CONFIG_MMC_SPI_CRC_ON
  114. crc = swab16(cyg_crc16((u8 *)buf, bsize));
  115. #endif
  116. spi_xfer(spi, 2 * 8, tok, NULL, 0);
  117. spi_xfer(spi, bsize * 8, buf, NULL, 0);
  118. spi_xfer(spi, 2 * 8, &crc, NULL, 0);
  119. for (i = 0; i < CTOUT; i++) {
  120. spi_xfer(spi, 1 * 8, NULL, &r1, 0);
  121. if ((r1 & 0x10) == 0) /* response token */
  122. break;
  123. }
  124. debug("%s:tok%d %x\n", __func__, i, r1);
  125. if (SPI_MMC_RESPONSE_CODE(r1) == SPI_RESPONSE_ACCEPTED) {
  126. for (i = 0; i < WTOUT; i++) { /* wait busy */
  127. spi_xfer(spi, 1 * 8, NULL, &r1, 0);
  128. if (i && r1 == 0xff) {
  129. r1 = 0;
  130. break;
  131. }
  132. }
  133. if (i == WTOUT) {
  134. debug("%s:wtout %x\n", __func__, r1);
  135. r1 = R1_SPI_ERROR;
  136. break;
  137. }
  138. } else {
  139. debug("%s: err %x\n", __func__, r1);
  140. r1 = R1_SPI_COM_CRC;
  141. break;
  142. }
  143. buf += bsize;
  144. }
  145. if (multi && bcnt == -1) { /* stop multi write */
  146. tok[1] = SPI_TOKEN_STOP_TRAN;
  147. spi_xfer(spi, 2 * 8, tok, NULL, 0);
  148. for (i = 0; i < WTOUT; i++) { /* wait busy */
  149. spi_xfer(spi, 1 * 8, NULL, &r1, 0);
  150. if (i && r1 == 0xff) {
  151. r1 = 0;
  152. break;
  153. }
  154. }
  155. if (i == WTOUT) {
  156. debug("%s:wstop %x\n", __func__, r1);
  157. r1 = R1_SPI_ERROR;
  158. }
  159. }
  160. return r1;
  161. }
  162. static int mmc_spi_request(struct mmc *mmc, struct mmc_cmd *cmd,
  163. struct mmc_data *data)
  164. {
  165. struct spi_slave *spi = mmc->priv;
  166. u8 r1;
  167. int i;
  168. int ret = 0;
  169. debug("%s:cmd%d %x %x %x\n", __func__,
  170. cmd->cmdidx, cmd->resp_type, cmd->cmdarg, cmd->flags);
  171. spi_claim_bus(spi);
  172. spi_cs_activate(spi);
  173. r1 = mmc_spi_sendcmd(mmc, cmd->cmdidx, cmd->cmdarg);
  174. if (r1 == 0xff) { /* no response */
  175. ret = NO_CARD_ERR;
  176. goto done;
  177. } else if (r1 & R1_SPI_COM_CRC) {
  178. ret = COMM_ERR;
  179. goto done;
  180. } else if (r1 & ~R1_SPI_IDLE) { /* other errors */
  181. ret = TIMEOUT;
  182. goto done;
  183. } else if (cmd->resp_type == MMC_RSP_R2) {
  184. r1 = mmc_spi_readdata(mmc, cmd->response, 1, 16);
  185. for (i = 0; i < 4; i++)
  186. cmd->response[i] = swab32(cmd->response[i]);
  187. debug("r128 %x %x %x %x\n", cmd->response[0], cmd->response[1],
  188. cmd->response[2], cmd->response[3]);
  189. } else if (!data) {
  190. switch (cmd->cmdidx) {
  191. case SD_CMD_APP_SEND_OP_COND:
  192. case MMC_CMD_SEND_OP_COND:
  193. cmd->response[0] = (r1 & R1_SPI_IDLE) ? 0 : OCR_BUSY;
  194. break;
  195. case SD_CMD_SEND_IF_COND:
  196. case MMC_CMD_SPI_READ_OCR:
  197. spi_xfer(spi, 4 * 8, NULL, cmd->response, 0);
  198. cmd->response[0] = swab32(cmd->response[0]);
  199. debug("r32 %x\n", cmd->response[0]);
  200. break;
  201. case MMC_CMD_SEND_STATUS:
  202. spi_xfer(spi, 1 * 8, NULL, cmd->response, 0);
  203. cmd->response[0] = (cmd->response[0] & 0xff) ?
  204. MMC_STATUS_ERROR : MMC_STATUS_RDY_FOR_DATA;
  205. break;
  206. }
  207. } else {
  208. debug("%s:data %x %x %x\n", __func__,
  209. data->flags, data->blocks, data->blocksize);
  210. if (data->flags == MMC_DATA_READ)
  211. r1 = mmc_spi_readdata(mmc, data->dest,
  212. data->blocks, data->blocksize);
  213. else if (data->flags == MMC_DATA_WRITE)
  214. r1 = mmc_spi_writedata(mmc, data->src,
  215. data->blocks, data->blocksize,
  216. (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK));
  217. if (r1 & R1_SPI_COM_CRC)
  218. ret = COMM_ERR;
  219. else if (r1) /* other errors */
  220. ret = TIMEOUT;
  221. }
  222. done:
  223. spi_cs_deactivate(spi);
  224. spi_release_bus(spi);
  225. return ret;
  226. }
  227. static void mmc_spi_set_ios(struct mmc *mmc)
  228. {
  229. struct spi_slave *spi = mmc->priv;
  230. debug("%s: clock %u\n", __func__, mmc->clock);
  231. if (mmc->clock)
  232. spi_set_speed(spi, mmc->clock);
  233. }
  234. static int mmc_spi_init_p(struct mmc *mmc)
  235. {
  236. struct spi_slave *spi = mmc->priv;
  237. mmc->clock = 0;
  238. spi_set_speed(spi, MMC_SPI_MIN_CLOCK);
  239. spi_claim_bus(spi);
  240. /* cs deactivated for 100+ clock */
  241. spi_xfer(spi, 18 * 8, NULL, NULL, 0);
  242. spi_release_bus(spi);
  243. return 0;
  244. }
  245. struct mmc *mmc_spi_init(uint bus, uint cs, uint speed, uint mode)
  246. {
  247. struct mmc *mmc;
  248. mmc = malloc(sizeof(*mmc));
  249. if (!mmc)
  250. return NULL;
  251. memset(mmc, 0, sizeof(*mmc));
  252. mmc->priv = spi_setup_slave(bus, cs, speed, mode);
  253. if (!mmc->priv) {
  254. free(mmc);
  255. return NULL;
  256. }
  257. sprintf(mmc->name, "MMC_SPI");
  258. mmc->send_cmd = mmc_spi_request;
  259. mmc->set_ios = mmc_spi_set_ios;
  260. mmc->init = mmc_spi_init_p;
  261. mmc->host_caps = MMC_MODE_SPI;
  262. mmc->voltages = MMC_SPI_VOLTAGE;
  263. mmc->f_max = speed;
  264. mmc->f_min = MMC_SPI_MIN_CLOCK;
  265. mmc->block_dev.part_type = PART_TYPE_DOS;
  266. mmc_register(mmc);
  267. return mmc;
  268. }