440gx_enet.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. /*-----------------------------------------------------------------------------+
  2. *
  3. * This source code has been made available to you by IBM on an AS-IS
  4. * basis. Anyone receiving this source is licensed under IBM
  5. * copyrights to use it in any way he or she deems fit, including
  6. * copying it, modifying it, compiling it, and redistributing it either
  7. * with or without modifications. No license under IBM patents or
  8. * patent applications is to be implied by the copyright license.
  9. *
  10. * Any user of this software should understand that IBM cannot provide
  11. * technical support for this software and will not be responsible for
  12. * any consequences resulting from the use of this software.
  13. *
  14. * Any person who transfers this source code or any derivative work
  15. * must include the IBM copyright notice, this paragraph, and the
  16. * preceding two paragraphs in the transferred software.
  17. *
  18. * COPYRIGHT I B M CORPORATION 1995
  19. * LICENSED MATERIAL - PROGRAM PROPERTY OF I B M
  20. *-----------------------------------------------------------------------------*/
  21. /*-----------------------------------------------------------------------------+
  22. *
  23. * File Name: enetemac.c
  24. *
  25. * Function: Device driver for the ethernet EMAC3 macro on the 405GP.
  26. *
  27. * Author: Mark Wisner
  28. *
  29. * Change Activity-
  30. *
  31. * Date Description of Change BY
  32. * --------- --------------------- ---
  33. * 05-May-99 Created MKW
  34. * 27-Jun-99 Clean up JWB
  35. * 16-Jul-99 Added MAL error recovery and better IP packet handling MKW
  36. * 29-Jul-99 Added Full duplex support MKW
  37. * 06-Aug-99 Changed names for Mal CR reg MKW
  38. * 23-Aug-99 Turned off SYE when running at 10Mbs MKW
  39. * 24-Aug-99 Marked descriptor empty after call_xlc MKW
  40. * 07-Sep-99 Set MAL RX buffer size reg to ENET_MAX_MTU_ALIGNED / 16 MCG
  41. * to avoid chaining maximum sized packets. Push starting
  42. * RX descriptor address up to the next cache line boundary.
  43. * 16-Jan-00 Added support for booting with IP of 0x0 MKW
  44. * 15-Mar-00 Updated enetInit() to enable broadcast addresses in the
  45. * EMAC_RXM register. JWB
  46. * 12-Mar-01 anne-sophie.harnois@nextream.fr
  47. * - Variables are compatible with those already defined in
  48. * include/net.h
  49. * - Receive buffer descriptor ring is used to send buffers
  50. * to the user
  51. * - Info print about send/received/handled packet number if
  52. * INFO_405_ENET is set
  53. * 17-Apr-01 stefan.roese@esd-electronics.com
  54. * - MAL reset in "eth_halt" included
  55. * - Enet speed and duplex output now in one line
  56. * 08-May-01 stefan.roese@esd-electronics.com
  57. * - MAL error handling added (eth_init called again)
  58. * 13-Nov-01 stefan.roese@esd-electronics.com
  59. * - Set IST bit in EMAC_M1 reg upon 100MBit or full duplex
  60. * 04-Jan-02 stefan.roese@esd-electronics.com
  61. * - Wait for PHY auto negotiation to complete added
  62. * 06-Feb-02 stefan.roese@esd-electronics.com
  63. * - Bug fixed in waiting for auto negotiation to complete
  64. * 26-Feb-02 stefan.roese@esd-electronics.com
  65. * - rx and tx buffer descriptors now allocated (no fixed address
  66. * used anymore)
  67. * 17-Jun-02 stefan.roese@esd-electronics.com
  68. * - MAL error debug printf 'M' removed (rx de interrupt may
  69. * occur upon many incoming packets with only 4 rx buffers).
  70. *-----------------------------------------------------------------------------*
  71. * 17-Nov-03 travis.sawyer@sandburst.com
  72. * - ported from 405gp_enet.c to utilized upto 4 EMAC ports
  73. * in the 440GX. This port should work with the 440GP
  74. * (2 EMACs) also
  75. *-----------------------------------------------------------------------------*/
  76. #include <config.h>
  77. #if defined(CONFIG_440) && defined(CONFIG_NET_MULTI)
  78. #include <common.h>
  79. #include <net.h>
  80. #include <asm/processor.h>
  81. #include <ppc440.h>
  82. #include <commproc.h>
  83. #include <440gx_enet.h>
  84. #include <405_mal.h>
  85. #include <miiphy.h>
  86. #include <malloc.h>
  87. #include "vecnum.h"
  88. #define EMAC_RESET_TIMEOUT 1000 /* 1000 ms reset timeout */
  89. #define PHY_AUTONEGOTIATE_TIMEOUT 4000 /* 4000 ms autonegotiate timeout */
  90. /* Ethernet Transmit and Receive Buffers */
  91. /* AS.HARNOIS
  92. * In the same way ENET_MAX_MTU and ENET_MAX_MTU_ALIGNED are set from
  93. * PKTSIZE and PKTSIZE_ALIGN (include/net.h)
  94. */
  95. #define ENET_MAX_MTU PKTSIZE
  96. #define ENET_MAX_MTU_ALIGNED PKTSIZE_ALIGN
  97. /* define the number of channels implemented */
  98. #define EMAC_RXCHL EMAC_NUM_DEV
  99. #define EMAC_TXCHL EMAC_NUM_DEV
  100. /*-----------------------------------------------------------------------------+
  101. * Defines for MAL/EMAC interrupt conditions as reported in the UIC (Universal
  102. * Interrupt Controller).
  103. *-----------------------------------------------------------------------------*/
  104. #define MAL_UIC_ERR ( UIC_MAL_SERR | UIC_MAL_TXDE | UIC_MAL_RXDE)
  105. #define MAL_UIC_DEF (UIC_MAL_RXEOB | MAL_UIC_ERR)
  106. #define EMAC_UIC_DEF UIC_ENET
  107. #undef INFO_440_ENET
  108. #define BI_PHYMODE_NONE 0
  109. #define BI_PHYMODE_ZMII 1
  110. #define BI_PHYMODE_RGMII 2
  111. /*-----------------------------------------------------------------------------+
  112. * Global variables. TX and RX descriptors and buffers.
  113. *-----------------------------------------------------------------------------*/
  114. /* IER globals */
  115. static uint32_t mal_ier;
  116. /*-----------------------------------------------------------------------------+
  117. * Prototypes and externals.
  118. *-----------------------------------------------------------------------------*/
  119. static void enet_rcv (struct eth_device *dev, unsigned long malisr);
  120. int enetInt (struct eth_device *dev);
  121. static void mal_err (struct eth_device *dev, unsigned long isr,
  122. unsigned long uic, unsigned long maldef,
  123. unsigned long mal_errr);
  124. static void emac_err (struct eth_device *dev, unsigned long isr);
  125. /*-----------------------------------------------------------------------------+
  126. | ppc_440x_eth_halt
  127. | Disable MAL channel, and EMACn
  128. |
  129. |
  130. +-----------------------------------------------------------------------------*/
  131. static void ppc_440x_eth_halt (struct eth_device *dev)
  132. {
  133. EMAC_440GX_HW_PST hw_p = dev->priv;
  134. uint32_t failsafe = 10000;
  135. out32 (EMAC_IER + hw_p->hw_addr, 0x00000000); /* disable emac interrupts */
  136. /* 1st reset MAL channel */
  137. /* Note: writing a 0 to a channel has no effect */
  138. mtdcr (maltxcarr, (MAL_CR_MMSR >> hw_p->devnum));
  139. mtdcr (malrxcarr, (MAL_CR_MMSR >> hw_p->devnum));
  140. /* wait for reset */
  141. while (mfdcr (maltxcasr) & (MAL_CR_MMSR >> hw_p->devnum)) {
  142. udelay (1000); /* Delay 1 MS so as not to hammer the register */
  143. failsafe--;
  144. if (failsafe == 0)
  145. break;
  146. }
  147. /* EMAC RESET */
  148. out32 (EMAC_M0 + hw_p->hw_addr, EMAC_M0_SRST);
  149. hw_p->print_speed = 1; /* print speed message again next time */
  150. return;
  151. }
  152. extern int phy_setup_aneg (unsigned char addr);
  153. extern int miiphy_reset (unsigned char addr);
  154. static int ppc_440x_eth_init (struct eth_device *dev, bd_t * bis)
  155. {
  156. int i;
  157. unsigned long reg;
  158. unsigned long msr;
  159. unsigned long speed;
  160. unsigned long duplex;
  161. unsigned long failsafe;
  162. unsigned mode_reg;
  163. unsigned short devnum;
  164. unsigned short reg_short;
  165. sys_info_t sysinfo;
  166. #if defined (CONFIG_440_GX)
  167. unsigned long pfc1;
  168. unsigned long zmiifer;
  169. unsigned long rmiifer;
  170. #endif
  171. EMAC_440GX_HW_PST hw_p = dev->priv;
  172. /* before doing anything, figure out if we have a MAC address */
  173. /* if not, bail */
  174. if (memcmp (dev->enetaddr, "\0\0\0\0\0\0", 6) == 0)
  175. return -1;
  176. /* Need to get the OPB frequency so we can access the PHY */
  177. get_sys_info (&sysinfo);
  178. msr = mfmsr ();
  179. mtmsr (msr & ~(MSR_EE)); /* disable interrupts */
  180. devnum = hw_p->devnum;
  181. #ifdef INFO_440_ENET
  182. /* AS.HARNOIS
  183. * We should have :
  184. * hw_p->stats.pkts_handled <= hw_p->stats.pkts_rx <= hw_p->stats.pkts_handled+PKTBUFSRX
  185. * In the most cases hw_p->stats.pkts_handled = hw_p->stats.pkts_rx, but it
  186. * is possible that new packets (without relationship with
  187. * current transfer) have got the time to arrived before
  188. * netloop calls eth_halt
  189. */
  190. printf ("About preceeding transfer (eth%d):\n"
  191. "- Sent packet number %d\n"
  192. "- Received packet number %d\n"
  193. "- Handled packet number %d\n",
  194. hw_p->devnum,
  195. hw_p->stats.pkts_tx,
  196. hw_p->stats.pkts_rx, hw_p->stats.pkts_handled);
  197. hw_p->stats.pkts_tx = 0;
  198. hw_p->stats.pkts_rx = 0;
  199. hw_p->stats.pkts_handled = 0;
  200. #endif
  201. /* MAL Channel RESET */
  202. /* 1st reset MAL channel */
  203. /* Note: writing a 0 to a channel has no effect */
  204. mtdcr (maltxcarr, (MAL_TXRX_CASR >> hw_p->devnum));
  205. mtdcr (malrxcarr, (MAL_TXRX_CASR >> hw_p->devnum));
  206. /* wait for reset */
  207. /* TBS: should have udelay and failsafe here */
  208. failsafe = 10000;
  209. /* wait for reset */
  210. while (mfdcr (maltxcasr) & (MAL_CR_MMSR >> hw_p->devnum)) {
  211. udelay (1000); /* Delay 1 MS so as not to hammer the register */
  212. failsafe--;
  213. if (failsafe == 0)
  214. break;
  215. }
  216. hw_p->tx_err_index = 0; /* Transmit Error Index for tx_err_log */
  217. hw_p->rx_err_index = 0; /* Receive Error Index for rx_err_log */
  218. hw_p->rx_slot = 0; /* MAL Receive Slot */
  219. hw_p->rx_i_index = 0; /* Receive Interrupt Queue Index */
  220. hw_p->rx_u_index = 0; /* Receive User Queue Index */
  221. hw_p->tx_slot = 0; /* MAL Transmit Slot */
  222. hw_p->tx_i_index = 0; /* Transmit Interrupt Queue Index */
  223. hw_p->tx_u_index = 0; /* Transmit User Queue Index */
  224. /* set RMII mode */
  225. /* NOTE: 440GX spec states that mode is mutually exclusive */
  226. /* NOTE: Therefore, disable all other EMACS, since we handle */
  227. /* NOTE: only one emac at a time */
  228. reg = 0;
  229. out32 (ZMII_FER, 0);
  230. udelay (100);
  231. #if defined(CONFIG_440_GX)
  232. mfsdr(sdr_pfc1, pfc1);
  233. pfc1 = SDR0_PFC1_EPS_DECODE(pfc1);
  234. switch (pfc1) {
  235. case 1:
  236. zmiifer = (ZMII_FER_MDI | ZMII_FER_RMII) << ZMII_FER_V(devnum);
  237. rmiifer = 0x0;
  238. break;
  239. case 2:
  240. zmiifer = (ZMII_FER_MDI | ZMII_FER_SMII) << ZMII_FER_V(devnum);
  241. rmiifer = 0x0;
  242. break;
  243. case 3:
  244. if (devnum == 0) {
  245. zmiifer = (ZMII_FER_MDI | ZMII_FER_RMII) << ZMII_FER_V(devnum);
  246. rmiifer = 0x0;
  247. } else if (devnum == 2) {
  248. zmiifer = (ZMII_FER_MDI | ZMII_FER_RMII) << ZMII_FER_V(devnum);
  249. rmiifer = RGMII_FER_RGMII << RGMII_FER_V(devnum);
  250. } else { /* invalid case */
  251. zmiifer = 0x0;
  252. rmiifer = 0x0;
  253. }
  254. break;
  255. case 4:
  256. if ((devnum == 0) || (devnum == 1)) {
  257. zmiifer = (ZMII_FER_MDI | ZMII_FER_SMII) << ZMII_FER_V (devnum);
  258. rmiifer = 0x0;
  259. } else { /* ((devnum == 2) || (devnum == 3)) */
  260. zmiifer = (ZMII_FER_MDI/* | ZMII_FER_RMII */) << ZMII_FER_V (devnum);
  261. rmiifer = RGMII_FER_RGMII << RGMII_FER_V (devnum);
  262. }
  263. break;
  264. case 5:
  265. if ((devnum == 0) || (devnum == 1) || (devnum == 2)) {
  266. zmiifer = (ZMII_FER_MDI | ZMII_FER_SMII) << ZMII_FER_V (devnum);
  267. rmiifer = 0x0;
  268. } else {
  269. zmiifer = (ZMII_FER_MDI | ZMII_FER_RMII) << ZMII_FER_V(devnum);
  270. rmiifer = RGMII_FER_RGMII << RGMII_FER_V(devnum);
  271. }
  272. break;
  273. case 6:
  274. if ((devnum == 0) || (devnum == 1)) {
  275. zmiifer = (ZMII_FER_MDI | ZMII_FER_SMII) << ZMII_FER_V (devnum);
  276. rmiifer = 0x0;
  277. } else {
  278. zmiifer = (ZMII_FER_MDI | ZMII_FER_RMII) << ZMII_FER_V(devnum);
  279. rmiifer = RGMII_FER_RGMII << RGMII_FER_V(devnum);
  280. }
  281. break;
  282. case 0:
  283. default:
  284. zmiifer = (ZMII_FER_MDI | ZMII_FER_MII) << ZMII_FER_V(devnum);
  285. rmiifer = 0x0;
  286. break;
  287. }
  288. out32 (ZMII_FER, zmiifer);
  289. out32 (RGMII_FER, rmiifer);
  290. #else
  291. if ((devnum == 0) || (devnum == 1)) {
  292. out32 (ZMII_FER, (ZMII_FER_SMII | ZMII_FER_MDI) << ZMII_FER_V (devnum));
  293. }
  294. else { /* ((devnum == 2) || (devnum == 3)) */
  295. out32 (ZMII_FER, ZMII_FER_MDI << ZMII_FER_V (devnum));
  296. out32 (RGMII_FER, ((RGMII_FER_RGMII << RGMII_FER_V (2)) |
  297. (RGMII_FER_RGMII << RGMII_FER_V (3))));
  298. }
  299. #endif
  300. out32 (ZMII_SSR, ZMII_SSR_SP << ZMII_SSR_V(devnum));
  301. __asm__ volatile ("eieio");
  302. /* reset emac so we have access to the phy */
  303. out32 (EMAC_M0 + hw_p->hw_addr, EMAC_M0_SRST);
  304. __asm__ volatile ("eieio");
  305. failsafe = 1000;
  306. while ((in32 (EMAC_M0 + hw_p->hw_addr) & (EMAC_M0_SRST)) && failsafe) {
  307. udelay (1000);
  308. failsafe--;
  309. }
  310. /* Whack the M1 register */
  311. mode_reg = 0x0;
  312. mode_reg &= ~0x00000038;
  313. if (sysinfo.freqOPB <= 50000000);
  314. else if (sysinfo.freqOPB <= 66666667)
  315. mode_reg |= EMAC_M1_OBCI_66;
  316. else if (sysinfo.freqOPB <= 83333333)
  317. mode_reg |= EMAC_M1_OBCI_83;
  318. else if (sysinfo.freqOPB <= 100000000)
  319. mode_reg |= EMAC_M1_OBCI_100;
  320. else
  321. mode_reg |= EMAC_M1_OBCI_GT100;
  322. out32 (EMAC_M1 + hw_p->hw_addr, mode_reg);
  323. /* wait for PHY to complete auto negotiation */
  324. reg_short = 0;
  325. #ifndef CONFIG_CS8952_PHY
  326. switch (devnum) {
  327. case 0:
  328. reg = CONFIG_PHY_ADDR;
  329. break;
  330. case 1:
  331. reg = CONFIG_PHY1_ADDR;
  332. break;
  333. #if defined (CONFIG_440_GX)
  334. case 2:
  335. reg = CONFIG_PHY2_ADDR;
  336. break;
  337. case 3:
  338. reg = CONFIG_PHY3_ADDR;
  339. break;
  340. #endif
  341. default:
  342. reg = CONFIG_PHY_ADDR;
  343. break;
  344. }
  345. bis->bi_phynum[devnum] = reg;
  346. /* Reset the phy */
  347. miiphy_reset (reg);
  348. #if defined(CONFIG_CIS8201_PHY)
  349. /*
  350. * Cicada 8201 PHY needs to have an extended register whacked
  351. * for RGMII mode.
  352. */
  353. if ( ((devnum == 2) || (devnum ==3)) && (4 == pfc1) ) {
  354. miiphy_write (reg, 23, 0x1200);
  355. }
  356. #endif
  357. /* Start/Restart autonegotiation */
  358. phy_setup_aneg (reg);
  359. udelay (1000);
  360. miiphy_read (reg, PHY_BMSR, &reg_short);
  361. /*
  362. * Wait if PHY is capable of autonegotiation and autonegotiation is not complete
  363. */
  364. if ((reg_short & PHY_BMSR_AUTN_ABLE)
  365. && !(reg_short & PHY_BMSR_AUTN_COMP)) {
  366. puts ("Waiting for PHY auto negotiation to complete");
  367. i = 0;
  368. while (!(reg_short & PHY_BMSR_AUTN_COMP)) {
  369. /*
  370. * Timeout reached ?
  371. */
  372. if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
  373. puts (" TIMEOUT !\n");
  374. break;
  375. }
  376. if ((i++ % 1000) == 0) {
  377. putc ('.');
  378. }
  379. udelay (1000); /* 1 ms */
  380. miiphy_read (reg, PHY_BMSR, &reg_short);
  381. }
  382. puts (" done\n");
  383. udelay (500000); /* another 500 ms (results in faster booting) */
  384. }
  385. #endif
  386. speed = miiphy_speed (reg);
  387. duplex = miiphy_duplex (reg);
  388. if (hw_p->print_speed) {
  389. hw_p->print_speed = 0;
  390. printf ("ENET Speed is %d Mbps - %s duplex connection\n",
  391. (int) speed, (duplex == HALF) ? "HALF" : "FULL");
  392. }
  393. /* Set ZMII/RGMII speed according to the phy link speed */
  394. reg = in32 (ZMII_SSR);
  395. if (speed == 100)
  396. out32 (ZMII_SSR, reg | (ZMII_SSR_SP << ZMII_SSR_V (devnum)));
  397. else
  398. out32 (ZMII_SSR,
  399. reg & (~(ZMII_SSR_SP << ZMII_SSR_V (devnum))));
  400. if ((devnum == 2) || (devnum == 3)) {
  401. if (speed == 1000)
  402. reg = (RGMII_SSR_SP_1000MBPS << RGMII_SSR_V (devnum));
  403. else if (speed == 100)
  404. reg = (RGMII_SSR_SP_100MBPS << RGMII_SSR_V (devnum));
  405. else
  406. reg = (RGMII_SSR_SP_10MBPS << RGMII_SSR_V (devnum));
  407. out32 (RGMII_SSR, reg);
  408. }
  409. /* set the Mal configuration reg */
  410. /* Errata 1.12: MAL_1 -- Disable MAL bursting */
  411. if (get_pvr () == PVR_440GP_RB)
  412. mtdcr (malmcr,
  413. MAL_CR_OPBBL | MAL_CR_LEA | MAL_CR_PLBLT_DEFAULT);
  414. else
  415. mtdcr (malmcr,
  416. MAL_CR_PLBB | MAL_CR_OPBBL | MAL_CR_LEA |
  417. MAL_CR_PLBLT_DEFAULT | MAL_CR_EOPIE | 0x00330000);
  418. /* Free "old" buffers */
  419. if (hw_p->alloc_tx_buf)
  420. free (hw_p->alloc_tx_buf);
  421. if (hw_p->alloc_rx_buf)
  422. free (hw_p->alloc_rx_buf);
  423. /*
  424. * Malloc MAL buffer desciptors, make sure they are
  425. * aligned on cache line boundary size
  426. * (401/403/IOP480 = 16, 405 = 32)
  427. * and doesn't cross cache block boundaries.
  428. */
  429. hw_p->alloc_tx_buf =
  430. (mal_desc_t *) malloc ((sizeof (mal_desc_t) * NUM_TX_BUFF) +
  431. ((2 * CFG_CACHELINE_SIZE) - 2));
  432. if (((int) hw_p->alloc_tx_buf & CACHELINE_MASK) != 0) {
  433. hw_p->tx =
  434. (mal_desc_t *) ((int) hw_p->alloc_tx_buf +
  435. CFG_CACHELINE_SIZE -
  436. ((int) hw_p->
  437. alloc_tx_buf & CACHELINE_MASK));
  438. } else {
  439. hw_p->tx = hw_p->alloc_tx_buf;
  440. }
  441. hw_p->alloc_rx_buf =
  442. (mal_desc_t *) malloc ((sizeof (mal_desc_t) * NUM_RX_BUFF) +
  443. ((2 * CFG_CACHELINE_SIZE) - 2));
  444. if (((int) hw_p->alloc_rx_buf & CACHELINE_MASK) != 0) {
  445. hw_p->rx =
  446. (mal_desc_t *) ((int) hw_p->alloc_rx_buf +
  447. CFG_CACHELINE_SIZE -
  448. ((int) hw_p->
  449. alloc_rx_buf & CACHELINE_MASK));
  450. } else {
  451. hw_p->rx = hw_p->alloc_rx_buf;
  452. }
  453. for (i = 0; i < NUM_TX_BUFF; i++) {
  454. hw_p->tx[i].ctrl = 0;
  455. hw_p->tx[i].data_len = 0;
  456. if (hw_p->first_init == 0)
  457. hw_p->txbuf_ptr =
  458. (char *) malloc (ENET_MAX_MTU_ALIGNED);
  459. hw_p->tx[i].data_ptr = hw_p->txbuf_ptr;
  460. if ((NUM_TX_BUFF - 1) == i)
  461. hw_p->tx[i].ctrl |= MAL_TX_CTRL_WRAP;
  462. hw_p->tx_run[i] = -1;
  463. #if 0
  464. printf ("TX_BUFF %d @ 0x%08lx\n", i,
  465. (ulong) hw_p->tx[i].data_ptr);
  466. #endif
  467. }
  468. for (i = 0; i < NUM_RX_BUFF; i++) {
  469. hw_p->rx[i].ctrl = 0;
  470. hw_p->rx[i].data_len = 0;
  471. /* rx[i].data_ptr = (char *) &rx_buff[i]; */
  472. hw_p->rx[i].data_ptr = (char *) NetRxPackets[i];
  473. if ((NUM_RX_BUFF - 1) == i)
  474. hw_p->rx[i].ctrl |= MAL_RX_CTRL_WRAP;
  475. hw_p->rx[i].ctrl |= MAL_RX_CTRL_EMPTY | MAL_RX_CTRL_INTR;
  476. hw_p->rx_ready[i] = -1;
  477. #if 0
  478. printf ("RX_BUFF %d @ 0x%08lx\n", i, (ulong) rx[i].data_ptr);
  479. #endif
  480. }
  481. reg = 0x00000000;
  482. reg |= dev->enetaddr[0]; /* set high address */
  483. reg = reg << 8;
  484. reg |= dev->enetaddr[1];
  485. out32 (EMAC_IAH + hw_p->hw_addr, reg);
  486. reg = 0x00000000;
  487. reg |= dev->enetaddr[2]; /* set low address */
  488. reg = reg << 8;
  489. reg |= dev->enetaddr[3];
  490. reg = reg << 8;
  491. reg |= dev->enetaddr[4];
  492. reg = reg << 8;
  493. reg |= dev->enetaddr[5];
  494. out32 (EMAC_IAL + hw_p->hw_addr, reg);
  495. switch (devnum) {
  496. case 1:
  497. /* setup MAL tx & rx channel pointers */
  498. mtdcr (maltxbattr, 0x0);
  499. mtdcr (maltxctp1r, hw_p->tx);
  500. mtdcr (malrxbattr, 0x0);
  501. mtdcr (malrxctp1r, hw_p->rx);
  502. /* set RX buffer size */
  503. mtdcr (malrcbs1, ENET_MAX_MTU_ALIGNED / 16);
  504. break;
  505. #if defined (CONFIG_440_GX)
  506. case 2:
  507. /* setup MAL tx & rx channel pointers */
  508. mtdcr (maltxbattr, 0x0);
  509. mtdcr (maltxctp2r, hw_p->tx);
  510. mtdcr (malrxbattr, 0x0);
  511. mtdcr (malrxctp2r, hw_p->rx);
  512. /* set RX buffer size */
  513. mtdcr (malrcbs2, ENET_MAX_MTU_ALIGNED / 16);
  514. break;
  515. case 3:
  516. /* setup MAL tx & rx channel pointers */
  517. mtdcr (maltxbattr, 0x0);
  518. mtdcr (maltxctp3r, hw_p->tx);
  519. mtdcr (malrxbattr, 0x0);
  520. mtdcr (malrxctp3r, hw_p->rx);
  521. /* set RX buffer size */
  522. mtdcr (malrcbs3, ENET_MAX_MTU_ALIGNED / 16);
  523. break;
  524. #endif /*CONFIG_440_GX */
  525. case 0:
  526. default:
  527. /* setup MAL tx & rx channel pointers */
  528. mtdcr (maltxbattr, 0x0);
  529. mtdcr (maltxctp0r, hw_p->tx);
  530. mtdcr (malrxbattr, 0x0);
  531. mtdcr (malrxctp0r, hw_p->rx);
  532. /* set RX buffer size */
  533. mtdcr (malrcbs0, ENET_MAX_MTU_ALIGNED / 16);
  534. break;
  535. }
  536. /* Enable MAL transmit and receive channels */
  537. mtdcr (maltxcasr, (MAL_TXRX_CASR >> hw_p->devnum));
  538. mtdcr (malrxcasr, (MAL_TXRX_CASR >> hw_p->devnum));
  539. /* set transmit enable & receive enable */
  540. out32 (EMAC_M0 + hw_p->hw_addr, EMAC_M0_TXE | EMAC_M0_RXE);
  541. /* set receive fifo to 4k and tx fifo to 2k */
  542. mode_reg = in32 (EMAC_M1 + hw_p->hw_addr);
  543. mode_reg |= EMAC_M1_RFS_4K | EMAC_M1_TX_FIFO_2K;
  544. /* set speed */
  545. /* TBS: do 1GbE */
  546. if (speed == _100BASET)
  547. mode_reg = mode_reg | EMAC_M1_MF_100MBPS | EMAC_M1_IST;
  548. else
  549. mode_reg = mode_reg & ~0x00C00000; /* 10 MBPS */
  550. if (duplex == FULL)
  551. mode_reg = mode_reg | 0x80000000 | EMAC_M1_IST;
  552. out32 (EMAC_M1 + hw_p->hw_addr, mode_reg);
  553. /* Enable broadcast and indvidual address */
  554. /* TBS: enabling runts as some misbehaved nics will send runts */
  555. out32 (EMAC_RXM + hw_p->hw_addr, EMAC_RMR_BAE | EMAC_RMR_IAE);
  556. /* we probably need to set the tx mode1 reg? maybe at tx time */
  557. /* set transmit request threshold register */
  558. out32 (EMAC_TRTR + hw_p->hw_addr, 0x18000000); /* 256 byte threshold */
  559. /* set receive low/high water mark register */
  560. /* 440GP has a 64 byte burst length */
  561. out32 (EMAC_RX_HI_LO_WMARK + hw_p->hw_addr, 0x80009000);
  562. out32 (EMAC_TXM1 + hw_p->hw_addr, 0xf8640000);
  563. /* Set fifo limit entry in tx mode 0 */
  564. out32 (EMAC_TXM0 + hw_p->hw_addr, 0x00000003);
  565. /* Frame gap set */
  566. out32 (EMAC_I_FRAME_GAP_REG + hw_p->hw_addr, 0x00000008);
  567. /* Set EMAC IER */
  568. hw_p->emac_ier = EMAC_ISR_PTLE | EMAC_ISR_BFCS |
  569. EMAC_ISR_PTLE | EMAC_ISR_ORE | EMAC_ISR_IRE;
  570. if (speed == _100BASET)
  571. hw_p->emac_ier = hw_p->emac_ier | EMAC_ISR_SYE;
  572. out32 (EMAC_ISR + hw_p->hw_addr, 0xffffffff); /* clear pending interrupts */
  573. out32 (EMAC_IER + hw_p->hw_addr, hw_p->emac_ier);
  574. if (hw_p->first_init == 0) {
  575. /*
  576. * Connect interrupt service routines
  577. */
  578. irq_install_handler (VECNUM_EWU0 + (hw_p->devnum * 2),
  579. (interrupt_handler_t *) enetInt, dev);
  580. irq_install_handler (VECNUM_ETH0 + (hw_p->devnum * 2),
  581. (interrupt_handler_t *) enetInt, dev);
  582. }
  583. mtmsr (msr); /* enable interrupts again */
  584. hw_p->bis = bis;
  585. hw_p->first_init = 1;
  586. return (1);
  587. }
  588. static int ppc_440x_eth_send (struct eth_device *dev, volatile void *ptr,
  589. int len)
  590. {
  591. struct enet_frame *ef_ptr;
  592. ulong time_start, time_now;
  593. unsigned long temp_txm0;
  594. EMAC_440GX_HW_PST hw_p = dev->priv;
  595. ef_ptr = (struct enet_frame *) ptr;
  596. /*-----------------------------------------------------------------------+
  597. * Copy in our address into the frame.
  598. *-----------------------------------------------------------------------*/
  599. (void) memcpy (ef_ptr->source_addr, dev->enetaddr, ENET_ADDR_LENGTH);
  600. /*-----------------------------------------------------------------------+
  601. * If frame is too long or too short, modify length.
  602. *-----------------------------------------------------------------------*/
  603. /* TBS: where does the fragment go???? */
  604. if (len > ENET_MAX_MTU)
  605. len = ENET_MAX_MTU;
  606. /* memcpy ((void *) &tx_buff[tx_slot], (const void *) ptr, len); */
  607. memcpy ((void *) hw_p->txbuf_ptr, (const void *) ptr, len);
  608. /*-----------------------------------------------------------------------+
  609. * set TX Buffer busy, and send it
  610. *-----------------------------------------------------------------------*/
  611. hw_p->tx[hw_p->tx_slot].ctrl = (MAL_TX_CTRL_LAST |
  612. EMAC_TX_CTRL_GFCS | EMAC_TX_CTRL_GP) &
  613. ~(EMAC_TX_CTRL_ISA | EMAC_TX_CTRL_RSA);
  614. if ((NUM_TX_BUFF - 1) == hw_p->tx_slot)
  615. hw_p->tx[hw_p->tx_slot].ctrl |= MAL_TX_CTRL_WRAP;
  616. hw_p->tx[hw_p->tx_slot].data_len = (short) len;
  617. hw_p->tx[hw_p->tx_slot].ctrl |= MAL_TX_CTRL_READY;
  618. __asm__ volatile ("eieio");
  619. out32 (EMAC_TXM0 + hw_p->hw_addr,
  620. in32 (EMAC_TXM0 + hw_p->hw_addr) | EMAC_TXM0_GNP0);
  621. #ifdef INFO_440_ENET
  622. hw_p->stats.pkts_tx++;
  623. #endif
  624. /*-----------------------------------------------------------------------+
  625. * poll unitl the packet is sent and then make sure it is OK
  626. *-----------------------------------------------------------------------*/
  627. time_start = get_timer (0);
  628. while (1) {
  629. temp_txm0 = in32 (EMAC_TXM0 + hw_p->hw_addr);
  630. /* loop until either TINT turns on or 3 seconds elapse */
  631. if ((temp_txm0 & EMAC_TXM0_GNP0) != 0) {
  632. /* transmit is done, so now check for errors
  633. * If there is an error, an interrupt should
  634. * happen when we return
  635. */
  636. time_now = get_timer (0);
  637. if ((time_now - time_start) > 3000) {
  638. return (-1);
  639. }
  640. } else {
  641. return (len);
  642. }
  643. }
  644. }
  645. int enetInt (struct eth_device *dev)
  646. {
  647. int serviced;
  648. int rc = -1; /* default to not us */
  649. unsigned long mal_isr;
  650. unsigned long emac_isr = 0;
  651. unsigned long mal_rx_eob;
  652. unsigned long my_uic0msr, my_uic1msr;
  653. #if defined(CONFIG_440_GX)
  654. unsigned long my_uic2msr;
  655. #endif
  656. EMAC_440GX_HW_PST hw_p;
  657. /*
  658. * Because the mal is generic, we need to get the current
  659. * eth device
  660. */
  661. dev = eth_get_dev ();
  662. hw_p = dev->priv;
  663. /* enter loop that stays in interrupt code until nothing to service */
  664. do {
  665. serviced = 0;
  666. my_uic0msr = mfdcr (uic0msr);
  667. my_uic1msr = mfdcr (uic1msr);
  668. #if defined(CONFIG_440_GX)
  669. my_uic2msr = mfdcr (uic2msr);
  670. #endif
  671. if (!(my_uic0msr & (UIC_MRE | UIC_MTE))
  672. && !(my_uic1msr &
  673. (UIC_ETH0 | UIC_ETH1 | UIC_MS | UIC_MTDE |
  674. UIC_MRDE))) {
  675. /* not for us */
  676. return (rc);
  677. }
  678. #if defined (CONFIG_440_GX)
  679. if (!(my_uic0msr & (UIC_MRE | UIC_MTE))
  680. && !(my_uic2msr & (UIC_ETH2 | UIC_ETH3))) {
  681. /* not for us */
  682. return (rc);
  683. }
  684. #endif
  685. /* get and clear controller status interrupts */
  686. /* look at Mal and EMAC interrupts */
  687. if ((my_uic0msr & (UIC_MRE | UIC_MTE))
  688. || (my_uic1msr & (UIC_MS | UIC_MTDE | UIC_MRDE))) {
  689. /* we have a MAL interrupt */
  690. mal_isr = mfdcr (malesr);
  691. /* look for mal error */
  692. if (my_uic1msr & (UIC_MS | UIC_MTDE | UIC_MRDE)) {
  693. mal_err (dev, mal_isr, my_uic0msr,
  694. MAL_UIC_DEF, MAL_UIC_ERR);
  695. serviced = 1;
  696. rc = 0;
  697. }
  698. }
  699. /* port by port dispatch of emac interrupts */
  700. if (hw_p->devnum == 0) {
  701. if (UIC_ETH0 & my_uic1msr) { /* look for EMAC errors */
  702. emac_isr = in32 (EMAC_ISR + hw_p->hw_addr);
  703. if ((hw_p->emac_ier & emac_isr) != 0) {
  704. emac_err (dev, emac_isr);
  705. serviced = 1;
  706. rc = 0;
  707. }
  708. }
  709. if ((hw_p->emac_ier & emac_isr)
  710. || (my_uic1msr & (UIC_MS | UIC_MTDE | UIC_MRDE))) {
  711. mtdcr (uic0sr, UIC_MRE | UIC_MTE); /* Clear */
  712. mtdcr (uic1sr, UIC_ETH0 | UIC_MS | UIC_MTDE | UIC_MRDE); /* Clear */
  713. return (rc); /* we had errors so get out */
  714. }
  715. }
  716. if (hw_p->devnum == 1) {
  717. if (UIC_ETH1 & my_uic1msr) { /* look for EMAC errors */
  718. emac_isr = in32 (EMAC_ISR + hw_p->hw_addr);
  719. if ((hw_p->emac_ier & emac_isr) != 0) {
  720. emac_err (dev, emac_isr);
  721. serviced = 1;
  722. rc = 0;
  723. }
  724. }
  725. if ((hw_p->emac_ier & emac_isr)
  726. || (my_uic1msr & (UIC_MS | UIC_MTDE | UIC_MRDE))) {
  727. mtdcr (uic0sr, UIC_MRE | UIC_MTE); /* Clear */
  728. mtdcr (uic1sr, UIC_ETH1 | UIC_MS | UIC_MTDE | UIC_MRDE); /* Clear */
  729. return (rc); /* we had errors so get out */
  730. }
  731. }
  732. #if defined (CONFIG_440_GX)
  733. if (hw_p->devnum == 2) {
  734. if (UIC_ETH2 & my_uic2msr) { /* look for EMAC errors */
  735. emac_isr = in32 (EMAC_ISR + hw_p->hw_addr);
  736. if ((hw_p->emac_ier & emac_isr) != 0) {
  737. emac_err (dev, emac_isr);
  738. serviced = 1;
  739. rc = 0;
  740. }
  741. }
  742. if ((hw_p->emac_ier & emac_isr)
  743. || (my_uic1msr & (UIC_MS | UIC_MTDE | UIC_MRDE))) {
  744. mtdcr (uic0sr, UIC_MRE | UIC_MTE); /* Clear */
  745. mtdcr (uic1sr, UIC_MS | UIC_MTDE | UIC_MRDE); /* Clear */
  746. mtdcr (uic2sr, UIC_ETH2);
  747. return (rc); /* we had errors so get out */
  748. }
  749. }
  750. if (hw_p->devnum == 3) {
  751. if (UIC_ETH3 & my_uic2msr) { /* look for EMAC errors */
  752. emac_isr = in32 (EMAC_ISR + hw_p->hw_addr);
  753. if ((hw_p->emac_ier & emac_isr) != 0) {
  754. emac_err (dev, emac_isr);
  755. serviced = 1;
  756. rc = 0;
  757. }
  758. }
  759. if ((hw_p->emac_ier & emac_isr)
  760. || (my_uic1msr & (UIC_MS | UIC_MTDE | UIC_MRDE))) {
  761. mtdcr (uic0sr, UIC_MRE | UIC_MTE); /* Clear */
  762. mtdcr (uic1sr, UIC_MS | UIC_MTDE | UIC_MRDE); /* Clear */
  763. mtdcr (uic2sr, UIC_ETH3);
  764. return (rc); /* we had errors so get out */
  765. }
  766. }
  767. #endif /* CONFIG_440_GX */
  768. /* handle MAX TX EOB interrupt from a tx */
  769. if (my_uic0msr & UIC_MTE) {
  770. mal_rx_eob = mfdcr (maltxeobisr);
  771. mtdcr (maltxeobisr, mal_rx_eob);
  772. mtdcr (uic0sr, UIC_MTE);
  773. }
  774. /* handle MAL RX EOB interupt from a receive */
  775. /* check for EOB on valid channels */
  776. if (my_uic0msr & UIC_MRE) {
  777. mal_rx_eob = mfdcr (malrxeobisr);
  778. if ((mal_rx_eob & (0x80000000 >> hw_p->devnum)) != 0) { /* call emac routine for channel x */
  779. /* clear EOB
  780. mtdcr(malrxeobisr, mal_rx_eob); */
  781. enet_rcv (dev, emac_isr);
  782. /* indicate that we serviced an interrupt */
  783. serviced = 1;
  784. rc = 0;
  785. }
  786. }
  787. mtdcr (uic0sr, UIC_MRE); /* Clear */
  788. mtdcr (uic1sr, UIC_MS | UIC_MTDE | UIC_MRDE); /* Clear */
  789. switch (hw_p->devnum) {
  790. case 0:
  791. mtdcr (uic1sr, UIC_ETH0);
  792. break;
  793. case 1:
  794. mtdcr (uic1sr, UIC_ETH1);
  795. break;
  796. #if defined (CONFIG_440_GX)
  797. case 2:
  798. mtdcr (uic2sr, UIC_ETH2);
  799. break;
  800. case 3:
  801. mtdcr (uic2sr, UIC_ETH3);
  802. break;
  803. #endif /* CONFIG_440_GX */
  804. default:
  805. break;
  806. }
  807. } while (serviced);
  808. return (rc);
  809. }
  810. /*-----------------------------------------------------------------------------+
  811. * MAL Error Routine
  812. *-----------------------------------------------------------------------------*/
  813. static void mal_err (struct eth_device *dev, unsigned long isr,
  814. unsigned long uic, unsigned long maldef,
  815. unsigned long mal_errr)
  816. {
  817. EMAC_440GX_HW_PST hw_p = dev->priv;
  818. mtdcr (malesr, isr); /* clear interrupt */
  819. /* clear DE interrupt */
  820. mtdcr (maltxdeir, 0xC0000000);
  821. mtdcr (malrxdeir, 0x80000000);
  822. #ifdef INFO_440_ENET
  823. printf ("\nMAL error occured.... ISR = %lx UIC = = %lx MAL_DEF = %lx MAL_ERR= %lx \n", isr, uic, maldef, mal_errr);
  824. #endif
  825. eth_init (hw_p->bis); /* start again... */
  826. }
  827. /*-----------------------------------------------------------------------------+
  828. * EMAC Error Routine
  829. *-----------------------------------------------------------------------------*/
  830. static void emac_err (struct eth_device *dev, unsigned long isr)
  831. {
  832. EMAC_440GX_HW_PST hw_p = dev->priv;
  833. printf ("EMAC%d error occured.... ISR = %lx\n", hw_p->devnum, isr);
  834. out32 (EMAC_ISR + hw_p->hw_addr, isr);
  835. }
  836. /*-----------------------------------------------------------------------------+
  837. * enet_rcv() handles the ethernet receive data
  838. *-----------------------------------------------------------------------------*/
  839. static void enet_rcv (struct eth_device *dev, unsigned long malisr)
  840. {
  841. struct enet_frame *ef_ptr;
  842. unsigned long data_len;
  843. unsigned long rx_eob_isr;
  844. EMAC_440GX_HW_PST hw_p = dev->priv;
  845. int handled = 0;
  846. int i;
  847. int loop_count = 0;
  848. rx_eob_isr = mfdcr (malrxeobisr);
  849. if ((0x80000000 >> hw_p->devnum) & rx_eob_isr) {
  850. /* clear EOB */
  851. mtdcr (malrxeobisr, rx_eob_isr);
  852. /* EMAC RX done */
  853. while (1) { /* do all */
  854. i = hw_p->rx_slot;
  855. if ((MAL_RX_CTRL_EMPTY & hw_p->rx[i].ctrl)
  856. || (loop_count >= NUM_RX_BUFF))
  857. break;
  858. loop_count++;
  859. hw_p->rx_slot++;
  860. if (NUM_RX_BUFF == hw_p->rx_slot)
  861. hw_p->rx_slot = 0;
  862. handled++;
  863. data_len = (unsigned long) hw_p->rx[i].data_len; /* Get len */
  864. if (data_len) {
  865. if (data_len > ENET_MAX_MTU) /* Check len */
  866. data_len = 0;
  867. else {
  868. if (EMAC_RX_ERRORS & hw_p->rx[i].ctrl) { /* Check Errors */
  869. data_len = 0;
  870. hw_p->stats.rx_err_log[hw_p->
  871. rx_err_index]
  872. = hw_p->rx[i].ctrl;
  873. hw_p->rx_err_index++;
  874. if (hw_p->rx_err_index ==
  875. MAX_ERR_LOG)
  876. hw_p->rx_err_index =
  877. 0;
  878. } /* emac_erros */
  879. } /* data_len < max mtu */
  880. } /* if data_len */
  881. if (!data_len) { /* no data */
  882. hw_p->rx[i].ctrl |= MAL_RX_CTRL_EMPTY; /* Free Recv Buffer */
  883. hw_p->stats.data_len_err++; /* Error at Rx */
  884. }
  885. /* !data_len */
  886. /* AS.HARNOIS */
  887. /* Check if user has already eaten buffer */
  888. /* if not => ERROR */
  889. else if (hw_p->rx_ready[hw_p->rx_i_index] != -1) {
  890. if (hw_p->is_receiving)
  891. printf ("ERROR : Receive buffers are full!\n");
  892. break;
  893. } else {
  894. hw_p->stats.rx_frames++;
  895. hw_p->stats.rx += data_len;
  896. ef_ptr = (struct enet_frame *) hw_p->rx[i].
  897. data_ptr;
  898. #ifdef INFO_440_ENET
  899. hw_p->stats.pkts_rx++;
  900. #endif
  901. /* AS.HARNOIS
  902. * use ring buffer
  903. */
  904. hw_p->rx_ready[hw_p->rx_i_index] = i;
  905. hw_p->rx_i_index++;
  906. if (NUM_RX_BUFF == hw_p->rx_i_index)
  907. hw_p->rx_i_index = 0;
  908. /* printf("X"); /|* test-only *|/ */
  909. /* AS.HARNOIS
  910. * free receive buffer only when
  911. * buffer has been handled (eth_rx)
  912. rx[i].ctrl |= MAL_RX_CTRL_EMPTY;
  913. */
  914. } /* if data_len */
  915. } /* while */
  916. } /* if EMACK_RXCHL */
  917. }
  918. static int ppc_440x_eth_rx (struct eth_device *dev)
  919. {
  920. int length;
  921. int user_index;
  922. unsigned long msr;
  923. EMAC_440GX_HW_PST hw_p = dev->priv;
  924. hw_p->is_receiving = 1; /* tell driver */
  925. for (;;) {
  926. /* AS.HARNOIS
  927. * use ring buffer and
  928. * get index from rx buffer desciptor queue
  929. */
  930. user_index = hw_p->rx_ready[hw_p->rx_u_index];
  931. if (user_index == -1) {
  932. length = -1;
  933. break; /* nothing received - leave for() loop */
  934. }
  935. msr = mfmsr ();
  936. mtmsr (msr & ~(MSR_EE));
  937. length = hw_p->rx[user_index].data_len;
  938. /* Pass the packet up to the protocol layers. */
  939. /* NetReceive(NetRxPackets[rxIdx], length - 4); */
  940. /* NetReceive(NetRxPackets[i], length); */
  941. NetReceive (NetRxPackets[user_index], length - 4);
  942. /* Free Recv Buffer */
  943. hw_p->rx[user_index].ctrl |= MAL_RX_CTRL_EMPTY;
  944. /* Free rx buffer descriptor queue */
  945. hw_p->rx_ready[hw_p->rx_u_index] = -1;
  946. hw_p->rx_u_index++;
  947. if (NUM_RX_BUFF == hw_p->rx_u_index)
  948. hw_p->rx_u_index = 0;
  949. #ifdef INFO_440_ENET
  950. hw_p->stats.pkts_handled++;
  951. #endif
  952. mtmsr (msr); /* Enable IRQ's */
  953. }
  954. hw_p->is_receiving = 0; /* tell driver */
  955. return length;
  956. }
  957. int ppc_440x_eth_initialize (bd_t * bis)
  958. {
  959. static int virgin = 0;
  960. unsigned long pfc1;
  961. struct eth_device *dev;
  962. int eth_num = 0;
  963. EMAC_440GX_HW_PST hw = NULL;
  964. mfsdr (sdr_pfc1, pfc1);
  965. pfc1 &= ~(0x01e00000);
  966. pfc1 |= 0x01200000;
  967. mtsdr (sdr_pfc1, pfc1);
  968. /* set phy num and mode */
  969. bis->bi_phynum[0] = CONFIG_PHY_ADDR;
  970. bis->bi_phynum[1] = CONFIG_PHY1_ADDR;
  971. bis->bi_phynum[2] = CONFIG_PHY2_ADDR;
  972. bis->bi_phynum[3] = CONFIG_PHY3_ADDR;
  973. bis->bi_phymode[0] = 0;
  974. bis->bi_phymode[1] = 0;
  975. bis->bi_phymode[2] = 2;
  976. bis->bi_phymode[3] = 2;
  977. for (eth_num = 0; eth_num < EMAC_NUM_DEV; eth_num++) {
  978. /* See if we can actually bring up the interface, otherwise, skip it */
  979. switch (eth_num) {
  980. case 0:
  981. if (memcmp (bis->bi_enetaddr, "\0\0\0\0\0\0", 6) == 0) {
  982. bis->bi_phymode[eth_num] = BI_PHYMODE_NONE;
  983. continue;
  984. }
  985. break;
  986. case 1:
  987. if (memcmp (bis->bi_enet1addr, "\0\0\0\0\0\0", 6) == 0) {
  988. bis->bi_phymode[eth_num] = BI_PHYMODE_NONE;
  989. continue;
  990. }
  991. break;
  992. case 2:
  993. if (memcmp (bis->bi_enet2addr, "\0\0\0\0\0\0", 6) == 0) {
  994. bis->bi_phymode[eth_num] = BI_PHYMODE_NONE;
  995. continue;
  996. }
  997. break;
  998. case 3:
  999. if (memcmp (bis->bi_enet3addr, "\0\0\0\0\0\0", 6) == 0) {
  1000. bis->bi_phymode[eth_num] = BI_PHYMODE_NONE;
  1001. continue;
  1002. }
  1003. break;
  1004. default:
  1005. if (memcmp (bis->bi_enetaddr, "\0\0\0\0\0\0", 6) == 0) {
  1006. bis->bi_phymode[eth_num] = BI_PHYMODE_NONE;
  1007. continue;
  1008. }
  1009. break;
  1010. }
  1011. /* Allocate device structure */
  1012. dev = (struct eth_device *) malloc (sizeof (*dev));
  1013. if (dev == NULL) {
  1014. printf ("ppc_440x_eth_initialize: "
  1015. "Cannot allocate eth_device %d\n", eth_num);
  1016. return (-1);
  1017. }
  1018. /* Allocate our private use data */
  1019. hw = (EMAC_440GX_HW_PST) malloc (sizeof (*hw));
  1020. if (hw == NULL) {
  1021. printf ("ppc_440x_eth_initialize: "
  1022. "Cannot allocate private hw data for eth_device %d",
  1023. eth_num);
  1024. free (dev);
  1025. return (-1);
  1026. }
  1027. switch (eth_num) {
  1028. case 0:
  1029. hw->hw_addr = 0;
  1030. memcpy (dev->enetaddr, bis->bi_enetaddr, 6);
  1031. break;
  1032. case 1:
  1033. hw->hw_addr = 0x100;
  1034. memcpy (dev->enetaddr, bis->bi_enet1addr, 6);
  1035. break;
  1036. case 2:
  1037. hw->hw_addr = 0x400;
  1038. memcpy (dev->enetaddr, bis->bi_enet2addr, 6);
  1039. break;
  1040. case 3:
  1041. hw->hw_addr = 0x600;
  1042. memcpy (dev->enetaddr, bis->bi_enet3addr, 6);
  1043. break;
  1044. default:
  1045. hw->hw_addr = 0;
  1046. memcpy (dev->enetaddr, bis->bi_enetaddr, 6);
  1047. break;
  1048. }
  1049. hw->devnum = eth_num;
  1050. sprintf (dev->name, "ppc_440x_eth%d", eth_num);
  1051. dev->priv = (void *) hw;
  1052. dev->init = ppc_440x_eth_init;
  1053. dev->halt = ppc_440x_eth_halt;
  1054. dev->send = ppc_440x_eth_send;
  1055. dev->recv = ppc_440x_eth_rx;
  1056. if (0 == virgin) {
  1057. /* set the MAL IER ??? names may change with new spec ??? */
  1058. mal_ier =
  1059. MAL_IER_DE | MAL_IER_NE | MAL_IER_TE |
  1060. MAL_IER_OPBE | MAL_IER_PLBE;
  1061. mtdcr (malesr, 0xffffffff); /* clear pending interrupts */
  1062. mtdcr (maltxdeir, 0xffffffff); /* clear pending interrupts */
  1063. mtdcr (malrxdeir, 0xffffffff); /* clear pending interrupts */
  1064. mtdcr (malier, mal_ier);
  1065. /* install MAL interrupt handler */
  1066. irq_install_handler (VECNUM_MS,
  1067. (interrupt_handler_t *) enetInt,
  1068. dev);
  1069. irq_install_handler (VECNUM_MTE,
  1070. (interrupt_handler_t *) enetInt,
  1071. dev);
  1072. irq_install_handler (VECNUM_MRE,
  1073. (interrupt_handler_t *) enetInt,
  1074. dev);
  1075. irq_install_handler (VECNUM_TXDE,
  1076. (interrupt_handler_t *) enetInt,
  1077. dev);
  1078. irq_install_handler (VECNUM_RXDE,
  1079. (interrupt_handler_t *) enetInt,
  1080. dev);
  1081. virgin = 1;
  1082. }
  1083. eth_register (dev);
  1084. } /* end for each supported device */
  1085. return (1);
  1086. }
  1087. #endif /* CONFIG_440 && CONFIG_NET_MULTI */