eepro100.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /*
  2. * (C) Copyright 2002
  3. * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <malloc.h>
  25. #include <net.h>
  26. #include <netdev.h>
  27. #include <asm/io.h>
  28. #include <pci.h>
  29. #include <miiphy.h>
  30. #undef DEBUG
  31. /* Ethernet chip registers.
  32. */
  33. #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
  34. #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
  35. #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
  36. #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
  37. #define SCBPointer 4 /* General purpose pointer. */
  38. #define SCBPort 8 /* Misc. commands and operands. */
  39. #define SCBflash 12 /* Flash memory control. */
  40. #define SCBeeprom 14 /* EEPROM memory control. */
  41. #define SCBCtrlMDI 16 /* MDI interface control. */
  42. #define SCBEarlyRx 20 /* Early receive byte count. */
  43. #define SCBGenControl 28 /* 82559 General Control Register */
  44. #define SCBGenStatus 29 /* 82559 General Status register */
  45. /* 82559 SCB status word defnitions
  46. */
  47. #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
  48. #define SCB_STATUS_FR 0x4000 /* frame received */
  49. #define SCB_STATUS_CNA 0x2000 /* CU left active state */
  50. #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
  51. #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
  52. #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
  53. #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
  54. #define SCB_INTACK_MASK 0xFD00 /* all the above */
  55. #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
  56. #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
  57. /* System control block commands
  58. */
  59. /* CU Commands */
  60. #define CU_NOP 0x0000
  61. #define CU_START 0x0010
  62. #define CU_RESUME 0x0020
  63. #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
  64. #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
  65. #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
  66. #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
  67. /* RUC Commands */
  68. #define RUC_NOP 0x0000
  69. #define RUC_START 0x0001
  70. #define RUC_RESUME 0x0002
  71. #define RUC_ABORT 0x0004
  72. #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
  73. #define RUC_RESUMENR 0x0007
  74. #define CU_CMD_MASK 0x00f0
  75. #define RU_CMD_MASK 0x0007
  76. #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
  77. #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
  78. #define CU_STATUS_MASK 0x00C0
  79. #define RU_STATUS_MASK 0x003C
  80. #define RU_STATUS_IDLE (0<<2)
  81. #define RU_STATUS_SUS (1<<2)
  82. #define RU_STATUS_NORES (2<<2)
  83. #define RU_STATUS_READY (4<<2)
  84. #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
  85. #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
  86. #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
  87. /* 82559 Port interface commands.
  88. */
  89. #define I82559_RESET 0x00000000 /* Software reset */
  90. #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
  91. #define I82559_SELECTIVE_RESET 0x00000002
  92. #define I82559_DUMP 0x00000003
  93. #define I82559_DUMP_WAKEUP 0x00000007
  94. /* 82559 Eeprom interface.
  95. */
  96. #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
  97. #define EE_CS 0x02 /* EEPROM chip select. */
  98. #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
  99. #define EE_WRITE_0 0x01
  100. #define EE_WRITE_1 0x05
  101. #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
  102. #define EE_ENB (0x4800 | EE_CS)
  103. #define EE_CMD_BITS 3
  104. #define EE_DATA_BITS 16
  105. /* The EEPROM commands include the alway-set leading bit.
  106. */
  107. #define EE_EWENB_CMD (4 << addr_len)
  108. #define EE_WRITE_CMD (5 << addr_len)
  109. #define EE_READ_CMD (6 << addr_len)
  110. #define EE_ERASE_CMD (7 << addr_len)
  111. /* Receive frame descriptors.
  112. */
  113. struct RxFD {
  114. volatile u16 status;
  115. volatile u16 control;
  116. volatile u32 link; /* struct RxFD * */
  117. volatile u32 rx_buf_addr; /* void * */
  118. volatile u32 count;
  119. volatile u8 data[PKTSIZE_ALIGN];
  120. };
  121. #define RFD_STATUS_C 0x8000 /* completion of received frame */
  122. #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
  123. #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
  124. #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
  125. #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
  126. #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
  127. #define RFD_COUNT_MASK 0x3fff
  128. #define RFD_COUNT_F 0x4000
  129. #define RFD_COUNT_EOF 0x8000
  130. #define RFD_RX_CRC 0x0800 /* crc error */
  131. #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
  132. #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
  133. #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
  134. #define RFD_RX_SHORT 0x0080 /* short frame error */
  135. #define RFD_RX_LENGTH 0x0020
  136. #define RFD_RX_ERROR 0x0010 /* receive error */
  137. #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
  138. #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
  139. #define RFD_RX_TCO 0x0001 /* TCO indication */
  140. /* Transmit frame descriptors
  141. */
  142. struct TxFD { /* Transmit frame descriptor set. */
  143. volatile u16 status;
  144. volatile u16 command;
  145. volatile u32 link; /* void * */
  146. volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
  147. volatile s32 count;
  148. volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
  149. volatile s32 tx_buf_size0; /* Length of Tx frame. */
  150. volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
  151. volatile s32 tx_buf_size1; /* Length of Tx frame. */
  152. };
  153. #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
  154. #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
  155. #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
  156. #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
  157. #define TxCB_CMD_S 0x4000 /* suspend on completion */
  158. #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
  159. #define TxCB_COUNT_MASK 0x3fff
  160. #define TxCB_COUNT_EOF 0x8000
  161. /* The Speedo3 Rx and Tx frame/buffer descriptors.
  162. */
  163. struct descriptor { /* A generic descriptor. */
  164. volatile u16 status;
  165. volatile u16 command;
  166. volatile u32 link; /* struct descriptor * */
  167. unsigned char params[0];
  168. };
  169. #define CONFIG_SYS_CMD_EL 0x8000
  170. #define CONFIG_SYS_CMD_SUSPEND 0x4000
  171. #define CONFIG_SYS_CMD_INT 0x2000
  172. #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
  173. #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
  174. #define CONFIG_SYS_STATUS_C 0x8000
  175. #define CONFIG_SYS_STATUS_OK 0x2000
  176. /* Misc.
  177. */
  178. #define NUM_RX_DESC PKTBUFSRX
  179. #define NUM_TX_DESC 1 /* Number of TX descriptors */
  180. #define TOUT_LOOP 1000000
  181. #define ETH_ALEN 6
  182. static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
  183. static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
  184. static int rx_next; /* RX descriptor ring pointer */
  185. static int tx_next; /* TX descriptor ring pointer */
  186. static int tx_threshold;
  187. /*
  188. * The parameters for a CmdConfigure operation.
  189. * There are so many options that it would be difficult to document
  190. * each bit. We mostly use the default or recommended settings.
  191. */
  192. static const char i82557_config_cmd[] = {
  193. 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
  194. 0, 0x2E, 0, 0x60, 0,
  195. 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
  196. 0x3f, 0x05,
  197. };
  198. static const char i82558_config_cmd[] = {
  199. 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
  200. 0, 0x2E, 0, 0x60, 0x08, 0x88,
  201. 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
  202. 0x31, 0x05,
  203. };
  204. static void init_rx_ring (struct eth_device *dev);
  205. static void purge_tx_ring (struct eth_device *dev);
  206. static void read_hw_addr (struct eth_device *dev, bd_t * bis);
  207. static int eepro100_init (struct eth_device *dev, bd_t * bis);
  208. static int eepro100_send (struct eth_device *dev, volatile void *packet,
  209. int length);
  210. static int eepro100_recv (struct eth_device *dev);
  211. static void eepro100_halt (struct eth_device *dev);
  212. #if defined(CONFIG_E500) || defined(CONFIG_DB64360) || defined(CONFIG_DB64460)
  213. #define bus_to_phys(a) (a)
  214. #define phys_to_bus(a) (a)
  215. #else
  216. #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
  217. #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
  218. #endif
  219. static inline int INW (struct eth_device *dev, u_long addr)
  220. {
  221. return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
  222. }
  223. static inline void OUTW (struct eth_device *dev, int command, u_long addr)
  224. {
  225. *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
  226. }
  227. static inline void OUTL (struct eth_device *dev, int command, u_long addr)
  228. {
  229. *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
  230. }
  231. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
  232. static inline int INL (struct eth_device *dev, u_long addr)
  233. {
  234. return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
  235. }
  236. static int get_phyreg (struct eth_device *dev, unsigned char addr,
  237. unsigned char reg, unsigned short *value)
  238. {
  239. int cmd;
  240. int timeout = 50;
  241. /* read requested data */
  242. cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
  243. OUTL (dev, cmd, SCBCtrlMDI);
  244. do {
  245. udelay(1000);
  246. cmd = INL (dev, SCBCtrlMDI);
  247. } while (!(cmd & (1 << 28)) && (--timeout));
  248. if (timeout == 0)
  249. return -1;
  250. *value = (unsigned short) (cmd & 0xffff);
  251. return 0;
  252. }
  253. static int set_phyreg (struct eth_device *dev, unsigned char addr,
  254. unsigned char reg, unsigned short value)
  255. {
  256. int cmd;
  257. int timeout = 50;
  258. /* write requested data */
  259. cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
  260. OUTL (dev, cmd | value, SCBCtrlMDI);
  261. while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
  262. udelay(1000);
  263. if (timeout == 0)
  264. return -1;
  265. return 0;
  266. }
  267. /* Check if given phyaddr is valid, i.e. there is a PHY connected.
  268. * Do this by checking model value field from ID2 register.
  269. */
  270. static struct eth_device* verify_phyaddr (char *devname, unsigned char addr)
  271. {
  272. struct eth_device *dev;
  273. unsigned short value;
  274. unsigned char model;
  275. dev = eth_get_dev_by_name(devname);
  276. if (dev == NULL) {
  277. printf("%s: no such device\n", devname);
  278. return NULL;
  279. }
  280. /* read id2 register */
  281. if (get_phyreg(dev, addr, PHY_PHYIDR2, &value) != 0) {
  282. printf("%s: mii read timeout!\n", devname);
  283. return NULL;
  284. }
  285. /* get model */
  286. model = (unsigned char)((value >> 4) & 0x003f);
  287. if (model == 0) {
  288. printf("%s: no PHY at address %d\n", devname, addr);
  289. return NULL;
  290. }
  291. return dev;
  292. }
  293. static int eepro100_miiphy_read (char *devname, unsigned char addr,
  294. unsigned char reg, unsigned short *value)
  295. {
  296. struct eth_device *dev;
  297. dev = verify_phyaddr(devname, addr);
  298. if (dev == NULL)
  299. return -1;
  300. if (get_phyreg(dev, addr, reg, value) != 0) {
  301. printf("%s: mii read timeout!\n", devname);
  302. return -1;
  303. }
  304. return 0;
  305. }
  306. static int eepro100_miiphy_write (char *devname, unsigned char addr,
  307. unsigned char reg, unsigned short value)
  308. {
  309. struct eth_device *dev;
  310. dev = verify_phyaddr(devname, addr);
  311. if (dev == NULL)
  312. return -1;
  313. if (set_phyreg(dev, addr, reg, value) != 0) {
  314. printf("%s: mii write timeout!\n", devname);
  315. return -1;
  316. }
  317. return 0;
  318. }
  319. #endif
  320. /* Wait for the chip get the command.
  321. */
  322. static int wait_for_eepro100 (struct eth_device *dev)
  323. {
  324. int i;
  325. for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
  326. if (i >= TOUT_LOOP) {
  327. return 0;
  328. }
  329. }
  330. return 1;
  331. }
  332. static struct pci_device_id supported[] = {
  333. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
  334. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
  335. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
  336. {}
  337. };
  338. int eepro100_initialize (bd_t * bis)
  339. {
  340. pci_dev_t devno;
  341. int card_number = 0;
  342. struct eth_device *dev;
  343. u32 iobase, status;
  344. int idx = 0;
  345. while (1) {
  346. /* Find PCI device
  347. */
  348. if ((devno = pci_find_devices (supported, idx++)) < 0) {
  349. break;
  350. }
  351. pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
  352. iobase &= ~0xf;
  353. #ifdef DEBUG
  354. printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
  355. iobase);
  356. #endif
  357. pci_write_config_dword (devno,
  358. PCI_COMMAND,
  359. PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
  360. /* Check if I/O accesses and Bus Mastering are enabled.
  361. */
  362. pci_read_config_dword (devno, PCI_COMMAND, &status);
  363. if (!(status & PCI_COMMAND_MEMORY)) {
  364. printf ("Error: Can not enable MEM access.\n");
  365. continue;
  366. }
  367. if (!(status & PCI_COMMAND_MASTER)) {
  368. printf ("Error: Can not enable Bus Mastering.\n");
  369. continue;
  370. }
  371. dev = (struct eth_device *) malloc (sizeof *dev);
  372. sprintf (dev->name, "i82559#%d", card_number);
  373. dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
  374. dev->iobase = bus_to_phys (iobase);
  375. dev->init = eepro100_init;
  376. dev->halt = eepro100_halt;
  377. dev->send = eepro100_send;
  378. dev->recv = eepro100_recv;
  379. eth_register (dev);
  380. #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
  381. /* register mii command access routines */
  382. miiphy_register(dev->name,
  383. eepro100_miiphy_read, eepro100_miiphy_write);
  384. #endif
  385. card_number++;
  386. /* Set the latency timer for value.
  387. */
  388. pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
  389. udelay (10 * 1000);
  390. read_hw_addr (dev, bis);
  391. }
  392. return card_number;
  393. }
  394. static int eepro100_init (struct eth_device *dev, bd_t * bis)
  395. {
  396. int i, status = -1;
  397. int tx_cur;
  398. struct descriptor *ias_cmd, *cfg_cmd;
  399. /* Reset the ethernet controller
  400. */
  401. OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
  402. udelay (20);
  403. OUTL (dev, I82559_RESET, SCBPort);
  404. udelay (20);
  405. if (!wait_for_eepro100 (dev)) {
  406. printf ("Error: Can not reset ethernet controller.\n");
  407. goto Done;
  408. }
  409. OUTL (dev, 0, SCBPointer);
  410. OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
  411. if (!wait_for_eepro100 (dev)) {
  412. printf ("Error: Can not reset ethernet controller.\n");
  413. goto Done;
  414. }
  415. OUTL (dev, 0, SCBPointer);
  416. OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
  417. /* Initialize Rx and Tx rings.
  418. */
  419. init_rx_ring (dev);
  420. purge_tx_ring (dev);
  421. /* Tell the adapter where the RX ring is located.
  422. */
  423. if (!wait_for_eepro100 (dev)) {
  424. printf ("Error: Can not reset ethernet controller.\n");
  425. goto Done;
  426. }
  427. OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
  428. OUTW (dev, SCB_M | RUC_START, SCBCmd);
  429. /* Send the Configure frame */
  430. tx_cur = tx_next;
  431. tx_next = ((tx_next + 1) % NUM_TX_DESC);
  432. cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
  433. cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
  434. cfg_cmd->status = 0;
  435. cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  436. memcpy (cfg_cmd->params, i82558_config_cmd,
  437. sizeof (i82558_config_cmd));
  438. if (!wait_for_eepro100 (dev)) {
  439. printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
  440. goto Done;
  441. }
  442. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  443. OUTW (dev, SCB_M | CU_START, SCBCmd);
  444. for (i = 0;
  445. !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  446. i++) {
  447. if (i >= TOUT_LOOP) {
  448. printf ("%s: Tx error buffer not ready\n", dev->name);
  449. goto Done;
  450. }
  451. }
  452. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  453. printf ("TX error status = 0x%08X\n",
  454. le16_to_cpu (tx_ring[tx_cur].status));
  455. goto Done;
  456. }
  457. /* Send the Individual Address Setup frame
  458. */
  459. tx_cur = tx_next;
  460. tx_next = ((tx_next + 1) % NUM_TX_DESC);
  461. ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
  462. ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
  463. ias_cmd->status = 0;
  464. ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  465. memcpy (ias_cmd->params, dev->enetaddr, 6);
  466. /* Tell the adapter where the TX ring is located.
  467. */
  468. if (!wait_for_eepro100 (dev)) {
  469. printf ("Error: Can not reset ethernet controller.\n");
  470. goto Done;
  471. }
  472. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  473. OUTW (dev, SCB_M | CU_START, SCBCmd);
  474. for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  475. i++) {
  476. if (i >= TOUT_LOOP) {
  477. printf ("%s: Tx error buffer not ready\n",
  478. dev->name);
  479. goto Done;
  480. }
  481. }
  482. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  483. printf ("TX error status = 0x%08X\n",
  484. le16_to_cpu (tx_ring[tx_cur].status));
  485. goto Done;
  486. }
  487. status = 0;
  488. Done:
  489. return status;
  490. }
  491. static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
  492. {
  493. int i, status = -1;
  494. int tx_cur;
  495. if (length <= 0) {
  496. printf ("%s: bad packet size: %d\n", dev->name, length);
  497. goto Done;
  498. }
  499. tx_cur = tx_next;
  500. tx_next = (tx_next + 1) % NUM_TX_DESC;
  501. tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
  502. TxCB_CMD_SF |
  503. TxCB_CMD_S |
  504. TxCB_CMD_EL );
  505. tx_ring[tx_cur].status = 0;
  506. tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
  507. tx_ring[tx_cur].link =
  508. cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  509. tx_ring[tx_cur].tx_desc_addr =
  510. cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
  511. tx_ring[tx_cur].tx_buf_addr0 =
  512. cpu_to_le32 (phys_to_bus ((u_long) packet));
  513. tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
  514. if (!wait_for_eepro100 (dev)) {
  515. printf ("%s: Tx error ethernet controller not ready.\n",
  516. dev->name);
  517. goto Done;
  518. }
  519. /* Send the packet.
  520. */
  521. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  522. OUTW (dev, SCB_M | CU_START, SCBCmd);
  523. for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  524. i++) {
  525. if (i >= TOUT_LOOP) {
  526. printf ("%s: Tx error buffer not ready\n", dev->name);
  527. goto Done;
  528. }
  529. }
  530. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  531. printf ("TX error status = 0x%08X\n",
  532. le16_to_cpu (tx_ring[tx_cur].status));
  533. goto Done;
  534. }
  535. status = length;
  536. Done:
  537. return status;
  538. }
  539. static int eepro100_recv (struct eth_device *dev)
  540. {
  541. u16 status, stat;
  542. int rx_prev, length = 0;
  543. stat = INW (dev, SCBStatus);
  544. OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
  545. for (;;) {
  546. status = le16_to_cpu (rx_ring[rx_next].status);
  547. if (!(status & RFD_STATUS_C)) {
  548. break;
  549. }
  550. /* Valid frame status.
  551. */
  552. if ((status & RFD_STATUS_OK)) {
  553. /* A valid frame received.
  554. */
  555. length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
  556. /* Pass the packet up to the protocol
  557. * layers.
  558. */
  559. NetReceive (rx_ring[rx_next].data, length);
  560. } else {
  561. /* There was an error.
  562. */
  563. printf ("RX error status = 0x%08X\n", status);
  564. }
  565. rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
  566. rx_ring[rx_next].status = 0;
  567. rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
  568. rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
  569. rx_ring[rx_prev].control = 0;
  570. /* Update entry information.
  571. */
  572. rx_next = (rx_next + 1) % NUM_RX_DESC;
  573. }
  574. if (stat & SCB_STATUS_RNR) {
  575. printf ("%s: Receiver is not ready, restart it !\n", dev->name);
  576. /* Reinitialize Rx ring.
  577. */
  578. init_rx_ring (dev);
  579. if (!wait_for_eepro100 (dev)) {
  580. printf ("Error: Can not restart ethernet controller.\n");
  581. goto Done;
  582. }
  583. OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
  584. OUTW (dev, SCB_M | RUC_START, SCBCmd);
  585. }
  586. Done:
  587. return length;
  588. }
  589. static void eepro100_halt (struct eth_device *dev)
  590. {
  591. /* Reset the ethernet controller
  592. */
  593. OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
  594. udelay (20);
  595. OUTL (dev, I82559_RESET, SCBPort);
  596. udelay (20);
  597. if (!wait_for_eepro100 (dev)) {
  598. printf ("Error: Can not reset ethernet controller.\n");
  599. goto Done;
  600. }
  601. OUTL (dev, 0, SCBPointer);
  602. OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
  603. if (!wait_for_eepro100 (dev)) {
  604. printf ("Error: Can not reset ethernet controller.\n");
  605. goto Done;
  606. }
  607. OUTL (dev, 0, SCBPointer);
  608. OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
  609. Done:
  610. return;
  611. }
  612. /* SROM Read.
  613. */
  614. static int read_eeprom (struct eth_device *dev, int location, int addr_len)
  615. {
  616. unsigned short retval = 0;
  617. int read_cmd = location | EE_READ_CMD;
  618. int i;
  619. OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
  620. OUTW (dev, EE_ENB, SCBeeprom);
  621. /* Shift the read command bits out. */
  622. for (i = 12; i >= 0; i--) {
  623. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  624. OUTW (dev, EE_ENB | dataval, SCBeeprom);
  625. udelay (1);
  626. OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  627. udelay (1);
  628. }
  629. OUTW (dev, EE_ENB, SCBeeprom);
  630. for (i = 15; i >= 0; i--) {
  631. OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
  632. udelay (1);
  633. retval = (retval << 1) |
  634. ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
  635. OUTW (dev, EE_ENB, SCBeeprom);
  636. udelay (1);
  637. }
  638. /* Terminate the EEPROM access. */
  639. OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
  640. return retval;
  641. }
  642. #ifdef CONFIG_EEPRO100_SROM_WRITE
  643. int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
  644. {
  645. unsigned short dataval;
  646. int enable_cmd = 0x3f | EE_EWENB_CMD;
  647. int write_cmd = location | EE_WRITE_CMD;
  648. int i;
  649. unsigned long datalong, tmplong;
  650. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  651. udelay(1);
  652. OUTW(dev, EE_ENB, SCBeeprom);
  653. /* Shift the enable command bits out. */
  654. for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
  655. {
  656. dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  657. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  658. udelay(1);
  659. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  660. udelay(1);
  661. }
  662. OUTW(dev, EE_ENB, SCBeeprom);
  663. udelay(1);
  664. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  665. udelay(1);
  666. OUTW(dev, EE_ENB, SCBeeprom);
  667. /* Shift the write command bits out. */
  668. for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
  669. {
  670. dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  671. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  672. udelay(1);
  673. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  674. udelay(1);
  675. }
  676. /* Write the data */
  677. datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
  678. for (i = 0; i< EE_DATA_BITS; i++)
  679. {
  680. /* Extract and move data bit to bit DI */
  681. dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
  682. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  683. udelay(1);
  684. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  685. udelay(1);
  686. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  687. udelay(1);
  688. datalong = datalong << 1; /* Adjust significant data bit*/
  689. }
  690. /* Finish up command (toggle CS) */
  691. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  692. udelay(1); /* delay for more than 250 ns */
  693. OUTW(dev, EE_ENB, SCBeeprom);
  694. /* Wait for programming ready (D0 = 1) */
  695. tmplong = 10;
  696. do
  697. {
  698. dataval = INW(dev, SCBeeprom);
  699. if (dataval & EE_DATA_READ)
  700. break;
  701. udelay(10000);
  702. }
  703. while (-- tmplong);
  704. if (tmplong == 0)
  705. {
  706. printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
  707. return -1;
  708. }
  709. /* Terminate the EEPROM access. */
  710. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  711. return 0;
  712. }
  713. #endif
  714. static void init_rx_ring (struct eth_device *dev)
  715. {
  716. int i;
  717. for (i = 0; i < NUM_RX_DESC; i++) {
  718. rx_ring[i].status = 0;
  719. rx_ring[i].control =
  720. (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
  721. rx_ring[i].link =
  722. cpu_to_le32 (phys_to_bus
  723. ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
  724. rx_ring[i].rx_buf_addr = 0xffffffff;
  725. rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
  726. }
  727. rx_next = 0;
  728. }
  729. static void purge_tx_ring (struct eth_device *dev)
  730. {
  731. int i;
  732. tx_next = 0;
  733. tx_threshold = 0x01208000;
  734. for (i = 0; i < NUM_TX_DESC; i++) {
  735. tx_ring[i].status = 0;
  736. tx_ring[i].command = 0;
  737. tx_ring[i].link = 0;
  738. tx_ring[i].tx_desc_addr = 0;
  739. tx_ring[i].count = 0;
  740. tx_ring[i].tx_buf_addr0 = 0;
  741. tx_ring[i].tx_buf_size0 = 0;
  742. tx_ring[i].tx_buf_addr1 = 0;
  743. tx_ring[i].tx_buf_size1 = 0;
  744. }
  745. }
  746. static void read_hw_addr (struct eth_device *dev, bd_t * bis)
  747. {
  748. u16 eeprom[0x40];
  749. u16 sum = 0;
  750. int i, j;
  751. int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
  752. for (j = 0, i = 0; i < 0x40; i++) {
  753. u16 value = read_eeprom (dev, i, addr_len);
  754. eeprom[i] = value;
  755. sum += value;
  756. if (i < 3) {
  757. dev->enetaddr[j++] = value;
  758. dev->enetaddr[j++] = value >> 8;
  759. }
  760. }
  761. if (sum != 0xBABA) {
  762. memset (dev->enetaddr, 0, ETH_ALEN);
  763. #ifdef DEBUG
  764. printf ("%s: Invalid EEPROM checksum %#4.4x, "
  765. "check settings before activating this device!\n",
  766. dev->name, sum);
  767. #endif
  768. }
  769. }