tigon3.c 173 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699
  1. /******************************************************************************/
  2. /* */
  3. /* Broadcom BCM5700 Linux Network Driver, Copyright (c) 2000 Broadcom */
  4. /* Corporation. */
  5. /* All rights reserved. */
  6. /* */
  7. /* This program is free software; you can redistribute it and/or modify */
  8. /* it under the terms of the GNU General Public License as published by */
  9. /* the Free Software Foundation, located in the file LICENSE. */
  10. /* */
  11. /* History: */
  12. /******************************************************************************/
  13. #include <common.h>
  14. #include <asm/types.h>
  15. #if defined(CONFIG_CMD_NET) && !defined(CONFIG_NET_MULTI) && \
  16. defined(CONFIG_TIGON3)
  17. #ifdef CONFIG_BMW
  18. #include <mpc824x.h>
  19. #endif
  20. #include <malloc.h>
  21. #include <linux/byteorder/big_endian.h>
  22. #include "bcm570x_mm.h"
  23. #define EMBEDDED 1
  24. /******************************************************************************/
  25. /* Local functions. */
  26. /******************************************************************************/
  27. LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice);
  28. LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice);
  29. static LM_STATUS LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE
  30. RequestedMediaType,
  31. PLM_MEDIA_TYPE pMediaType,
  32. PLM_LINE_SPEED pLineSpeed,
  33. PLM_DUPLEX_MODE pDuplexMode);
  34. static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice);
  35. __inline static LM_VOID LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice);
  36. __inline static LM_VOID LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice);
  37. static LM_STATUS LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice,
  38. LM_REQUESTED_MEDIA_TYPE
  39. RequestedMediaType);
  40. static LM_STATUS LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice,
  41. LM_REQUESTED_MEDIA_TYPE RequestedMediaType);
  42. static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice);
  43. STATIC LM_STATUS LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice,
  44. LM_UINT32 LocalPhyAd,
  45. LM_UINT32 RemotePhyAd);
  46. #if INCLUDE_TBI_SUPPORT
  47. STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice);
  48. STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice);
  49. #endif
  50. STATIC LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice);
  51. STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid,
  52. LM_UINT16 Ssid);
  53. STATIC LM_STATUS LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
  54. LM_PHYSICAL_ADDRESS BufferPhy,
  55. LM_UINT32 BufferSize);
  56. STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number);
  57. STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice);
  58. STATIC LM_STATUS LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice,
  59. PLM_PACKET pPacket, PT3_SND_BD pSendBd);
  60. /******************************************************************************/
  61. /* External functions. */
  62. /******************************************************************************/
  63. LM_STATUS LM_LoadRlsFirmware (PLM_DEVICE_BLOCK pDevice);
  64. /******************************************************************************/
  65. /* Description: */
  66. /* */
  67. /* Return: */
  68. /******************************************************************************/
  69. LM_UINT32 LM_RegRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register)
  70. {
  71. LM_UINT32 Value32;
  72. #if PCIX_TARGET_WORKAROUND
  73. MM_ACQUIRE_UNDI_LOCK (pDevice);
  74. #endif
  75. MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register);
  76. MM_ReadConfig32 (pDevice, T3_PCI_REG_DATA_REG, &Value32);
  77. #if PCIX_TARGET_WORKAROUND
  78. MM_RELEASE_UNDI_LOCK (pDevice);
  79. #endif
  80. return Value32;
  81. } /* LM_RegRdInd */
  82. /******************************************************************************/
  83. /* Description: */
  84. /* */
  85. /* Return: */
  86. /******************************************************************************/
  87. LM_VOID
  88. LM_RegWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register, LM_UINT32 Value32)
  89. {
  90. #if PCIX_TARGET_WORKAROUND
  91. MM_ACQUIRE_UNDI_LOCK (pDevice);
  92. #endif
  93. MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register);
  94. MM_WriteConfig32 (pDevice, T3_PCI_REG_DATA_REG, Value32);
  95. #if PCIX_TARGET_WORKAROUND
  96. MM_RELEASE_UNDI_LOCK (pDevice);
  97. #endif
  98. } /* LM_RegWrInd */
  99. /******************************************************************************/
  100. /* Description: */
  101. /* */
  102. /* Return: */
  103. /******************************************************************************/
  104. LM_UINT32 LM_MemRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr)
  105. {
  106. LM_UINT32 Value32;
  107. MM_ACQUIRE_UNDI_LOCK (pDevice);
  108. #ifdef BIG_ENDIAN_HOST
  109. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
  110. Value32 = REG_RD (pDevice, PciCfg.MemWindowData);
  111. /* Value32 = REG_RD(pDevice,uIntMem.Mbuf[(MemAddr & 0x7fff)/4]); */
  112. #else
  113. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
  114. MM_ReadConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, &Value32);
  115. #endif
  116. MM_RELEASE_UNDI_LOCK (pDevice);
  117. return Value32;
  118. } /* LM_MemRdInd */
  119. /******************************************************************************/
  120. /* Description: */
  121. /* */
  122. /* Return: */
  123. /******************************************************************************/
  124. LM_VOID
  125. LM_MemWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr, LM_UINT32 Value32)
  126. {
  127. MM_ACQUIRE_UNDI_LOCK (pDevice);
  128. #ifdef BIG_ENDIAN_HOST
  129. REG_WR (pDevice, PciCfg.MemWindowBaseAddr, MemAddr);
  130. REG_WR (pDevice, uIntMem.Mbuf[(MemAddr & 0x7fff) / 4], Value32);
  131. #else
  132. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
  133. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, Value32);
  134. #endif
  135. MM_RELEASE_UNDI_LOCK (pDevice);
  136. } /* LM_MemWrInd */
  137. /******************************************************************************/
  138. /* Description: */
  139. /* */
  140. /* Return: */
  141. /******************************************************************************/
  142. LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice)
  143. {
  144. LM_STATUS Lmstatus;
  145. PLM_PACKET pPacket;
  146. PT3_RCV_BD pRcvBd;
  147. LM_UINT32 StdBdAdded = 0;
  148. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  149. LM_UINT32 JumboBdAdded = 0;
  150. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  151. Lmstatus = LM_STATUS_SUCCESS;
  152. pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
  153. while (pPacket) {
  154. switch (pPacket->u.Rx.RcvProdRing) {
  155. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  156. case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */
  157. /* Initialize the buffer descriptor. */
  158. pRcvBd =
  159. &pDevice->pRxJumboBdVirt[pDevice->RxJumboProdIdx];
  160. pRcvBd->Flags =
  161. RCV_BD_FLAG_END | RCV_BD_FLAG_JUMBO_RING;
  162. pRcvBd->Len = (LM_UINT16) pDevice->RxJumboBufferSize;
  163. /* Initialize the receive buffer pointer */
  164. #if 0 /* Jimmy, deleted in new */
  165. pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
  166. pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
  167. #endif
  168. MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr);
  169. /* The opaque field may point to an offset from a fix addr. */
  170. pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) -
  171. MM_UINT_PTR (pDevice->
  172. pPacketDescBase));
  173. /* Update the producer index. */
  174. pDevice->RxJumboProdIdx =
  175. (pDevice->RxJumboProdIdx +
  176. 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
  177. JumboBdAdded++;
  178. break;
  179. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  180. case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */
  181. /* Initialize the buffer descriptor. */
  182. pRcvBd = &pDevice->pRxStdBdVirt[pDevice->RxStdProdIdx];
  183. pRcvBd->Flags = RCV_BD_FLAG_END;
  184. pRcvBd->Len = MAX_STD_RCV_BUFFER_SIZE;
  185. /* Initialize the receive buffer pointer */
  186. #if 0 /* Jimmy, deleted in new replaced with MM_MapRxDma */
  187. pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
  188. pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
  189. #endif
  190. MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr);
  191. /* The opaque field may point to an offset from a fix addr. */
  192. pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) -
  193. MM_UINT_PTR (pDevice->
  194. pPacketDescBase));
  195. /* Update the producer index. */
  196. pDevice->RxStdProdIdx = (pDevice->RxStdProdIdx + 1) &
  197. T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
  198. StdBdAdded++;
  199. break;
  200. case T3_UNKNOWN_RCV_PROD_RING:
  201. default:
  202. Lmstatus = LM_STATUS_FAILURE;
  203. break;
  204. } /* switch */
  205. /* Bail out if there is any error. */
  206. if (Lmstatus != LM_STATUS_SUCCESS) {
  207. break;
  208. }
  209. pPacket =
  210. (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
  211. } /* while */
  212. wmb ();
  213. /* Update the procedure index. */
  214. if (StdBdAdded) {
  215. MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low,
  216. pDevice->RxStdProdIdx);
  217. }
  218. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  219. if (JumboBdAdded) {
  220. MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low,
  221. pDevice->RxJumboProdIdx);
  222. }
  223. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  224. return Lmstatus;
  225. } /* LM_QueueRxPackets */
  226. /******************************************************************************/
  227. /* Description: */
  228. /* */
  229. /* Return: */
  230. /******************************************************************************/
  231. STATIC LM_VOID LM_NvramInit (PLM_DEVICE_BLOCK pDevice)
  232. {
  233. LM_UINT32 Value32;
  234. LM_UINT32 j;
  235. /* Intialize clock period and state machine. */
  236. Value32 = SEEPROM_ADDR_CLK_PERD (SEEPROM_CLOCK_PERIOD) |
  237. SEEPROM_ADDR_FSM_RESET;
  238. REG_WR (pDevice, Grc.EepromAddr, Value32);
  239. for (j = 0; j < 100; j++) {
  240. MM_Wait (10);
  241. }
  242. /* Serial eeprom access using the Grc.EepromAddr/EepromData registers. */
  243. Value32 = REG_RD (pDevice, Grc.LocalCtrl);
  244. REG_WR (pDevice, Grc.LocalCtrl,
  245. Value32 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM);
  246. /* Set the 5701 compatibility mode if we are using EEPROM. */
  247. if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  248. T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
  249. Value32 = REG_RD (pDevice, Nvram.Config1);
  250. if ((Value32 & FLASH_INTERFACE_ENABLE) == 0) {
  251. /* Use the new interface to read EEPROM. */
  252. Value32 &= ~FLASH_COMPAT_BYPASS;
  253. REG_WR (pDevice, Nvram.Config1, Value32);
  254. }
  255. }
  256. } /* LM_NvRamInit */
  257. /******************************************************************************/
  258. /* Description: */
  259. /* */
  260. /* Return: */
  261. /******************************************************************************/
  262. STATIC LM_STATUS
  263. LM_EepromRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData)
  264. {
  265. LM_UINT32 Value32;
  266. LM_UINT32 Addr;
  267. LM_UINT32 Dev;
  268. LM_UINT32 j;
  269. if (Offset > SEEPROM_CHIP_SIZE) {
  270. return LM_STATUS_FAILURE;
  271. }
  272. Dev = Offset / SEEPROM_CHIP_SIZE;
  273. Addr = Offset % SEEPROM_CHIP_SIZE;
  274. Value32 = REG_RD (pDevice, Grc.EepromAddr);
  275. Value32 &= ~(SEEPROM_ADDR_ADDRESS_MASK | SEEPROM_ADDR_DEV_ID_MASK |
  276. SEEPROM_ADDR_RW_MASK);
  277. REG_WR (pDevice, Grc.EepromAddr, Value32 | SEEPROM_ADDR_DEV_ID (Dev) |
  278. SEEPROM_ADDR_ADDRESS (Addr) | SEEPROM_ADDR_START |
  279. SEEPROM_ADDR_READ);
  280. for (j = 0; j < 1000; j++) {
  281. Value32 = REG_RD (pDevice, Grc.EepromAddr);
  282. if (Value32 & SEEPROM_ADDR_COMPLETE) {
  283. break;
  284. }
  285. MM_Wait (10);
  286. }
  287. if (Value32 & SEEPROM_ADDR_COMPLETE) {
  288. Value32 = REG_RD (pDevice, Grc.EepromData);
  289. *pData = Value32;
  290. return LM_STATUS_SUCCESS;
  291. }
  292. return LM_STATUS_FAILURE;
  293. } /* LM_EepromRead */
  294. /******************************************************************************/
  295. /* Description: */
  296. /* */
  297. /* Return: */
  298. /******************************************************************************/
  299. STATIC LM_STATUS
  300. LM_NvramRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData)
  301. {
  302. LM_UINT32 Value32;
  303. LM_STATUS Status;
  304. LM_UINT32 j;
  305. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  306. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  307. Status = LM_EepromRead (pDevice, Offset, pData);
  308. } else {
  309. /* Determine if we have flash or EEPROM. */
  310. Value32 = REG_RD (pDevice, Nvram.Config1);
  311. if (Value32 & FLASH_INTERFACE_ENABLE) {
  312. if (Value32 & FLASH_SSRAM_BUFFERRED_MODE) {
  313. Offset = ((Offset / BUFFERED_FLASH_PAGE_SIZE) <<
  314. BUFFERED_FLASH_PAGE_POS) +
  315. (Offset % BUFFERED_FLASH_PAGE_SIZE);
  316. }
  317. }
  318. REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
  319. for (j = 0; j < 1000; j++) {
  320. if (REG_RD (pDevice, Nvram.SwArb) & SW_ARB_GNT1) {
  321. break;
  322. }
  323. MM_Wait (20);
  324. }
  325. if (j == 1000) {
  326. return LM_STATUS_FAILURE;
  327. }
  328. /* Read from flash or EEPROM with the new 5703/02 interface. */
  329. REG_WR (pDevice, Nvram.Addr, Offset & NVRAM_ADDRESS_MASK);
  330. REG_WR (pDevice, Nvram.Cmd, NVRAM_CMD_RD | NVRAM_CMD_DO_IT |
  331. NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE);
  332. /* Wait for the done bit to clear. */
  333. for (j = 0; j < 500; j++) {
  334. MM_Wait (10);
  335. Value32 = REG_RD (pDevice, Nvram.Cmd);
  336. if (!(Value32 & NVRAM_CMD_DONE)) {
  337. break;
  338. }
  339. }
  340. /* Wait for the done bit. */
  341. if (!(Value32 & NVRAM_CMD_DONE)) {
  342. for (j = 0; j < 500; j++) {
  343. MM_Wait (10);
  344. Value32 = REG_RD (pDevice, Nvram.Cmd);
  345. if (Value32 & NVRAM_CMD_DONE) {
  346. MM_Wait (10);
  347. *pData =
  348. REG_RD (pDevice, Nvram.ReadData);
  349. /* Change the endianess. */
  350. *pData =
  351. ((*pData & 0xff) << 24) |
  352. ((*pData & 0xff00) << 8) |
  353. ((*pData & 0xff0000) >> 8) |
  354. ((*pData >> 24) & 0xff);
  355. break;
  356. }
  357. }
  358. }
  359. REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1);
  360. if (Value32 & NVRAM_CMD_DONE) {
  361. Status = LM_STATUS_SUCCESS;
  362. } else {
  363. Status = LM_STATUS_FAILURE;
  364. }
  365. }
  366. return Status;
  367. } /* LM_NvramRead */
  368. STATIC void LM_ReadVPD (PLM_DEVICE_BLOCK pDevice)
  369. {
  370. LM_UINT32 Vpd_arr[256 / 4];
  371. LM_UINT8 *Vpd = (LM_UINT8 *) & Vpd_arr[0];
  372. LM_UINT32 *Vpd_dptr = &Vpd_arr[0];
  373. LM_UINT32 Value32;
  374. unsigned int j;
  375. /* Read PN from VPD */
  376. for (j = 0; j < 256; j += 4, Vpd_dptr++) {
  377. if (LM_NvramRead (pDevice, 0x100 + j, &Value32) !=
  378. LM_STATUS_SUCCESS) {
  379. printf ("BCM570x: LM_ReadVPD: VPD read failed"
  380. " (no EEPROM onboard)\n");
  381. return;
  382. }
  383. *Vpd_dptr = cpu_to_le32 (Value32);
  384. }
  385. for (j = 0; j < 256;) {
  386. unsigned int Vpd_r_len;
  387. unsigned int Vpd_r_end;
  388. if ((Vpd[j] == 0x82) || (Vpd[j] == 0x91)) {
  389. j = j + 3 + Vpd[j + 1] + (Vpd[j + 2] << 8);
  390. } else if (Vpd[j] == 0x90) {
  391. Vpd_r_len = Vpd[j + 1] + (Vpd[j + 2] << 8);
  392. j += 3;
  393. Vpd_r_end = Vpd_r_len + j;
  394. while (j < Vpd_r_end) {
  395. if ((Vpd[j] == 'P') && (Vpd[j + 1] == 'N')) {
  396. unsigned int len = Vpd[j + 2];
  397. if (len <= 24) {
  398. memcpy (pDevice->PartNo,
  399. &Vpd[j + 3], len);
  400. }
  401. break;
  402. } else {
  403. if (Vpd[j + 2] == 0) {
  404. break;
  405. }
  406. j = j + Vpd[j + 2];
  407. }
  408. }
  409. break;
  410. } else {
  411. break;
  412. }
  413. }
  414. }
  415. STATIC void LM_ReadBootCodeVersion (PLM_DEVICE_BLOCK pDevice)
  416. {
  417. LM_UINT32 Value32, offset, ver_offset;
  418. int i;
  419. if (LM_NvramRead (pDevice, 0x0, &Value32) != LM_STATUS_SUCCESS)
  420. return;
  421. if (Value32 != 0xaa559966)
  422. return;
  423. if (LM_NvramRead (pDevice, 0xc, &offset) != LM_STATUS_SUCCESS)
  424. return;
  425. offset = ((offset & 0xff) << 24) | ((offset & 0xff00) << 8) |
  426. ((offset & 0xff0000) >> 8) | ((offset >> 24) & 0xff);
  427. if (LM_NvramRead (pDevice, offset, &Value32) != LM_STATUS_SUCCESS)
  428. return;
  429. if ((Value32 == 0x0300000e) &&
  430. (LM_NvramRead (pDevice, offset + 4, &Value32) == LM_STATUS_SUCCESS)
  431. && (Value32 == 0)) {
  432. if (LM_NvramRead (pDevice, offset + 8, &ver_offset) !=
  433. LM_STATUS_SUCCESS)
  434. return;
  435. ver_offset = ((ver_offset & 0xff0000) >> 8) |
  436. ((ver_offset >> 24) & 0xff);
  437. for (i = 0; i < 16; i += 4) {
  438. if (LM_NvramRead
  439. (pDevice, offset + ver_offset + i,
  440. &Value32) != LM_STATUS_SUCCESS) {
  441. return;
  442. }
  443. *((LM_UINT32 *) & pDevice->BootCodeVer[i]) =
  444. cpu_to_le32 (Value32);
  445. }
  446. } else {
  447. char c;
  448. if (LM_NvramRead (pDevice, 0x94, &Value32) != LM_STATUS_SUCCESS)
  449. return;
  450. i = 0;
  451. c = ((Value32 & 0xff0000) >> 16);
  452. if (c < 10) {
  453. pDevice->BootCodeVer[i++] = c + '0';
  454. } else {
  455. pDevice->BootCodeVer[i++] = (c / 10) + '0';
  456. pDevice->BootCodeVer[i++] = (c % 10) + '0';
  457. }
  458. pDevice->BootCodeVer[i++] = '.';
  459. c = (Value32 & 0xff000000) >> 24;
  460. if (c < 10) {
  461. pDevice->BootCodeVer[i++] = c + '0';
  462. } else {
  463. pDevice->BootCodeVer[i++] = (c / 10) + '0';
  464. pDevice->BootCodeVer[i++] = (c % 10) + '0';
  465. }
  466. pDevice->BootCodeVer[i] = 0;
  467. }
  468. }
  469. STATIC void LM_GetBusSpeed (PLM_DEVICE_BLOCK pDevice)
  470. {
  471. LM_UINT32 PciState = pDevice->PciState;
  472. LM_UINT32 ClockCtrl;
  473. char *SpeedStr = "";
  474. if (PciState & T3_PCI_STATE_32BIT_PCI_BUS) {
  475. strcpy (pDevice->BusSpeedStr, "32-bit ");
  476. } else {
  477. strcpy (pDevice->BusSpeedStr, "64-bit ");
  478. }
  479. if (PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) {
  480. strcat (pDevice->BusSpeedStr, "PCI ");
  481. if (PciState & T3_PCI_STATE_HIGH_BUS_SPEED) {
  482. SpeedStr = "66MHz";
  483. } else {
  484. SpeedStr = "33MHz";
  485. }
  486. } else {
  487. strcat (pDevice->BusSpeedStr, "PCIX ");
  488. if (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE) {
  489. SpeedStr = "133MHz";
  490. } else {
  491. ClockCtrl = REG_RD (pDevice, PciCfg.ClockCtrl) & 0x1f;
  492. switch (ClockCtrl) {
  493. case 0:
  494. SpeedStr = "33MHz";
  495. break;
  496. case 2:
  497. SpeedStr = "50MHz";
  498. break;
  499. case 4:
  500. SpeedStr = "66MHz";
  501. break;
  502. case 6:
  503. SpeedStr = "100MHz";
  504. break;
  505. case 7:
  506. SpeedStr = "133MHz";
  507. break;
  508. }
  509. }
  510. }
  511. strcat (pDevice->BusSpeedStr, SpeedStr);
  512. }
  513. /******************************************************************************/
  514. /* Description: */
  515. /* This routine initializes default parameters and reads the PCI */
  516. /* configurations. */
  517. /* */
  518. /* Return: */
  519. /* LM_STATUS_SUCCESS */
  520. /******************************************************************************/
  521. LM_STATUS LM_GetAdapterInfo (PLM_DEVICE_BLOCK pDevice)
  522. {
  523. PLM_ADAPTER_INFO pAdapterInfo;
  524. LM_UINT32 Value32;
  525. LM_STATUS Status;
  526. LM_UINT32 j;
  527. LM_UINT32 EeSigFound;
  528. LM_UINT32 EePhyTypeSerdes = 0;
  529. LM_UINT32 EePhyLedMode = 0;
  530. LM_UINT32 EePhyId = 0;
  531. /* Get Device Id and Vendor Id */
  532. Status = MM_ReadConfig32 (pDevice, PCI_VENDOR_ID_REG, &Value32);
  533. if (Status != LM_STATUS_SUCCESS) {
  534. return Status;
  535. }
  536. pDevice->PciVendorId = (LM_UINT16) Value32;
  537. pDevice->PciDeviceId = (LM_UINT16) (Value32 >> 16);
  538. /* If we are not getting the write adapter, exit. */
  539. if ((Value32 != T3_PCI_ID_BCM5700) &&
  540. (Value32 != T3_PCI_ID_BCM5701) &&
  541. (Value32 != T3_PCI_ID_BCM5702) &&
  542. (Value32 != T3_PCI_ID_BCM5702x) &&
  543. (Value32 != T3_PCI_ID_BCM5702FE) &&
  544. (Value32 != T3_PCI_ID_BCM5703) &&
  545. (Value32 != T3_PCI_ID_BCM5703x) && (Value32 != T3_PCI_ID_BCM5704)) {
  546. return LM_STATUS_FAILURE;
  547. }
  548. Status = MM_ReadConfig32 (pDevice, PCI_REV_ID_REG, &Value32);
  549. if (Status != LM_STATUS_SUCCESS) {
  550. return Status;
  551. }
  552. pDevice->PciRevId = (LM_UINT8) Value32;
  553. /* Get IRQ. */
  554. Status = MM_ReadConfig32 (pDevice, PCI_INT_LINE_REG, &Value32);
  555. if (Status != LM_STATUS_SUCCESS) {
  556. return Status;
  557. }
  558. pDevice->Irq = (LM_UINT8) Value32;
  559. /* Get interrupt pin. */
  560. pDevice->IntPin = (LM_UINT8) (Value32 >> 8);
  561. /* Get chip revision id. */
  562. Status = MM_ReadConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32);
  563. pDevice->ChipRevId = Value32 >> 16;
  564. /* Get subsystem vendor. */
  565. Status =
  566. MM_ReadConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, &Value32);
  567. if (Status != LM_STATUS_SUCCESS) {
  568. return Status;
  569. }
  570. pDevice->SubsystemVendorId = (LM_UINT16) Value32;
  571. /* Get PCI subsystem id. */
  572. pDevice->SubsystemId = (LM_UINT16) (Value32 >> 16);
  573. /* Get the cache line size. */
  574. MM_ReadConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG, &Value32);
  575. pDevice->CacheLineSize = (LM_UINT8) Value32;
  576. pDevice->SavedCacheLineReg = Value32;
  577. if (pDevice->ChipRevId != T3_CHIP_ID_5703_A1 &&
  578. pDevice->ChipRevId != T3_CHIP_ID_5703_A2 &&
  579. pDevice->ChipRevId != T3_CHIP_ID_5704_A0) {
  580. pDevice->UndiFix = FALSE;
  581. }
  582. #if !PCIX_TARGET_WORKAROUND
  583. pDevice->UndiFix = FALSE;
  584. #endif
  585. /* Map the memory base to system address space. */
  586. if (!pDevice->UndiFix) {
  587. Status = MM_MapMemBase (pDevice);
  588. if (Status != LM_STATUS_SUCCESS) {
  589. return Status;
  590. }
  591. /* Initialize the memory view pointer. */
  592. pDevice->pMemView = (PT3_STD_MEM_MAP) pDevice->pMappedMemBase;
  593. }
  594. #if PCIX_TARGET_WORKAROUND
  595. /* store whether we are in PCI are PCI-X mode */
  596. pDevice->EnablePciXFix = FALSE;
  597. MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32);
  598. if ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0) {
  599. /* Enable PCI-X workaround only if we are running on 5700 BX. */
  600. if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
  601. pDevice->EnablePciXFix = TRUE;
  602. }
  603. }
  604. if (pDevice->UndiFix) {
  605. pDevice->EnablePciXFix = TRUE;
  606. }
  607. #endif
  608. /* Bx bug: due to the "byte_enable bug" in PCI-X mode, the power */
  609. /* management register may be clobbered which may cause the */
  610. /* BCM5700 to go into D3 state. While in this state, we will */
  611. /* not have memory mapped register access. As a workaround, we */
  612. /* need to restore the device to D0 state. */
  613. MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &Value32);
  614. Value32 |= T3_PM_PME_ASSERTED;
  615. Value32 &= ~T3_PM_POWER_STATE_MASK;
  616. Value32 |= T3_PM_POWER_STATE_D0;
  617. MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, Value32);
  618. /* read the current PCI command word */
  619. MM_ReadConfig32 (pDevice, PCI_COMMAND_REG, &Value32);
  620. /* Make sure bus-mastering is enabled. */
  621. Value32 |= PCI_BUSMASTER_ENABLE;
  622. #if PCIX_TARGET_WORKAROUND
  623. /* if we are in PCI-X mode, also make sure mem-mapping and SERR#/PERR#
  624. are enabled */
  625. if (pDevice->EnablePciXFix == TRUE) {
  626. Value32 |= (PCI_MEM_SPACE_ENABLE | PCI_SYSTEM_ERROR_ENABLE |
  627. PCI_PARITY_ERROR_ENABLE);
  628. }
  629. if (pDevice->UndiFix) {
  630. Value32 &= ~PCI_MEM_SPACE_ENABLE;
  631. }
  632. #endif
  633. if (pDevice->EnableMWI) {
  634. Value32 |= PCI_MEMORY_WRITE_INVALIDATE;
  635. } else {
  636. Value32 &= (~PCI_MEMORY_WRITE_INVALIDATE);
  637. }
  638. /* Error out if mem-mapping is NOT enabled for PCI systems */
  639. if (!(Value32 | PCI_MEM_SPACE_ENABLE)) {
  640. return LM_STATUS_FAILURE;
  641. }
  642. /* save the value we are going to write into the PCI command word */
  643. pDevice->PciCommandStatusWords = Value32;
  644. Status = MM_WriteConfig32 (pDevice, PCI_COMMAND_REG, Value32);
  645. if (Status != LM_STATUS_SUCCESS) {
  646. return Status;
  647. }
  648. /* Set power state to D0. */
  649. LM_SetPowerState (pDevice, LM_POWER_STATE_D0);
  650. #ifdef BIG_ENDIAN_PCI
  651. pDevice->MiscHostCtrl =
  652. MISC_HOST_CTRL_MASK_PCI_INT |
  653. MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
  654. MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
  655. MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
  656. #else /* No CPU Swap modes for PCI IO */
  657. /* Setup the mode registers. */
  658. pDevice->MiscHostCtrl =
  659. MISC_HOST_CTRL_MASK_PCI_INT |
  660. MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
  661. #ifdef BIG_ENDIAN_HOST
  662. MISC_HOST_CTRL_ENABLE_ENDIAN_BYTE_SWAP |
  663. #endif /* BIG_ENDIAN_HOST */
  664. MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
  665. MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
  666. #endif /* !BIG_ENDIAN_PCI */
  667. /* write to PCI misc host ctr first in order to enable indirect accesses */
  668. MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
  669. pDevice->MiscHostCtrl);
  670. REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl);
  671. #ifdef BIG_ENDIAN_PCI
  672. Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
  673. #else
  674. /* No CPU Swap modes for PCI IO */
  675. #ifdef BIG_ENDIAN_HOST
  676. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
  677. GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
  678. #else
  679. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
  680. #endif
  681. #endif /* !BIG_ENDIAN_PCI */
  682. REG_WR (pDevice, Grc.Mode, Value32);
  683. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  684. REG_WR (pDevice, Grc.LocalCtrl,
  685. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
  686. GRC_MISC_LOCAL_CTRL_GPIO_OE1);
  687. }
  688. MM_Wait (40);
  689. /* Enable indirect memory access */
  690. REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
  691. if (REG_RD (pDevice, PciCfg.ClockCtrl) & T3_PCI_44MHZ_CORE_CLOCK) {
  692. REG_WR (pDevice, PciCfg.ClockCtrl, T3_PCI_44MHZ_CORE_CLOCK |
  693. T3_PCI_SELECT_ALTERNATE_CLOCK);
  694. REG_WR (pDevice, PciCfg.ClockCtrl,
  695. T3_PCI_SELECT_ALTERNATE_CLOCK);
  696. MM_Wait (40); /* required delay is 27usec */
  697. }
  698. REG_WR (pDevice, PciCfg.ClockCtrl, 0);
  699. REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0);
  700. #if PCIX_TARGET_WORKAROUND
  701. MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32);
  702. if ((pDevice->EnablePciXFix == FALSE) &&
  703. ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0)) {
  704. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  705. pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
  706. pDevice->ChipRevId == T3_CHIP_ID_5701_B2 ||
  707. pDevice->ChipRevId == T3_CHIP_ID_5701_B5) {
  708. __raw_writel (0,
  709. &(pDevice->pMemView->uIntMem.
  710. MemBlock32K[0x300]));
  711. __raw_writel (0,
  712. &(pDevice->pMemView->uIntMem.
  713. MemBlock32K[0x301]));
  714. __raw_writel (0xffffffff,
  715. &(pDevice->pMemView->uIntMem.
  716. MemBlock32K[0x301]));
  717. if (__raw_readl
  718. (&(pDevice->pMemView->uIntMem.MemBlock32K[0x300])))
  719. {
  720. pDevice->EnablePciXFix = TRUE;
  721. }
  722. }
  723. }
  724. #endif
  725. #if 1
  726. /*
  727. * This code was at the beginning of else block below, but that's
  728. * a bug if node address in shared memory.
  729. */
  730. MM_Wait (50);
  731. LM_NvramInit (pDevice);
  732. #endif
  733. /* Get the node address. First try to get in from the shared memory. */
  734. /* If the signature is not present, then get it from the NVRAM. */
  735. Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_HIGH_MAILBOX);
  736. if ((Value32 >> 16) == 0x484b) {
  737. pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 8);
  738. pDevice->NodeAddress[1] = (LM_UINT8) Value32;
  739. Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_LOW_MAILBOX);
  740. pDevice->NodeAddress[2] = (LM_UINT8) (Value32 >> 24);
  741. pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 16);
  742. pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 8);
  743. pDevice->NodeAddress[5] = (LM_UINT8) Value32;
  744. Status = LM_STATUS_SUCCESS;
  745. } else {
  746. Status = LM_NvramRead (pDevice, 0x7c, &Value32);
  747. if (Status == LM_STATUS_SUCCESS) {
  748. pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 16);
  749. pDevice->NodeAddress[1] = (LM_UINT8) (Value32 >> 24);
  750. Status = LM_NvramRead (pDevice, 0x80, &Value32);
  751. pDevice->NodeAddress[2] = (LM_UINT8) Value32;
  752. pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 8);
  753. pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 16);
  754. pDevice->NodeAddress[5] = (LM_UINT8) (Value32 >> 24);
  755. }
  756. }
  757. /* Assign a default address. */
  758. if (Status != LM_STATUS_SUCCESS) {
  759. #ifndef EMBEDDED
  760. printk (KERN_ERR
  761. "Cannot get MAC addr from NVRAM. Using default.\n");
  762. #endif
  763. pDevice->NodeAddress[0] = 0x00;
  764. pDevice->NodeAddress[1] = 0x10;
  765. pDevice->NodeAddress[2] = 0x18;
  766. pDevice->NodeAddress[3] = 0x68;
  767. pDevice->NodeAddress[4] = 0x61;
  768. pDevice->NodeAddress[5] = 0x76;
  769. }
  770. pDevice->PermanentNodeAddress[0] = pDevice->NodeAddress[0];
  771. pDevice->PermanentNodeAddress[1] = pDevice->NodeAddress[1];
  772. pDevice->PermanentNodeAddress[2] = pDevice->NodeAddress[2];
  773. pDevice->PermanentNodeAddress[3] = pDevice->NodeAddress[3];
  774. pDevice->PermanentNodeAddress[4] = pDevice->NodeAddress[4];
  775. pDevice->PermanentNodeAddress[5] = pDevice->NodeAddress[5];
  776. /* Initialize the default values. */
  777. pDevice->NoTxPseudoHdrChksum = FALSE;
  778. pDevice->NoRxPseudoHdrChksum = FALSE;
  779. pDevice->NicSendBd = FALSE;
  780. pDevice->TxPacketDescCnt = DEFAULT_TX_PACKET_DESC_COUNT;
  781. pDevice->RxStdDescCnt = DEFAULT_STD_RCV_DESC_COUNT;
  782. pDevice->RxCoalescingTicks = DEFAULT_RX_COALESCING_TICKS;
  783. pDevice->TxCoalescingTicks = DEFAULT_TX_COALESCING_TICKS;
  784. pDevice->RxMaxCoalescedFrames = DEFAULT_RX_MAX_COALESCED_FRAMES;
  785. pDevice->TxMaxCoalescedFrames = DEFAULT_TX_MAX_COALESCED_FRAMES;
  786. pDevice->RxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
  787. pDevice->TxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
  788. pDevice->RxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
  789. pDevice->TxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
  790. pDevice->StatsCoalescingTicks = DEFAULT_STATS_COALESCING_TICKS;
  791. pDevice->EnableMWI = FALSE;
  792. pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  793. pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  794. pDevice->DisableAutoNeg = FALSE;
  795. pDevice->PhyIntMode = T3_PHY_INT_MODE_AUTO;
  796. pDevice->LinkChngMode = T3_LINK_CHNG_MODE_AUTO;
  797. pDevice->LedMode = LED_MODE_AUTO;
  798. pDevice->ResetPhyOnInit = TRUE;
  799. pDevice->DelayPciGrant = TRUE;
  800. pDevice->UseTaggedStatus = FALSE;
  801. pDevice->OneDmaAtOnce = BAD_DEFAULT_VALUE;
  802. pDevice->DmaMbufLowMark = T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO;
  803. pDevice->RxMacMbufLowMark = T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO;
  804. pDevice->MbufHighMark = T3_DEF_MBUF_HIGH_WMARK_JUMBO;
  805. pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_AUTO;
  806. pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_NONE;
  807. pDevice->FlowControlCap = LM_FLOW_CONTROL_AUTO_PAUSE;
  808. pDevice->EnableTbi = FALSE;
  809. #if INCLUDE_TBI_SUPPORT
  810. pDevice->PollTbiLink = BAD_DEFAULT_VALUE;
  811. #endif
  812. switch (T3_ASIC_REV (pDevice->ChipRevId)) {
  813. case T3_ASIC_REV_5704:
  814. pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
  815. pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE64;
  816. break;
  817. default:
  818. pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
  819. pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE96;
  820. break;
  821. }
  822. pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
  823. pDevice->QueueRxPackets = TRUE;
  824. pDevice->EnableWireSpeed = TRUE;
  825. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  826. pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT;
  827. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  828. /* Make this is a known adapter. */
  829. pAdapterInfo = LM_GetAdapterInfoBySsid (pDevice->SubsystemVendorId,
  830. pDevice->SubsystemId);
  831. pDevice->BondId = REG_RD (pDevice, Grc.MiscCfg) & GRC_MISC_BD_ID_MASK;
  832. if (pDevice->BondId != GRC_MISC_BD_ID_5700 &&
  833. pDevice->BondId != GRC_MISC_BD_ID_5701 &&
  834. pDevice->BondId != GRC_MISC_BD_ID_5702FE &&
  835. pDevice->BondId != GRC_MISC_BD_ID_5703 &&
  836. pDevice->BondId != GRC_MISC_BD_ID_5703S &&
  837. pDevice->BondId != GRC_MISC_BD_ID_5704 &&
  838. pDevice->BondId != GRC_MISC_BD_ID_5704CIOBE) {
  839. return LM_STATUS_UNKNOWN_ADAPTER;
  840. }
  841. pDevice->SplitModeEnable = SPLIT_MODE_DISABLE;
  842. if ((pDevice->ChipRevId == T3_CHIP_ID_5704_A0) &&
  843. (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE)) {
  844. pDevice->SplitModeEnable = SPLIT_MODE_ENABLE;
  845. pDevice->SplitModeMaxReq = SPLIT_MODE_5704_MAX_REQ;
  846. }
  847. /* Get Eeprom info. */
  848. Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_SIG_ADDR);
  849. if (Value32 == T3_NIC_DATA_SIG) {
  850. EeSigFound = TRUE;
  851. Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_NIC_CFG_ADDR);
  852. /* Determine PHY type. */
  853. switch (Value32 & T3_NIC_CFG_PHY_TYPE_MASK) {
  854. case T3_NIC_CFG_PHY_TYPE_COPPER:
  855. EePhyTypeSerdes = FALSE;
  856. break;
  857. case T3_NIC_CFG_PHY_TYPE_FIBER:
  858. EePhyTypeSerdes = TRUE;
  859. break;
  860. default:
  861. EePhyTypeSerdes = FALSE;
  862. break;
  863. }
  864. /* Determine PHY led mode. */
  865. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  866. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  867. switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) {
  868. case T3_NIC_CFG_LED_MODE_TRIPLE_SPEED:
  869. EePhyLedMode = LED_MODE_THREE_LINK;
  870. break;
  871. case T3_NIC_CFG_LED_MODE_LINK_SPEED:
  872. EePhyLedMode = LED_MODE_LINK10;
  873. break;
  874. default:
  875. EePhyLedMode = LED_MODE_AUTO;
  876. break;
  877. }
  878. } else {
  879. switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) {
  880. case T3_NIC_CFG_LED_MODE_OPEN_DRAIN:
  881. EePhyLedMode = LED_MODE_OPEN_DRAIN;
  882. break;
  883. case T3_NIC_CFG_LED_MODE_OUTPUT:
  884. EePhyLedMode = LED_MODE_OUTPUT;
  885. break;
  886. default:
  887. EePhyLedMode = LED_MODE_AUTO;
  888. break;
  889. }
  890. }
  891. if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
  892. pDevice->ChipRevId == T3_CHIP_ID_5703_A2) {
  893. /* Enable EEPROM write protection. */
  894. if (Value32 & T3_NIC_EEPROM_WP) {
  895. pDevice->EepromWp = TRUE;
  896. }
  897. }
  898. /* Get the PHY Id. */
  899. Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_PHY_ID_ADDR);
  900. if (Value32) {
  901. EePhyId = (((Value32 & T3_NIC_PHY_ID1_MASK) >> 16) &
  902. PHY_ID1_OUI_MASK) << 10;
  903. Value32 = Value32 & T3_NIC_PHY_ID2_MASK;
  904. EePhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
  905. (Value32 & PHY_ID2_MODEL_MASK) | (Value32 &
  906. PHY_ID2_REV_MASK);
  907. } else {
  908. EePhyId = 0;
  909. }
  910. } else {
  911. EeSigFound = FALSE;
  912. }
  913. /* Set the PHY address. */
  914. pDevice->PhyAddr = PHY_DEVICE_ID;
  915. /* Disable auto polling. */
  916. pDevice->MiMode = 0xc0000;
  917. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  918. MM_Wait (40);
  919. /* Get the PHY id. */
  920. LM_ReadPhy (pDevice, PHY_ID1_REG, &Value32);
  921. pDevice->PhyId = (Value32 & PHY_ID1_OUI_MASK) << 10;
  922. LM_ReadPhy (pDevice, PHY_ID2_REG, &Value32);
  923. pDevice->PhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
  924. (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);
  925. /* Set the EnableTbi flag to false if we have a copper PHY. */
  926. switch (pDevice->PhyId & PHY_ID_MASK) {
  927. case PHY_BCM5400_PHY_ID:
  928. pDevice->EnableTbi = FALSE;
  929. break;
  930. case PHY_BCM5401_PHY_ID:
  931. pDevice->EnableTbi = FALSE;
  932. break;
  933. case PHY_BCM5411_PHY_ID:
  934. pDevice->EnableTbi = FALSE;
  935. break;
  936. case PHY_BCM5701_PHY_ID:
  937. pDevice->EnableTbi = FALSE;
  938. break;
  939. case PHY_BCM5703_PHY_ID:
  940. pDevice->EnableTbi = FALSE;
  941. break;
  942. case PHY_BCM5704_PHY_ID:
  943. pDevice->EnableTbi = FALSE;
  944. break;
  945. case PHY_BCM8002_PHY_ID:
  946. pDevice->EnableTbi = TRUE;
  947. break;
  948. default:
  949. if (pAdapterInfo) {
  950. pDevice->PhyId = pAdapterInfo->PhyId;
  951. pDevice->EnableTbi = pAdapterInfo->Serdes;
  952. } else if (EeSigFound) {
  953. pDevice->PhyId = EePhyId;
  954. pDevice->EnableTbi = EePhyTypeSerdes;
  955. }
  956. break;
  957. }
  958. /* Bail out if we don't know the copper PHY id. */
  959. if (UNKNOWN_PHY_ID (pDevice->PhyId) && !pDevice->EnableTbi) {
  960. return LM_STATUS_FAILURE;
  961. }
  962. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) {
  963. if ((pDevice->SavedCacheLineReg & 0xff00) < 0x4000) {
  964. pDevice->SavedCacheLineReg &= 0xffff00ff;
  965. pDevice->SavedCacheLineReg |= 0x4000;
  966. }
  967. }
  968. /* Change driver parameters. */
  969. Status = MM_GetConfig (pDevice);
  970. if (Status != LM_STATUS_SUCCESS) {
  971. return Status;
  972. }
  973. #if INCLUDE_5701_AX_FIX
  974. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  975. pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
  976. pDevice->ResetPhyOnInit = TRUE;
  977. }
  978. #endif
  979. /* Save the current phy link status. */
  980. if (!pDevice->EnableTbi) {
  981. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  982. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  983. /* If we don't have link reset the PHY. */
  984. if (!(Value32 & PHY_STATUS_LINK_PASS)
  985. || pDevice->ResetPhyOnInit) {
  986. LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);
  987. for (j = 0; j < 100; j++) {
  988. MM_Wait (10);
  989. LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
  990. if (Value32 && !(Value32 & PHY_CTRL_PHY_RESET)) {
  991. MM_Wait (40);
  992. break;
  993. }
  994. }
  995. #if INCLUDE_5701_AX_FIX
  996. /* 5701_AX_BX bug: only advertises 10mb speed. */
  997. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  998. pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
  999. Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
  1000. PHY_AN_AD_10BASET_HALF |
  1001. PHY_AN_AD_10BASET_FULL |
  1002. PHY_AN_AD_100BASETX_FULL |
  1003. PHY_AN_AD_100BASETX_HALF;
  1004. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  1005. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  1006. pDevice->advertising = Value32;
  1007. Value32 = BCM540X_AN_AD_1000BASET_HALF |
  1008. BCM540X_AN_AD_1000BASET_FULL |
  1009. BCM540X_CONFIG_AS_MASTER |
  1010. BCM540X_ENABLE_CONFIG_AS_MASTER;
  1011. LM_WritePhy (pDevice,
  1012. BCM540X_1000BASET_CTRL_REG,
  1013. Value32);
  1014. pDevice->advertising1000 = Value32;
  1015. LM_WritePhy (pDevice, PHY_CTRL_REG,
  1016. PHY_CTRL_AUTO_NEG_ENABLE |
  1017. PHY_CTRL_RESTART_AUTO_NEG);
  1018. }
  1019. #endif
  1020. if (T3_ASIC_REV (pDevice->ChipRevId) ==
  1021. T3_ASIC_REV_5703) {
  1022. LM_WritePhy (pDevice, 0x18, 0x0c00);
  1023. LM_WritePhy (pDevice, 0x17, 0x201f);
  1024. LM_WritePhy (pDevice, 0x15, 0x2aaa);
  1025. }
  1026. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  1027. LM_WritePhy (pDevice, 0x1c, 0x8d68);
  1028. LM_WritePhy (pDevice, 0x1c, 0x8d68);
  1029. }
  1030. /* Enable Ethernet@WireSpeed. */
  1031. if (pDevice->EnableWireSpeed) {
  1032. LM_WritePhy (pDevice, 0x18, 0x7007);
  1033. LM_ReadPhy (pDevice, 0x18, &Value32);
  1034. LM_WritePhy (pDevice, 0x18,
  1035. Value32 | BIT_15 | BIT_4);
  1036. }
  1037. }
  1038. }
  1039. /* Turn off tap power management. */
  1040. if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) {
  1041. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20);
  1042. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
  1043. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804);
  1044. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
  1045. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204);
  1046. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  1047. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132);
  1048. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  1049. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232);
  1050. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
  1051. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
  1052. MM_Wait (40);
  1053. }
  1054. #if INCLUDE_TBI_SUPPORT
  1055. pDevice->IgnoreTbiLinkChange = FALSE;
  1056. if (pDevice->EnableTbi) {
  1057. pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_NONE;
  1058. pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
  1059. if ((pDevice->PollTbiLink == BAD_DEFAULT_VALUE) ||
  1060. pDevice->DisableAutoNeg) {
  1061. pDevice->PollTbiLink = FALSE;
  1062. }
  1063. } else {
  1064. pDevice->PollTbiLink = FALSE;
  1065. }
  1066. #endif /* INCLUDE_TBI_SUPPORT */
  1067. /* UseTaggedStatus is only valid for 5701 and later. */
  1068. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1069. pDevice->UseTaggedStatus = FALSE;
  1070. pDevice->CoalesceMode = 0;
  1071. } else {
  1072. pDevice->CoalesceMode =
  1073. HOST_COALESCE_CLEAR_TICKS_ON_RX_BD_EVENT |
  1074. HOST_COALESCE_CLEAR_TICKS_ON_TX_BD_EVENT;
  1075. }
  1076. /* Set the status block size. */
  1077. if (T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_AX &&
  1078. T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_BX) {
  1079. pDevice->CoalesceMode |= HOST_COALESCE_32_BYTE_STATUS_MODE;
  1080. }
  1081. /* Check the DURING_INT coalescing ticks parameters. */
  1082. if (pDevice->UseTaggedStatus) {
  1083. if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
  1084. pDevice->RxCoalescingTicksDuringInt =
  1085. DEFAULT_RX_COALESCING_TICKS_DURING_INT;
  1086. }
  1087. if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
  1088. pDevice->TxCoalescingTicksDuringInt =
  1089. DEFAULT_TX_COALESCING_TICKS_DURING_INT;
  1090. }
  1091. if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
  1092. pDevice->RxMaxCoalescedFramesDuringInt =
  1093. DEFAULT_RX_MAX_COALESCED_FRAMES_DURING_INT;
  1094. }
  1095. if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
  1096. pDevice->TxMaxCoalescedFramesDuringInt =
  1097. DEFAULT_TX_MAX_COALESCED_FRAMES_DURING_INT;
  1098. }
  1099. } else {
  1100. if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
  1101. pDevice->RxCoalescingTicksDuringInt = 0;
  1102. }
  1103. if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
  1104. pDevice->TxCoalescingTicksDuringInt = 0;
  1105. }
  1106. if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
  1107. pDevice->RxMaxCoalescedFramesDuringInt = 0;
  1108. }
  1109. if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
  1110. pDevice->TxMaxCoalescedFramesDuringInt = 0;
  1111. }
  1112. }
  1113. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1114. if (pDevice->RxMtu <= (MAX_STD_RCV_BUFFER_SIZE - 8 /* CRC */ )) {
  1115. pDevice->RxJumboDescCnt = 0;
  1116. if (pDevice->RxMtu <= MAX_ETHERNET_PACKET_SIZE_NO_CRC) {
  1117. pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  1118. }
  1119. } else {
  1120. pDevice->RxJumboBufferSize =
  1121. (pDevice->RxMtu + 8 /* CRC + VLAN */ +
  1122. COMMON_CACHE_LINE_SIZE - 1) & ~COMMON_CACHE_LINE_MASK;
  1123. if (pDevice->RxJumboBufferSize > MAX_JUMBO_RCV_BUFFER_SIZE) {
  1124. pDevice->RxJumboBufferSize =
  1125. DEFAULT_JUMBO_RCV_BUFFER_SIZE;
  1126. pDevice->RxMtu =
  1127. pDevice->RxJumboBufferSize - 8 /* CRC + VLAN */ ;
  1128. }
  1129. pDevice->TxMtu = pDevice->RxMtu;
  1130. }
  1131. #else
  1132. pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  1133. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1134. pDevice->RxPacketDescCnt =
  1135. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1136. pDevice->RxJumboDescCnt +
  1137. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1138. pDevice->RxStdDescCnt;
  1139. if (pDevice->TxMtu < MAX_ETHERNET_PACKET_SIZE_NO_CRC) {
  1140. pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  1141. }
  1142. if (pDevice->TxMtu > MAX_JUMBO_TX_BUFFER_SIZE) {
  1143. pDevice->TxMtu = MAX_JUMBO_TX_BUFFER_SIZE;
  1144. }
  1145. /* Configure the proper ways to get link change interrupt. */
  1146. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO) {
  1147. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1148. pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
  1149. } else {
  1150. pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
  1151. }
  1152. } else if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  1153. /* Auto-polling does not work on 5700_AX and 5700_BX. */
  1154. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1155. pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
  1156. }
  1157. }
  1158. /* Determine the method to get link change status. */
  1159. if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_AUTO) {
  1160. /* The link status bit in the status block does not work on 5700_AX */
  1161. /* and 5700_BX chips. */
  1162. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1163. pDevice->LinkChngMode =
  1164. T3_LINK_CHNG_MODE_USE_STATUS_REG;
  1165. } else {
  1166. pDevice->LinkChngMode =
  1167. T3_LINK_CHNG_MODE_USE_STATUS_BLOCK;
  1168. }
  1169. }
  1170. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT ||
  1171. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1172. pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
  1173. }
  1174. /* Configure PHY led mode. */
  1175. if (pDevice->LedMode == LED_MODE_AUTO) {
  1176. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  1177. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  1178. if (pDevice->SubsystemVendorId == T3_SVID_DELL) {
  1179. pDevice->LedMode = LED_MODE_LINK10;
  1180. } else {
  1181. pDevice->LedMode = LED_MODE_THREE_LINK;
  1182. if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) {
  1183. pDevice->LedMode = EePhyLedMode;
  1184. }
  1185. }
  1186. /* bug? 5701 in LINK10 mode does not seem to work when */
  1187. /* PhyIntMode is LINK_READY. */
  1188. if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700
  1189. &&
  1190. #if INCLUDE_TBI_SUPPORT
  1191. pDevice->EnableTbi == FALSE &&
  1192. #endif
  1193. pDevice->LedMode == LED_MODE_LINK10) {
  1194. pDevice->PhyIntMode =
  1195. T3_PHY_INT_MODE_MI_INTERRUPT;
  1196. pDevice->LinkChngMode =
  1197. T3_LINK_CHNG_MODE_USE_STATUS_REG;
  1198. }
  1199. if (pDevice->EnableTbi) {
  1200. pDevice->LedMode = LED_MODE_THREE_LINK;
  1201. }
  1202. } else {
  1203. if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) {
  1204. pDevice->LedMode = EePhyLedMode;
  1205. } else {
  1206. pDevice->LedMode = LED_MODE_OPEN_DRAIN;
  1207. }
  1208. }
  1209. }
  1210. /* Enable OneDmaAtOnce. */
  1211. if (pDevice->OneDmaAtOnce == BAD_DEFAULT_VALUE) {
  1212. pDevice->OneDmaAtOnce = FALSE;
  1213. }
  1214. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  1215. pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  1216. pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
  1217. pDevice->ChipRevId == T3_CHIP_ID_5701_B2) {
  1218. pDevice->WolSpeed = WOL_SPEED_10MB;
  1219. } else {
  1220. pDevice->WolSpeed = WOL_SPEED_100MB;
  1221. }
  1222. /* Offloadings. */
  1223. pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE;
  1224. /* Turn off task offloading on Ax. */
  1225. if (pDevice->ChipRevId == T3_CHIP_ID_5700_B0) {
  1226. pDevice->TaskOffloadCap &= ~(LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
  1227. LM_TASK_OFFLOAD_TX_UDP_CHECKSUM);
  1228. }
  1229. pDevice->PciState = REG_RD (pDevice, PciCfg.PciState);
  1230. LM_ReadVPD (pDevice);
  1231. LM_ReadBootCodeVersion (pDevice);
  1232. LM_GetBusSpeed (pDevice);
  1233. return LM_STATUS_SUCCESS;
  1234. } /* LM_GetAdapterInfo */
  1235. STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid, LM_UINT16 Ssid)
  1236. {
  1237. static LM_ADAPTER_INFO AdapterArr[] = {
  1238. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A6,
  1239. PHY_BCM5401_PHY_ID, 0},
  1240. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A5,
  1241. PHY_BCM5701_PHY_ID, 0},
  1242. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700T6,
  1243. PHY_BCM8002_PHY_ID, 1},
  1244. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A9, 0, 1},
  1245. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T1,
  1246. PHY_BCM5701_PHY_ID, 0},
  1247. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T8,
  1248. PHY_BCM5701_PHY_ID, 0},
  1249. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A7, 0, 1},
  1250. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A10,
  1251. PHY_BCM5701_PHY_ID, 0},
  1252. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A12,
  1253. PHY_BCM5701_PHY_ID, 0},
  1254. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax1,
  1255. PHY_BCM5701_PHY_ID, 0},
  1256. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax2,
  1257. PHY_BCM5701_PHY_ID, 0},
  1258. {T3_SVID_3COM, T3_SSID_3COM_3C996T, PHY_BCM5401_PHY_ID, 0},
  1259. {T3_SVID_3COM, T3_SSID_3COM_3C996BT, PHY_BCM5701_PHY_ID, 0},
  1260. {T3_SVID_3COM, T3_SSID_3COM_3C996SX, 0, 1},
  1261. {T3_SVID_3COM, T3_SSID_3COM_3C1000T, PHY_BCM5701_PHY_ID, 0},
  1262. {T3_SVID_3COM, T3_SSID_3COM_3C940BR01, PHY_BCM5701_PHY_ID, 0},
  1263. {T3_SVID_DELL, T3_SSID_DELL_VIPER, PHY_BCM5401_PHY_ID, 0},
  1264. {T3_SVID_DELL, T3_SSID_DELL_JAGUAR, PHY_BCM5401_PHY_ID, 0},
  1265. {T3_SVID_DELL, T3_SSID_DELL_MERLOT, PHY_BCM5411_PHY_ID, 0},
  1266. {T3_SVID_DELL, T3_SSID_DELL_SLIM_MERLOT, PHY_BCM5411_PHY_ID, 0},
  1267. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE, PHY_BCM5701_PHY_ID, 0},
  1268. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE_2, PHY_BCM5701_PHY_ID,
  1269. 0},
  1270. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_CHANGELING, 0, 1},
  1271. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780, PHY_BCM5701_PHY_ID, 0},
  1272. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780_2, PHY_BCM5701_PHY_ID,
  1273. 0},
  1274. };
  1275. LM_UINT32 j;
  1276. for (j = 0; j < sizeof (AdapterArr) / sizeof (LM_ADAPTER_INFO); j++) {
  1277. if (AdapterArr[j].Svid == Svid && AdapterArr[j].Ssid == Ssid) {
  1278. return &AdapterArr[j];
  1279. }
  1280. }
  1281. return NULL;
  1282. }
  1283. /******************************************************************************/
  1284. /* Description: */
  1285. /* This routine sets up receive/transmit buffer descriptions queues. */
  1286. /* */
  1287. /* Return: */
  1288. /* LM_STATUS_SUCCESS */
  1289. /******************************************************************************/
  1290. LM_STATUS LM_InitializeAdapter (PLM_DEVICE_BLOCK pDevice)
  1291. {
  1292. LM_PHYSICAL_ADDRESS MemPhy;
  1293. PLM_UINT8 pMemVirt;
  1294. PLM_PACKET pPacket;
  1295. LM_STATUS Status;
  1296. LM_UINT32 Size;
  1297. LM_UINT32 j;
  1298. /* Set power state to D0. */
  1299. LM_SetPowerState (pDevice, LM_POWER_STATE_D0);
  1300. /* Intialize the queues. */
  1301. QQ_InitQueue (&pDevice->RxPacketReceivedQ.Container,
  1302. MAX_RX_PACKET_DESC_COUNT);
  1303. QQ_InitQueue (&pDevice->RxPacketFreeQ.Container,
  1304. MAX_RX_PACKET_DESC_COUNT);
  1305. QQ_InitQueue (&pDevice->TxPacketFreeQ.Container,
  1306. MAX_TX_PACKET_DESC_COUNT);
  1307. QQ_InitQueue (&pDevice->TxPacketActiveQ.Container,
  1308. MAX_TX_PACKET_DESC_COUNT);
  1309. QQ_InitQueue (&pDevice->TxPacketXmittedQ.Container,
  1310. MAX_TX_PACKET_DESC_COUNT);
  1311. /* Allocate shared memory for: status block, the buffers for receive */
  1312. /* rings -- standard, mini, jumbo, and return rings. */
  1313. Size = T3_STATUS_BLOCK_SIZE + sizeof (T3_STATS_BLOCK) +
  1314. T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) +
  1315. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1316. T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) +
  1317. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1318. T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
  1319. /* Memory for host based Send BD. */
  1320. if (pDevice->NicSendBd == FALSE) {
  1321. Size += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
  1322. }
  1323. /* Allocate the memory block. */
  1324. Status =
  1325. MM_AllocateSharedMemory (pDevice, Size, (PLM_VOID) & pMemVirt,
  1326. &MemPhy, FALSE);
  1327. if (Status != LM_STATUS_SUCCESS) {
  1328. return Status;
  1329. }
  1330. /* Program DMA Read/Write */
  1331. if (pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) {
  1332. pDevice->DmaReadWriteCtrl = 0x763f000f;
  1333. } else {
  1334. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5704) {
  1335. pDevice->DmaReadWriteCtrl = 0x761f0000;
  1336. } else {
  1337. pDevice->DmaReadWriteCtrl = 0x761b000f;
  1338. }
  1339. if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
  1340. pDevice->ChipRevId == T3_CHIP_ID_5703_A2) {
  1341. pDevice->OneDmaAtOnce = TRUE;
  1342. }
  1343. }
  1344. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) {
  1345. pDevice->DmaReadWriteCtrl &= 0xfffffff0;
  1346. }
  1347. if (pDevice->OneDmaAtOnce) {
  1348. pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_ONE_DMA_AT_ONCE;
  1349. }
  1350. REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
  1351. if (LM_DmaTest (pDevice, pMemVirt, MemPhy, 0x400) != LM_STATUS_SUCCESS) {
  1352. return LM_STATUS_FAILURE;
  1353. }
  1354. /* Status block. */
  1355. pDevice->pStatusBlkVirt = (PT3_STATUS_BLOCK) pMemVirt;
  1356. pDevice->StatusBlkPhy = MemPhy;
  1357. pMemVirt += T3_STATUS_BLOCK_SIZE;
  1358. LM_INC_PHYSICAL_ADDRESS (&MemPhy, T3_STATUS_BLOCK_SIZE);
  1359. /* Statistics block. */
  1360. pDevice->pStatsBlkVirt = (PT3_STATS_BLOCK) pMemVirt;
  1361. pDevice->StatsBlkPhy = MemPhy;
  1362. pMemVirt += sizeof (T3_STATS_BLOCK);
  1363. LM_INC_PHYSICAL_ADDRESS (&MemPhy, sizeof (T3_STATS_BLOCK));
  1364. /* Receive standard BD buffer. */
  1365. pDevice->pRxStdBdVirt = (PT3_RCV_BD) pMemVirt;
  1366. pDevice->RxStdBdPhy = MemPhy;
  1367. pMemVirt += T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
  1368. LM_INC_PHYSICAL_ADDRESS (&MemPhy,
  1369. T3_STD_RCV_RCB_ENTRY_COUNT *
  1370. sizeof (T3_RCV_BD));
  1371. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1372. /* Receive jumbo BD buffer. */
  1373. pDevice->pRxJumboBdVirt = (PT3_RCV_BD) pMemVirt;
  1374. pDevice->RxJumboBdPhy = MemPhy;
  1375. pMemVirt += T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
  1376. LM_INC_PHYSICAL_ADDRESS (&MemPhy,
  1377. T3_JUMBO_RCV_RCB_ENTRY_COUNT *
  1378. sizeof (T3_RCV_BD));
  1379. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1380. /* Receive return BD buffer. */
  1381. pDevice->pRcvRetBdVirt = (PT3_RCV_BD) pMemVirt;
  1382. pDevice->RcvRetBdPhy = MemPhy;
  1383. pMemVirt += T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
  1384. LM_INC_PHYSICAL_ADDRESS (&MemPhy,
  1385. T3_RCV_RETURN_RCB_ENTRY_COUNT *
  1386. sizeof (T3_RCV_BD));
  1387. /* Set up Send BD. */
  1388. if (pDevice->NicSendBd == FALSE) {
  1389. pDevice->pSendBdVirt = (PT3_SND_BD) pMemVirt;
  1390. pDevice->SendBdPhy = MemPhy;
  1391. pMemVirt += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
  1392. LM_INC_PHYSICAL_ADDRESS (&MemPhy,
  1393. sizeof (T3_SND_BD) *
  1394. T3_SEND_RCB_ENTRY_COUNT);
  1395. } else {
  1396. pDevice->pSendBdVirt = (PT3_SND_BD)
  1397. pDevice->pMemView->uIntMem.First32k.BufferDesc;
  1398. pDevice->SendBdPhy.High = 0;
  1399. pDevice->SendBdPhy.Low = T3_NIC_SND_BUFFER_DESC_ADDR;
  1400. }
  1401. /* Allocate memory for packet descriptors. */
  1402. Size = (pDevice->RxPacketDescCnt +
  1403. pDevice->TxPacketDescCnt) * MM_PACKET_DESC_SIZE;
  1404. Status = MM_AllocateMemory (pDevice, Size, (PLM_VOID *) & pPacket);
  1405. if (Status != LM_STATUS_SUCCESS) {
  1406. return Status;
  1407. }
  1408. pDevice->pPacketDescBase = (PLM_VOID) pPacket;
  1409. /* Create transmit packet descriptors from the memory block and add them */
  1410. /* to the TxPacketFreeQ for each send ring. */
  1411. for (j = 0; j < pDevice->TxPacketDescCnt; j++) {
  1412. /* Ring index. */
  1413. pPacket->Flags = 0;
  1414. /* Queue the descriptor in the TxPacketFreeQ of the 'k' ring. */
  1415. QQ_PushTail (&pDevice->TxPacketFreeQ.Container, pPacket);
  1416. /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
  1417. /* is the total size of the packet descriptor including the */
  1418. /* os-specific extensions in the UM_PACKET structure. */
  1419. pPacket =
  1420. (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
  1421. } /* for(j.. */
  1422. /* Create receive packet descriptors from the memory block and add them */
  1423. /* to the RxPacketFreeQ. Create the Standard packet descriptors. */
  1424. for (j = 0; j < pDevice->RxStdDescCnt; j++) {
  1425. /* Receive producer ring. */
  1426. pPacket->u.Rx.RcvProdRing = T3_STD_RCV_PROD_RING;
  1427. /* Receive buffer size. */
  1428. pPacket->u.Rx.RxBufferSize = MAX_STD_RCV_BUFFER_SIZE;
  1429. /* Add the descriptor to RxPacketFreeQ. */
  1430. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  1431. /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
  1432. /* is the total size of the packet descriptor including the */
  1433. /* os-specific extensions in the UM_PACKET structure. */
  1434. pPacket =
  1435. (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
  1436. } /* for */
  1437. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1438. /* Create the Jumbo packet descriptors. */
  1439. for (j = 0; j < pDevice->RxJumboDescCnt; j++) {
  1440. /* Receive producer ring. */
  1441. pPacket->u.Rx.RcvProdRing = T3_JUMBO_RCV_PROD_RING;
  1442. /* Receive buffer size. */
  1443. pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize;
  1444. /* Add the descriptor to RxPacketFreeQ. */
  1445. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  1446. /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
  1447. /* is the total size of the packet descriptor including the */
  1448. /* os-specific extensions in the UM_PACKET structure. */
  1449. pPacket =
  1450. (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
  1451. } /* for */
  1452. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1453. /* Initialize the rest of the packet descriptors. */
  1454. Status = MM_InitializeUmPackets (pDevice);
  1455. if (Status != LM_STATUS_SUCCESS) {
  1456. return Status;
  1457. }
  1458. /* if */
  1459. /* Default receive mask. */
  1460. pDevice->ReceiveMask = LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST |
  1461. LM_ACCEPT_UNICAST;
  1462. /* Make sure we are in the first 32k memory window or NicSendBd. */
  1463. REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0);
  1464. /* Initialize the hardware. */
  1465. Status = LM_ResetAdapter (pDevice);
  1466. if (Status != LM_STATUS_SUCCESS) {
  1467. return Status;
  1468. }
  1469. /* We are done with initialization. */
  1470. pDevice->InitDone = TRUE;
  1471. return LM_STATUS_SUCCESS;
  1472. } /* LM_InitializeAdapter */
  1473. /******************************************************************************/
  1474. /* Description: */
  1475. /* This function Enables/Disables a given block. */
  1476. /* */
  1477. /* Return: */
  1478. /* LM_STATUS_SUCCESS */
  1479. /******************************************************************************/
  1480. LM_STATUS
  1481. LM_CntrlBlock (PLM_DEVICE_BLOCK pDevice, LM_UINT32 mask, LM_UINT32 cntrl)
  1482. {
  1483. LM_UINT32 j, i, data;
  1484. LM_UINT32 MaxWaitCnt;
  1485. MaxWaitCnt = 2;
  1486. j = 0;
  1487. for (i = 0; i < 32; i++) {
  1488. if (!(mask & (1 << i)))
  1489. continue;
  1490. switch (1 << i) {
  1491. case T3_BLOCK_DMA_RD:
  1492. data = REG_RD (pDevice, DmaRead.Mode);
  1493. if (cntrl == LM_DISABLE) {
  1494. data &= ~DMA_READ_MODE_ENABLE;
  1495. REG_WR (pDevice, DmaRead.Mode, data);
  1496. for (j = 0; j < MaxWaitCnt; j++) {
  1497. if (!
  1498. (REG_RD (pDevice, DmaRead.Mode) &
  1499. DMA_READ_MODE_ENABLE))
  1500. break;
  1501. MM_Wait (10);
  1502. }
  1503. } else
  1504. REG_WR (pDevice, DmaRead.Mode,
  1505. data | DMA_READ_MODE_ENABLE);
  1506. break;
  1507. case T3_BLOCK_DMA_COMP:
  1508. data = REG_RD (pDevice, DmaComp.Mode);
  1509. if (cntrl == LM_DISABLE) {
  1510. data &= ~DMA_COMP_MODE_ENABLE;
  1511. REG_WR (pDevice, DmaComp.Mode, data);
  1512. for (j = 0; j < MaxWaitCnt; j++) {
  1513. if (!
  1514. (REG_RD (pDevice, DmaComp.Mode) &
  1515. DMA_COMP_MODE_ENABLE))
  1516. break;
  1517. MM_Wait (10);
  1518. }
  1519. } else
  1520. REG_WR (pDevice, DmaComp.Mode,
  1521. data | DMA_COMP_MODE_ENABLE);
  1522. break;
  1523. case T3_BLOCK_RX_BD_INITIATOR:
  1524. data = REG_RD (pDevice, RcvBdIn.Mode);
  1525. if (cntrl == LM_DISABLE) {
  1526. data &= ~RCV_BD_IN_MODE_ENABLE;
  1527. REG_WR (pDevice, RcvBdIn.Mode, data);
  1528. for (j = 0; j < MaxWaitCnt; j++) {
  1529. if (!
  1530. (REG_RD (pDevice, RcvBdIn.Mode) &
  1531. RCV_BD_IN_MODE_ENABLE))
  1532. break;
  1533. MM_Wait (10);
  1534. }
  1535. } else
  1536. REG_WR (pDevice, RcvBdIn.Mode,
  1537. data | RCV_BD_IN_MODE_ENABLE);
  1538. break;
  1539. case T3_BLOCK_RX_BD_COMP:
  1540. data = REG_RD (pDevice, RcvBdComp.Mode);
  1541. if (cntrl == LM_DISABLE) {
  1542. data &= ~RCV_BD_COMP_MODE_ENABLE;
  1543. REG_WR (pDevice, RcvBdComp.Mode, data);
  1544. for (j = 0; j < MaxWaitCnt; j++) {
  1545. if (!
  1546. (REG_RD (pDevice, RcvBdComp.Mode) &
  1547. RCV_BD_COMP_MODE_ENABLE))
  1548. break;
  1549. MM_Wait (10);
  1550. }
  1551. } else
  1552. REG_WR (pDevice, RcvBdComp.Mode,
  1553. data | RCV_BD_COMP_MODE_ENABLE);
  1554. break;
  1555. case T3_BLOCK_DMA_WR:
  1556. data = REG_RD (pDevice, DmaWrite.Mode);
  1557. if (cntrl == LM_DISABLE) {
  1558. data &= ~DMA_WRITE_MODE_ENABLE;
  1559. REG_WR (pDevice, DmaWrite.Mode, data);
  1560. for (j = 0; j < MaxWaitCnt; j++) {
  1561. if (!
  1562. (REG_RD (pDevice, DmaWrite.Mode) &
  1563. DMA_WRITE_MODE_ENABLE))
  1564. break;
  1565. MM_Wait (10);
  1566. }
  1567. } else
  1568. REG_WR (pDevice, DmaWrite.Mode,
  1569. data | DMA_WRITE_MODE_ENABLE);
  1570. break;
  1571. case T3_BLOCK_MSI_HANDLER:
  1572. data = REG_RD (pDevice, Msi.Mode);
  1573. if (cntrl == LM_DISABLE) {
  1574. data &= ~MSI_MODE_ENABLE;
  1575. REG_WR (pDevice, Msi.Mode, data);
  1576. for (j = 0; j < MaxWaitCnt; j++) {
  1577. if (!
  1578. (REG_RD (pDevice, Msi.Mode) &
  1579. MSI_MODE_ENABLE))
  1580. break;
  1581. MM_Wait (10);
  1582. }
  1583. } else
  1584. REG_WR (pDevice, Msi.Mode,
  1585. data | MSI_MODE_ENABLE);
  1586. break;
  1587. case T3_BLOCK_RX_LIST_PLMT:
  1588. data = REG_RD (pDevice, RcvListPlmt.Mode);
  1589. if (cntrl == LM_DISABLE) {
  1590. data &= ~RCV_LIST_PLMT_MODE_ENABLE;
  1591. REG_WR (pDevice, RcvListPlmt.Mode, data);
  1592. for (j = 0; j < MaxWaitCnt; j++) {
  1593. if (!
  1594. (REG_RD (pDevice, RcvListPlmt.Mode)
  1595. & RCV_LIST_PLMT_MODE_ENABLE))
  1596. break;
  1597. MM_Wait (10);
  1598. }
  1599. } else
  1600. REG_WR (pDevice, RcvListPlmt.Mode,
  1601. data | RCV_LIST_PLMT_MODE_ENABLE);
  1602. break;
  1603. case T3_BLOCK_RX_LIST_SELECTOR:
  1604. data = REG_RD (pDevice, RcvListSel.Mode);
  1605. if (cntrl == LM_DISABLE) {
  1606. data &= ~RCV_LIST_SEL_MODE_ENABLE;
  1607. REG_WR (pDevice, RcvListSel.Mode, data);
  1608. for (j = 0; j < MaxWaitCnt; j++) {
  1609. if (!
  1610. (REG_RD (pDevice, RcvListSel.Mode) &
  1611. RCV_LIST_SEL_MODE_ENABLE))
  1612. break;
  1613. MM_Wait (10);
  1614. }
  1615. } else
  1616. REG_WR (pDevice, RcvListSel.Mode,
  1617. data | RCV_LIST_SEL_MODE_ENABLE);
  1618. break;
  1619. case T3_BLOCK_RX_DATA_INITIATOR:
  1620. data = REG_RD (pDevice, RcvDataBdIn.Mode);
  1621. if (cntrl == LM_DISABLE) {
  1622. data &= ~RCV_DATA_BD_IN_MODE_ENABLE;
  1623. REG_WR (pDevice, RcvDataBdIn.Mode, data);
  1624. for (j = 0; j < MaxWaitCnt; j++) {
  1625. if (!
  1626. (REG_RD (pDevice, RcvDataBdIn.Mode)
  1627. & RCV_DATA_BD_IN_MODE_ENABLE))
  1628. break;
  1629. MM_Wait (10);
  1630. }
  1631. } else
  1632. REG_WR (pDevice, RcvDataBdIn.Mode,
  1633. data | RCV_DATA_BD_IN_MODE_ENABLE);
  1634. break;
  1635. case T3_BLOCK_RX_DATA_COMP:
  1636. data = REG_RD (pDevice, RcvDataComp.Mode);
  1637. if (cntrl == LM_DISABLE) {
  1638. data &= ~RCV_DATA_COMP_MODE_ENABLE;
  1639. REG_WR (pDevice, RcvDataComp.Mode, data);
  1640. for (j = 0; j < MaxWaitCnt; j++) {
  1641. if (!
  1642. (REG_RD (pDevice, RcvDataBdIn.Mode)
  1643. & RCV_DATA_COMP_MODE_ENABLE))
  1644. break;
  1645. MM_Wait (10);
  1646. }
  1647. } else
  1648. REG_WR (pDevice, RcvDataComp.Mode,
  1649. data | RCV_DATA_COMP_MODE_ENABLE);
  1650. break;
  1651. case T3_BLOCK_HOST_COALESING:
  1652. data = REG_RD (pDevice, HostCoalesce.Mode);
  1653. if (cntrl == LM_DISABLE) {
  1654. data &= ~HOST_COALESCE_ENABLE;
  1655. REG_WR (pDevice, HostCoalesce.Mode, data);
  1656. for (j = 0; j < MaxWaitCnt; j++) {
  1657. if (!
  1658. (REG_RD (pDevice, SndBdIn.Mode) &
  1659. HOST_COALESCE_ENABLE))
  1660. break;
  1661. MM_Wait (10);
  1662. }
  1663. } else
  1664. REG_WR (pDevice, HostCoalesce.Mode,
  1665. data | HOST_COALESCE_ENABLE);
  1666. break;
  1667. case T3_BLOCK_MAC_RX_ENGINE:
  1668. if (cntrl == LM_DISABLE) {
  1669. pDevice->RxMode &= ~RX_MODE_ENABLE;
  1670. REG_WR (pDevice, MacCtrl.RxMode,
  1671. pDevice->RxMode);
  1672. for (j = 0; j < MaxWaitCnt; j++) {
  1673. if (!
  1674. (REG_RD (pDevice, MacCtrl.RxMode) &
  1675. RX_MODE_ENABLE)) {
  1676. break;
  1677. }
  1678. MM_Wait (10);
  1679. }
  1680. } else {
  1681. pDevice->RxMode |= RX_MODE_ENABLE;
  1682. REG_WR (pDevice, MacCtrl.RxMode,
  1683. pDevice->RxMode);
  1684. }
  1685. break;
  1686. case T3_BLOCK_MBUF_CLUSTER_FREE:
  1687. data = REG_RD (pDevice, MbufClusterFree.Mode);
  1688. if (cntrl == LM_DISABLE) {
  1689. data &= ~MBUF_CLUSTER_FREE_MODE_ENABLE;
  1690. REG_WR (pDevice, MbufClusterFree.Mode, data);
  1691. for (j = 0; j < MaxWaitCnt; j++) {
  1692. if (!
  1693. (REG_RD
  1694. (pDevice,
  1695. MbufClusterFree.
  1696. Mode) &
  1697. MBUF_CLUSTER_FREE_MODE_ENABLE))
  1698. break;
  1699. MM_Wait (10);
  1700. }
  1701. } else
  1702. REG_WR (pDevice, MbufClusterFree.Mode,
  1703. data | MBUF_CLUSTER_FREE_MODE_ENABLE);
  1704. break;
  1705. case T3_BLOCK_SEND_BD_INITIATOR:
  1706. data = REG_RD (pDevice, SndBdIn.Mode);
  1707. if (cntrl == LM_DISABLE) {
  1708. data &= ~SND_BD_IN_MODE_ENABLE;
  1709. REG_WR (pDevice, SndBdIn.Mode, data);
  1710. for (j = 0; j < MaxWaitCnt; j++) {
  1711. if (!
  1712. (REG_RD (pDevice, SndBdIn.Mode) &
  1713. SND_BD_IN_MODE_ENABLE))
  1714. break;
  1715. MM_Wait (10);
  1716. }
  1717. } else
  1718. REG_WR (pDevice, SndBdIn.Mode,
  1719. data | SND_BD_IN_MODE_ENABLE);
  1720. break;
  1721. case T3_BLOCK_SEND_BD_COMP:
  1722. data = REG_RD (pDevice, SndBdComp.Mode);
  1723. if (cntrl == LM_DISABLE) {
  1724. data &= ~SND_BD_COMP_MODE_ENABLE;
  1725. REG_WR (pDevice, SndBdComp.Mode, data);
  1726. for (j = 0; j < MaxWaitCnt; j++) {
  1727. if (!
  1728. (REG_RD (pDevice, SndBdComp.Mode) &
  1729. SND_BD_COMP_MODE_ENABLE))
  1730. break;
  1731. MM_Wait (10);
  1732. }
  1733. } else
  1734. REG_WR (pDevice, SndBdComp.Mode,
  1735. data | SND_BD_COMP_MODE_ENABLE);
  1736. break;
  1737. case T3_BLOCK_SEND_BD_SELECTOR:
  1738. data = REG_RD (pDevice, SndBdSel.Mode);
  1739. if (cntrl == LM_DISABLE) {
  1740. data &= ~SND_BD_SEL_MODE_ENABLE;
  1741. REG_WR (pDevice, SndBdSel.Mode, data);
  1742. for (j = 0; j < MaxWaitCnt; j++) {
  1743. if (!
  1744. (REG_RD (pDevice, SndBdSel.Mode) &
  1745. SND_BD_SEL_MODE_ENABLE))
  1746. break;
  1747. MM_Wait (10);
  1748. }
  1749. } else
  1750. REG_WR (pDevice, SndBdSel.Mode,
  1751. data | SND_BD_SEL_MODE_ENABLE);
  1752. break;
  1753. case T3_BLOCK_SEND_DATA_INITIATOR:
  1754. data = REG_RD (pDevice, SndDataIn.Mode);
  1755. if (cntrl == LM_DISABLE) {
  1756. data &= ~T3_SND_DATA_IN_MODE_ENABLE;
  1757. REG_WR (pDevice, SndDataIn.Mode, data);
  1758. for (j = 0; j < MaxWaitCnt; j++) {
  1759. if (!
  1760. (REG_RD (pDevice, SndDataIn.Mode) &
  1761. T3_SND_DATA_IN_MODE_ENABLE))
  1762. break;
  1763. MM_Wait (10);
  1764. }
  1765. } else
  1766. REG_WR (pDevice, SndDataIn.Mode,
  1767. data | T3_SND_DATA_IN_MODE_ENABLE);
  1768. break;
  1769. case T3_BLOCK_SEND_DATA_COMP:
  1770. data = REG_RD (pDevice, SndDataComp.Mode);
  1771. if (cntrl == LM_DISABLE) {
  1772. data &= ~SND_DATA_COMP_MODE_ENABLE;
  1773. REG_WR (pDevice, SndDataComp.Mode, data);
  1774. for (j = 0; j < MaxWaitCnt; j++) {
  1775. if (!
  1776. (REG_RD (pDevice, SndDataComp.Mode)
  1777. & SND_DATA_COMP_MODE_ENABLE))
  1778. break;
  1779. MM_Wait (10);
  1780. }
  1781. } else
  1782. REG_WR (pDevice, SndDataComp.Mode,
  1783. data | SND_DATA_COMP_MODE_ENABLE);
  1784. break;
  1785. case T3_BLOCK_MAC_TX_ENGINE:
  1786. if (cntrl == LM_DISABLE) {
  1787. pDevice->TxMode &= ~TX_MODE_ENABLE;
  1788. REG_WR (pDevice, MacCtrl.TxMode,
  1789. pDevice->TxMode);
  1790. for (j = 0; j < MaxWaitCnt; j++) {
  1791. if (!
  1792. (REG_RD (pDevice, MacCtrl.TxMode) &
  1793. TX_MODE_ENABLE))
  1794. break;
  1795. MM_Wait (10);
  1796. }
  1797. } else {
  1798. pDevice->TxMode |= TX_MODE_ENABLE;
  1799. REG_WR (pDevice, MacCtrl.TxMode,
  1800. pDevice->TxMode);
  1801. }
  1802. break;
  1803. case T3_BLOCK_MEM_ARBITOR:
  1804. data = REG_RD (pDevice, MemArbiter.Mode);
  1805. if (cntrl == LM_DISABLE) {
  1806. data &= ~T3_MEM_ARBITER_MODE_ENABLE;
  1807. REG_WR (pDevice, MemArbiter.Mode, data);
  1808. for (j = 0; j < MaxWaitCnt; j++) {
  1809. if (!
  1810. (REG_RD (pDevice, MemArbiter.Mode) &
  1811. T3_MEM_ARBITER_MODE_ENABLE))
  1812. break;
  1813. MM_Wait (10);
  1814. }
  1815. } else
  1816. REG_WR (pDevice, MemArbiter.Mode,
  1817. data | T3_MEM_ARBITER_MODE_ENABLE);
  1818. break;
  1819. case T3_BLOCK_MBUF_MANAGER:
  1820. data = REG_RD (pDevice, BufMgr.Mode);
  1821. if (cntrl == LM_DISABLE) {
  1822. data &= ~BUFMGR_MODE_ENABLE;
  1823. REG_WR (pDevice, BufMgr.Mode, data);
  1824. for (j = 0; j < MaxWaitCnt; j++) {
  1825. if (!
  1826. (REG_RD (pDevice, BufMgr.Mode) &
  1827. BUFMGR_MODE_ENABLE))
  1828. break;
  1829. MM_Wait (10);
  1830. }
  1831. } else
  1832. REG_WR (pDevice, BufMgr.Mode,
  1833. data | BUFMGR_MODE_ENABLE);
  1834. break;
  1835. case T3_BLOCK_MAC_GLOBAL:
  1836. if (cntrl == LM_DISABLE) {
  1837. pDevice->MacMode &= ~(MAC_MODE_ENABLE_TDE |
  1838. MAC_MODE_ENABLE_RDE |
  1839. MAC_MODE_ENABLE_FHDE);
  1840. } else {
  1841. pDevice->MacMode |= (MAC_MODE_ENABLE_TDE |
  1842. MAC_MODE_ENABLE_RDE |
  1843. MAC_MODE_ENABLE_FHDE);
  1844. }
  1845. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  1846. break;
  1847. default:
  1848. return LM_STATUS_FAILURE;
  1849. } /* switch */
  1850. if (j >= MaxWaitCnt) {
  1851. return LM_STATUS_FAILURE;
  1852. }
  1853. }
  1854. return LM_STATUS_SUCCESS;
  1855. }
  1856. /******************************************************************************/
  1857. /* Description: */
  1858. /* This function reinitializes the adapter. */
  1859. /* */
  1860. /* Return: */
  1861. /* LM_STATUS_SUCCESS */
  1862. /******************************************************************************/
  1863. LM_STATUS LM_ResetAdapter (PLM_DEVICE_BLOCK pDevice)
  1864. {
  1865. LM_UINT32 Value32;
  1866. LM_UINT16 Value16;
  1867. LM_UINT32 j, k;
  1868. /* Disable interrupt. */
  1869. LM_DisableInterrupt (pDevice);
  1870. /* May get a spurious interrupt */
  1871. pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED;
  1872. /* Disable transmit and receive DMA engines. Abort all pending requests. */
  1873. if (pDevice->InitDone) {
  1874. LM_Abort (pDevice);
  1875. }
  1876. pDevice->ShuttingDown = FALSE;
  1877. LM_ResetChip (pDevice);
  1878. /* Bug: Athlon fix for B3 silicon only. This bit does not do anything */
  1879. /* in other chip revisions. */
  1880. if (pDevice->DelayPciGrant) {
  1881. Value32 = REG_RD (pDevice, PciCfg.ClockCtrl);
  1882. REG_WR (pDevice, PciCfg.ClockCtrl, Value32 | BIT_31);
  1883. }
  1884. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  1885. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
  1886. Value32 = REG_RD (pDevice, PciCfg.PciState);
  1887. Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
  1888. REG_WR (pDevice, PciCfg.PciState, Value32);
  1889. }
  1890. }
  1891. /* Enable TaggedStatus mode. */
  1892. if (pDevice->UseTaggedStatus) {
  1893. pDevice->MiscHostCtrl |=
  1894. MISC_HOST_CTRL_ENABLE_TAGGED_STATUS_MODE;
  1895. }
  1896. /* Restore PCI configuration registers. */
  1897. MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG,
  1898. pDevice->SavedCacheLineReg);
  1899. MM_WriteConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
  1900. (pDevice->SubsystemId << 16) | pDevice->
  1901. SubsystemVendorId);
  1902. /* Clear the statistics block. */
  1903. for (j = 0x0300; j < 0x0b00; j++) {
  1904. MEM_WR_OFFSET (pDevice, j, 0);
  1905. }
  1906. /* Initialize the statistis Block */
  1907. pDevice->pStatusBlkVirt->Status = 0;
  1908. pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
  1909. pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
  1910. pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
  1911. for (j = 0; j < 16; j++) {
  1912. pDevice->pStatusBlkVirt->Idx[j].RcvProdIdx = 0;
  1913. pDevice->pStatusBlkVirt->Idx[j].SendConIdx = 0;
  1914. }
  1915. for (k = 0; k < T3_STD_RCV_RCB_ENTRY_COUNT; k++) {
  1916. pDevice->pRxStdBdVirt[k].HostAddr.High = 0;
  1917. pDevice->pRxStdBdVirt[k].HostAddr.Low = 0;
  1918. }
  1919. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1920. /* Receive jumbo BD buffer. */
  1921. for (k = 0; k < T3_JUMBO_RCV_RCB_ENTRY_COUNT; k++) {
  1922. pDevice->pRxJumboBdVirt[k].HostAddr.High = 0;
  1923. pDevice->pRxJumboBdVirt[k].HostAddr.Low = 0;
  1924. }
  1925. #endif
  1926. REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
  1927. /* GRC mode control register. */
  1928. #ifdef BIG_ENDIAN_PCI /* Jimmy, this ifdef block deleted in new code! */
  1929. Value32 =
  1930. GRC_MODE_WORD_SWAP_DATA |
  1931. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  1932. GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP;
  1933. #else
  1934. /* No CPU Swap modes for PCI IO */
  1935. Value32 =
  1936. #ifdef BIG_ENDIAN_HOST
  1937. GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
  1938. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  1939. GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA |
  1940. #else
  1941. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  1942. GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA |
  1943. #endif
  1944. GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP;
  1945. #endif /* !BIG_ENDIAN_PCI */
  1946. /* Configure send BD mode. */
  1947. if (pDevice->NicSendBd == FALSE) {
  1948. Value32 |= GRC_MODE_HOST_SEND_BDS;
  1949. } else {
  1950. Value32 |= GRC_MODE_4X_NIC_BASED_SEND_RINGS;
  1951. }
  1952. /* Configure pseudo checksum mode. */
  1953. if (pDevice->NoTxPseudoHdrChksum) {
  1954. Value32 |= GRC_MODE_TX_NO_PSEUDO_HEADER_CHKSUM;
  1955. }
  1956. if (pDevice->NoRxPseudoHdrChksum) {
  1957. Value32 |= GRC_MODE_RX_NO_PSEUDO_HEADER_CHKSUM;
  1958. }
  1959. REG_WR (pDevice, Grc.Mode, Value32);
  1960. /* Setup the timer prescalar register. */
  1961. REG_WR (pDevice, Grc.MiscCfg, 65 << 1); /* Clock is alwasy 66Mhz. */
  1962. /* Set up the MBUF pool base address and size. */
  1963. REG_WR (pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase);
  1964. REG_WR (pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize);
  1965. /* Set up the DMA descriptor pool base address and size. */
  1966. REG_WR (pDevice, BufMgr.DmaDescPoolAddr, T3_NIC_DMA_DESC_POOL_ADDR);
  1967. REG_WR (pDevice, BufMgr.DmaDescPoolSize, T3_NIC_DMA_DESC_POOL_SIZE);
  1968. /* Configure MBUF and Threshold watermarks */
  1969. /* Configure the DMA read MBUF low water mark. */
  1970. if (pDevice->DmaMbufLowMark) {
  1971. REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
  1972. pDevice->DmaMbufLowMark);
  1973. } else {
  1974. if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
  1975. REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
  1976. T3_DEF_DMA_MBUF_LOW_WMARK);
  1977. } else {
  1978. REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
  1979. T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO);
  1980. }
  1981. }
  1982. /* Configure the MAC Rx MBUF low water mark. */
  1983. if (pDevice->RxMacMbufLowMark) {
  1984. REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
  1985. pDevice->RxMacMbufLowMark);
  1986. } else {
  1987. if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
  1988. REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
  1989. T3_DEF_RX_MAC_MBUF_LOW_WMARK);
  1990. } else {
  1991. REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
  1992. T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO);
  1993. }
  1994. }
  1995. /* Configure the MBUF high water mark. */
  1996. if (pDevice->MbufHighMark) {
  1997. REG_WR (pDevice, BufMgr.MbufHighWaterMark,
  1998. pDevice->MbufHighMark);
  1999. } else {
  2000. if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
  2001. REG_WR (pDevice, BufMgr.MbufHighWaterMark,
  2002. T3_DEF_MBUF_HIGH_WMARK);
  2003. } else {
  2004. REG_WR (pDevice, BufMgr.MbufHighWaterMark,
  2005. T3_DEF_MBUF_HIGH_WMARK_JUMBO);
  2006. }
  2007. }
  2008. REG_WR (pDevice, BufMgr.DmaLowWaterMark, T3_DEF_DMA_DESC_LOW_WMARK);
  2009. REG_WR (pDevice, BufMgr.DmaHighWaterMark, T3_DEF_DMA_DESC_HIGH_WMARK);
  2010. /* Enable buffer manager. */
  2011. REG_WR (pDevice, BufMgr.Mode,
  2012. BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE);
  2013. for (j = 0; j < 2000; j++) {
  2014. if (REG_RD (pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE)
  2015. break;
  2016. MM_Wait (10);
  2017. }
  2018. if (j >= 2000) {
  2019. return LM_STATUS_FAILURE;
  2020. }
  2021. /* Enable the FTQs. */
  2022. REG_WR (pDevice, Ftq.Reset, 0xffffffff);
  2023. REG_WR (pDevice, Ftq.Reset, 0);
  2024. /* Wait until FTQ is ready */
  2025. for (j = 0; j < 2000; j++) {
  2026. if (REG_RD (pDevice, Ftq.Reset) == 0)
  2027. break;
  2028. MM_Wait (10);
  2029. }
  2030. if (j >= 2000) {
  2031. return LM_STATUS_FAILURE;
  2032. }
  2033. /* Initialize the Standard Receive RCB. */
  2034. REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.High,
  2035. pDevice->RxStdBdPhy.High);
  2036. REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.Low,
  2037. pDevice->RxStdBdPhy.Low);
  2038. REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags,
  2039. MAX_STD_RCV_BUFFER_SIZE << 16);
  2040. /* Initialize the Jumbo Receive RCB. */
  2041. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags,
  2042. T3_RCB_FLAG_RING_DISABLED);
  2043. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2044. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.High,
  2045. pDevice->RxJumboBdPhy.High);
  2046. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.Low,
  2047. pDevice->RxJumboBdPhy.Low);
  2048. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, 0);
  2049. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  2050. /* Initialize the Mini Receive RCB. */
  2051. REG_WR (pDevice, RcvDataBdIn.MiniRcvRcb.u.MaxLen_Flags,
  2052. T3_RCB_FLAG_RING_DISABLED);
  2053. {
  2054. REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.NicRingAddr,
  2055. (LM_UINT32) T3_NIC_STD_RCV_BUFFER_DESC_ADDR);
  2056. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.NicRingAddr,
  2057. (LM_UINT32) T3_NIC_JUMBO_RCV_BUFFER_DESC_ADDR);
  2058. }
  2059. /* Receive BD Ring replenish threshold. */
  2060. REG_WR (pDevice, RcvBdIn.StdRcvThreshold, pDevice->RxStdDescCnt / 8);
  2061. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2062. REG_WR (pDevice, RcvBdIn.JumboRcvThreshold,
  2063. pDevice->RxJumboDescCnt / 8);
  2064. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  2065. /* Disable all the unused rings. */
  2066. for (j = 0; j < T3_MAX_SEND_RCB_COUNT; j++) {
  2067. MEM_WR (pDevice, SendRcb[j].u.MaxLen_Flags,
  2068. T3_RCB_FLAG_RING_DISABLED);
  2069. } /* for */
  2070. /* Initialize the indices. */
  2071. pDevice->SendProdIdx = 0;
  2072. pDevice->SendConIdx = 0;
  2073. MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, 0);
  2074. MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, 0);
  2075. /* Set up host or NIC based send RCB. */
  2076. if (pDevice->NicSendBd == FALSE) {
  2077. MEM_WR (pDevice, SendRcb[0].HostRingAddr.High,
  2078. pDevice->SendBdPhy.High);
  2079. MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low,
  2080. pDevice->SendBdPhy.Low);
  2081. /* Set up the NIC ring address in the RCB. */
  2082. MEM_WR (pDevice, SendRcb[0].NicRingAddr,
  2083. T3_NIC_SND_BUFFER_DESC_ADDR);
  2084. /* Setup the RCB. */
  2085. MEM_WR (pDevice, SendRcb[0].u.MaxLen_Flags,
  2086. T3_SEND_RCB_ENTRY_COUNT << 16);
  2087. for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) {
  2088. pDevice->pSendBdVirt[k].HostAddr.High = 0;
  2089. pDevice->pSendBdVirt[k].HostAddr.Low = 0;
  2090. }
  2091. } else {
  2092. MEM_WR (pDevice, SendRcb[0].HostRingAddr.High, 0);
  2093. MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low, 0);
  2094. MEM_WR (pDevice, SendRcb[0].NicRingAddr,
  2095. pDevice->SendBdPhy.Low);
  2096. for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) {
  2097. __raw_writel (0,
  2098. &(pDevice->pSendBdVirt[k].HostAddr.High));
  2099. __raw_writel (0,
  2100. &(pDevice->pSendBdVirt[k].HostAddr.Low));
  2101. __raw_writel (0,
  2102. &(pDevice->pSendBdVirt[k].u1.Len_Flags));
  2103. pDevice->ShadowSendBd[k].HostAddr.High = 0;
  2104. pDevice->ShadowSendBd[k].u1.Len_Flags = 0;
  2105. }
  2106. }
  2107. atomic_set (&pDevice->SendBdLeft, T3_SEND_RCB_ENTRY_COUNT - 1);
  2108. /* Configure the receive return rings. */
  2109. for (j = 0; j < T3_MAX_RCV_RETURN_RCB_COUNT; j++) {
  2110. MEM_WR (pDevice, RcvRetRcb[j].u.MaxLen_Flags,
  2111. T3_RCB_FLAG_RING_DISABLED);
  2112. }
  2113. pDevice->RcvRetConIdx = 0;
  2114. MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.High,
  2115. pDevice->RcvRetBdPhy.High);
  2116. MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.Low,
  2117. pDevice->RcvRetBdPhy.Low);
  2118. /* Set up the NIC ring address in the RCB. */
  2119. /* Not very clear from the spec. I am guessing that for Receive */
  2120. /* Return Ring, NicRingAddr is not used. */
  2121. MEM_WR (pDevice, RcvRetRcb[0].NicRingAddr, 0);
  2122. /* Setup the RCB. */
  2123. MEM_WR (pDevice, RcvRetRcb[0].u.MaxLen_Flags,
  2124. T3_RCV_RETURN_RCB_ENTRY_COUNT << 16);
  2125. /* Reinitialize RX ring producer index */
  2126. MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low, 0);
  2127. MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low, 0);
  2128. MB_REG_WR (pDevice, Mailbox.RcvMiniProdIdx.Low, 0);
  2129. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2130. pDevice->RxJumboProdIdx = 0;
  2131. pDevice->RxJumboQueuedCnt = 0;
  2132. #endif
  2133. /* Reinitialize our copy of the indices. */
  2134. pDevice->RxStdProdIdx = 0;
  2135. pDevice->RxStdQueuedCnt = 0;
  2136. #if T3_JUMBO_RCV_ENTRY_COUNT
  2137. pDevice->RxJumboProdIdx = 0;
  2138. #endif /* T3_JUMBO_RCV_ENTRY_COUNT */
  2139. /* Configure the MAC address. */
  2140. LM_SetMacAddress (pDevice, pDevice->NodeAddress);
  2141. /* Initialize the transmit random backoff seed. */
  2142. Value32 = (pDevice->NodeAddress[0] + pDevice->NodeAddress[1] +
  2143. pDevice->NodeAddress[2] + pDevice->NodeAddress[3] +
  2144. pDevice->NodeAddress[4] + pDevice->NodeAddress[5]) &
  2145. MAC_TX_BACKOFF_SEED_MASK;
  2146. REG_WR (pDevice, MacCtrl.TxBackoffSeed, Value32);
  2147. /* Receive MTU. Frames larger than the MTU is marked as oversized. */
  2148. REG_WR (pDevice, MacCtrl.MtuSize, pDevice->RxMtu + 8); /* CRC + VLAN. */
  2149. /* Configure Time slot/IPG per 802.3 */
  2150. REG_WR (pDevice, MacCtrl.TxLengths, 0x2620);
  2151. /*
  2152. * Configure Receive Rules so that packets don't match
  2153. * Programmble rule will be queued to Return Ring 1
  2154. */
  2155. REG_WR (pDevice, MacCtrl.RcvRuleCfg, RX_RULE_DEFAULT_CLASS);
  2156. /*
  2157. * Configure to have 16 Classes of Services (COS) and one
  2158. * queue per class. Bad frames are queued to RRR#1.
  2159. * And frames don't match rules are also queued to COS#1.
  2160. */
  2161. REG_WR (pDevice, RcvListPlmt.Config, 0x181);
  2162. /* Enable Receive Placement Statistics */
  2163. REG_WR (pDevice, RcvListPlmt.StatsEnableMask, 0xffffff);
  2164. REG_WR (pDevice, RcvListPlmt.StatsCtrl, RCV_LIST_STATS_ENABLE);
  2165. /* Enable Send Data Initator Statistics */
  2166. REG_WR (pDevice, SndDataIn.StatsEnableMask, 0xffffff);
  2167. REG_WR (pDevice, SndDataIn.StatsCtrl,
  2168. T3_SND_DATA_IN_STATS_CTRL_ENABLE |
  2169. T3_SND_DATA_IN_STATS_CTRL_FASTER_UPDATE);
  2170. /* Disable the host coalescing state machine before configuring it's */
  2171. /* parameters. */
  2172. REG_WR (pDevice, HostCoalesce.Mode, 0);
  2173. for (j = 0; j < 2000; j++) {
  2174. Value32 = REG_RD (pDevice, HostCoalesce.Mode);
  2175. if (!(Value32 & HOST_COALESCE_ENABLE)) {
  2176. break;
  2177. }
  2178. MM_Wait (10);
  2179. }
  2180. /* Host coalescing configurations. */
  2181. REG_WR (pDevice, HostCoalesce.RxCoalescingTicks,
  2182. pDevice->RxCoalescingTicks);
  2183. REG_WR (pDevice, HostCoalesce.TxCoalescingTicks,
  2184. pDevice->TxCoalescingTicks);
  2185. REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFrames,
  2186. pDevice->RxMaxCoalescedFrames);
  2187. REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFrames,
  2188. pDevice->TxMaxCoalescedFrames);
  2189. REG_WR (pDevice, HostCoalesce.RxCoalescedTickDuringInt,
  2190. pDevice->RxCoalescingTicksDuringInt);
  2191. REG_WR (pDevice, HostCoalesce.TxCoalescedTickDuringInt,
  2192. pDevice->TxCoalescingTicksDuringInt);
  2193. REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFramesDuringInt,
  2194. pDevice->RxMaxCoalescedFramesDuringInt);
  2195. REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFramesDuringInt,
  2196. pDevice->TxMaxCoalescedFramesDuringInt);
  2197. /* Initialize the address of the status block. The NIC will DMA */
  2198. /* the status block to this memory which resides on the host. */
  2199. REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.High,
  2200. pDevice->StatusBlkPhy.High);
  2201. REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.Low,
  2202. pDevice->StatusBlkPhy.Low);
  2203. /* Initialize the address of the statistics block. The NIC will DMA */
  2204. /* the statistics to this block of memory. */
  2205. REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.High,
  2206. pDevice->StatsBlkPhy.High);
  2207. REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.Low,
  2208. pDevice->StatsBlkPhy.Low);
  2209. REG_WR (pDevice, HostCoalesce.StatsCoalescingTicks,
  2210. pDevice->StatsCoalescingTicks);
  2211. REG_WR (pDevice, HostCoalesce.StatsBlkNicAddr, 0x300);
  2212. REG_WR (pDevice, HostCoalesce.StatusBlkNicAddr, 0xb00);
  2213. /* Enable Host Coalesing state machine */
  2214. REG_WR (pDevice, HostCoalesce.Mode, HOST_COALESCE_ENABLE |
  2215. pDevice->CoalesceMode);
  2216. /* Enable the Receive BD Completion state machine. */
  2217. REG_WR (pDevice, RcvBdComp.Mode, RCV_BD_COMP_MODE_ENABLE |
  2218. RCV_BD_COMP_MODE_ATTN_ENABLE);
  2219. /* Enable the Receive List Placement state machine. */
  2220. REG_WR (pDevice, RcvListPlmt.Mode, RCV_LIST_PLMT_MODE_ENABLE);
  2221. /* Enable the Receive List Selector state machine. */
  2222. REG_WR (pDevice, RcvListSel.Mode, RCV_LIST_SEL_MODE_ENABLE |
  2223. RCV_LIST_SEL_MODE_ATTN_ENABLE);
  2224. /* Enable transmit DMA, clear statistics. */
  2225. pDevice->MacMode = MAC_MODE_ENABLE_TX_STATISTICS |
  2226. MAC_MODE_ENABLE_RX_STATISTICS | MAC_MODE_ENABLE_TDE |
  2227. MAC_MODE_ENABLE_RDE | MAC_MODE_ENABLE_FHDE;
  2228. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
  2229. MAC_MODE_CLEAR_RX_STATISTICS | MAC_MODE_CLEAR_TX_STATISTICS);
  2230. /* GRC miscellaneous local control register. */
  2231. pDevice->GrcLocalCtrl = GRC_MISC_LOCAL_CTRL_INT_ON_ATTN |
  2232. GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM;
  2233. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  2234. pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  2235. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1;
  2236. }
  2237. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
  2238. MM_Wait (40);
  2239. /* Reset RX counters. */
  2240. for (j = 0; j < sizeof (LM_RX_COUNTERS); j++) {
  2241. ((PLM_UINT8) & pDevice->RxCounters)[j] = 0;
  2242. }
  2243. /* Reset TX counters. */
  2244. for (j = 0; j < sizeof (LM_TX_COUNTERS); j++) {
  2245. ((PLM_UINT8) & pDevice->TxCounters)[j] = 0;
  2246. }
  2247. MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0);
  2248. /* Enable the DMA Completion state machine. */
  2249. REG_WR (pDevice, DmaComp.Mode, DMA_COMP_MODE_ENABLE);
  2250. /* Enable the DMA Write state machine. */
  2251. Value32 = DMA_WRITE_MODE_ENABLE |
  2252. DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE |
  2253. DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE |
  2254. DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE |
  2255. DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
  2256. DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE |
  2257. DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
  2258. DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE |
  2259. DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE;
  2260. REG_WR (pDevice, DmaWrite.Mode, Value32);
  2261. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
  2262. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  2263. Value16 = REG_RD (pDevice, PciCfg.PciXCommand);
  2264. Value16 &=
  2265. ~(PCIX_CMD_MAX_SPLIT_MASK |
  2266. PCIX_CMD_MAX_BURST_MASK);
  2267. Value16 |=
  2268. ((PCIX_CMD_MAX_BURST_CPIOB <<
  2269. PCIX_CMD_MAX_BURST_SHL) &
  2270. PCIX_CMD_MAX_BURST_MASK);
  2271. if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) {
  2272. Value16 |=
  2273. (pDevice->
  2274. SplitModeMaxReq << PCIX_CMD_MAX_SPLIT_SHL)
  2275. & PCIX_CMD_MAX_SPLIT_MASK;
  2276. }
  2277. REG_WR (pDevice, PciCfg.PciXCommand, Value16);
  2278. }
  2279. }
  2280. /* Enable the Read DMA state machine. */
  2281. Value32 = DMA_READ_MODE_ENABLE |
  2282. DMA_READ_MODE_TARGET_ABORT_ATTN_ENABLE |
  2283. DMA_READ_MODE_MASTER_ABORT_ATTN_ENABLE |
  2284. DMA_READ_MODE_PARITY_ERROR_ATTN_ENABLE |
  2285. DMA_READ_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
  2286. DMA_READ_MODE_FIFO_OVERRUN_ATTN_ENABLE |
  2287. DMA_READ_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
  2288. DMA_READ_MODE_FIFO_OVERREAD_ATTN_ENABLE |
  2289. DMA_READ_MODE_LONG_READ_ATTN_ENABLE;
  2290. if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) {
  2291. Value32 |= DMA_READ_MODE_SPLIT_ENABLE;
  2292. }
  2293. REG_WR (pDevice, DmaRead.Mode, Value32);
  2294. /* Enable the Receive Data Completion state machine. */
  2295. REG_WR (pDevice, RcvDataComp.Mode, RCV_DATA_COMP_MODE_ENABLE |
  2296. RCV_DATA_COMP_MODE_ATTN_ENABLE);
  2297. /* Enable the Mbuf Cluster Free state machine. */
  2298. REG_WR (pDevice, MbufClusterFree.Mode, MBUF_CLUSTER_FREE_MODE_ENABLE);
  2299. /* Enable the Send Data Completion state machine. */
  2300. REG_WR (pDevice, SndDataComp.Mode, SND_DATA_COMP_MODE_ENABLE);
  2301. /* Enable the Send BD Completion state machine. */
  2302. REG_WR (pDevice, SndBdComp.Mode, SND_BD_COMP_MODE_ENABLE |
  2303. SND_BD_COMP_MODE_ATTN_ENABLE);
  2304. /* Enable the Receive BD Initiator state machine. */
  2305. REG_WR (pDevice, RcvBdIn.Mode, RCV_BD_IN_MODE_ENABLE |
  2306. RCV_BD_IN_MODE_BD_IN_DIABLED_RCB_ATTN_ENABLE);
  2307. /* Enable the Receive Data and Receive BD Initiator state machine. */
  2308. REG_WR (pDevice, RcvDataBdIn.Mode, RCV_DATA_BD_IN_MODE_ENABLE |
  2309. RCV_DATA_BD_IN_MODE_INVALID_RING_SIZE);
  2310. /* Enable the Send Data Initiator state machine. */
  2311. REG_WR (pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE);
  2312. /* Enable the Send BD Initiator state machine. */
  2313. REG_WR (pDevice, SndBdIn.Mode, SND_BD_IN_MODE_ENABLE |
  2314. SND_BD_IN_MODE_ATTN_ENABLE);
  2315. /* Enable the Send BD Selector state machine. */
  2316. REG_WR (pDevice, SndBdSel.Mode, SND_BD_SEL_MODE_ENABLE |
  2317. SND_BD_SEL_MODE_ATTN_ENABLE);
  2318. #if INCLUDE_5701_AX_FIX
  2319. /* Load the firmware for the 5701_A0 workaround. */
  2320. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0) {
  2321. LM_LoadRlsFirmware (pDevice);
  2322. }
  2323. #endif
  2324. /* Enable the transmitter. */
  2325. pDevice->TxMode = TX_MODE_ENABLE;
  2326. REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode);
  2327. /* Enable the receiver. */
  2328. pDevice->RxMode = RX_MODE_ENABLE;
  2329. REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
  2330. if (pDevice->RestoreOnWakeUp) {
  2331. pDevice->RestoreOnWakeUp = FALSE;
  2332. pDevice->DisableAutoNeg = pDevice->WakeUpDisableAutoNeg;
  2333. pDevice->RequestedMediaType = pDevice->WakeUpRequestedMediaType;
  2334. }
  2335. /* Disable auto polling. */
  2336. pDevice->MiMode = 0xc0000;
  2337. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  2338. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  2339. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  2340. Value32 = LED_CTRL_PHY_MODE_1;
  2341. } else {
  2342. if (pDevice->LedMode == LED_MODE_OUTPUT) {
  2343. Value32 = LED_CTRL_PHY_MODE_2;
  2344. } else {
  2345. Value32 = LED_CTRL_PHY_MODE_1;
  2346. }
  2347. }
  2348. REG_WR (pDevice, MacCtrl.LedCtrl, Value32);
  2349. /* Activate Link to enable MAC state machine */
  2350. REG_WR (pDevice, MacCtrl.MiStatus, MI_STATUS_ENABLE_LINK_STATUS_ATTN);
  2351. if (pDevice->EnableTbi) {
  2352. REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_RESET);
  2353. MM_Wait (10);
  2354. REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
  2355. if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1) {
  2356. REG_WR (pDevice, MacCtrl.SerdesCfg, 0x616000);
  2357. }
  2358. }
  2359. /* Setup the phy chip. */
  2360. LM_SetupPhy (pDevice);
  2361. if (!pDevice->EnableTbi) {
  2362. /* Clear CRC stats */
  2363. LM_ReadPhy (pDevice, 0x1e, &Value32);
  2364. LM_WritePhy (pDevice, 0x1e, Value32 | 0x8000);
  2365. LM_ReadPhy (pDevice, 0x14, &Value32);
  2366. }
  2367. /* Set up the receive mask. */
  2368. LM_SetReceiveMask (pDevice, pDevice->ReceiveMask);
  2369. /* Queue Rx packet buffers. */
  2370. if (pDevice->QueueRxPackets) {
  2371. LM_QueueRxPackets (pDevice);
  2372. }
  2373. /* Enable interrupt to the host. */
  2374. if (pDevice->InitDone) {
  2375. LM_EnableInterrupt (pDevice);
  2376. }
  2377. return LM_STATUS_SUCCESS;
  2378. } /* LM_ResetAdapter */
  2379. /******************************************************************************/
  2380. /* Description: */
  2381. /* This routine disables the adapter from generating interrupts. */
  2382. /* */
  2383. /* Return: */
  2384. /* LM_STATUS_SUCCESS */
  2385. /******************************************************************************/
  2386. LM_STATUS LM_DisableInterrupt (PLM_DEVICE_BLOCK pDevice)
  2387. {
  2388. REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl |
  2389. MISC_HOST_CTRL_MASK_PCI_INT);
  2390. MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 1);
  2391. return LM_STATUS_SUCCESS;
  2392. }
  2393. /******************************************************************************/
  2394. /* Description: */
  2395. /* This routine enables the adapter to generate interrupts. */
  2396. /* */
  2397. /* Return: */
  2398. /* LM_STATUS_SUCCESS */
  2399. /******************************************************************************/
  2400. LM_STATUS LM_EnableInterrupt (PLM_DEVICE_BLOCK pDevice)
  2401. {
  2402. REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl &
  2403. ~MISC_HOST_CTRL_MASK_PCI_INT);
  2404. MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0);
  2405. if (pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_UPDATED) {
  2406. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  2407. GRC_MISC_LOCAL_CTRL_SET_INT);
  2408. }
  2409. return LM_STATUS_SUCCESS;
  2410. }
  2411. /******************************************************************************/
  2412. /* Description: */
  2413. /* This routine puts a packet on the wire if there is a transmit DMA */
  2414. /* descriptor available; otherwise the packet is queued for later */
  2415. /* transmission. If the second argue is NULL, this routine will put */
  2416. /* the queued packet on the wire if possible. */
  2417. /* */
  2418. /* Return: */
  2419. /* LM_STATUS_SUCCESS */
  2420. /******************************************************************************/
  2421. #if 0
  2422. LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
  2423. {
  2424. LM_UINT32 FragCount;
  2425. PT3_SND_BD pSendBd;
  2426. PT3_SND_BD pShadowSendBd;
  2427. LM_UINT32 Value32, Len;
  2428. LM_UINT32 Idx;
  2429. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  2430. return LM_5700SendPacket (pDevice, pPacket);
  2431. }
  2432. /* Update the SendBdLeft count. */
  2433. atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  2434. /* Initalize the send buffer descriptors. */
  2435. Idx = pDevice->SendProdIdx;
  2436. pSendBd = &pDevice->pSendBdVirt[Idx];
  2437. /* Next producer index. */
  2438. if (pDevice->NicSendBd == TRUE) {
  2439. T3_64BIT_HOST_ADDR paddr;
  2440. pShadowSendBd = &pDevice->ShadowSendBd[Idx];
  2441. for (FragCount = 0;;) {
  2442. MM_MapTxDma (pDevice, pPacket, &paddr, &Len, FragCount);
  2443. /* Initialize the pointer to the send buffer fragment. */
  2444. if (paddr.High != pShadowSendBd->HostAddr.High) {
  2445. __raw_writel (paddr.High,
  2446. &(pSendBd->HostAddr.High));
  2447. pShadowSendBd->HostAddr.High = paddr.High;
  2448. }
  2449. __raw_writel (paddr.Low, &(pSendBd->HostAddr.Low));
  2450. /* Setup the control flags and send buffer size. */
  2451. Value32 = (Len << 16) | pPacket->Flags;
  2452. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2453. FragCount++;
  2454. if (FragCount >= pPacket->u.Tx.FragCount) {
  2455. Value32 |= SND_BD_FLAG_END;
  2456. if (Value32 != pShadowSendBd->u1.Len_Flags) {
  2457. __raw_writel (Value32,
  2458. &(pSendBd->u1.Len_Flags));
  2459. pShadowSendBd->u1.Len_Flags = Value32;
  2460. }
  2461. if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
  2462. __raw_writel (pPacket->VlanTag,
  2463. &(pSendBd->u2.VlanTag));
  2464. }
  2465. break;
  2466. } else {
  2467. if (Value32 != pShadowSendBd->u1.Len_Flags) {
  2468. __raw_writel (Value32,
  2469. &(pSendBd->u1.Len_Flags));
  2470. pShadowSendBd->u1.Len_Flags = Value32;
  2471. }
  2472. if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
  2473. __raw_writel (pPacket->VlanTag,
  2474. &(pSendBd->u2.VlanTag));
  2475. }
  2476. }
  2477. pSendBd++;
  2478. pShadowSendBd++;
  2479. if (Idx == 0) {
  2480. pSendBd = &pDevice->pSendBdVirt[0];
  2481. pShadowSendBd = &pDevice->ShadowSendBd[0];
  2482. }
  2483. } /* for */
  2484. /* Put the packet descriptor in the ActiveQ. */
  2485. QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
  2486. wmb ();
  2487. MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
  2488. } else {
  2489. for (FragCount = 0;;) {
  2490. /* Initialize the pointer to the send buffer fragment. */
  2491. MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len,
  2492. FragCount);
  2493. pSendBd->u2.VlanTag = pPacket->VlanTag;
  2494. /* Setup the control flags and send buffer size. */
  2495. Value32 = (Len << 16) | pPacket->Flags;
  2496. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2497. FragCount++;
  2498. if (FragCount >= pPacket->u.Tx.FragCount) {
  2499. pSendBd->u1.Len_Flags =
  2500. Value32 | SND_BD_FLAG_END;
  2501. break;
  2502. } else {
  2503. pSendBd->u1.Len_Flags = Value32;
  2504. }
  2505. pSendBd++;
  2506. if (Idx == 0) {
  2507. pSendBd = &pDevice->pSendBdVirt[0];
  2508. }
  2509. } /* for */
  2510. /* Put the packet descriptor in the ActiveQ. */
  2511. QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
  2512. wmb ();
  2513. MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
  2514. }
  2515. /* Update the producer index. */
  2516. pDevice->SendProdIdx = Idx;
  2517. return LM_STATUS_SUCCESS;
  2518. }
  2519. #endif
  2520. LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
  2521. {
  2522. LM_UINT32 FragCount;
  2523. PT3_SND_BD pSendBd, pTmpSendBd, pShadowSendBd;
  2524. T3_SND_BD NicSendBdArr[MAX_FRAGMENT_COUNT];
  2525. LM_UINT32 StartIdx, Idx;
  2526. while (1) {
  2527. /* Initalize the send buffer descriptors. */
  2528. StartIdx = Idx = pDevice->SendProdIdx;
  2529. if (pDevice->NicSendBd) {
  2530. pTmpSendBd = pSendBd = &NicSendBdArr[0];
  2531. } else {
  2532. pTmpSendBd = pSendBd = &pDevice->pSendBdVirt[Idx];
  2533. }
  2534. /* Next producer index. */
  2535. for (FragCount = 0;;) {
  2536. LM_UINT32 Value32, Len;
  2537. /* Initialize the pointer to the send buffer fragment. */
  2538. MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len,
  2539. FragCount);
  2540. pSendBd->u2.VlanTag = pPacket->VlanTag;
  2541. /* Setup the control flags and send buffer size. */
  2542. Value32 = (Len << 16) | pPacket->Flags;
  2543. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2544. FragCount++;
  2545. if (FragCount >= pPacket->u.Tx.FragCount) {
  2546. pSendBd->u1.Len_Flags =
  2547. Value32 | SND_BD_FLAG_END;
  2548. break;
  2549. } else {
  2550. pSendBd->u1.Len_Flags = Value32;
  2551. }
  2552. pSendBd++;
  2553. if ((Idx == 0) && !pDevice->NicSendBd) {
  2554. pSendBd = &pDevice->pSendBdVirt[0];
  2555. }
  2556. } /* for */
  2557. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  2558. if (LM_Test4GBoundary (pDevice, pPacket, pTmpSendBd) ==
  2559. LM_STATUS_SUCCESS) {
  2560. if (MM_CoalesceTxBuffer (pDevice, pPacket) !=
  2561. LM_STATUS_SUCCESS) {
  2562. QQ_PushHead (&pDevice->TxPacketFreeQ.
  2563. Container, pPacket);
  2564. return LM_STATUS_FAILURE;
  2565. }
  2566. continue;
  2567. }
  2568. }
  2569. break;
  2570. }
  2571. /* Put the packet descriptor in the ActiveQ. */
  2572. QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
  2573. if (pDevice->NicSendBd) {
  2574. pSendBd = &pDevice->pSendBdVirt[StartIdx];
  2575. pShadowSendBd = &pDevice->ShadowSendBd[StartIdx];
  2576. while (StartIdx != Idx) {
  2577. LM_UINT32 Value32;
  2578. if ((Value32 = pTmpSendBd->HostAddr.High) !=
  2579. pShadowSendBd->HostAddr.High) {
  2580. __raw_writel (Value32,
  2581. &(pSendBd->HostAddr.High));
  2582. pShadowSendBd->HostAddr.High = Value32;
  2583. }
  2584. __raw_writel (pTmpSendBd->HostAddr.Low,
  2585. &(pSendBd->HostAddr.Low));
  2586. if ((Value32 = pTmpSendBd->u1.Len_Flags) !=
  2587. pShadowSendBd->u1.Len_Flags) {
  2588. __raw_writel (Value32,
  2589. &(pSendBd->u1.Len_Flags));
  2590. pShadowSendBd->u1.Len_Flags = Value32;
  2591. }
  2592. if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
  2593. __raw_writel (pTmpSendBd->u2.VlanTag,
  2594. &(pSendBd->u2.VlanTag));
  2595. }
  2596. StartIdx =
  2597. (StartIdx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2598. if (StartIdx == 0)
  2599. pSendBd = &pDevice->pSendBdVirt[0];
  2600. else
  2601. pSendBd++;
  2602. pTmpSendBd++;
  2603. }
  2604. wmb ();
  2605. MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
  2606. if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
  2607. MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
  2608. }
  2609. } else {
  2610. wmb ();
  2611. MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
  2612. if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
  2613. MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low,
  2614. Idx);
  2615. }
  2616. }
  2617. /* Update the SendBdLeft count. */
  2618. atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  2619. /* Update the producer index. */
  2620. pDevice->SendProdIdx = Idx;
  2621. return LM_STATUS_SUCCESS;
  2622. }
  2623. STATIC LM_STATUS
  2624. LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
  2625. PT3_SND_BD pSendBd)
  2626. {
  2627. int FragCount;
  2628. LM_UINT32 Idx, Base, Len;
  2629. Idx = pDevice->SendProdIdx;
  2630. for (FragCount = 0;;) {
  2631. Len = pSendBd->u1.Len_Flags >> 16;
  2632. if (((Base = pSendBd->HostAddr.Low) > 0xffffdcc0) &&
  2633. (pSendBd->HostAddr.High == 0) &&
  2634. ((Base + 8 + Len) < Base)) {
  2635. return LM_STATUS_SUCCESS;
  2636. }
  2637. FragCount++;
  2638. if (FragCount >= pPacket->u.Tx.FragCount) {
  2639. break;
  2640. }
  2641. pSendBd++;
  2642. if (!pDevice->NicSendBd) {
  2643. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2644. if (Idx == 0) {
  2645. pSendBd = &pDevice->pSendBdVirt[0];
  2646. }
  2647. }
  2648. }
  2649. return LM_STATUS_FAILURE;
  2650. }
  2651. /******************************************************************************/
  2652. /* Description: */
  2653. /* */
  2654. /* Return: */
  2655. /******************************************************************************/
  2656. __inline static unsigned long
  2657. ComputeCrc32 (unsigned char *pBuffer, unsigned long BufferSize)
  2658. {
  2659. unsigned long Reg;
  2660. unsigned long Tmp;
  2661. unsigned long j, k;
  2662. Reg = 0xffffffff;
  2663. for (j = 0; j < BufferSize; j++) {
  2664. Reg ^= pBuffer[j];
  2665. for (k = 0; k < 8; k++) {
  2666. Tmp = Reg & 0x01;
  2667. Reg >>= 1;
  2668. if (Tmp) {
  2669. Reg ^= 0xedb88320;
  2670. }
  2671. }
  2672. }
  2673. return ~Reg;
  2674. } /* ComputeCrc32 */
  2675. /******************************************************************************/
  2676. /* Description: */
  2677. /* This routine sets the receive control register according to ReceiveMask */
  2678. /* */
  2679. /* Return: */
  2680. /* LM_STATUS_SUCCESS */
  2681. /******************************************************************************/
  2682. LM_STATUS LM_SetReceiveMask (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Mask)
  2683. {
  2684. LM_UINT32 ReceiveMask;
  2685. LM_UINT32 RxMode;
  2686. LM_UINT32 j, k;
  2687. ReceiveMask = Mask;
  2688. RxMode = pDevice->RxMode;
  2689. if (Mask & LM_ACCEPT_UNICAST) {
  2690. Mask &= ~LM_ACCEPT_UNICAST;
  2691. }
  2692. if (Mask & LM_ACCEPT_MULTICAST) {
  2693. Mask &= ~LM_ACCEPT_MULTICAST;
  2694. }
  2695. if (Mask & LM_ACCEPT_ALL_MULTICAST) {
  2696. Mask &= ~LM_ACCEPT_ALL_MULTICAST;
  2697. }
  2698. if (Mask & LM_ACCEPT_BROADCAST) {
  2699. Mask &= ~LM_ACCEPT_BROADCAST;
  2700. }
  2701. RxMode &= ~RX_MODE_PROMISCUOUS_MODE;
  2702. if (Mask & LM_PROMISCUOUS_MODE) {
  2703. RxMode |= RX_MODE_PROMISCUOUS_MODE;
  2704. Mask &= ~LM_PROMISCUOUS_MODE;
  2705. }
  2706. RxMode &= ~(RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED);
  2707. if (Mask & LM_ACCEPT_ERROR_PACKET) {
  2708. RxMode |= RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED;
  2709. Mask &= ~LM_ACCEPT_ERROR_PACKET;
  2710. }
  2711. /* Make sure all the bits are valid before committing changes. */
  2712. if (Mask) {
  2713. return LM_STATUS_FAILURE;
  2714. }
  2715. /* Commit the new filter. */
  2716. pDevice->RxMode = RxMode;
  2717. REG_WR (pDevice, MacCtrl.RxMode, RxMode);
  2718. pDevice->ReceiveMask = ReceiveMask;
  2719. /* Set up the MC hash table. */
  2720. if (ReceiveMask & LM_ACCEPT_ALL_MULTICAST) {
  2721. for (k = 0; k < 4; k++) {
  2722. REG_WR (pDevice, MacCtrl.HashReg[k], 0xffffffff);
  2723. }
  2724. } else if (ReceiveMask & LM_ACCEPT_MULTICAST) {
  2725. LM_UINT32 HashReg[4];
  2726. HashReg[0] = 0;
  2727. HashReg[1] = 0;
  2728. HashReg[2] = 0;
  2729. HashReg[3] = 0;
  2730. for (j = 0; j < pDevice->McEntryCount; j++) {
  2731. LM_UINT32 RegIndex;
  2732. LM_UINT32 Bitpos;
  2733. LM_UINT32 Crc32;
  2734. Crc32 =
  2735. ComputeCrc32 (pDevice->McTable[j],
  2736. ETHERNET_ADDRESS_SIZE);
  2737. /* The most significant 7 bits of the CRC32 (no inversion), */
  2738. /* are used to index into one of the possible 128 bit positions. */
  2739. Bitpos = ~Crc32 & 0x7f;
  2740. /* Hash register index. */
  2741. RegIndex = (Bitpos & 0x60) >> 5;
  2742. /* Bit to turn on within a hash register. */
  2743. Bitpos &= 0x1f;
  2744. /* Enable the multicast bit. */
  2745. HashReg[RegIndex] |= (1 << Bitpos);
  2746. }
  2747. /* REV_AX has problem with multicast filtering where it uses both */
  2748. /* DA and SA to perform hashing. */
  2749. for (k = 0; k < 4; k++) {
  2750. REG_WR (pDevice, MacCtrl.HashReg[k], HashReg[k]);
  2751. }
  2752. } else {
  2753. /* Reject all multicast frames. */
  2754. for (j = 0; j < 4; j++) {
  2755. REG_WR (pDevice, MacCtrl.HashReg[j], 0);
  2756. }
  2757. }
  2758. /* By default, Tigon3 will accept broadcast frames. We need to setup */
  2759. if (ReceiveMask & LM_ACCEPT_BROADCAST) {
  2760. REG_WR (pDevice,
  2761. MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
  2762. REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
  2763. REG_WR (pDevice,
  2764. MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
  2765. REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
  2766. REG_WR (pDevice,
  2767. MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
  2768. REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
  2769. REG_WR (pDevice,
  2770. MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
  2771. REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
  2772. } else {
  2773. REG_WR (pDevice,
  2774. MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
  2775. REJECT_BROADCAST_RULE1_RULE);
  2776. REG_WR (pDevice,
  2777. MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
  2778. REJECT_BROADCAST_RULE1_VALUE);
  2779. REG_WR (pDevice,
  2780. MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
  2781. REJECT_BROADCAST_RULE2_RULE);
  2782. REG_WR (pDevice,
  2783. MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
  2784. REJECT_BROADCAST_RULE2_VALUE);
  2785. }
  2786. /* disable the rest of the rules. */
  2787. for (j = RCV_LAST_RULE_IDX; j < 16; j++) {
  2788. REG_WR (pDevice, MacCtrl.RcvRules[j].Rule, 0);
  2789. REG_WR (pDevice, MacCtrl.RcvRules[j].Value, 0);
  2790. }
  2791. return LM_STATUS_SUCCESS;
  2792. } /* LM_SetReceiveMask */
  2793. /******************************************************************************/
  2794. /* Description: */
  2795. /* Disable the interrupt and put the transmitter and receiver engines in */
  2796. /* an idle state. Also aborts all pending send requests and receive */
  2797. /* buffers. */
  2798. /* */
  2799. /* Return: */
  2800. /* LM_STATUS_SUCCESS */
  2801. /******************************************************************************/
  2802. LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice)
  2803. {
  2804. PLM_PACKET pPacket;
  2805. LM_UINT Idx;
  2806. LM_DisableInterrupt (pDevice);
  2807. /* Disable all the state machines. */
  2808. LM_CntrlBlock (pDevice, T3_BLOCK_MAC_RX_ENGINE, LM_DISABLE);
  2809. LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_INITIATOR, LM_DISABLE);
  2810. LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_PLMT, LM_DISABLE);
  2811. LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_SELECTOR, LM_DISABLE);
  2812. LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_INITIATOR, LM_DISABLE);
  2813. LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_COMP, LM_DISABLE);
  2814. LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_COMP, LM_DISABLE);
  2815. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_SELECTOR, LM_DISABLE);
  2816. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_INITIATOR, LM_DISABLE);
  2817. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_INITIATOR, LM_DISABLE);
  2818. LM_CntrlBlock (pDevice, T3_BLOCK_DMA_RD, LM_DISABLE);
  2819. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_COMP, LM_DISABLE);
  2820. LM_CntrlBlock (pDevice, T3_BLOCK_DMA_COMP, LM_DISABLE);
  2821. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_COMP, LM_DISABLE);
  2822. /* Clear TDE bit */
  2823. pDevice->MacMode &= ~MAC_MODE_ENABLE_TDE;
  2824. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  2825. LM_CntrlBlock (pDevice, T3_BLOCK_MAC_TX_ENGINE, LM_DISABLE);
  2826. LM_CntrlBlock (pDevice, T3_BLOCK_HOST_COALESING, LM_DISABLE);
  2827. LM_CntrlBlock (pDevice, T3_BLOCK_DMA_WR, LM_DISABLE);
  2828. LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_CLUSTER_FREE, LM_DISABLE);
  2829. /* Reset all FTQs */
  2830. REG_WR (pDevice, Ftq.Reset, 0xffffffff);
  2831. REG_WR (pDevice, Ftq.Reset, 0x0);
  2832. LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_MANAGER, LM_DISABLE);
  2833. LM_CntrlBlock (pDevice, T3_BLOCK_MEM_ARBITOR, LM_DISABLE);
  2834. MM_ACQUIRE_INT_LOCK (pDevice);
  2835. /* Abort packets that have already queued to go out. */
  2836. pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ.Container);
  2837. while (pPacket) {
  2838. pPacket->PacketStatus = LM_STATUS_TRANSMIT_ABORTED;
  2839. pDevice->TxCounters.TxPacketAbortedCnt++;
  2840. atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  2841. QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket);
  2842. pPacket = (PLM_PACKET)
  2843. QQ_PopHead (&pDevice->TxPacketActiveQ.Container);
  2844. }
  2845. /* Cleanup the receive return rings. */
  2846. LM_ServiceRxInterrupt (pDevice);
  2847. /* Don't want to indicate rx packets in Ndis miniport shutdown context. */
  2848. /* Doing so may cause system crash. */
  2849. if (!pDevice->ShuttingDown) {
  2850. /* Indicate packets to the protocol. */
  2851. MM_IndicateTxPackets (pDevice);
  2852. /* Indicate received packets to the protocols. */
  2853. MM_IndicateRxPackets (pDevice);
  2854. } else {
  2855. /* Move the receive packet descriptors in the ReceivedQ to the */
  2856. /* free queue. */
  2857. for (;;) {
  2858. pPacket =
  2859. (PLM_PACKET) QQ_PopHead (&pDevice->
  2860. RxPacketReceivedQ.
  2861. Container);
  2862. if (pPacket == NULL) {
  2863. break;
  2864. }
  2865. QQ_PushTail (&pDevice->RxPacketFreeQ.Container,
  2866. pPacket);
  2867. }
  2868. }
  2869. /* Clean up the Std Receive Producer ring. */
  2870. Idx = pDevice->pStatusBlkVirt->RcvStdConIdx;
  2871. while (Idx != pDevice->RxStdProdIdx) {
  2872. pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
  2873. MM_UINT_PTR (pDevice->pRxStdBdVirt[Idx].
  2874. Opaque));
  2875. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  2876. Idx = (Idx + 1) & T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
  2877. } /* while */
  2878. /* Reinitialize our copy of the indices. */
  2879. pDevice->RxStdProdIdx = 0;
  2880. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2881. /* Clean up the Jumbo Receive Producer ring. */
  2882. Idx = pDevice->pStatusBlkVirt->RcvJumboConIdx;
  2883. while (Idx != pDevice->RxJumboProdIdx) {
  2884. pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
  2885. MM_UINT_PTR (pDevice->
  2886. pRxJumboBdVirt[Idx].
  2887. Opaque));
  2888. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  2889. Idx = (Idx + 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
  2890. } /* while */
  2891. /* Reinitialize our copy of the indices. */
  2892. pDevice->RxJumboProdIdx = 0;
  2893. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  2894. MM_RELEASE_INT_LOCK (pDevice);
  2895. /* Initialize the statistis Block */
  2896. pDevice->pStatusBlkVirt->Status = 0;
  2897. pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
  2898. pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
  2899. pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
  2900. return LM_STATUS_SUCCESS;
  2901. } /* LM_Abort */
  2902. /******************************************************************************/
  2903. /* Description: */
  2904. /* Disable the interrupt and put the transmitter and receiver engines in */
  2905. /* an idle state. Aborts all pending send requests and receive buffers. */
  2906. /* Also free all the receive buffers. */
  2907. /* */
  2908. /* Return: */
  2909. /* LM_STATUS_SUCCESS */
  2910. /******************************************************************************/
  2911. LM_STATUS LM_Halt (PLM_DEVICE_BLOCK pDevice)
  2912. {
  2913. PLM_PACKET pPacket;
  2914. LM_UINT32 EntryCnt;
  2915. LM_Abort (pDevice);
  2916. /* Get the number of entries in the queue. */
  2917. EntryCnt = QQ_GetEntryCnt (&pDevice->RxPacketFreeQ.Container);
  2918. /* Make sure all the packets have been accounted for. */
  2919. for (EntryCnt = 0; EntryCnt < pDevice->RxPacketDescCnt; EntryCnt++) {
  2920. pPacket =
  2921. (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
  2922. if (pPacket == 0)
  2923. break;
  2924. MM_FreeRxBuffer (pDevice, pPacket);
  2925. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  2926. }
  2927. LM_ResetChip (pDevice);
  2928. /* Restore PCI configuration registers. */
  2929. MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG,
  2930. pDevice->SavedCacheLineReg);
  2931. LM_RegWrInd (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
  2932. (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);
  2933. /* Reprogram the MAC address. */
  2934. LM_SetMacAddress (pDevice, pDevice->NodeAddress);
  2935. return LM_STATUS_SUCCESS;
  2936. } /* LM_Halt */
  2937. STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice)
  2938. {
  2939. LM_UINT32 Value32;
  2940. LM_UINT32 j;
  2941. /* Wait for access to the nvram interface before resetting. This is */
  2942. /* a workaround to prevent EEPROM corruption. */
  2943. if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  2944. T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
  2945. /* Request access to the flash interface. */
  2946. REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
  2947. for (j = 0; j < 100000; j++) {
  2948. Value32 = REG_RD (pDevice, Nvram.SwArb);
  2949. if (Value32 & SW_ARB_GNT1) {
  2950. break;
  2951. }
  2952. MM_Wait (10);
  2953. }
  2954. }
  2955. /* Global reset. */
  2956. REG_WR (pDevice, Grc.MiscCfg, GRC_MISC_CFG_CORE_CLOCK_RESET);
  2957. MM_Wait (40);
  2958. MM_Wait (40);
  2959. MM_Wait (40);
  2960. /* make sure we re-enable indirect accesses */
  2961. MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
  2962. pDevice->MiscHostCtrl);
  2963. /* Set MAX PCI retry to zero. */
  2964. Value32 =
  2965. T3_PCI_STATE_PCI_ROM_ENABLE | T3_PCI_STATE_PCI_ROM_RETRY_ENABLE;
  2966. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  2967. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
  2968. Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
  2969. }
  2970. }
  2971. MM_WriteConfig32 (pDevice, T3_PCI_STATE_REG, Value32);
  2972. /* Restore PCI command register. */
  2973. MM_WriteConfig32 (pDevice, PCI_COMMAND_REG,
  2974. pDevice->PciCommandStatusWords);
  2975. /* Disable PCI-X relaxed ordering bit. */
  2976. MM_ReadConfig32 (pDevice, PCIX_CAP_REG, &Value32);
  2977. Value32 &= ~PCIX_ENABLE_RELAXED_ORDERING;
  2978. MM_WriteConfig32 (pDevice, PCIX_CAP_REG, Value32);
  2979. /* Enable memory arbiter. */
  2980. REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
  2981. #ifdef BIG_ENDIAN_PCI /* This from jfd */
  2982. Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
  2983. #else
  2984. #ifdef BIG_ENDIAN_HOST
  2985. /* Reconfigure the mode register. */
  2986. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
  2987. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  2988. GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA;
  2989. #else
  2990. /* Reconfigure the mode register. */
  2991. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
  2992. #endif
  2993. #endif
  2994. REG_WR (pDevice, Grc.Mode, Value32);
  2995. /* Prevent PXE from restarting. */
  2996. MEM_WR_OFFSET (pDevice, 0x0b50, T3_MAGIC_NUM);
  2997. if (pDevice->EnableTbi) {
  2998. pDevice->MacMode = MAC_MODE_PORT_MODE_TBI;
  2999. REG_WR (pDevice, MacCtrl.Mode, MAC_MODE_PORT_MODE_TBI);
  3000. } else {
  3001. REG_WR (pDevice, MacCtrl.Mode, 0);
  3002. }
  3003. /* Wait for the firmware to finish initialization. */
  3004. for (j = 0; j < 100000; j++) {
  3005. MM_Wait (10);
  3006. Value32 = MEM_RD_OFFSET (pDevice, 0x0b50);
  3007. if (Value32 == ~T3_MAGIC_NUM) {
  3008. break;
  3009. }
  3010. }
  3011. return LM_STATUS_SUCCESS;
  3012. }
  3013. /******************************************************************************/
  3014. /* Description: */
  3015. /* */
  3016. /* Return: */
  3017. /******************************************************************************/
  3018. __inline static void LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice)
  3019. {
  3020. PLM_PACKET pPacket;
  3021. LM_UINT32 HwConIdx;
  3022. LM_UINT32 SwConIdx;
  3023. HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
  3024. /* Get our copy of the consumer index. The buffer descriptors */
  3025. /* that are in between the consumer indices are freed. */
  3026. SwConIdx = pDevice->SendConIdx;
  3027. /* Move the packets from the TxPacketActiveQ that are sent out to */
  3028. /* the TxPacketXmittedQ. Packets that are sent use the */
  3029. /* descriptors that are between SwConIdx and HwConIdx. */
  3030. while (SwConIdx != HwConIdx) {
  3031. /* Get the packet that was sent from the TxPacketActiveQ. */
  3032. pPacket =
  3033. (PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ.
  3034. Container);
  3035. /* Set the return status. */
  3036. pPacket->PacketStatus = LM_STATUS_SUCCESS;
  3037. /* Put the packet in the TxPacketXmittedQ for indication later. */
  3038. QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket);
  3039. /* Move to the next packet's BD. */
  3040. SwConIdx = (SwConIdx + pPacket->u.Tx.FragCount) &
  3041. T3_SEND_RCB_ENTRY_COUNT_MASK;
  3042. /* Update the number of unused BDs. */
  3043. atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  3044. /* Get the new updated HwConIdx. */
  3045. HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
  3046. } /* while */
  3047. /* Save the new SwConIdx. */
  3048. pDevice->SendConIdx = SwConIdx;
  3049. } /* LM_ServiceTxInterrupt */
  3050. /******************************************************************************/
  3051. /* Description: */
  3052. /* */
  3053. /* Return: */
  3054. /******************************************************************************/
  3055. __inline static void LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice)
  3056. {
  3057. PLM_PACKET pPacket;
  3058. PT3_RCV_BD pRcvBd;
  3059. LM_UINT32 HwRcvRetProdIdx;
  3060. LM_UINT32 SwRcvRetConIdx;
  3061. /* Loop thru the receive return rings for received packets. */
  3062. HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
  3063. SwRcvRetConIdx = pDevice->RcvRetConIdx;
  3064. while (SwRcvRetConIdx != HwRcvRetProdIdx) {
  3065. pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx];
  3066. /* Get the received packet descriptor. */
  3067. pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
  3068. MM_UINT_PTR (pRcvBd->Opaque));
  3069. /* Check the error flag. */
  3070. if (pRcvBd->ErrorFlag &&
  3071. pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) {
  3072. pPacket->PacketStatus = LM_STATUS_FAILURE;
  3073. pDevice->RxCounters.RxPacketErrCnt++;
  3074. if (pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC) {
  3075. pDevice->RxCounters.RxErrCrcCnt++;
  3076. }
  3077. if (pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT) {
  3078. pDevice->RxCounters.RxErrCollCnt++;
  3079. }
  3080. if (pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT) {
  3081. pDevice->RxCounters.RxErrLinkLostCnt++;
  3082. }
  3083. if (pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR) {
  3084. pDevice->RxCounters.RxErrPhyDecodeCnt++;
  3085. }
  3086. if (pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) {
  3087. pDevice->RxCounters.RxErrOddNibbleCnt++;
  3088. }
  3089. if (pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT) {
  3090. pDevice->RxCounters.RxErrMacAbortCnt++;
  3091. }
  3092. if (pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64) {
  3093. pDevice->RxCounters.RxErrShortPacketCnt++;
  3094. }
  3095. if (pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES) {
  3096. pDevice->RxCounters.RxErrNoResourceCnt++;
  3097. }
  3098. if (pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD) {
  3099. pDevice->RxCounters.RxErrLargePacketCnt++;
  3100. }
  3101. } else {
  3102. pPacket->PacketStatus = LM_STATUS_SUCCESS;
  3103. pPacket->PacketSize = pRcvBd->Len - 4;
  3104. pPacket->Flags = pRcvBd->Flags;
  3105. if (pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG) {
  3106. pPacket->VlanTag = pRcvBd->VlanTag;
  3107. }
  3108. pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum;
  3109. }
  3110. /* Put the packet descriptor containing the received packet */
  3111. /* buffer in the RxPacketReceivedQ for indication later. */
  3112. QQ_PushTail (&pDevice->RxPacketReceivedQ.Container, pPacket);
  3113. /* Go to the next buffer descriptor. */
  3114. SwRcvRetConIdx = (SwRcvRetConIdx + 1) &
  3115. T3_RCV_RETURN_RCB_ENTRY_COUNT_MASK;
  3116. /* Get the updated HwRcvRetProdIdx. */
  3117. HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
  3118. } /* while */
  3119. pDevice->RcvRetConIdx = SwRcvRetConIdx;
  3120. /* Update the receive return ring consumer index. */
  3121. MB_REG_WR (pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx);
  3122. } /* LM_ServiceRxInterrupt */
  3123. /******************************************************************************/
  3124. /* Description: */
  3125. /* This is the interrupt event handler routine. It acknowledges all */
  3126. /* pending interrupts and process all pending events. */
  3127. /* */
  3128. /* Return: */
  3129. /* LM_STATUS_SUCCESS */
  3130. /******************************************************************************/
  3131. LM_STATUS LM_ServiceInterrupts (PLM_DEVICE_BLOCK pDevice)
  3132. {
  3133. LM_UINT32 Value32;
  3134. int ServicePhyInt = FALSE;
  3135. /* Setup the phy chip whenever the link status changes. */
  3136. if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_USE_STATUS_REG) {
  3137. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3138. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
  3139. if (Value32 & MAC_STATUS_MI_INTERRUPT) {
  3140. ServicePhyInt = TRUE;
  3141. }
  3142. } else if (Value32 & MAC_STATUS_LINK_STATE_CHANGED) {
  3143. ServicePhyInt = TRUE;
  3144. }
  3145. } else {
  3146. if (pDevice->pStatusBlkVirt->
  3147. Status & STATUS_BLOCK_LINK_CHANGED_STATUS) {
  3148. pDevice->pStatusBlkVirt->Status =
  3149. STATUS_BLOCK_UPDATED | (pDevice->pStatusBlkVirt->
  3150. Status &
  3151. ~STATUS_BLOCK_LINK_CHANGED_STATUS);
  3152. ServicePhyInt = TRUE;
  3153. }
  3154. }
  3155. #if INCLUDE_TBI_SUPPORT
  3156. if (pDevice->IgnoreTbiLinkChange == TRUE) {
  3157. ServicePhyInt = FALSE;
  3158. }
  3159. #endif
  3160. if (ServicePhyInt == TRUE) {
  3161. LM_SetupPhy (pDevice);
  3162. }
  3163. /* Service receive and transmit interrupts. */
  3164. LM_ServiceRxInterrupt (pDevice);
  3165. LM_ServiceTxInterrupt (pDevice);
  3166. /* No spinlock for this queue since this routine is serialized. */
  3167. if (!QQ_Empty (&pDevice->RxPacketReceivedQ.Container)) {
  3168. /* Indicate receive packets. */
  3169. MM_IndicateRxPackets (pDevice);
  3170. /* LM_QueueRxPackets(pDevice); */
  3171. }
  3172. /* No spinlock for this queue since this routine is serialized. */
  3173. if (!QQ_Empty (&pDevice->TxPacketXmittedQ.Container)) {
  3174. MM_IndicateTxPackets (pDevice);
  3175. }
  3176. return LM_STATUS_SUCCESS;
  3177. } /* LM_ServiceInterrupts */
  3178. /******************************************************************************/
  3179. /* Description: */
  3180. /* */
  3181. /* Return: */
  3182. /******************************************************************************/
  3183. LM_STATUS LM_MulticastAdd (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress)
  3184. {
  3185. PLM_UINT8 pEntry;
  3186. LM_UINT32 j;
  3187. pEntry = pDevice->McTable[0];
  3188. for (j = 0; j < pDevice->McEntryCount; j++) {
  3189. if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) {
  3190. /* Found a match, increment the instance count. */
  3191. pEntry[LM_MC_INSTANCE_COUNT_INDEX] += 1;
  3192. return LM_STATUS_SUCCESS;
  3193. }
  3194. pEntry += LM_MC_ENTRY_SIZE;
  3195. }
  3196. if (pDevice->McEntryCount >= LM_MAX_MC_TABLE_SIZE) {
  3197. return LM_STATUS_FAILURE;
  3198. }
  3199. pEntry = pDevice->McTable[pDevice->McEntryCount];
  3200. COPY_ETH_ADDRESS (pMcAddress, pEntry);
  3201. pEntry[LM_MC_INSTANCE_COUNT_INDEX] = 1;
  3202. pDevice->McEntryCount++;
  3203. LM_SetReceiveMask (pDevice, pDevice->ReceiveMask | LM_ACCEPT_MULTICAST);
  3204. return LM_STATUS_SUCCESS;
  3205. } /* LM_MulticastAdd */
  3206. /******************************************************************************/
  3207. /* Description: */
  3208. /* */
  3209. /* Return: */
  3210. /******************************************************************************/
  3211. LM_STATUS LM_MulticastDel (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress)
  3212. {
  3213. PLM_UINT8 pEntry;
  3214. LM_UINT32 j;
  3215. pEntry = pDevice->McTable[0];
  3216. for (j = 0; j < pDevice->McEntryCount; j++) {
  3217. if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) {
  3218. /* Found a match, decrement the instance count. */
  3219. pEntry[LM_MC_INSTANCE_COUNT_INDEX] -= 1;
  3220. /* No more instance left, remove the address from the table. */
  3221. /* Move the last entry in the table to the delete slot. */
  3222. if (pEntry[LM_MC_INSTANCE_COUNT_INDEX] == 0 &&
  3223. pDevice->McEntryCount > 1) {
  3224. COPY_ETH_ADDRESS (pDevice->
  3225. McTable[pDevice->
  3226. McEntryCount - 1],
  3227. pEntry);
  3228. pEntry[LM_MC_INSTANCE_COUNT_INDEX] =
  3229. pDevice->McTable[pDevice->McEntryCount - 1]
  3230. [LM_MC_INSTANCE_COUNT_INDEX];
  3231. }
  3232. pDevice->McEntryCount--;
  3233. /* Update the receive mask if the table is empty. */
  3234. if (pDevice->McEntryCount == 0) {
  3235. LM_SetReceiveMask (pDevice,
  3236. pDevice->
  3237. ReceiveMask &
  3238. ~LM_ACCEPT_MULTICAST);
  3239. }
  3240. return LM_STATUS_SUCCESS;
  3241. }
  3242. pEntry += LM_MC_ENTRY_SIZE;
  3243. }
  3244. return LM_STATUS_FAILURE;
  3245. } /* LM_MulticastDel */
  3246. /******************************************************************************/
  3247. /* Description: */
  3248. /* */
  3249. /* Return: */
  3250. /******************************************************************************/
  3251. LM_STATUS LM_MulticastClear (PLM_DEVICE_BLOCK pDevice)
  3252. {
  3253. pDevice->McEntryCount = 0;
  3254. LM_SetReceiveMask (pDevice,
  3255. pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST);
  3256. return LM_STATUS_SUCCESS;
  3257. } /* LM_MulticastClear */
  3258. /******************************************************************************/
  3259. /* Description: */
  3260. /* */
  3261. /* Return: */
  3262. /******************************************************************************/
  3263. LM_STATUS LM_SetMacAddress (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMacAddress)
  3264. {
  3265. LM_UINT32 j;
  3266. for (j = 0; j < 4; j++) {
  3267. REG_WR (pDevice, MacCtrl.MacAddr[j].High,
  3268. (pMacAddress[0] << 8) | pMacAddress[1]);
  3269. REG_WR (pDevice, MacCtrl.MacAddr[j].Low,
  3270. (pMacAddress[2] << 24) | (pMacAddress[3] << 16) |
  3271. (pMacAddress[4] << 8) | pMacAddress[5]);
  3272. }
  3273. return LM_STATUS_SUCCESS;
  3274. }
  3275. /******************************************************************************/
  3276. /* Description: */
  3277. /* Sets up the default line speed, and duplex modes based on the requested */
  3278. /* media type. */
  3279. /* */
  3280. /* Return: */
  3281. /* None. */
  3282. /******************************************************************************/
  3283. static LM_STATUS
  3284. LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE RequestedMediaType,
  3285. PLM_MEDIA_TYPE pMediaType,
  3286. PLM_LINE_SPEED pLineSpeed,
  3287. PLM_DUPLEX_MODE pDuplexMode)
  3288. {
  3289. *pMediaType = LM_MEDIA_TYPE_AUTO;
  3290. *pLineSpeed = LM_LINE_SPEED_UNKNOWN;
  3291. *pDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
  3292. /* determine media type */
  3293. switch (RequestedMediaType) {
  3294. case LM_REQUESTED_MEDIA_TYPE_BNC:
  3295. *pMediaType = LM_MEDIA_TYPE_BNC;
  3296. *pLineSpeed = LM_LINE_SPEED_10MBPS;
  3297. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3298. break;
  3299. case LM_REQUESTED_MEDIA_TYPE_UTP_AUTO:
  3300. *pMediaType = LM_MEDIA_TYPE_UTP;
  3301. break;
  3302. case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS:
  3303. *pMediaType = LM_MEDIA_TYPE_UTP;
  3304. *pLineSpeed = LM_LINE_SPEED_10MBPS;
  3305. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3306. break;
  3307. case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS_FULL_DUPLEX:
  3308. *pMediaType = LM_MEDIA_TYPE_UTP;
  3309. *pLineSpeed = LM_LINE_SPEED_10MBPS;
  3310. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3311. break;
  3312. case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS:
  3313. *pMediaType = LM_MEDIA_TYPE_UTP;
  3314. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3315. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3316. break;
  3317. case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS_FULL_DUPLEX:
  3318. *pMediaType = LM_MEDIA_TYPE_UTP;
  3319. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3320. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3321. break;
  3322. case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS:
  3323. *pMediaType = LM_MEDIA_TYPE_UTP;
  3324. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3325. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3326. break;
  3327. case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS_FULL_DUPLEX:
  3328. *pMediaType = LM_MEDIA_TYPE_UTP;
  3329. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3330. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3331. break;
  3332. case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS:
  3333. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3334. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3335. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3336. break;
  3337. case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS_FULL_DUPLEX:
  3338. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3339. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3340. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3341. break;
  3342. case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS:
  3343. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3344. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3345. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3346. break;
  3347. case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS_FULL_DUPLEX:
  3348. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3349. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3350. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3351. break;
  3352. default:
  3353. break;
  3354. } /* switch */
  3355. return LM_STATUS_SUCCESS;
  3356. } /* LM_TranslateRequestedMediaType */
  3357. /******************************************************************************/
  3358. /* Description: */
  3359. /* */
  3360. /* Return: */
  3361. /* LM_STATUS_LINK_ACTIVE */
  3362. /* LM_STATUS_LINK_DOWN */
  3363. /******************************************************************************/
  3364. static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice)
  3365. {
  3366. LM_LINE_SPEED CurrentLineSpeed;
  3367. LM_DUPLEX_MODE CurrentDuplexMode;
  3368. LM_STATUS CurrentLinkStatus;
  3369. LM_UINT32 Value32;
  3370. LM_UINT32 j;
  3371. #if 1 /* jmb: bugfix -- moved here, out of code that sets initial pwr state */
  3372. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x2);
  3373. #endif
  3374. if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) {
  3375. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3376. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3377. if (!pDevice->InitDone) {
  3378. Value32 = 0;
  3379. }
  3380. if (!(Value32 & PHY_STATUS_LINK_PASS)) {
  3381. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20);
  3382. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
  3383. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804);
  3384. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
  3385. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204);
  3386. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  3387. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132);
  3388. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  3389. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232);
  3390. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
  3391. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
  3392. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3393. for (j = 0; j < 1000; j++) {
  3394. MM_Wait (10);
  3395. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3396. if (Value32 & PHY_STATUS_LINK_PASS) {
  3397. MM_Wait (40);
  3398. break;
  3399. }
  3400. }
  3401. if ((pDevice->PhyId & PHY_ID_REV_MASK) ==
  3402. PHY_BCM5401_B0_REV) {
  3403. if (!(Value32 & PHY_STATUS_LINK_PASS)
  3404. && (pDevice->OldLineSpeed ==
  3405. LM_LINE_SPEED_1000MBPS)) {
  3406. LM_WritePhy (pDevice, PHY_CTRL_REG,
  3407. PHY_CTRL_PHY_RESET);
  3408. for (j = 0; j < 100; j++) {
  3409. MM_Wait (10);
  3410. LM_ReadPhy (pDevice,
  3411. PHY_CTRL_REG,
  3412. &Value32);
  3413. if (!
  3414. (Value32 &
  3415. PHY_CTRL_PHY_RESET)) {
  3416. MM_Wait (40);
  3417. break;
  3418. }
  3419. }
  3420. LM_WritePhy (pDevice, BCM5401_AUX_CTRL,
  3421. 0x0c20);
  3422. LM_WritePhy (pDevice,
  3423. BCM540X_DSP_ADDRESS_REG,
  3424. 0x0012);
  3425. LM_WritePhy (pDevice,
  3426. BCM540X_DSP_RW_PORT,
  3427. 0x1804);
  3428. LM_WritePhy (pDevice,
  3429. BCM540X_DSP_ADDRESS_REG,
  3430. 0x0013);
  3431. LM_WritePhy (pDevice,
  3432. BCM540X_DSP_RW_PORT,
  3433. 0x1204);
  3434. LM_WritePhy (pDevice,
  3435. BCM540X_DSP_ADDRESS_REG,
  3436. 0x8006);
  3437. LM_WritePhy (pDevice,
  3438. BCM540X_DSP_RW_PORT,
  3439. 0x0132);
  3440. LM_WritePhy (pDevice,
  3441. BCM540X_DSP_ADDRESS_REG,
  3442. 0x8006);
  3443. LM_WritePhy (pDevice,
  3444. BCM540X_DSP_RW_PORT,
  3445. 0x0232);
  3446. LM_WritePhy (pDevice,
  3447. BCM540X_DSP_ADDRESS_REG,
  3448. 0x201f);
  3449. LM_WritePhy (pDevice,
  3450. BCM540X_DSP_RW_PORT,
  3451. 0x0a20);
  3452. }
  3453. }
  3454. }
  3455. } else if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  3456. pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
  3457. /* Bug: 5701 A0, B0 TX CRC workaround. */
  3458. LM_WritePhy (pDevice, 0x15, 0x0a75);
  3459. LM_WritePhy (pDevice, 0x1c, 0x8c68);
  3460. LM_WritePhy (pDevice, 0x1c, 0x8d68);
  3461. LM_WritePhy (pDevice, 0x1c, 0x8c68);
  3462. }
  3463. /* Acknowledge interrupts. */
  3464. LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32);
  3465. LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32);
  3466. /* Configure the interrupt mask. */
  3467. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
  3468. LM_WritePhy (pDevice, BCM540X_INT_MASK_REG,
  3469. ~BCM540X_INT_LINK_CHANGE);
  3470. }
  3471. /* Configure PHY led mode. */
  3472. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
  3473. (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700)) {
  3474. if (pDevice->LedMode == LED_MODE_THREE_LINK) {
  3475. LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG,
  3476. BCM540X_EXT_CTRL_LINK3_LED_MODE);
  3477. } else {
  3478. LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG, 0);
  3479. }
  3480. }
  3481. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3482. /* Get current link and duplex mode. */
  3483. for (j = 0; j < 100; j++) {
  3484. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3485. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3486. if (Value32 & PHY_STATUS_LINK_PASS) {
  3487. break;
  3488. }
  3489. MM_Wait (40);
  3490. }
  3491. if (Value32 & PHY_STATUS_LINK_PASS) {
  3492. /* Determine the current line and duplex settings. */
  3493. LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32);
  3494. for (j = 0; j < 2000; j++) {
  3495. MM_Wait (10);
  3496. LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32);
  3497. if (Value32) {
  3498. break;
  3499. }
  3500. }
  3501. switch (Value32 & BCM540X_AUX_SPEED_MASK) {
  3502. case BCM540X_AUX_10BASET_HD:
  3503. CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
  3504. CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
  3505. break;
  3506. case BCM540X_AUX_10BASET_FD:
  3507. CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
  3508. CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
  3509. break;
  3510. case BCM540X_AUX_100BASETX_HD:
  3511. CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
  3512. CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
  3513. break;
  3514. case BCM540X_AUX_100BASETX_FD:
  3515. CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
  3516. CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
  3517. break;
  3518. case BCM540X_AUX_100BASET_HD:
  3519. CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
  3520. CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
  3521. break;
  3522. case BCM540X_AUX_100BASET_FD:
  3523. CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
  3524. CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
  3525. break;
  3526. default:
  3527. CurrentLineSpeed = LM_LINE_SPEED_UNKNOWN;
  3528. CurrentDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
  3529. break;
  3530. }
  3531. /* Make sure we are in auto-neg mode. */
  3532. for (j = 0; j < 200; j++) {
  3533. LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
  3534. if (Value32 && Value32 != 0x7fff) {
  3535. break;
  3536. }
  3537. if (Value32 == 0 && pDevice->RequestedMediaType ==
  3538. LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS) {
  3539. break;
  3540. }
  3541. MM_Wait (10);
  3542. }
  3543. /* Use the current line settings for "auto" mode. */
  3544. if (pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO
  3545. || pDevice->RequestedMediaType ==
  3546. LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
  3547. if (Value32 & PHY_CTRL_AUTO_NEG_ENABLE) {
  3548. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3549. /* We may be exiting low power mode and the link is in */
  3550. /* 10mb. In this case, we need to restart autoneg. */
  3551. LM_ReadPhy (pDevice, BCM540X_1000BASET_CTRL_REG,
  3552. &Value32);
  3553. pDevice->advertising1000 = Value32;
  3554. /* 5702FE supports 10/100Mb only. */
  3555. if (T3_ASIC_REV (pDevice->ChipRevId) !=
  3556. T3_ASIC_REV_5703
  3557. || pDevice->BondId !=
  3558. GRC_MISC_BD_ID_5702FE) {
  3559. if (!
  3560. (Value32 &
  3561. (BCM540X_AN_AD_1000BASET_HALF |
  3562. BCM540X_AN_AD_1000BASET_FULL))) {
  3563. CurrentLinkStatus =
  3564. LM_STATUS_LINK_SETTING_MISMATCH;
  3565. }
  3566. }
  3567. } else {
  3568. CurrentLinkStatus =
  3569. LM_STATUS_LINK_SETTING_MISMATCH;
  3570. }
  3571. } else {
  3572. /* Force line settings. */
  3573. /* Use the current setting if it matches the user's requested */
  3574. /* setting. */
  3575. LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
  3576. if ((pDevice->LineSpeed == CurrentLineSpeed) &&
  3577. (pDevice->DuplexMode == CurrentDuplexMode)) {
  3578. if ((pDevice->DisableAutoNeg &&
  3579. !(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)) ||
  3580. (!pDevice->DisableAutoNeg &&
  3581. (Value32 & PHY_CTRL_AUTO_NEG_ENABLE))) {
  3582. CurrentLinkStatus =
  3583. LM_STATUS_LINK_ACTIVE;
  3584. } else {
  3585. CurrentLinkStatus =
  3586. LM_STATUS_LINK_SETTING_MISMATCH;
  3587. }
  3588. } else {
  3589. CurrentLinkStatus =
  3590. LM_STATUS_LINK_SETTING_MISMATCH;
  3591. }
  3592. }
  3593. /* Save line settings. */
  3594. pDevice->LineSpeed = CurrentLineSpeed;
  3595. pDevice->DuplexMode = CurrentDuplexMode;
  3596. pDevice->MediaType = LM_MEDIA_TYPE_UTP;
  3597. }
  3598. return CurrentLinkStatus;
  3599. } /* LM_InitBcm540xPhy */
  3600. /******************************************************************************/
  3601. /* Description: */
  3602. /* */
  3603. /* Return: */
  3604. /******************************************************************************/
  3605. LM_STATUS
  3606. LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice,
  3607. LM_UINT32 LocalPhyAd, LM_UINT32 RemotePhyAd)
  3608. {
  3609. LM_FLOW_CONTROL FlowCap;
  3610. /* Resolve flow control. */
  3611. FlowCap = LM_FLOW_CONTROL_NONE;
  3612. /* See Table 28B-3 of 802.3ab-1999 spec. */
  3613. if (pDevice->FlowControlCap & LM_FLOW_CONTROL_AUTO_PAUSE) {
  3614. if (LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE) {
  3615. if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) {
  3616. if (RemotePhyAd &
  3617. PHY_LINK_PARTNER_PAUSE_CAPABLE) {
  3618. FlowCap =
  3619. LM_FLOW_CONTROL_TRANSMIT_PAUSE |
  3620. LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3621. } else if (RemotePhyAd &
  3622. PHY_LINK_PARTNER_ASYM_PAUSE) {
  3623. FlowCap = LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3624. }
  3625. } else {
  3626. if (RemotePhyAd &
  3627. PHY_LINK_PARTNER_PAUSE_CAPABLE) {
  3628. FlowCap =
  3629. LM_FLOW_CONTROL_TRANSMIT_PAUSE |
  3630. LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3631. }
  3632. }
  3633. } else if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) {
  3634. if ((RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) &&
  3635. (RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE)) {
  3636. FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE;
  3637. }
  3638. }
  3639. } else {
  3640. FlowCap = pDevice->FlowControlCap;
  3641. }
  3642. /* Enable/disable rx PAUSE. */
  3643. pDevice->RxMode &= ~RX_MODE_ENABLE_FLOW_CONTROL;
  3644. if (FlowCap & LM_FLOW_CONTROL_RECEIVE_PAUSE &&
  3645. (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
  3646. pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)) {
  3647. pDevice->FlowControl |= LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3648. pDevice->RxMode |= RX_MODE_ENABLE_FLOW_CONTROL;
  3649. }
  3650. REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
  3651. /* Enable/disable tx PAUSE. */
  3652. pDevice->TxMode &= ~TX_MODE_ENABLE_FLOW_CONTROL;
  3653. if (FlowCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE &&
  3654. (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
  3655. pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)) {
  3656. pDevice->FlowControl |= LM_FLOW_CONTROL_TRANSMIT_PAUSE;
  3657. pDevice->TxMode |= TX_MODE_ENABLE_FLOW_CONTROL;
  3658. }
  3659. REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode);
  3660. return LM_STATUS_SUCCESS;
  3661. }
  3662. #if INCLUDE_TBI_SUPPORT
  3663. /******************************************************************************/
  3664. /* Description: */
  3665. /* */
  3666. /* Return: */
  3667. /******************************************************************************/
  3668. STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice)
  3669. {
  3670. LM_UINT32 Value32;
  3671. LM_UINT32 j;
  3672. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3673. /* Reset the SERDES during init and when we have link. */
  3674. if (!pDevice->InitDone || Value32 & MAC_STATUS_PCS_SYNCED) {
  3675. /* Set PLL lock range. */
  3676. LM_WritePhy (pDevice, 0x16, 0x8007);
  3677. /* Software reset. */
  3678. LM_WritePhy (pDevice, 0x00, 0x8000);
  3679. /* Wait for reset to complete. */
  3680. for (j = 0; j < 500; j++) {
  3681. MM_Wait (10);
  3682. }
  3683. /* Config mode; seletct PMA/Ch 1 regs. */
  3684. LM_WritePhy (pDevice, 0x10, 0x8411);
  3685. /* Enable auto-lock and comdet, select txclk for tx. */
  3686. LM_WritePhy (pDevice, 0x11, 0x0a10);
  3687. LM_WritePhy (pDevice, 0x18, 0x00a0);
  3688. LM_WritePhy (pDevice, 0x16, 0x41ff);
  3689. /* Assert and deassert POR. */
  3690. LM_WritePhy (pDevice, 0x13, 0x0400);
  3691. MM_Wait (40);
  3692. LM_WritePhy (pDevice, 0x13, 0x0000);
  3693. LM_WritePhy (pDevice, 0x11, 0x0a50);
  3694. MM_Wait (40);
  3695. LM_WritePhy (pDevice, 0x11, 0x0a10);
  3696. /* Delay for signal to stabilize. */
  3697. for (j = 0; j < 15000; j++) {
  3698. MM_Wait (10);
  3699. }
  3700. /* Deselect the channel register so we can read the PHY id later. */
  3701. LM_WritePhy (pDevice, 0x10, 0x8011);
  3702. }
  3703. return LM_STATUS_SUCCESS;
  3704. }
  3705. /******************************************************************************/
  3706. /* Description: */
  3707. /* */
  3708. /* Return: */
  3709. /******************************************************************************/
  3710. STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice)
  3711. {
  3712. LM_STATUS CurrentLinkStatus;
  3713. AUTONEG_STATUS AnStatus = 0;
  3714. LM_UINT32 Value32;
  3715. LM_UINT32 Cnt;
  3716. LM_UINT32 j, k;
  3717. pDevice->MacMode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK);
  3718. /* Initialize the send_config register. */
  3719. REG_WR (pDevice, MacCtrl.TxAutoNeg, 0);
  3720. /* Enable TBI and full duplex mode. */
  3721. pDevice->MacMode |= MAC_MODE_PORT_MODE_TBI;
  3722. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  3723. /* Initialize the BCM8002 SERDES PHY. */
  3724. switch (pDevice->PhyId & PHY_ID_MASK) {
  3725. case PHY_BCM8002_PHY_ID:
  3726. LM_InitBcm800xPhy (pDevice);
  3727. break;
  3728. default:
  3729. break;
  3730. }
  3731. /* Enable link change interrupt. */
  3732. REG_WR (pDevice, MacCtrl.MacEvent,
  3733. MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
  3734. /* Default to link down. */
  3735. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3736. /* Get the link status. */
  3737. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3738. if (Value32 & MAC_STATUS_PCS_SYNCED) {
  3739. if ((pDevice->RequestedMediaType ==
  3740. LM_REQUESTED_MEDIA_TYPE_AUTO)
  3741. || (pDevice->DisableAutoNeg == FALSE)) {
  3742. /* auto-negotiation mode. */
  3743. /* Initialize the autoneg default capaiblities. */
  3744. AutonegInit (&pDevice->AnInfo);
  3745. /* Set the context pointer to point to the main device structure. */
  3746. pDevice->AnInfo.pContext = pDevice;
  3747. /* Setup flow control advertisement register. */
  3748. Value32 = GetPhyAdFlowCntrlSettings (pDevice);
  3749. if (Value32 & PHY_AN_AD_PAUSE_CAPABLE) {
  3750. pDevice->AnInfo.mr_adv_sym_pause = 1;
  3751. } else {
  3752. pDevice->AnInfo.mr_adv_sym_pause = 0;
  3753. }
  3754. if (Value32 & PHY_AN_AD_ASYM_PAUSE) {
  3755. pDevice->AnInfo.mr_adv_asym_pause = 1;
  3756. } else {
  3757. pDevice->AnInfo.mr_adv_asym_pause = 0;
  3758. }
  3759. /* Try to autoneg up to six times. */
  3760. if (pDevice->IgnoreTbiLinkChange) {
  3761. Cnt = 1;
  3762. } else {
  3763. Cnt = 6;
  3764. }
  3765. for (j = 0; j < Cnt; j++) {
  3766. REG_WR (pDevice, MacCtrl.TxAutoNeg, 0);
  3767. Value32 =
  3768. pDevice->MacMode & ~MAC_MODE_PORT_MODE_MASK;
  3769. REG_WR (pDevice, MacCtrl.Mode, Value32);
  3770. MM_Wait (20);
  3771. REG_WR (pDevice, MacCtrl.Mode,
  3772. pDevice->
  3773. MacMode | MAC_MODE_SEND_CONFIGS);
  3774. MM_Wait (20);
  3775. pDevice->AnInfo.State = AN_STATE_UNKNOWN;
  3776. pDevice->AnInfo.CurrentTime_us = 0;
  3777. REG_WR (pDevice, Grc.Timer, 0);
  3778. for (k = 0;
  3779. (pDevice->AnInfo.CurrentTime_us < 75000)
  3780. && (k < 75000); k++) {
  3781. AnStatus =
  3782. Autoneg8023z (&pDevice->AnInfo);
  3783. if ((AnStatus == AUTONEG_STATUS_DONE) ||
  3784. (AnStatus == AUTONEG_STATUS_FAILED))
  3785. {
  3786. break;
  3787. }
  3788. pDevice->AnInfo.CurrentTime_us =
  3789. REG_RD (pDevice, Grc.Timer);
  3790. }
  3791. if ((AnStatus == AUTONEG_STATUS_DONE) ||
  3792. (AnStatus == AUTONEG_STATUS_FAILED)) {
  3793. break;
  3794. }
  3795. if (j >= 1) {
  3796. if (!(REG_RD (pDevice, MacCtrl.Status) &
  3797. MAC_STATUS_PCS_SYNCED)) {
  3798. break;
  3799. }
  3800. }
  3801. }
  3802. /* Stop sending configs. */
  3803. MM_AnTxIdle (&pDevice->AnInfo);
  3804. /* Resolve flow control settings. */
  3805. if ((AnStatus == AUTONEG_STATUS_DONE) &&
  3806. pDevice->AnInfo.mr_an_complete
  3807. && pDevice->AnInfo.mr_link_ok
  3808. && pDevice->AnInfo.mr_lp_adv_full_duplex) {
  3809. LM_UINT32 RemotePhyAd;
  3810. LM_UINT32 LocalPhyAd;
  3811. LocalPhyAd = 0;
  3812. if (pDevice->AnInfo.mr_adv_sym_pause) {
  3813. LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE;
  3814. }
  3815. if (pDevice->AnInfo.mr_adv_asym_pause) {
  3816. LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE;
  3817. }
  3818. RemotePhyAd = 0;
  3819. if (pDevice->AnInfo.mr_lp_adv_sym_pause) {
  3820. RemotePhyAd |=
  3821. PHY_LINK_PARTNER_PAUSE_CAPABLE;
  3822. }
  3823. if (pDevice->AnInfo.mr_lp_adv_asym_pause) {
  3824. RemotePhyAd |=
  3825. PHY_LINK_PARTNER_ASYM_PAUSE;
  3826. }
  3827. LM_SetFlowControl (pDevice, LocalPhyAd,
  3828. RemotePhyAd);
  3829. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3830. }
  3831. for (j = 0; j < 30; j++) {
  3832. MM_Wait (20);
  3833. REG_WR (pDevice, MacCtrl.Status,
  3834. MAC_STATUS_SYNC_CHANGED |
  3835. MAC_STATUS_CFG_CHANGED);
  3836. MM_Wait (20);
  3837. if ((REG_RD (pDevice, MacCtrl.Status) &
  3838. (MAC_STATUS_SYNC_CHANGED |
  3839. MAC_STATUS_CFG_CHANGED)) == 0)
  3840. break;
  3841. }
  3842. if (pDevice->PollTbiLink) {
  3843. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3844. if (Value32 & MAC_STATUS_RECEIVING_CFG) {
  3845. pDevice->IgnoreTbiLinkChange = TRUE;
  3846. } else {
  3847. pDevice->IgnoreTbiLinkChange = FALSE;
  3848. }
  3849. }
  3850. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3851. if (CurrentLinkStatus == LM_STATUS_LINK_DOWN &&
  3852. (Value32 & MAC_STATUS_PCS_SYNCED) &&
  3853. ((Value32 & MAC_STATUS_RECEIVING_CFG) == 0)) {
  3854. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3855. }
  3856. } else {
  3857. /* We are forcing line speed. */
  3858. pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
  3859. LM_SetFlowControl (pDevice, 0, 0);
  3860. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3861. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
  3862. MAC_MODE_SEND_CONFIGS);
  3863. }
  3864. }
  3865. /* Set the link polarity bit. */
  3866. pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
  3867. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  3868. pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
  3869. (pDevice->pStatusBlkVirt->
  3870. Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
  3871. for (j = 0; j < 100; j++) {
  3872. REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  3873. MAC_STATUS_CFG_CHANGED);
  3874. MM_Wait (5);
  3875. if ((REG_RD (pDevice, MacCtrl.Status) &
  3876. (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
  3877. break;
  3878. }
  3879. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3880. if ((Value32 & MAC_STATUS_PCS_SYNCED) == 0) {
  3881. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3882. if (pDevice->DisableAutoNeg == FALSE) {
  3883. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
  3884. MAC_MODE_SEND_CONFIGS);
  3885. MM_Wait (1);
  3886. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  3887. }
  3888. }
  3889. /* Initialize the current link status. */
  3890. if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
  3891. pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS;
  3892. pDevice->DuplexMode = LM_DUPLEX_MODE_FULL;
  3893. REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
  3894. LED_CTRL_1000MBPS_LED_ON);
  3895. } else {
  3896. pDevice->LineSpeed = LM_LINE_SPEED_UNKNOWN;
  3897. pDevice->DuplexMode = LM_DUPLEX_MODE_UNKNOWN;
  3898. REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
  3899. LED_CTRL_OVERRIDE_TRAFFIC_LED);
  3900. }
  3901. /* Indicate link status. */
  3902. if (pDevice->LinkStatus != CurrentLinkStatus) {
  3903. pDevice->LinkStatus = CurrentLinkStatus;
  3904. MM_IndicateStatus (pDevice, CurrentLinkStatus);
  3905. }
  3906. return LM_STATUS_SUCCESS;
  3907. }
  3908. #endif /* INCLUDE_TBI_SUPPORT */
  3909. /******************************************************************************/
  3910. /* Description: */
  3911. /* */
  3912. /* Return: */
  3913. /******************************************************************************/
  3914. LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice)
  3915. {
  3916. LM_STATUS CurrentLinkStatus;
  3917. LM_UINT32 Value32;
  3918. /* Assume there is not link first. */
  3919. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3920. /* Disable phy link change attention. */
  3921. REG_WR (pDevice, MacCtrl.MacEvent, 0);
  3922. /* Clear link change attention. */
  3923. REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  3924. MAC_STATUS_CFG_CHANGED);
  3925. /* Disable auto-polling for the moment. */
  3926. pDevice->MiMode = 0xc0000;
  3927. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  3928. MM_Wait (40);
  3929. /* Determine the requested line speed and duplex. */
  3930. pDevice->OldLineSpeed = pDevice->LineSpeed;
  3931. LM_TranslateRequestedMediaType (pDevice->RequestedMediaType,
  3932. &pDevice->MediaType,
  3933. &pDevice->LineSpeed,
  3934. &pDevice->DuplexMode);
  3935. /* Initialize the phy chip. */
  3936. switch (pDevice->PhyId & PHY_ID_MASK) {
  3937. case PHY_BCM5400_PHY_ID:
  3938. case PHY_BCM5401_PHY_ID:
  3939. case PHY_BCM5411_PHY_ID:
  3940. case PHY_BCM5701_PHY_ID:
  3941. case PHY_BCM5703_PHY_ID:
  3942. case PHY_BCM5704_PHY_ID:
  3943. CurrentLinkStatus = LM_InitBcm540xPhy (pDevice);
  3944. break;
  3945. default:
  3946. break;
  3947. }
  3948. if (CurrentLinkStatus == LM_STATUS_LINK_SETTING_MISMATCH) {
  3949. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3950. }
  3951. /* Setup flow control. */
  3952. pDevice->FlowControl = LM_FLOW_CONTROL_NONE;
  3953. if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
  3954. LM_FLOW_CONTROL FlowCap; /* Flow control capability. */
  3955. FlowCap = LM_FLOW_CONTROL_NONE;
  3956. if (pDevice->DuplexMode == LM_DUPLEX_MODE_FULL) {
  3957. if (pDevice->DisableAutoNeg == FALSE ||
  3958. pDevice->RequestedMediaType ==
  3959. LM_REQUESTED_MEDIA_TYPE_AUTO
  3960. || pDevice->RequestedMediaType ==
  3961. LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
  3962. LM_UINT32 ExpectedPhyAd;
  3963. LM_UINT32 LocalPhyAd;
  3964. LM_UINT32 RemotePhyAd;
  3965. LM_ReadPhy (pDevice, PHY_AN_AD_REG,
  3966. &LocalPhyAd);
  3967. pDevice->advertising = LocalPhyAd;
  3968. LocalPhyAd &=
  3969. (PHY_AN_AD_ASYM_PAUSE |
  3970. PHY_AN_AD_PAUSE_CAPABLE);
  3971. ExpectedPhyAd =
  3972. GetPhyAdFlowCntrlSettings (pDevice);
  3973. if (LocalPhyAd != ExpectedPhyAd) {
  3974. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3975. } else {
  3976. LM_ReadPhy (pDevice,
  3977. PHY_LINK_PARTNER_ABILITY_REG,
  3978. &RemotePhyAd);
  3979. LM_SetFlowControl (pDevice, LocalPhyAd,
  3980. RemotePhyAd);
  3981. }
  3982. } else {
  3983. pDevice->FlowControlCap &=
  3984. ~LM_FLOW_CONTROL_AUTO_PAUSE;
  3985. LM_SetFlowControl (pDevice, 0, 0);
  3986. }
  3987. }
  3988. }
  3989. if (CurrentLinkStatus == LM_STATUS_LINK_DOWN) {
  3990. LM_ForceAutoNeg (pDevice, pDevice->RequestedMediaType);
  3991. /* If we force line speed, we make get link right away. */
  3992. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3993. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3994. if (Value32 & PHY_STATUS_LINK_PASS) {
  3995. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3996. }
  3997. }
  3998. /* GMII interface. */
  3999. pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
  4000. if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
  4001. if (pDevice->LineSpeed == LM_LINE_SPEED_100MBPS ||
  4002. pDevice->LineSpeed == LM_LINE_SPEED_10MBPS) {
  4003. pDevice->MacMode |= MAC_MODE_PORT_MODE_MII;
  4004. } else {
  4005. pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
  4006. }
  4007. } else {
  4008. pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
  4009. }
  4010. /* Set the MAC to operate in the appropriate duplex mode. */
  4011. pDevice->MacMode &= ~MAC_MODE_HALF_DUPLEX;
  4012. if (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF) {
  4013. pDevice->MacMode |= MAC_MODE_HALF_DUPLEX;
  4014. }
  4015. /* Set the link polarity bit. */
  4016. pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
  4017. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  4018. if ((pDevice->LedMode == LED_MODE_LINK10) ||
  4019. (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE &&
  4020. pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)) {
  4021. pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
  4022. }
  4023. } else {
  4024. if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
  4025. pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
  4026. }
  4027. /* Set LED mode. */
  4028. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4029. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4030. Value32 = LED_CTRL_PHY_MODE_1;
  4031. } else {
  4032. if (pDevice->LedMode == LED_MODE_OUTPUT) {
  4033. Value32 = LED_CTRL_PHY_MODE_2;
  4034. } else {
  4035. Value32 = LED_CTRL_PHY_MODE_1;
  4036. }
  4037. }
  4038. REG_WR (pDevice, MacCtrl.LedCtrl, Value32);
  4039. }
  4040. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  4041. /* Enable auto polling. */
  4042. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4043. pDevice->MiMode |= MI_MODE_AUTO_POLLING_ENABLE;
  4044. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4045. }
  4046. /* Enable phy link change attention. */
  4047. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
  4048. REG_WR (pDevice, MacCtrl.MacEvent,
  4049. MAC_EVENT_ENABLE_MI_INTERRUPT);
  4050. } else {
  4051. REG_WR (pDevice, MacCtrl.MacEvent,
  4052. MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
  4053. }
  4054. if ((T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) &&
  4055. (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) &&
  4056. (pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
  4057. (((pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) &&
  4058. (pDevice->PciState & T3_PCI_STATE_BUS_SPEED_HIGH)) ||
  4059. !(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))) {
  4060. MM_Wait (120);
  4061. REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  4062. MAC_STATUS_CFG_CHANGED);
  4063. MEM_WR_OFFSET (pDevice, T3_FIRMWARE_MAILBOX,
  4064. T3_MAGIC_NUM_DISABLE_DMAW_ON_LINK_CHANGE);
  4065. }
  4066. /* Indicate link status. */
  4067. if (pDevice->LinkStatus != CurrentLinkStatus) {
  4068. pDevice->LinkStatus = CurrentLinkStatus;
  4069. MM_IndicateStatus (pDevice, CurrentLinkStatus);
  4070. }
  4071. return LM_STATUS_SUCCESS;
  4072. } /* LM_SetupCopperPhy */
  4073. /******************************************************************************/
  4074. /* Description: */
  4075. /* */
  4076. /* Return: */
  4077. /******************************************************************************/
  4078. LM_STATUS LM_SetupPhy (PLM_DEVICE_BLOCK pDevice)
  4079. {
  4080. LM_STATUS LmStatus;
  4081. LM_UINT32 Value32;
  4082. #if INCLUDE_TBI_SUPPORT
  4083. if (pDevice->EnableTbi) {
  4084. LmStatus = LM_SetupFiberPhy (pDevice);
  4085. } else
  4086. #endif /* INCLUDE_TBI_SUPPORT */
  4087. {
  4088. LmStatus = LM_SetupCopperPhy (pDevice);
  4089. }
  4090. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  4091. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
  4092. Value32 = REG_RD (pDevice, PciCfg.PciState);
  4093. REG_WR (pDevice, PciCfg.PciState,
  4094. Value32 | T3_PCI_STATE_RETRY_SAME_DMA);
  4095. }
  4096. }
  4097. if ((pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
  4098. (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF)) {
  4099. REG_WR (pDevice, MacCtrl.TxLengths, 0x26ff);
  4100. } else {
  4101. REG_WR (pDevice, MacCtrl.TxLengths, 0x2620);
  4102. }
  4103. return LmStatus;
  4104. }
  4105. /******************************************************************************/
  4106. /* Description: */
  4107. /* */
  4108. /* Return: */
  4109. /******************************************************************************/
  4110. LM_VOID
  4111. LM_ReadPhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, PLM_UINT32 pData32)
  4112. {
  4113. LM_UINT32 Value32;
  4114. LM_UINT32 j;
  4115. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4116. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode &
  4117. ~MI_MODE_AUTO_POLLING_ENABLE);
  4118. MM_Wait (40);
  4119. }
  4120. Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
  4121. ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) <<
  4122. MI_COM_FIRST_PHY_REG_ADDR_BIT) | MI_COM_CMD_READ | MI_COM_START;
  4123. REG_WR (pDevice, MacCtrl.MiCom, Value32);
  4124. for (j = 0; j < 20; j++) {
  4125. MM_Wait (25);
  4126. Value32 = REG_RD (pDevice, MacCtrl.MiCom);
  4127. if (!(Value32 & MI_COM_BUSY)) {
  4128. MM_Wait (5);
  4129. Value32 = REG_RD (pDevice, MacCtrl.MiCom);
  4130. Value32 &= MI_COM_PHY_DATA_MASK;
  4131. break;
  4132. }
  4133. }
  4134. if (Value32 & MI_COM_BUSY) {
  4135. Value32 = 0;
  4136. }
  4137. *pData32 = Value32;
  4138. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4139. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4140. MM_Wait (40);
  4141. }
  4142. } /* LM_ReadPhy */
  4143. /******************************************************************************/
  4144. /* Description: */
  4145. /* */
  4146. /* Return: */
  4147. /******************************************************************************/
  4148. LM_VOID
  4149. LM_WritePhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, LM_UINT32 Data32)
  4150. {
  4151. LM_UINT32 Value32;
  4152. LM_UINT32 j;
  4153. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4154. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode &
  4155. ~MI_MODE_AUTO_POLLING_ENABLE);
  4156. MM_Wait (40);
  4157. }
  4158. Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
  4159. ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) <<
  4160. MI_COM_FIRST_PHY_REG_ADDR_BIT) | (Data32 & MI_COM_PHY_DATA_MASK) |
  4161. MI_COM_CMD_WRITE | MI_COM_START;
  4162. REG_WR (pDevice, MacCtrl.MiCom, Value32);
  4163. for (j = 0; j < 20; j++) {
  4164. MM_Wait (25);
  4165. Value32 = REG_RD (pDevice, MacCtrl.MiCom);
  4166. if (!(Value32 & MI_COM_BUSY)) {
  4167. MM_Wait (5);
  4168. break;
  4169. }
  4170. }
  4171. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4172. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4173. MM_Wait (40);
  4174. }
  4175. } /* LM_WritePhy */
  4176. /******************************************************************************/
  4177. /* Description: */
  4178. /* */
  4179. /* Return: */
  4180. /******************************************************************************/
  4181. LM_STATUS LM_SetPowerState (PLM_DEVICE_BLOCK pDevice, LM_POWER_STATE PowerLevel)
  4182. {
  4183. LM_UINT32 PmeSupport;
  4184. LM_UINT32 Value32;
  4185. LM_UINT32 PmCtrl;
  4186. /* make sureindirect accesses are enabled */
  4187. MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
  4188. pDevice->MiscHostCtrl);
  4189. /* Clear the PME_ASSERT bit and the power state bits. Also enable */
  4190. /* the PME bit. */
  4191. MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &PmCtrl);
  4192. PmCtrl |= T3_PM_PME_ASSERTED;
  4193. PmCtrl &= ~T3_PM_POWER_STATE_MASK;
  4194. /* Set the appropriate power state. */
  4195. if (PowerLevel == LM_POWER_STATE_D0) {
  4196. /* Bring the card out of low power mode. */
  4197. PmCtrl |= T3_PM_POWER_STATE_D0;
  4198. MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
  4199. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
  4200. MM_Wait (40);
  4201. #if 0 /* Bugfix by jmb...can't call WritePhy here because pDevice not fully initialized */
  4202. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x02);
  4203. #endif
  4204. return LM_STATUS_SUCCESS;
  4205. } else if (PowerLevel == LM_POWER_STATE_D1) {
  4206. PmCtrl |= T3_PM_POWER_STATE_D1;
  4207. } else if (PowerLevel == LM_POWER_STATE_D2) {
  4208. PmCtrl |= T3_PM_POWER_STATE_D2;
  4209. } else if (PowerLevel == LM_POWER_STATE_D3) {
  4210. PmCtrl |= T3_PM_POWER_STATE_D3;
  4211. } else {
  4212. return LM_STATUS_FAILURE;
  4213. }
  4214. PmCtrl |= T3_PM_PME_ENABLE;
  4215. /* Mask out all interrupts so LM_SetupPhy won't be called while we are */
  4216. /* setting new line speed. */
  4217. Value32 = REG_RD (pDevice, PciCfg.MiscHostCtrl);
  4218. REG_WR (pDevice, PciCfg.MiscHostCtrl,
  4219. Value32 | MISC_HOST_CTRL_MASK_PCI_INT);
  4220. if (!pDevice->RestoreOnWakeUp) {
  4221. pDevice->RestoreOnWakeUp = TRUE;
  4222. pDevice->WakeUpDisableAutoNeg = pDevice->DisableAutoNeg;
  4223. pDevice->WakeUpRequestedMediaType = pDevice->RequestedMediaType;
  4224. }
  4225. /* Force auto-negotiation to 10 line speed. */
  4226. pDevice->DisableAutoNeg = FALSE;
  4227. pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS;
  4228. LM_SetupPhy (pDevice);
  4229. /* Put the driver in the initial state, and go through the power down */
  4230. /* sequence. */
  4231. LM_Halt (pDevice);
  4232. MM_ReadConfig32 (pDevice, T3_PCI_PM_CAP_REG, &PmeSupport);
  4233. if (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) {
  4234. /* Enable WOL. */
  4235. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x5a);
  4236. MM_Wait (40);
  4237. /* Set LED mode. */
  4238. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4239. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4240. Value32 = LED_CTRL_PHY_MODE_1;
  4241. } else {
  4242. if (pDevice->LedMode == LED_MODE_OUTPUT) {
  4243. Value32 = LED_CTRL_PHY_MODE_2;
  4244. } else {
  4245. Value32 = LED_CTRL_PHY_MODE_1;
  4246. }
  4247. }
  4248. Value32 = MAC_MODE_PORT_MODE_MII;
  4249. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  4250. if (pDevice->LedMode == LED_MODE_LINK10 ||
  4251. pDevice->WolSpeed == WOL_SPEED_10MB) {
  4252. Value32 |= MAC_MODE_LINK_POLARITY;
  4253. }
  4254. } else {
  4255. Value32 |= MAC_MODE_LINK_POLARITY;
  4256. }
  4257. REG_WR (pDevice, MacCtrl.Mode, Value32);
  4258. MM_Wait (40);
  4259. MM_Wait (40);
  4260. MM_Wait (40);
  4261. /* Always enable magic packet wake-up if we have vaux. */
  4262. if ((PmeSupport & T3_PCI_PM_CAP_PME_D3COLD) &&
  4263. (pDevice->WakeUpModeCap & LM_WAKE_UP_MODE_MAGIC_PACKET)) {
  4264. Value32 |= MAC_MODE_DETECT_MAGIC_PACKET_ENABLE;
  4265. }
  4266. REG_WR (pDevice, MacCtrl.Mode, Value32);
  4267. /* Enable the receiver. */
  4268. REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_ENABLE);
  4269. }
  4270. /* Disable tx/rx clocks, and seletect an alternate clock. */
  4271. if (pDevice->WolSpeed == WOL_SPEED_100MB) {
  4272. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4273. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4274. Value32 =
  4275. T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4276. T3_PCI_SELECT_ALTERNATE_CLOCK;
  4277. } else {
  4278. Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK;
  4279. }
  4280. REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
  4281. MM_Wait (40);
  4282. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4283. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4284. Value32 =
  4285. T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4286. T3_PCI_SELECT_ALTERNATE_CLOCK |
  4287. T3_PCI_44MHZ_CORE_CLOCK;
  4288. } else {
  4289. Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
  4290. T3_PCI_44MHZ_CORE_CLOCK;
  4291. }
  4292. REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
  4293. MM_Wait (40);
  4294. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4295. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4296. Value32 =
  4297. T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4298. T3_PCI_44MHZ_CORE_CLOCK;
  4299. } else {
  4300. Value32 = T3_PCI_44MHZ_CORE_CLOCK;
  4301. }
  4302. REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
  4303. } else {
  4304. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4305. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4306. Value32 =
  4307. T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4308. T3_PCI_SELECT_ALTERNATE_CLOCK |
  4309. T3_PCI_POWER_DOWN_PCI_PLL133;
  4310. } else {
  4311. Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
  4312. T3_PCI_POWER_DOWN_PCI_PLL133;
  4313. }
  4314. REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
  4315. }
  4316. MM_Wait (40);
  4317. if (!pDevice->EepromWp
  4318. && (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE)) {
  4319. /* Switch adapter to auxilliary power. */
  4320. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4321. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4322. /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
  4323. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4324. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4325. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4326. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4327. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
  4328. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
  4329. MM_Wait (40);
  4330. } else {
  4331. /* GPIO0 = 0, GPIO1 = 1, GPIO2 = 1. */
  4332. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4333. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4334. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4335. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4336. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
  4337. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
  4338. MM_Wait (40);
  4339. /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 1. */
  4340. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4341. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4342. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4343. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4344. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
  4345. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
  4346. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
  4347. MM_Wait (40);
  4348. /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
  4349. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4350. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4351. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4352. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4353. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
  4354. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
  4355. MM_Wait (40);
  4356. }
  4357. }
  4358. /* Set the phy to low power mode. */
  4359. /* Put the the hardware in low power mode. */
  4360. MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
  4361. return LM_STATUS_SUCCESS;
  4362. } /* LM_SetPowerState */
  4363. /******************************************************************************/
  4364. /* Description: */
  4365. /* */
  4366. /* Return: */
  4367. /******************************************************************************/
  4368. static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice)
  4369. {
  4370. LM_UINT32 Value32;
  4371. Value32 = 0;
  4372. /* Auto negotiation flow control only when autonegotiation is enabled. */
  4373. if (pDevice->DisableAutoNeg == FALSE ||
  4374. pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO ||
  4375. pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
  4376. /* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */
  4377. if ((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) ||
  4378. ((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)
  4379. && (pDevice->
  4380. FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))) {
  4381. Value32 |= PHY_AN_AD_PAUSE_CAPABLE;
  4382. } else if (pDevice->
  4383. FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE) {
  4384. Value32 |= PHY_AN_AD_ASYM_PAUSE;
  4385. } else if (pDevice->
  4386. FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) {
  4387. Value32 |=
  4388. PHY_AN_AD_PAUSE_CAPABLE | PHY_AN_AD_ASYM_PAUSE;
  4389. }
  4390. }
  4391. return Value32;
  4392. }
  4393. /******************************************************************************/
  4394. /* Description: */
  4395. /* */
  4396. /* Return: */
  4397. /* LM_STATUS_FAILURE */
  4398. /* LM_STATUS_SUCCESS */
  4399. /* */
  4400. /******************************************************************************/
  4401. static LM_STATUS
  4402. LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice,
  4403. LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
  4404. {
  4405. LM_MEDIA_TYPE MediaType;
  4406. LM_LINE_SPEED LineSpeed;
  4407. LM_DUPLEX_MODE DuplexMode;
  4408. LM_UINT32 NewPhyCtrl;
  4409. LM_UINT32 Value32;
  4410. LM_UINT32 Cnt;
  4411. /* Get the interface type, line speed, and duplex mode. */
  4412. LM_TranslateRequestedMediaType (RequestedMediaType, &MediaType,
  4413. &LineSpeed, &DuplexMode);
  4414. if (pDevice->RestoreOnWakeUp) {
  4415. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
  4416. pDevice->advertising1000 = 0;
  4417. Value32 = PHY_AN_AD_10BASET_FULL | PHY_AN_AD_10BASET_HALF;
  4418. if (pDevice->WolSpeed == WOL_SPEED_100MB) {
  4419. Value32 |=
  4420. PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
  4421. }
  4422. Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4423. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4424. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4425. pDevice->advertising = Value32;
  4426. }
  4427. /* Setup the auto-negotiation advertisement register. */
  4428. else if (LineSpeed == LM_LINE_SPEED_UNKNOWN) {
  4429. /* Setup the 10/100 Mbps auto-negotiation advertisement register. */
  4430. Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
  4431. PHY_AN_AD_10BASET_HALF | PHY_AN_AD_10BASET_FULL |
  4432. PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
  4433. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4434. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4435. pDevice->advertising = Value32;
  4436. /* Advertise 1000Mbps */
  4437. Value32 =
  4438. BCM540X_AN_AD_1000BASET_HALF | BCM540X_AN_AD_1000BASET_FULL;
  4439. #if INCLUDE_5701_AX_FIX
  4440. /* Bug: workaround for CRC error in gigabit mode when we are in */
  4441. /* slave mode. This will force the PHY to operate in */
  4442. /* master mode. */
  4443. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  4444. pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
  4445. Value32 |= BCM540X_CONFIG_AS_MASTER |
  4446. BCM540X_ENABLE_CONFIG_AS_MASTER;
  4447. }
  4448. #endif
  4449. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
  4450. pDevice->advertising1000 = Value32;
  4451. } else {
  4452. if (LineSpeed == LM_LINE_SPEED_1000MBPS) {
  4453. Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4454. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4455. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4456. pDevice->advertising = Value32;
  4457. if (DuplexMode != LM_DUPLEX_MODE_FULL) {
  4458. Value32 = BCM540X_AN_AD_1000BASET_HALF;
  4459. } else {
  4460. Value32 = BCM540X_AN_AD_1000BASET_FULL;
  4461. }
  4462. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG,
  4463. Value32);
  4464. pDevice->advertising1000 = Value32;
  4465. } else if (LineSpeed == LM_LINE_SPEED_100MBPS) {
  4466. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
  4467. pDevice->advertising1000 = 0;
  4468. if (DuplexMode != LM_DUPLEX_MODE_FULL) {
  4469. Value32 = PHY_AN_AD_100BASETX_HALF;
  4470. } else {
  4471. Value32 = PHY_AN_AD_100BASETX_FULL;
  4472. }
  4473. Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4474. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4475. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4476. pDevice->advertising = Value32;
  4477. } else if (LineSpeed == LM_LINE_SPEED_10MBPS) {
  4478. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
  4479. pDevice->advertising1000 = 0;
  4480. if (DuplexMode != LM_DUPLEX_MODE_FULL) {
  4481. Value32 = PHY_AN_AD_10BASET_HALF;
  4482. } else {
  4483. Value32 = PHY_AN_AD_10BASET_FULL;
  4484. }
  4485. Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4486. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4487. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4488. pDevice->advertising = Value32;
  4489. }
  4490. }
  4491. /* Force line speed if auto-negotiation is disabled. */
  4492. if (pDevice->DisableAutoNeg && LineSpeed != LM_LINE_SPEED_UNKNOWN) {
  4493. /* This code path is executed only when there is link. */
  4494. pDevice->MediaType = MediaType;
  4495. pDevice->LineSpeed = LineSpeed;
  4496. pDevice->DuplexMode = DuplexMode;
  4497. /* Force line seepd. */
  4498. NewPhyCtrl = 0;
  4499. switch (LineSpeed) {
  4500. case LM_LINE_SPEED_10MBPS:
  4501. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_10MBPS;
  4502. break;
  4503. case LM_LINE_SPEED_100MBPS:
  4504. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_100MBPS;
  4505. break;
  4506. case LM_LINE_SPEED_1000MBPS:
  4507. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
  4508. break;
  4509. default:
  4510. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
  4511. break;
  4512. }
  4513. if (DuplexMode == LM_DUPLEX_MODE_FULL) {
  4514. NewPhyCtrl |= PHY_CTRL_FULL_DUPLEX_MODE;
  4515. }
  4516. /* Don't do anything if the PHY_CTRL is already what we wanted. */
  4517. LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
  4518. if (Value32 != NewPhyCtrl) {
  4519. /* Temporary bring the link down before forcing line speed. */
  4520. LM_WritePhy (pDevice, PHY_CTRL_REG,
  4521. PHY_CTRL_LOOPBACK_MODE);
  4522. /* Wait for link to go down. */
  4523. for (Cnt = 0; Cnt < 15000; Cnt++) {
  4524. MM_Wait (10);
  4525. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  4526. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  4527. if (!(Value32 & PHY_STATUS_LINK_PASS)) {
  4528. MM_Wait (40);
  4529. break;
  4530. }
  4531. }
  4532. LM_WritePhy (pDevice, PHY_CTRL_REG, NewPhyCtrl);
  4533. MM_Wait (40);
  4534. }
  4535. } else {
  4536. LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
  4537. PHY_CTRL_RESTART_AUTO_NEG);
  4538. }
  4539. return LM_STATUS_SUCCESS;
  4540. } /* LM_ForceAutoNegBcm540xPhy */
  4541. /******************************************************************************/
  4542. /* Description: */
  4543. /* */
  4544. /* Return: */
  4545. /******************************************************************************/
  4546. static LM_STATUS
  4547. LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice,
  4548. LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
  4549. {
  4550. LM_STATUS LmStatus;
  4551. /* Initialize the phy chip. */
  4552. switch (pDevice->PhyId & PHY_ID_MASK) {
  4553. case PHY_BCM5400_PHY_ID:
  4554. case PHY_BCM5401_PHY_ID:
  4555. case PHY_BCM5411_PHY_ID:
  4556. case PHY_BCM5701_PHY_ID:
  4557. case PHY_BCM5703_PHY_ID:
  4558. case PHY_BCM5704_PHY_ID:
  4559. LmStatus =
  4560. LM_ForceAutoNegBcm540xPhy (pDevice, RequestedMediaType);
  4561. break;
  4562. default:
  4563. LmStatus = LM_STATUS_FAILURE;
  4564. break;
  4565. }
  4566. return LmStatus;
  4567. } /* LM_ForceAutoNeg */
  4568. /******************************************************************************/
  4569. /* Description: */
  4570. /* */
  4571. /* Return: */
  4572. /******************************************************************************/
  4573. LM_STATUS LM_LoadFirmware (PLM_DEVICE_BLOCK pDevice,
  4574. PT3_FWIMG_INFO pFwImg,
  4575. LM_UINT32 LoadCpu, LM_UINT32 StartCpu)
  4576. {
  4577. LM_UINT32 i;
  4578. LM_UINT32 address;
  4579. if (LoadCpu & T3_RX_CPU_ID) {
  4580. if (LM_HaltCpu (pDevice, T3_RX_CPU_ID) != LM_STATUS_SUCCESS) {
  4581. return LM_STATUS_FAILURE;
  4582. }
  4583. /* First of all clear scrach pad memory */
  4584. for (i = 0; i < T3_RX_CPU_SPAD_SIZE; i += 4) {
  4585. LM_RegWrInd (pDevice, T3_RX_CPU_SPAD_ADDR + i, 0);
  4586. }
  4587. /* Copy code first */
  4588. address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
  4589. for (i = 0; i <= pFwImg->Text.Length; i += 4) {
  4590. LM_RegWrInd (pDevice, address + i,
  4591. ((LM_UINT32 *) pFwImg->Text.Buffer)[i /
  4592. 4]);
  4593. }
  4594. address =
  4595. T3_RX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
  4596. for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) {
  4597. LM_RegWrInd (pDevice, address + i,
  4598. ((LM_UINT32 *) pFwImg->ROnlyData.
  4599. Buffer)[i / 4]);
  4600. }
  4601. address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
  4602. for (i = 0; i <= pFwImg->Data.Length; i += 4) {
  4603. LM_RegWrInd (pDevice, address + i,
  4604. ((LM_UINT32 *) pFwImg->Data.Buffer)[i /
  4605. 4]);
  4606. }
  4607. }
  4608. if (LoadCpu & T3_TX_CPU_ID) {
  4609. if (LM_HaltCpu (pDevice, T3_TX_CPU_ID) != LM_STATUS_SUCCESS) {
  4610. return LM_STATUS_FAILURE;
  4611. }
  4612. /* First of all clear scrach pad memory */
  4613. for (i = 0; i < T3_TX_CPU_SPAD_SIZE; i += 4) {
  4614. LM_RegWrInd (pDevice, T3_TX_CPU_SPAD_ADDR + i, 0);
  4615. }
  4616. /* Copy code first */
  4617. address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
  4618. for (i = 0; i <= pFwImg->Text.Length; i += 4) {
  4619. LM_RegWrInd (pDevice, address + i,
  4620. ((LM_UINT32 *) pFwImg->Text.Buffer)[i /
  4621. 4]);
  4622. }
  4623. address =
  4624. T3_TX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
  4625. for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) {
  4626. LM_RegWrInd (pDevice, address + i,
  4627. ((LM_UINT32 *) pFwImg->ROnlyData.
  4628. Buffer)[i / 4]);
  4629. }
  4630. address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
  4631. for (i = 0; i <= pFwImg->Data.Length; i += 4) {
  4632. LM_RegWrInd (pDevice, address + i,
  4633. ((LM_UINT32 *) pFwImg->Data.Buffer)[i /
  4634. 4]);
  4635. }
  4636. }
  4637. if (StartCpu & T3_RX_CPU_ID) {
  4638. /* Start Rx CPU */
  4639. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4640. REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress);
  4641. for (i = 0; i < 5; i++) {
  4642. if (pFwImg->StartAddress ==
  4643. REG_RD (pDevice, rxCpu.reg.PC))
  4644. break;
  4645. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4646. REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
  4647. REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress);
  4648. MM_Wait (1000);
  4649. }
  4650. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4651. REG_WR (pDevice, rxCpu.reg.mode, 0);
  4652. }
  4653. if (StartCpu & T3_TX_CPU_ID) {
  4654. /* Start Tx CPU */
  4655. REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
  4656. REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress);
  4657. for (i = 0; i < 5; i++) {
  4658. if (pFwImg->StartAddress ==
  4659. REG_RD (pDevice, txCpu.reg.PC))
  4660. break;
  4661. REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
  4662. REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT);
  4663. REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress);
  4664. MM_Wait (1000);
  4665. }
  4666. REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
  4667. REG_WR (pDevice, txCpu.reg.mode, 0);
  4668. }
  4669. return LM_STATUS_SUCCESS;
  4670. }
  4671. STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number)
  4672. {
  4673. LM_UINT32 i;
  4674. if (cpu_number == T3_RX_CPU_ID) {
  4675. for (i = 0; i < 10000; i++) {
  4676. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4677. REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
  4678. if (REG_RD (pDevice, rxCpu.reg.mode) & CPU_MODE_HALT)
  4679. break;
  4680. }
  4681. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4682. REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
  4683. MM_Wait (10);
  4684. } else {
  4685. for (i = 0; i < 10000; i++) {
  4686. REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
  4687. REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT);
  4688. if (REG_RD (pDevice, txCpu.reg.mode) & CPU_MODE_HALT)
  4689. break;
  4690. }
  4691. }
  4692. return ((i == 10000) ? LM_STATUS_FAILURE : LM_STATUS_SUCCESS);
  4693. }
  4694. int LM_BlinkLED (PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlinkDurationSec)
  4695. {
  4696. LM_UINT32 Oldcfg;
  4697. int j;
  4698. int ret = 0;
  4699. if (BlinkDurationSec == 0) {
  4700. return 0;
  4701. }
  4702. if (BlinkDurationSec > 120) {
  4703. BlinkDurationSec = 120;
  4704. }
  4705. Oldcfg = REG_RD (pDevice, MacCtrl.LedCtrl);
  4706. for (j = 0; j < BlinkDurationSec * 2; j++) {
  4707. if (j % 2) {
  4708. /* Turn on the LEDs. */
  4709. REG_WR (pDevice, MacCtrl.LedCtrl,
  4710. LED_CTRL_OVERRIDE_LINK_LED |
  4711. LED_CTRL_1000MBPS_LED_ON |
  4712. LED_CTRL_100MBPS_LED_ON |
  4713. LED_CTRL_10MBPS_LED_ON |
  4714. LED_CTRL_OVERRIDE_TRAFFIC_LED |
  4715. LED_CTRL_BLINK_TRAFFIC_LED |
  4716. LED_CTRL_TRAFFIC_LED);
  4717. } else {
  4718. /* Turn off the LEDs. */
  4719. REG_WR (pDevice, MacCtrl.LedCtrl,
  4720. LED_CTRL_OVERRIDE_LINK_LED |
  4721. LED_CTRL_OVERRIDE_TRAFFIC_LED);
  4722. }
  4723. #ifndef EMBEDDED
  4724. current->state = TASK_INTERRUPTIBLE;
  4725. if (schedule_timeout (HZ / 2) != 0) {
  4726. ret = -EINTR;
  4727. break;
  4728. }
  4729. #else
  4730. udelay (100000); /* 1s sleep */
  4731. #endif
  4732. }
  4733. REG_WR (pDevice, MacCtrl.LedCtrl, Oldcfg);
  4734. return ret;
  4735. }
  4736. int t3_do_dma (PLM_DEVICE_BLOCK pDevice,
  4737. LM_PHYSICAL_ADDRESS host_addr_phy, int length, int dma_read)
  4738. {
  4739. T3_DMA_DESC dma_desc;
  4740. int i;
  4741. LM_UINT32 dma_desc_addr;
  4742. LM_UINT32 value32;
  4743. REG_WR (pDevice, BufMgr.Mode, 0);
  4744. REG_WR (pDevice, Ftq.Reset, 0);
  4745. dma_desc.host_addr.High = host_addr_phy.High;
  4746. dma_desc.host_addr.Low = host_addr_phy.Low;
  4747. dma_desc.nic_mbuf = 0x2100;
  4748. dma_desc.len = length;
  4749. dma_desc.flags = 0x00000004; /* Generate Rx-CPU event */
  4750. if (dma_read) {
  4751. dma_desc.cqid_sqid = (T3_QID_RX_BD_COMP << 8) |
  4752. T3_QID_DMA_HIGH_PRI_READ;
  4753. REG_WR (pDevice, DmaRead.Mode, DMA_READ_MODE_ENABLE);
  4754. } else {
  4755. dma_desc.cqid_sqid = (T3_QID_RX_DATA_COMP << 8) |
  4756. T3_QID_DMA_HIGH_PRI_WRITE;
  4757. REG_WR (pDevice, DmaWrite.Mode, DMA_WRITE_MODE_ENABLE);
  4758. }
  4759. dma_desc_addr = T3_NIC_DMA_DESC_POOL_ADDR;
  4760. /* Writing this DMA descriptor to DMA memory */
  4761. for (i = 0; i < sizeof (T3_DMA_DESC); i += 4) {
  4762. value32 = *((PLM_UINT32) (((PLM_UINT8) & dma_desc) + i));
  4763. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG,
  4764. dma_desc_addr + i);
  4765. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG,
  4766. cpu_to_le32 (value32));
  4767. }
  4768. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, 0);
  4769. if (dma_read)
  4770. REG_WR (pDevice, Ftq.DmaHighReadFtqFifoEnqueueDequeue,
  4771. dma_desc_addr);
  4772. else
  4773. REG_WR (pDevice, Ftq.DmaHighWriteFtqFifoEnqueueDequeue,
  4774. dma_desc_addr);
  4775. for (i = 0; i < 40; i++) {
  4776. if (dma_read)
  4777. value32 =
  4778. REG_RD (pDevice,
  4779. Ftq.RcvBdCompFtqFifoEnqueueDequeue);
  4780. else
  4781. value32 =
  4782. REG_RD (pDevice,
  4783. Ftq.RcvDataCompFtqFifoEnqueueDequeue);
  4784. if ((value32 & 0xffff) == dma_desc_addr)
  4785. break;
  4786. MM_Wait (10);
  4787. }
  4788. return LM_STATUS_SUCCESS;
  4789. }
  4790. STATIC LM_STATUS
  4791. LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
  4792. LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize)
  4793. {
  4794. int j;
  4795. LM_UINT32 *ptr;
  4796. int dma_success = 0;
  4797. if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  4798. T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
  4799. return LM_STATUS_SUCCESS;
  4800. }
  4801. while (!dma_success) {
  4802. /* Fill data with incremental patterns */
  4803. ptr = (LM_UINT32 *) pBufferVirt;
  4804. for (j = 0; j < BufferSize / 4; j++)
  4805. *ptr++ = j;
  4806. if (t3_do_dma (pDevice, BufferPhy, BufferSize, 1) ==
  4807. LM_STATUS_FAILURE) {
  4808. return LM_STATUS_FAILURE;
  4809. }
  4810. MM_Wait (40);
  4811. ptr = (LM_UINT32 *) pBufferVirt;
  4812. /* Fill data with zero */
  4813. for (j = 0; j < BufferSize / 4; j++)
  4814. *ptr++ = 0;
  4815. if (t3_do_dma (pDevice, BufferPhy, BufferSize, 0) ==
  4816. LM_STATUS_FAILURE) {
  4817. return LM_STATUS_FAILURE;
  4818. }
  4819. MM_Wait (40);
  4820. /* Check for data */
  4821. ptr = (LM_UINT32 *) pBufferVirt;
  4822. for (j = 0; j < BufferSize / 4; j++) {
  4823. if (*ptr++ != j) {
  4824. if ((pDevice->
  4825. DmaReadWriteCtrl &
  4826. DMA_CTRL_WRITE_BOUNDARY_MASK)
  4827. == DMA_CTRL_WRITE_BOUNDARY_DISABLE) {
  4828. pDevice->DmaReadWriteCtrl =
  4829. (pDevice->
  4830. DmaReadWriteCtrl &
  4831. ~DMA_CTRL_WRITE_BOUNDARY_MASK) |
  4832. DMA_CTRL_WRITE_BOUNDARY_16;
  4833. REG_WR (pDevice,
  4834. PciCfg.DmaReadWriteCtrl,
  4835. pDevice->DmaReadWriteCtrl);
  4836. break;
  4837. } else {
  4838. return LM_STATUS_FAILURE;
  4839. }
  4840. }
  4841. }
  4842. if (j == (BufferSize / 4))
  4843. dma_success = 1;
  4844. }
  4845. return LM_STATUS_SUCCESS;
  4846. }
  4847. #endif