44x_spd_ddr2.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those currently are:
  5. *
  6. * 405: 405EX(r)
  7. * 440/460: 440SP/440SPe/460EX/460GT
  8. *
  9. * Copyright (c) 2008 Nuovation System Designs, LLC
  10. * Grant Erickson <gerickson@nuovations.com>
  11. * (C) Copyright 2007-2008
  12. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  13. *
  14. * COPYRIGHT AMCC CORPORATION 2004
  15. *
  16. * See file CREDITS for list of people who contributed to this
  17. * project.
  18. *
  19. * This program is free software; you can redistribute it and/or
  20. * modify it under the terms of the GNU General Public License as
  21. * published by the Free Software Foundation; either version 2 of
  22. * the License, or (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  32. * MA 02111-1307 USA
  33. *
  34. */
  35. /* define DEBUG for debugging output (obviously ;-)) */
  36. #if 0
  37. #define DEBUG
  38. #endif
  39. #include <common.h>
  40. #include <command.h>
  41. #include <ppc4xx.h>
  42. #include <i2c.h>
  43. #include <asm/io.h>
  44. #include <asm/processor.h>
  45. #include <asm/mmu.h>
  46. #include <asm/cache.h>
  47. #include "ecc.h"
  48. #if defined(CONFIG_SDRAM_PPC4xx_IBM_DDR2)
  49. #define PPC4xx_IBM_DDR2_DUMP_REGISTER(mnemonic) \
  50. do { \
  51. u32 data; \
  52. mfsdram(SDRAM_##mnemonic, data); \
  53. printf("%20s[%02x] = 0x%08X\n", \
  54. "SDRAM_" #mnemonic, SDRAM_##mnemonic, data); \
  55. } while (0)
  56. static inline void ppc4xx_ibm_ddr2_register_dump(void);
  57. #if defined(CONFIG_SPD_EEPROM)
  58. /*-----------------------------------------------------------------------------+
  59. * Defines
  60. *-----------------------------------------------------------------------------*/
  61. #ifndef TRUE
  62. #define TRUE 1
  63. #endif
  64. #ifndef FALSE
  65. #define FALSE 0
  66. #endif
  67. #define SDRAM_DDR1 1
  68. #define SDRAM_DDR2 2
  69. #define SDRAM_NONE 0
  70. #define MAXDIMMS 2
  71. #define MAXRANKS 4
  72. #define MAXBXCF 4
  73. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  74. #define ONE_BILLION 1000000000
  75. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  76. #define CMD_NOP (7 << 19)
  77. #define CMD_PRECHARGE (2 << 19)
  78. #define CMD_REFRESH (1 << 19)
  79. #define CMD_EMR (0 << 19)
  80. #define CMD_READ (5 << 19)
  81. #define CMD_WRITE (4 << 19)
  82. #define SELECT_MR (0 << 16)
  83. #define SELECT_EMR (1 << 16)
  84. #define SELECT_EMR2 (2 << 16)
  85. #define SELECT_EMR3 (3 << 16)
  86. /* MR */
  87. #define DLL_RESET 0x00000100
  88. #define WRITE_RECOV_2 (1 << 9)
  89. #define WRITE_RECOV_3 (2 << 9)
  90. #define WRITE_RECOV_4 (3 << 9)
  91. #define WRITE_RECOV_5 (4 << 9)
  92. #define WRITE_RECOV_6 (5 << 9)
  93. #define BURST_LEN_4 0x00000002
  94. /* EMR */
  95. #define ODT_0_OHM 0x00000000
  96. #define ODT_50_OHM 0x00000044
  97. #define ODT_75_OHM 0x00000004
  98. #define ODT_150_OHM 0x00000040
  99. #define ODS_FULL 0x00000000
  100. #define ODS_REDUCED 0x00000002
  101. #define OCD_CALIB_DEF 0x00000380
  102. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  103. #define ODT_EB0R (0x80000000 >> 8)
  104. #define ODT_EB0W (0x80000000 >> 7)
  105. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  106. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  107. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  108. /* Defines for the Read Cycle Delay test */
  109. #define NUMMEMTESTS 8
  110. #define NUMMEMWORDS 8
  111. #define NUMLOOPS 64 /* memory test loops */
  112. /*
  113. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  114. * region. Right now the cache should still be disabled in U-Boot because of the
  115. * EMAC driver, that need it's buffer descriptor to be located in non cached
  116. * memory.
  117. *
  118. * If at some time this restriction doesn't apply anymore, just define
  119. * CONFIG_4xx_DCACHE in the board config file and this code should setup
  120. * everything correctly.
  121. */
  122. #ifdef CONFIG_4xx_DCACHE
  123. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  124. #else
  125. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  126. #endif
  127. /*
  128. * Newer PPC's like 440SPe, 460EX/GT can be equipped with more than 2GB of SDRAM.
  129. * To support such configurations, we "only" map the first 2GB via the TLB's. We
  130. * need some free virtual address space for the remaining peripherals like, SoC
  131. * devices, FLASH etc.
  132. *
  133. * Note that ECC is currently not supported on configurations with more than 2GB
  134. * SDRAM. This is because we only map the first 2GB on such systems, and therefore
  135. * the ECC parity byte of the remaining area can't be written.
  136. */
  137. #ifndef CONFIG_MAX_MEM_MAPPED
  138. #define CONFIG_MAX_MEM_MAPPED ((phys_size_t)2 << 30)
  139. #endif
  140. /*
  141. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  142. */
  143. void __spd_ddr_init_hang (void)
  144. {
  145. hang ();
  146. }
  147. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  148. /*
  149. * To provide an interface for board specific config values in this common
  150. * DDR setup code, we implement he "weak" default functions here. They return
  151. * the default value back to the caller.
  152. *
  153. * Please see include/configs/yucca.h for an example fora board specific
  154. * implementation.
  155. */
  156. u32 __ddr_wrdtr(u32 default_val)
  157. {
  158. return default_val;
  159. }
  160. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  161. u32 __ddr_clktr(u32 default_val)
  162. {
  163. return default_val;
  164. }
  165. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  166. /* Private Structure Definitions */
  167. /* enum only to ease code for cas latency setting */
  168. typedef enum ddr_cas_id {
  169. DDR_CAS_2 = 20,
  170. DDR_CAS_2_5 = 25,
  171. DDR_CAS_3 = 30,
  172. DDR_CAS_4 = 40,
  173. DDR_CAS_5 = 50
  174. } ddr_cas_id_t;
  175. /*-----------------------------------------------------------------------------+
  176. * Prototypes
  177. *-----------------------------------------------------------------------------*/
  178. static phys_size_t sdram_memsize(void);
  179. static void get_spd_info(unsigned long *dimm_populated,
  180. unsigned char *iic0_dimm_addr,
  181. unsigned long num_dimm_banks);
  182. static void check_mem_type(unsigned long *dimm_populated,
  183. unsigned char *iic0_dimm_addr,
  184. unsigned long num_dimm_banks);
  185. static void check_frequency(unsigned long *dimm_populated,
  186. unsigned char *iic0_dimm_addr,
  187. unsigned long num_dimm_banks);
  188. static void check_rank_number(unsigned long *dimm_populated,
  189. unsigned char *iic0_dimm_addr,
  190. unsigned long num_dimm_banks);
  191. static void check_voltage_type(unsigned long *dimm_populated,
  192. unsigned char *iic0_dimm_addr,
  193. unsigned long num_dimm_banks);
  194. static void program_memory_queue(unsigned long *dimm_populated,
  195. unsigned char *iic0_dimm_addr,
  196. unsigned long num_dimm_banks);
  197. static void program_codt(unsigned long *dimm_populated,
  198. unsigned char *iic0_dimm_addr,
  199. unsigned long num_dimm_banks);
  200. static void program_mode(unsigned long *dimm_populated,
  201. unsigned char *iic0_dimm_addr,
  202. unsigned long num_dimm_banks,
  203. ddr_cas_id_t *selected_cas,
  204. int *write_recovery);
  205. static void program_tr(unsigned long *dimm_populated,
  206. unsigned char *iic0_dimm_addr,
  207. unsigned long num_dimm_banks);
  208. static void program_rtr(unsigned long *dimm_populated,
  209. unsigned char *iic0_dimm_addr,
  210. unsigned long num_dimm_banks);
  211. static void program_bxcf(unsigned long *dimm_populated,
  212. unsigned char *iic0_dimm_addr,
  213. unsigned long num_dimm_banks);
  214. static void program_copt1(unsigned long *dimm_populated,
  215. unsigned char *iic0_dimm_addr,
  216. unsigned long num_dimm_banks);
  217. static void program_initplr(unsigned long *dimm_populated,
  218. unsigned char *iic0_dimm_addr,
  219. unsigned long num_dimm_banks,
  220. ddr_cas_id_t selected_cas,
  221. int write_recovery);
  222. static unsigned long is_ecc_enabled(void);
  223. #ifdef CONFIG_DDR_ECC
  224. static void program_ecc(unsigned long *dimm_populated,
  225. unsigned char *iic0_dimm_addr,
  226. unsigned long num_dimm_banks,
  227. unsigned long tlb_word2_i_value);
  228. static void program_ecc_addr(unsigned long start_address,
  229. unsigned long num_bytes,
  230. unsigned long tlb_word2_i_value);
  231. #endif
  232. static void program_DQS_calibration(unsigned long *dimm_populated,
  233. unsigned char *iic0_dimm_addr,
  234. unsigned long num_dimm_banks);
  235. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  236. static void test(void);
  237. #else
  238. static void DQS_calibration_process(void);
  239. #endif
  240. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  241. void dcbz_area(u32 start_address, u32 num_bytes);
  242. static u32 mfdcr_any(u32 dcr)
  243. {
  244. u32 val;
  245. switch (dcr) {
  246. case SDRAM_R0BAS + 0:
  247. val = mfdcr(SDRAM_R0BAS + 0);
  248. break;
  249. case SDRAM_R0BAS + 1:
  250. val = mfdcr(SDRAM_R0BAS + 1);
  251. break;
  252. case SDRAM_R0BAS + 2:
  253. val = mfdcr(SDRAM_R0BAS + 2);
  254. break;
  255. case SDRAM_R0BAS + 3:
  256. val = mfdcr(SDRAM_R0BAS + 3);
  257. break;
  258. default:
  259. printf("DCR %d not defined in case statement!!!\n", dcr);
  260. val = 0; /* just to satisfy the compiler */
  261. }
  262. return val;
  263. }
  264. static void mtdcr_any(u32 dcr, u32 val)
  265. {
  266. switch (dcr) {
  267. case SDRAM_R0BAS + 0:
  268. mtdcr(SDRAM_R0BAS + 0, val);
  269. break;
  270. case SDRAM_R0BAS + 1:
  271. mtdcr(SDRAM_R0BAS + 1, val);
  272. break;
  273. case SDRAM_R0BAS + 2:
  274. mtdcr(SDRAM_R0BAS + 2, val);
  275. break;
  276. case SDRAM_R0BAS + 3:
  277. mtdcr(SDRAM_R0BAS + 3, val);
  278. break;
  279. default:
  280. printf("DCR %d not defined in case statement!!!\n", dcr);
  281. }
  282. }
  283. static unsigned char spd_read(uchar chip, uint addr)
  284. {
  285. unsigned char data[2];
  286. if (i2c_probe(chip) == 0)
  287. if (i2c_read(chip, addr, 1, data, 1) == 0)
  288. return data[0];
  289. return 0;
  290. }
  291. /*-----------------------------------------------------------------------------+
  292. * sdram_memsize
  293. *-----------------------------------------------------------------------------*/
  294. static phys_size_t sdram_memsize(void)
  295. {
  296. phys_size_t mem_size;
  297. unsigned long mcopt2;
  298. unsigned long mcstat;
  299. unsigned long mb0cf;
  300. unsigned long sdsz;
  301. unsigned long i;
  302. mem_size = 0;
  303. mfsdram(SDRAM_MCOPT2, mcopt2);
  304. mfsdram(SDRAM_MCSTAT, mcstat);
  305. /* DDR controller must be enabled and not in self-refresh. */
  306. /* Otherwise memsize is zero. */
  307. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  308. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  309. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  310. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  311. for (i = 0; i < MAXBXCF; i++) {
  312. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  313. /* Banks enabled */
  314. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  315. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  316. switch(sdsz) {
  317. case SDRAM_RXBAS_SDSZ_8:
  318. mem_size+=8;
  319. break;
  320. case SDRAM_RXBAS_SDSZ_16:
  321. mem_size+=16;
  322. break;
  323. case SDRAM_RXBAS_SDSZ_32:
  324. mem_size+=32;
  325. break;
  326. case SDRAM_RXBAS_SDSZ_64:
  327. mem_size+=64;
  328. break;
  329. case SDRAM_RXBAS_SDSZ_128:
  330. mem_size+=128;
  331. break;
  332. case SDRAM_RXBAS_SDSZ_256:
  333. mem_size+=256;
  334. break;
  335. case SDRAM_RXBAS_SDSZ_512:
  336. mem_size+=512;
  337. break;
  338. case SDRAM_RXBAS_SDSZ_1024:
  339. mem_size+=1024;
  340. break;
  341. case SDRAM_RXBAS_SDSZ_2048:
  342. mem_size+=2048;
  343. break;
  344. case SDRAM_RXBAS_SDSZ_4096:
  345. mem_size+=4096;
  346. break;
  347. default:
  348. printf("WARNING: Unsupported bank size (SDSZ=0x%lx)!\n"
  349. , sdsz);
  350. mem_size=0;
  351. break;
  352. }
  353. }
  354. }
  355. }
  356. return mem_size << 20;
  357. }
  358. /*-----------------------------------------------------------------------------+
  359. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  360. * Note: This routine runs from flash with a stack set up in the chip's
  361. * sram space. It is important that the routine does not require .sbss, .bss or
  362. * .data sections. It also cannot call routines that require these sections.
  363. *-----------------------------------------------------------------------------*/
  364. /*-----------------------------------------------------------------------------
  365. * Function: initdram
  366. * Description: Configures SDRAM memory banks for DDR operation.
  367. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  368. * via the IIC bus and then configures the DDR SDRAM memory
  369. * banks appropriately. If Auto Memory Configuration is
  370. * not used, it is assumed that no DIMM is plugged
  371. *-----------------------------------------------------------------------------*/
  372. phys_size_t initdram(int board_type)
  373. {
  374. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  375. unsigned char spd0[MAX_SPD_BYTES];
  376. unsigned char spd1[MAX_SPD_BYTES];
  377. unsigned char *dimm_spd[MAXDIMMS];
  378. unsigned long dimm_populated[MAXDIMMS];
  379. unsigned long num_dimm_banks; /* on board dimm banks */
  380. unsigned long val;
  381. ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */
  382. int write_recovery;
  383. phys_size_t dram_size = 0;
  384. num_dimm_banks = sizeof(iic0_dimm_addr);
  385. /*------------------------------------------------------------------
  386. * Set up an array of SPD matrixes.
  387. *-----------------------------------------------------------------*/
  388. dimm_spd[0] = spd0;
  389. dimm_spd[1] = spd1;
  390. /*------------------------------------------------------------------
  391. * Reset the DDR-SDRAM controller.
  392. *-----------------------------------------------------------------*/
  393. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  394. mtsdr(SDR0_SRST, 0x00000000);
  395. /*
  396. * Make sure I2C controller is initialized
  397. * before continuing.
  398. */
  399. /* switch to correct I2C bus */
  400. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  401. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  402. /*------------------------------------------------------------------
  403. * Clear out the serial presence detect buffers.
  404. * Perform IIC reads from the dimm. Fill in the spds.
  405. * Check to see if the dimm slots are populated
  406. *-----------------------------------------------------------------*/
  407. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  408. /*------------------------------------------------------------------
  409. * Check the memory type for the dimms plugged.
  410. *-----------------------------------------------------------------*/
  411. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  412. /*------------------------------------------------------------------
  413. * Check the frequency supported for the dimms plugged.
  414. *-----------------------------------------------------------------*/
  415. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  416. /*------------------------------------------------------------------
  417. * Check the total rank number.
  418. *-----------------------------------------------------------------*/
  419. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  420. /*------------------------------------------------------------------
  421. * Check the voltage type for the dimms plugged.
  422. *-----------------------------------------------------------------*/
  423. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  424. /*------------------------------------------------------------------
  425. * Program SDRAM controller options 2 register
  426. * Except Enabling of the memory controller.
  427. *-----------------------------------------------------------------*/
  428. mfsdram(SDRAM_MCOPT2, val);
  429. mtsdram(SDRAM_MCOPT2,
  430. (val &
  431. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  432. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  433. SDRAM_MCOPT2_ISIE_MASK))
  434. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  435. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  436. SDRAM_MCOPT2_ISIE_ENABLE));
  437. /*------------------------------------------------------------------
  438. * Program SDRAM controller options 1 register
  439. * Note: Does not enable the memory controller.
  440. *-----------------------------------------------------------------*/
  441. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  442. /*------------------------------------------------------------------
  443. * Set the SDRAM Controller On Die Termination Register
  444. *-----------------------------------------------------------------*/
  445. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  446. /*------------------------------------------------------------------
  447. * Program SDRAM refresh register.
  448. *-----------------------------------------------------------------*/
  449. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  450. /*------------------------------------------------------------------
  451. * Program SDRAM mode register.
  452. *-----------------------------------------------------------------*/
  453. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  454. &selected_cas, &write_recovery);
  455. /*------------------------------------------------------------------
  456. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  457. *-----------------------------------------------------------------*/
  458. mfsdram(SDRAM_WRDTR, val);
  459. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  460. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  461. /*------------------------------------------------------------------
  462. * Set the SDRAM Clock Timing Register
  463. *-----------------------------------------------------------------*/
  464. mfsdram(SDRAM_CLKTR, val);
  465. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  466. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  467. /*------------------------------------------------------------------
  468. * Program the BxCF registers.
  469. *-----------------------------------------------------------------*/
  470. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  471. /*------------------------------------------------------------------
  472. * Program SDRAM timing registers.
  473. *-----------------------------------------------------------------*/
  474. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  475. /*------------------------------------------------------------------
  476. * Set the Extended Mode register
  477. *-----------------------------------------------------------------*/
  478. mfsdram(SDRAM_MEMODE, val);
  479. mtsdram(SDRAM_MEMODE,
  480. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  481. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  482. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  483. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  484. /*------------------------------------------------------------------
  485. * Program Initialization preload registers.
  486. *-----------------------------------------------------------------*/
  487. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  488. selected_cas, write_recovery);
  489. /*------------------------------------------------------------------
  490. * Delay to ensure 200usec have elapsed since reset.
  491. *-----------------------------------------------------------------*/
  492. udelay(400);
  493. /*------------------------------------------------------------------
  494. * Set the memory queue core base addr.
  495. *-----------------------------------------------------------------*/
  496. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  497. /*------------------------------------------------------------------
  498. * Program SDRAM controller options 2 register
  499. * Enable the memory controller.
  500. *-----------------------------------------------------------------*/
  501. mfsdram(SDRAM_MCOPT2, val);
  502. mtsdram(SDRAM_MCOPT2,
  503. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  504. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  505. SDRAM_MCOPT2_IPTR_EXECUTE);
  506. /*------------------------------------------------------------------
  507. * Wait for IPTR_EXECUTE init sequence to complete.
  508. *-----------------------------------------------------------------*/
  509. do {
  510. mfsdram(SDRAM_MCSTAT, val);
  511. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  512. /* enable the controller only after init sequence completes */
  513. mfsdram(SDRAM_MCOPT2, val);
  514. mtsdram(SDRAM_MCOPT2, (val | SDRAM_MCOPT2_DCEN_ENABLE));
  515. /* Make sure delay-line calibration is done before proceeding */
  516. do {
  517. mfsdram(SDRAM_DLCR, val);
  518. } while (!(val & SDRAM_DLCR_DLCS_COMPLETE));
  519. /* get installed memory size */
  520. dram_size = sdram_memsize();
  521. /*
  522. * Limit size to 2GB
  523. */
  524. if (dram_size > CONFIG_MAX_MEM_MAPPED)
  525. dram_size = CONFIG_MAX_MEM_MAPPED;
  526. /* and program tlb entries for this size (dynamic) */
  527. /*
  528. * Program TLB entries with caches enabled, for best performace
  529. * while auto-calibrating and ECC generation
  530. */
  531. program_tlb(0, 0, dram_size, 0);
  532. /*------------------------------------------------------------------
  533. * DQS calibration.
  534. *-----------------------------------------------------------------*/
  535. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  536. #ifdef CONFIG_DDR_ECC
  537. /*------------------------------------------------------------------
  538. * If ecc is enabled, initialize the parity bits.
  539. *-----------------------------------------------------------------*/
  540. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  541. #endif
  542. /*
  543. * Now after initialization (auto-calibration and ECC generation)
  544. * remove the TLB entries with caches enabled and program again with
  545. * desired cache functionality
  546. */
  547. remove_tlb(0, dram_size);
  548. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  549. ppc4xx_ibm_ddr2_register_dump();
  550. /*
  551. * Clear potential errors resulting from auto-calibration.
  552. * If not done, then we could get an interrupt later on when
  553. * exceptions are enabled.
  554. */
  555. set_mcsr(get_mcsr());
  556. return sdram_memsize();
  557. }
  558. static void get_spd_info(unsigned long *dimm_populated,
  559. unsigned char *iic0_dimm_addr,
  560. unsigned long num_dimm_banks)
  561. {
  562. unsigned long dimm_num;
  563. unsigned long dimm_found;
  564. unsigned char num_of_bytes;
  565. unsigned char total_size;
  566. dimm_found = FALSE;
  567. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  568. num_of_bytes = 0;
  569. total_size = 0;
  570. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  571. debug("\nspd_read(0x%x) returned %d\n",
  572. iic0_dimm_addr[dimm_num], num_of_bytes);
  573. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  574. debug("spd_read(0x%x) returned %d\n",
  575. iic0_dimm_addr[dimm_num], total_size);
  576. if ((num_of_bytes != 0) && (total_size != 0)) {
  577. dimm_populated[dimm_num] = TRUE;
  578. dimm_found = TRUE;
  579. debug("DIMM slot %lu: populated\n", dimm_num);
  580. } else {
  581. dimm_populated[dimm_num] = FALSE;
  582. debug("DIMM slot %lu: Not populated\n", dimm_num);
  583. }
  584. }
  585. if (dimm_found == FALSE) {
  586. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  587. spd_ddr_init_hang ();
  588. }
  589. }
  590. void board_add_ram_info(int use_default)
  591. {
  592. PPC4xx_SYS_INFO board_cfg;
  593. u32 val;
  594. if (is_ecc_enabled())
  595. puts(" (ECC");
  596. else
  597. puts(" (ECC not");
  598. get_sys_info(&board_cfg);
  599. mfsdr(SDR0_DDR0, val);
  600. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  601. printf(" enabled, %d MHz", (val * 2) / 1000000);
  602. mfsdram(SDRAM_MMODE, val);
  603. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  604. printf(", CL%d)", val);
  605. }
  606. /*------------------------------------------------------------------
  607. * For the memory DIMMs installed, this routine verifies that they
  608. * really are DDR specific DIMMs.
  609. *-----------------------------------------------------------------*/
  610. static void check_mem_type(unsigned long *dimm_populated,
  611. unsigned char *iic0_dimm_addr,
  612. unsigned long num_dimm_banks)
  613. {
  614. unsigned long dimm_num;
  615. unsigned long dimm_type;
  616. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  617. if (dimm_populated[dimm_num] == TRUE) {
  618. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  619. switch (dimm_type) {
  620. case 1:
  621. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  622. "slot %d.\n", (unsigned int)dimm_num);
  623. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  624. printf("Replace the DIMM module with a supported DIMM.\n\n");
  625. spd_ddr_init_hang ();
  626. break;
  627. case 2:
  628. printf("ERROR: EDO DIMM detected in slot %d.\n",
  629. (unsigned int)dimm_num);
  630. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  631. printf("Replace the DIMM module with a supported DIMM.\n\n");
  632. spd_ddr_init_hang ();
  633. break;
  634. case 3:
  635. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  636. (unsigned int)dimm_num);
  637. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  638. printf("Replace the DIMM module with a supported DIMM.\n\n");
  639. spd_ddr_init_hang ();
  640. break;
  641. case 4:
  642. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  643. (unsigned int)dimm_num);
  644. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  645. printf("Replace the DIMM module with a supported DIMM.\n\n");
  646. spd_ddr_init_hang ();
  647. break;
  648. case 5:
  649. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  650. (unsigned int)dimm_num);
  651. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  652. printf("Replace the DIMM module with a supported DIMM.\n\n");
  653. spd_ddr_init_hang ();
  654. break;
  655. case 6:
  656. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  657. (unsigned int)dimm_num);
  658. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  659. printf("Replace the DIMM module with a supported DIMM.\n\n");
  660. spd_ddr_init_hang ();
  661. break;
  662. case 7:
  663. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  664. dimm_populated[dimm_num] = SDRAM_DDR1;
  665. break;
  666. case 8:
  667. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  668. dimm_populated[dimm_num] = SDRAM_DDR2;
  669. break;
  670. default:
  671. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  672. (unsigned int)dimm_num);
  673. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  674. printf("Replace the DIMM module with a supported DIMM.\n\n");
  675. spd_ddr_init_hang ();
  676. break;
  677. }
  678. }
  679. }
  680. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  681. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  682. && (dimm_populated[dimm_num] != SDRAM_NONE)
  683. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  684. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  685. spd_ddr_init_hang ();
  686. }
  687. }
  688. }
  689. /*------------------------------------------------------------------
  690. * For the memory DIMMs installed, this routine verifies that
  691. * frequency previously calculated is supported.
  692. *-----------------------------------------------------------------*/
  693. static void check_frequency(unsigned long *dimm_populated,
  694. unsigned char *iic0_dimm_addr,
  695. unsigned long num_dimm_banks)
  696. {
  697. unsigned long dimm_num;
  698. unsigned long tcyc_reg;
  699. unsigned long cycle_time;
  700. unsigned long calc_cycle_time;
  701. unsigned long sdram_freq;
  702. unsigned long sdr_ddrpll;
  703. PPC4xx_SYS_INFO board_cfg;
  704. /*------------------------------------------------------------------
  705. * Get the board configuration info.
  706. *-----------------------------------------------------------------*/
  707. get_sys_info(&board_cfg);
  708. mfsdr(SDR0_DDR0, sdr_ddrpll);
  709. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  710. /*
  711. * calc_cycle_time is calculated from DDR frequency set by board/chip
  712. * and is expressed in multiple of 10 picoseconds
  713. * to match the way DIMM cycle time is calculated below.
  714. */
  715. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  716. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  717. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  718. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  719. /*
  720. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  721. * the higher order nibble (bits 4-7) designates the cycle time
  722. * to a granularity of 1ns;
  723. * the value presented by the lower order nibble (bits 0-3)
  724. * has a granularity of .1ns and is added to the value designated
  725. * by the higher nibble. In addition, four lines of the lower order
  726. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  727. */
  728. /* Convert from hex to decimal */
  729. if ((tcyc_reg & 0x0F) == 0x0D)
  730. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  731. else if ((tcyc_reg & 0x0F) == 0x0C)
  732. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  733. else if ((tcyc_reg & 0x0F) == 0x0B)
  734. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  735. else if ((tcyc_reg & 0x0F) == 0x0A)
  736. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  737. else
  738. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  739. ((tcyc_reg & 0x0F)*10);
  740. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  741. if (cycle_time > (calc_cycle_time + 10)) {
  742. /*
  743. * the provided sdram cycle_time is too small
  744. * for the available DIMM cycle_time.
  745. * The additionnal 100ps is here to accept a small incertainty.
  746. */
  747. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  748. "slot %d \n while calculated cycle time is %d ps.\n",
  749. (unsigned int)(cycle_time*10),
  750. (unsigned int)dimm_num,
  751. (unsigned int)(calc_cycle_time*10));
  752. printf("Replace the DIMM, or change DDR frequency via "
  753. "strapping bits.\n\n");
  754. spd_ddr_init_hang ();
  755. }
  756. }
  757. }
  758. }
  759. /*------------------------------------------------------------------
  760. * For the memory DIMMs installed, this routine verifies two
  761. * ranks/banks maximum are availables.
  762. *-----------------------------------------------------------------*/
  763. static void check_rank_number(unsigned long *dimm_populated,
  764. unsigned char *iic0_dimm_addr,
  765. unsigned long num_dimm_banks)
  766. {
  767. unsigned long dimm_num;
  768. unsigned long dimm_rank;
  769. unsigned long total_rank = 0;
  770. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  771. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  772. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  773. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  774. dimm_rank = (dimm_rank & 0x0F) +1;
  775. else
  776. dimm_rank = dimm_rank & 0x0F;
  777. if (dimm_rank > MAXRANKS) {
  778. printf("ERROR: DRAM DIMM detected with %lu ranks in "
  779. "slot %lu is not supported.\n", dimm_rank, dimm_num);
  780. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  781. printf("Replace the DIMM module with a supported DIMM.\n\n");
  782. spd_ddr_init_hang ();
  783. } else
  784. total_rank += dimm_rank;
  785. }
  786. if (total_rank > MAXRANKS) {
  787. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  788. "for all slots.\n", (unsigned int)total_rank);
  789. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  790. printf("Remove one of the DIMM modules.\n\n");
  791. spd_ddr_init_hang ();
  792. }
  793. }
  794. }
  795. /*------------------------------------------------------------------
  796. * only support 2.5V modules.
  797. * This routine verifies this.
  798. *-----------------------------------------------------------------*/
  799. static void check_voltage_type(unsigned long *dimm_populated,
  800. unsigned char *iic0_dimm_addr,
  801. unsigned long num_dimm_banks)
  802. {
  803. unsigned long dimm_num;
  804. unsigned long voltage_type;
  805. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  806. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  807. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  808. switch (voltage_type) {
  809. case 0x00:
  810. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  811. printf("This DIMM is 5.0 Volt/TTL.\n");
  812. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  813. (unsigned int)dimm_num);
  814. spd_ddr_init_hang ();
  815. break;
  816. case 0x01:
  817. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  818. printf("This DIMM is LVTTL.\n");
  819. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  820. (unsigned int)dimm_num);
  821. spd_ddr_init_hang ();
  822. break;
  823. case 0x02:
  824. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  825. printf("This DIMM is 1.5 Volt.\n");
  826. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  827. (unsigned int)dimm_num);
  828. spd_ddr_init_hang ();
  829. break;
  830. case 0x03:
  831. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  832. printf("This DIMM is 3.3 Volt/TTL.\n");
  833. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  834. (unsigned int)dimm_num);
  835. spd_ddr_init_hang ();
  836. break;
  837. case 0x04:
  838. /* 2.5 Voltage only for DDR1 */
  839. break;
  840. case 0x05:
  841. /* 1.8 Voltage only for DDR2 */
  842. break;
  843. default:
  844. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  845. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  846. (unsigned int)dimm_num);
  847. spd_ddr_init_hang ();
  848. break;
  849. }
  850. }
  851. }
  852. }
  853. /*-----------------------------------------------------------------------------+
  854. * program_copt1.
  855. *-----------------------------------------------------------------------------*/
  856. static void program_copt1(unsigned long *dimm_populated,
  857. unsigned char *iic0_dimm_addr,
  858. unsigned long num_dimm_banks)
  859. {
  860. unsigned long dimm_num;
  861. unsigned long mcopt1;
  862. unsigned long ecc_enabled;
  863. unsigned long ecc = 0;
  864. unsigned long data_width = 0;
  865. unsigned long dimm_32bit;
  866. unsigned long dimm_64bit;
  867. unsigned long registered = 0;
  868. unsigned long attribute = 0;
  869. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  870. unsigned long bankcount;
  871. unsigned long ddrtype;
  872. unsigned long val;
  873. #ifdef CONFIG_DDR_ECC
  874. ecc_enabled = TRUE;
  875. #else
  876. ecc_enabled = FALSE;
  877. #endif
  878. dimm_32bit = FALSE;
  879. dimm_64bit = FALSE;
  880. buf0 = FALSE;
  881. buf1 = FALSE;
  882. /*------------------------------------------------------------------
  883. * Set memory controller options reg 1, SDRAM_MCOPT1.
  884. *-----------------------------------------------------------------*/
  885. mfsdram(SDRAM_MCOPT1, val);
  886. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  887. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  888. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  889. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  890. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  891. SDRAM_MCOPT1_DREF_MASK);
  892. mcopt1 |= SDRAM_MCOPT1_QDEP;
  893. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  894. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  895. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  896. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  897. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  898. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  899. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  900. /* test ecc support */
  901. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  902. if (ecc != 0x02) /* ecc not supported */
  903. ecc_enabled = FALSE;
  904. /* test bank count */
  905. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  906. if (bankcount == 0x04) /* bank count = 4 */
  907. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  908. else /* bank count = 8 */
  909. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  910. /* test DDR type */
  911. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  912. /* test for buffered/unbuffered, registered, differential clocks */
  913. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  914. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  915. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  916. if (dimm_num == 0) {
  917. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  918. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  919. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  920. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  921. if (registered == 1) { /* DDR2 always buffered */
  922. /* TODO: what about above comments ? */
  923. mcopt1 |= SDRAM_MCOPT1_RDEN;
  924. buf0 = TRUE;
  925. } else {
  926. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  927. if ((attribute & 0x02) == 0x00) {
  928. /* buffered not supported */
  929. buf0 = FALSE;
  930. } else {
  931. mcopt1 |= SDRAM_MCOPT1_RDEN;
  932. buf0 = TRUE;
  933. }
  934. }
  935. }
  936. else if (dimm_num == 1) {
  937. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  938. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  939. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  940. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  941. if (registered == 1) {
  942. /* DDR2 always buffered */
  943. mcopt1 |= SDRAM_MCOPT1_RDEN;
  944. buf1 = TRUE;
  945. } else {
  946. if ((attribute & 0x02) == 0x00) {
  947. /* buffered not supported */
  948. buf1 = FALSE;
  949. } else {
  950. mcopt1 |= SDRAM_MCOPT1_RDEN;
  951. buf1 = TRUE;
  952. }
  953. }
  954. }
  955. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  956. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  957. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  958. switch (data_width) {
  959. case 72:
  960. case 64:
  961. dimm_64bit = TRUE;
  962. break;
  963. case 40:
  964. case 32:
  965. dimm_32bit = TRUE;
  966. break;
  967. default:
  968. printf("WARNING: Detected a DIMM with a data width of %lu bits.\n",
  969. data_width);
  970. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  971. break;
  972. }
  973. }
  974. }
  975. /* verify matching properties */
  976. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  977. if (buf0 != buf1) {
  978. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  979. spd_ddr_init_hang ();
  980. }
  981. }
  982. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  983. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  984. spd_ddr_init_hang ();
  985. }
  986. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  987. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  988. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  989. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  990. } else {
  991. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  992. spd_ddr_init_hang ();
  993. }
  994. if (ecc_enabled == TRUE)
  995. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  996. else
  997. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  998. mtsdram(SDRAM_MCOPT1, mcopt1);
  999. }
  1000. /*-----------------------------------------------------------------------------+
  1001. * program_codt.
  1002. *-----------------------------------------------------------------------------*/
  1003. static void program_codt(unsigned long *dimm_populated,
  1004. unsigned char *iic0_dimm_addr,
  1005. unsigned long num_dimm_banks)
  1006. {
  1007. unsigned long codt;
  1008. unsigned long modt0 = 0;
  1009. unsigned long modt1 = 0;
  1010. unsigned long modt2 = 0;
  1011. unsigned long modt3 = 0;
  1012. unsigned char dimm_num;
  1013. unsigned char dimm_rank;
  1014. unsigned char total_rank = 0;
  1015. unsigned char total_dimm = 0;
  1016. unsigned char dimm_type = 0;
  1017. unsigned char firstSlot = 0;
  1018. /*------------------------------------------------------------------
  1019. * Set the SDRAM Controller On Die Termination Register
  1020. *-----------------------------------------------------------------*/
  1021. mfsdram(SDRAM_CODT, codt);
  1022. codt |= (SDRAM_CODT_IO_NMODE
  1023. & (~SDRAM_CODT_DQS_SINGLE_END
  1024. & ~SDRAM_CODT_CKSE_SINGLE_END
  1025. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  1026. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  1027. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1028. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1029. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  1030. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  1031. dimm_rank = (dimm_rank & 0x0F) + 1;
  1032. dimm_type = SDRAM_DDR2;
  1033. } else {
  1034. dimm_rank = dimm_rank & 0x0F;
  1035. dimm_type = SDRAM_DDR1;
  1036. }
  1037. total_rank += dimm_rank;
  1038. total_dimm++;
  1039. if ((dimm_num == 0) && (total_dimm == 1))
  1040. firstSlot = TRUE;
  1041. else
  1042. firstSlot = FALSE;
  1043. }
  1044. }
  1045. if (dimm_type == SDRAM_DDR2) {
  1046. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1047. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1048. if (total_rank == 1) { /* PUUU */
  1049. codt |= CALC_ODT_R(0);
  1050. modt0 = CALC_ODT_W(0);
  1051. modt1 = 0x00000000;
  1052. modt2 = 0x00000000;
  1053. modt3 = 0x00000000;
  1054. }
  1055. if (total_rank == 2) { /* PPUU */
  1056. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1057. modt0 = CALC_ODT_W(0) | CALC_ODT_W(1);
  1058. modt1 = 0x00000000;
  1059. modt2 = 0x00000000;
  1060. modt3 = 0x00000000;
  1061. }
  1062. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1063. if (total_rank == 1) { /* UUPU */
  1064. codt |= CALC_ODT_R(2);
  1065. modt0 = 0x00000000;
  1066. modt1 = 0x00000000;
  1067. modt2 = CALC_ODT_W(2);
  1068. modt3 = 0x00000000;
  1069. }
  1070. if (total_rank == 2) { /* UUPP */
  1071. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1072. modt0 = 0x00000000;
  1073. modt1 = 0x00000000;
  1074. modt2 = CALC_ODT_W(2) | CALC_ODT_W(3);
  1075. modt3 = 0x00000000;
  1076. }
  1077. }
  1078. if (total_dimm == 2) {
  1079. if (total_rank == 2) { /* PUPU */
  1080. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1081. modt0 = CALC_ODT_RW(2);
  1082. modt1 = 0x00000000;
  1083. modt2 = CALC_ODT_RW(0);
  1084. modt3 = 0x00000000;
  1085. }
  1086. if (total_rank == 4) { /* PPPP */
  1087. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1088. CALC_ODT_R(2) | CALC_ODT_R(3);
  1089. modt0 = CALC_ODT_RW(2) | CALC_ODT_RW(3);
  1090. modt1 = 0x00000000;
  1091. modt2 = CALC_ODT_RW(0) | CALC_ODT_RW(1);
  1092. modt3 = 0x00000000;
  1093. }
  1094. }
  1095. } else {
  1096. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1097. modt0 = 0x00000000;
  1098. modt1 = 0x00000000;
  1099. modt2 = 0x00000000;
  1100. modt3 = 0x00000000;
  1101. if (total_dimm == 1) {
  1102. if (total_rank == 1)
  1103. codt |= 0x00800000;
  1104. if (total_rank == 2)
  1105. codt |= 0x02800000;
  1106. }
  1107. if (total_dimm == 2) {
  1108. if (total_rank == 2)
  1109. codt |= 0x08800000;
  1110. if (total_rank == 4)
  1111. codt |= 0x2a800000;
  1112. }
  1113. }
  1114. debug("nb of dimm %d\n", total_dimm);
  1115. debug("nb of rank %d\n", total_rank);
  1116. if (total_dimm == 1)
  1117. debug("dimm in slot %d\n", firstSlot);
  1118. mtsdram(SDRAM_CODT, codt);
  1119. mtsdram(SDRAM_MODT0, modt0);
  1120. mtsdram(SDRAM_MODT1, modt1);
  1121. mtsdram(SDRAM_MODT2, modt2);
  1122. mtsdram(SDRAM_MODT3, modt3);
  1123. }
  1124. /*-----------------------------------------------------------------------------+
  1125. * program_initplr.
  1126. *-----------------------------------------------------------------------------*/
  1127. static void program_initplr(unsigned long *dimm_populated,
  1128. unsigned char *iic0_dimm_addr,
  1129. unsigned long num_dimm_banks,
  1130. ddr_cas_id_t selected_cas,
  1131. int write_recovery)
  1132. {
  1133. u32 cas = 0;
  1134. u32 odt = 0;
  1135. u32 ods = 0;
  1136. u32 mr;
  1137. u32 wr;
  1138. u32 emr;
  1139. u32 emr2;
  1140. u32 emr3;
  1141. int dimm_num;
  1142. int total_dimm = 0;
  1143. /******************************************************
  1144. ** Assumption: if more than one DIMM, all DIMMs are the same
  1145. ** as already checked in check_memory_type
  1146. ******************************************************/
  1147. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1148. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1149. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1150. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1151. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1152. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1153. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1154. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1155. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1156. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1157. switch (selected_cas) {
  1158. case DDR_CAS_3:
  1159. cas = 3 << 4;
  1160. break;
  1161. case DDR_CAS_4:
  1162. cas = 4 << 4;
  1163. break;
  1164. case DDR_CAS_5:
  1165. cas = 5 << 4;
  1166. break;
  1167. default:
  1168. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1169. spd_ddr_init_hang ();
  1170. break;
  1171. }
  1172. #if 0
  1173. /*
  1174. * ToDo - Still a problem with the write recovery:
  1175. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1176. * in the INITPLR reg to the value calculated in program_mode()
  1177. * results in not correctly working DDR2 memory (crash after
  1178. * relocation).
  1179. *
  1180. * So for now, set the write recovery to 3. This seems to work
  1181. * on the Corair module too.
  1182. *
  1183. * 2007-03-01, sr
  1184. */
  1185. switch (write_recovery) {
  1186. case 3:
  1187. wr = WRITE_RECOV_3;
  1188. break;
  1189. case 4:
  1190. wr = WRITE_RECOV_4;
  1191. break;
  1192. case 5:
  1193. wr = WRITE_RECOV_5;
  1194. break;
  1195. case 6:
  1196. wr = WRITE_RECOV_6;
  1197. break;
  1198. default:
  1199. printf("ERROR: write recovery not support (%d)", write_recovery);
  1200. spd_ddr_init_hang ();
  1201. break;
  1202. }
  1203. #else
  1204. wr = WRITE_RECOV_3; /* test-only, see description above */
  1205. #endif
  1206. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1207. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1208. total_dimm++;
  1209. if (total_dimm == 1) {
  1210. odt = ODT_150_OHM;
  1211. ods = ODS_FULL;
  1212. } else if (total_dimm == 2) {
  1213. odt = ODT_75_OHM;
  1214. ods = ODS_REDUCED;
  1215. } else {
  1216. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1217. spd_ddr_init_hang ();
  1218. }
  1219. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1220. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1221. emr2 = CMD_EMR | SELECT_EMR2;
  1222. emr3 = CMD_EMR | SELECT_EMR3;
  1223. /* NOP - Wait 106 MemClk cycles */
  1224. mtsdram(SDRAM_INITPLR0, SDRAM_INITPLR_ENABLE | CMD_NOP |
  1225. SDRAM_INITPLR_IMWT_ENCODE(106));
  1226. udelay(1000);
  1227. /* precharge 4 MemClk cycles */
  1228. mtsdram(SDRAM_INITPLR1, SDRAM_INITPLR_ENABLE | CMD_PRECHARGE |
  1229. SDRAM_INITPLR_IMWT_ENCODE(4));
  1230. /* EMR2 - Wait tMRD (2 MemClk cycles) */
  1231. mtsdram(SDRAM_INITPLR2, SDRAM_INITPLR_ENABLE | emr2 |
  1232. SDRAM_INITPLR_IMWT_ENCODE(2));
  1233. /* EMR3 - Wait tMRD (2 MemClk cycles) */
  1234. mtsdram(SDRAM_INITPLR3, SDRAM_INITPLR_ENABLE | emr3 |
  1235. SDRAM_INITPLR_IMWT_ENCODE(2));
  1236. /* EMR DLL ENABLE - Wait tMRD (2 MemClk cycles) */
  1237. mtsdram(SDRAM_INITPLR4, SDRAM_INITPLR_ENABLE | emr |
  1238. SDRAM_INITPLR_IMWT_ENCODE(2));
  1239. /* MR w/ DLL reset - 200 cycle wait for DLL reset */
  1240. mtsdram(SDRAM_INITPLR5, SDRAM_INITPLR_ENABLE | mr | DLL_RESET |
  1241. SDRAM_INITPLR_IMWT_ENCODE(200));
  1242. udelay(1000);
  1243. /* precharge 4 MemClk cycles */
  1244. mtsdram(SDRAM_INITPLR6, SDRAM_INITPLR_ENABLE | CMD_PRECHARGE |
  1245. SDRAM_INITPLR_IMWT_ENCODE(4));
  1246. /* Refresh 25 MemClk cycles */
  1247. mtsdram(SDRAM_INITPLR7, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
  1248. SDRAM_INITPLR_IMWT_ENCODE(25));
  1249. /* Refresh 25 MemClk cycles */
  1250. mtsdram(SDRAM_INITPLR8, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
  1251. SDRAM_INITPLR_IMWT_ENCODE(25));
  1252. /* Refresh 25 MemClk cycles */
  1253. mtsdram(SDRAM_INITPLR9, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
  1254. SDRAM_INITPLR_IMWT_ENCODE(25));
  1255. /* Refresh 25 MemClk cycles */
  1256. mtsdram(SDRAM_INITPLR10, SDRAM_INITPLR_ENABLE | CMD_REFRESH |
  1257. SDRAM_INITPLR_IMWT_ENCODE(25));
  1258. /* MR w/o DLL reset - Wait tMRD (2 MemClk cycles) */
  1259. mtsdram(SDRAM_INITPLR11, SDRAM_INITPLR_ENABLE | mr |
  1260. SDRAM_INITPLR_IMWT_ENCODE(2));
  1261. /* EMR OCD Default - Wait tMRD (2 MemClk cycles) */
  1262. mtsdram(SDRAM_INITPLR12, SDRAM_INITPLR_ENABLE | OCD_CALIB_DEF |
  1263. SDRAM_INITPLR_IMWT_ENCODE(2) | emr);
  1264. /* EMR OCD Exit */
  1265. mtsdram(SDRAM_INITPLR13, SDRAM_INITPLR_ENABLE | emr |
  1266. SDRAM_INITPLR_IMWT_ENCODE(2));
  1267. } else {
  1268. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1269. spd_ddr_init_hang ();
  1270. }
  1271. }
  1272. /*------------------------------------------------------------------
  1273. * This routine programs the SDRAM_MMODE register.
  1274. * the selected_cas is an output parameter, that will be passed
  1275. * by caller to call the above program_initplr( )
  1276. *-----------------------------------------------------------------*/
  1277. static void program_mode(unsigned long *dimm_populated,
  1278. unsigned char *iic0_dimm_addr,
  1279. unsigned long num_dimm_banks,
  1280. ddr_cas_id_t *selected_cas,
  1281. int *write_recovery)
  1282. {
  1283. unsigned long dimm_num;
  1284. unsigned long sdram_ddr1;
  1285. unsigned long t_wr_ns;
  1286. unsigned long t_wr_clk;
  1287. unsigned long cas_bit;
  1288. unsigned long cas_index;
  1289. unsigned long sdram_freq;
  1290. unsigned long ddr_check;
  1291. unsigned long mmode;
  1292. unsigned long tcyc_reg;
  1293. unsigned long cycle_2_0_clk;
  1294. unsigned long cycle_2_5_clk;
  1295. unsigned long cycle_3_0_clk;
  1296. unsigned long cycle_4_0_clk;
  1297. unsigned long cycle_5_0_clk;
  1298. unsigned long max_2_0_tcyc_ns_x_100;
  1299. unsigned long max_2_5_tcyc_ns_x_100;
  1300. unsigned long max_3_0_tcyc_ns_x_100;
  1301. unsigned long max_4_0_tcyc_ns_x_100;
  1302. unsigned long max_5_0_tcyc_ns_x_100;
  1303. unsigned long cycle_time_ns_x_100[3];
  1304. PPC4xx_SYS_INFO board_cfg;
  1305. unsigned char cas_2_0_available;
  1306. unsigned char cas_2_5_available;
  1307. unsigned char cas_3_0_available;
  1308. unsigned char cas_4_0_available;
  1309. unsigned char cas_5_0_available;
  1310. unsigned long sdr_ddrpll;
  1311. /*------------------------------------------------------------------
  1312. * Get the board configuration info.
  1313. *-----------------------------------------------------------------*/
  1314. get_sys_info(&board_cfg);
  1315. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1316. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1317. debug("sdram_freq=%d\n", sdram_freq);
  1318. /*------------------------------------------------------------------
  1319. * Handle the timing. We need to find the worst case timing of all
  1320. * the dimm modules installed.
  1321. *-----------------------------------------------------------------*/
  1322. t_wr_ns = 0;
  1323. cas_2_0_available = TRUE;
  1324. cas_2_5_available = TRUE;
  1325. cas_3_0_available = TRUE;
  1326. cas_4_0_available = TRUE;
  1327. cas_5_0_available = TRUE;
  1328. max_2_0_tcyc_ns_x_100 = 10;
  1329. max_2_5_tcyc_ns_x_100 = 10;
  1330. max_3_0_tcyc_ns_x_100 = 10;
  1331. max_4_0_tcyc_ns_x_100 = 10;
  1332. max_5_0_tcyc_ns_x_100 = 10;
  1333. sdram_ddr1 = TRUE;
  1334. /* loop through all the DIMM slots on the board */
  1335. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1336. /* If a dimm is installed in a particular slot ... */
  1337. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1338. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1339. sdram_ddr1 = TRUE;
  1340. else
  1341. sdram_ddr1 = FALSE;
  1342. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1343. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1344. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1345. /* For a particular DIMM, grab the three CAS values it supports */
  1346. for (cas_index = 0; cas_index < 3; cas_index++) {
  1347. switch (cas_index) {
  1348. case 0:
  1349. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1350. break;
  1351. case 1:
  1352. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1353. break;
  1354. default:
  1355. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1356. break;
  1357. }
  1358. if ((tcyc_reg & 0x0F) >= 10) {
  1359. if ((tcyc_reg & 0x0F) == 0x0D) {
  1360. /* Convert from hex to decimal */
  1361. cycle_time_ns_x_100[cas_index] =
  1362. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1363. } else {
  1364. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1365. "in slot %d\n", (unsigned int)dimm_num);
  1366. spd_ddr_init_hang ();
  1367. }
  1368. } else {
  1369. /* Convert from hex to decimal */
  1370. cycle_time_ns_x_100[cas_index] =
  1371. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1372. ((tcyc_reg & 0x0F)*10);
  1373. }
  1374. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1375. cycle_time_ns_x_100[cas_index]);
  1376. }
  1377. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1378. /* supported for a particular DIMM. */
  1379. cas_index = 0;
  1380. if (sdram_ddr1) {
  1381. /*
  1382. * DDR devices use the following bitmask for CAS latency:
  1383. * Bit 7 6 5 4 3 2 1 0
  1384. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1385. */
  1386. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1387. (cycle_time_ns_x_100[cas_index] != 0)) {
  1388. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1389. cycle_time_ns_x_100[cas_index]);
  1390. cas_index++;
  1391. } else {
  1392. if (cas_index != 0)
  1393. cas_index++;
  1394. cas_4_0_available = FALSE;
  1395. }
  1396. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1397. (cycle_time_ns_x_100[cas_index] != 0)) {
  1398. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1399. cycle_time_ns_x_100[cas_index]);
  1400. cas_index++;
  1401. } else {
  1402. if (cas_index != 0)
  1403. cas_index++;
  1404. cas_3_0_available = FALSE;
  1405. }
  1406. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1407. (cycle_time_ns_x_100[cas_index] != 0)) {
  1408. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1409. cycle_time_ns_x_100[cas_index]);
  1410. cas_index++;
  1411. } else {
  1412. if (cas_index != 0)
  1413. cas_index++;
  1414. cas_2_5_available = FALSE;
  1415. }
  1416. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1417. (cycle_time_ns_x_100[cas_index] != 0)) {
  1418. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1419. cycle_time_ns_x_100[cas_index]);
  1420. cas_index++;
  1421. } else {
  1422. if (cas_index != 0)
  1423. cas_index++;
  1424. cas_2_0_available = FALSE;
  1425. }
  1426. } else {
  1427. /*
  1428. * DDR2 devices use the following bitmask for CAS latency:
  1429. * Bit 7 6 5 4 3 2 1 0
  1430. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1431. */
  1432. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1433. (cycle_time_ns_x_100[cas_index] != 0)) {
  1434. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1435. cycle_time_ns_x_100[cas_index]);
  1436. cas_index++;
  1437. } else {
  1438. if (cas_index != 0)
  1439. cas_index++;
  1440. cas_5_0_available = FALSE;
  1441. }
  1442. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1443. (cycle_time_ns_x_100[cas_index] != 0)) {
  1444. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1445. cycle_time_ns_x_100[cas_index]);
  1446. cas_index++;
  1447. } else {
  1448. if (cas_index != 0)
  1449. cas_index++;
  1450. cas_4_0_available = FALSE;
  1451. }
  1452. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1453. (cycle_time_ns_x_100[cas_index] != 0)) {
  1454. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1455. cycle_time_ns_x_100[cas_index]);
  1456. cas_index++;
  1457. } else {
  1458. if (cas_index != 0)
  1459. cas_index++;
  1460. cas_3_0_available = FALSE;
  1461. }
  1462. }
  1463. }
  1464. }
  1465. /*------------------------------------------------------------------
  1466. * Set the SDRAM mode, SDRAM_MMODE
  1467. *-----------------------------------------------------------------*/
  1468. mfsdram(SDRAM_MMODE, mmode);
  1469. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1470. /* add 10 here because of rounding problems */
  1471. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1472. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1473. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1474. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1475. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1476. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1477. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1478. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1479. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1480. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1481. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1482. *selected_cas = DDR_CAS_2;
  1483. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1484. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1485. *selected_cas = DDR_CAS_2_5;
  1486. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1487. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1488. *selected_cas = DDR_CAS_3;
  1489. } else {
  1490. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1491. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1492. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1493. spd_ddr_init_hang ();
  1494. }
  1495. } else { /* DDR2 */
  1496. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1497. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1498. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1499. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1500. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1501. *selected_cas = DDR_CAS_3;
  1502. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1503. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1504. *selected_cas = DDR_CAS_4;
  1505. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1506. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1507. *selected_cas = DDR_CAS_5;
  1508. } else {
  1509. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1510. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1511. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1512. printf("cas3=%d cas4=%d cas5=%d\n",
  1513. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1514. printf("sdram_freq=%lu cycle3=%lu cycle4=%lu cycle5=%lu\n\n",
  1515. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1516. spd_ddr_init_hang ();
  1517. }
  1518. }
  1519. if (sdram_ddr1 == TRUE)
  1520. mmode |= SDRAM_MMODE_WR_DDR1;
  1521. else {
  1522. /* loop through all the DIMM slots on the board */
  1523. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1524. /* If a dimm is installed in a particular slot ... */
  1525. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1526. t_wr_ns = max(t_wr_ns,
  1527. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1528. }
  1529. /*
  1530. * convert from nanoseconds to ddr clocks
  1531. * round up if necessary
  1532. */
  1533. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1534. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1535. if (sdram_freq != ddr_check)
  1536. t_wr_clk++;
  1537. switch (t_wr_clk) {
  1538. case 0:
  1539. case 1:
  1540. case 2:
  1541. case 3:
  1542. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1543. break;
  1544. case 4:
  1545. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1546. break;
  1547. case 5:
  1548. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1549. break;
  1550. default:
  1551. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1552. break;
  1553. }
  1554. *write_recovery = t_wr_clk;
  1555. }
  1556. debug("CAS latency = %d\n", *selected_cas);
  1557. debug("Write recovery = %d\n", *write_recovery);
  1558. mtsdram(SDRAM_MMODE, mmode);
  1559. }
  1560. /*-----------------------------------------------------------------------------+
  1561. * program_rtr.
  1562. *-----------------------------------------------------------------------------*/
  1563. static void program_rtr(unsigned long *dimm_populated,
  1564. unsigned char *iic0_dimm_addr,
  1565. unsigned long num_dimm_banks)
  1566. {
  1567. PPC4xx_SYS_INFO board_cfg;
  1568. unsigned long max_refresh_rate;
  1569. unsigned long dimm_num;
  1570. unsigned long refresh_rate_type;
  1571. unsigned long refresh_rate;
  1572. unsigned long rint;
  1573. unsigned long sdram_freq;
  1574. unsigned long sdr_ddrpll;
  1575. unsigned long val;
  1576. /*------------------------------------------------------------------
  1577. * Get the board configuration info.
  1578. *-----------------------------------------------------------------*/
  1579. get_sys_info(&board_cfg);
  1580. /*------------------------------------------------------------------
  1581. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1582. *-----------------------------------------------------------------*/
  1583. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1584. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1585. max_refresh_rate = 0;
  1586. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1587. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1588. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1589. refresh_rate_type &= 0x7F;
  1590. switch (refresh_rate_type) {
  1591. case 0:
  1592. refresh_rate = 15625;
  1593. break;
  1594. case 1:
  1595. refresh_rate = 3906;
  1596. break;
  1597. case 2:
  1598. refresh_rate = 7812;
  1599. break;
  1600. case 3:
  1601. refresh_rate = 31250;
  1602. break;
  1603. case 4:
  1604. refresh_rate = 62500;
  1605. break;
  1606. case 5:
  1607. refresh_rate = 125000;
  1608. break;
  1609. default:
  1610. refresh_rate = 0;
  1611. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1612. (unsigned int)dimm_num);
  1613. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1614. spd_ddr_init_hang ();
  1615. break;
  1616. }
  1617. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1618. }
  1619. }
  1620. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1621. mfsdram(SDRAM_RTR, val);
  1622. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1623. (SDRAM_RTR_RINT_ENCODE(rint)));
  1624. }
  1625. /*------------------------------------------------------------------
  1626. * This routine programs the SDRAM_TRx registers.
  1627. *-----------------------------------------------------------------*/
  1628. static void program_tr(unsigned long *dimm_populated,
  1629. unsigned char *iic0_dimm_addr,
  1630. unsigned long num_dimm_banks)
  1631. {
  1632. unsigned long dimm_num;
  1633. unsigned long sdram_ddr1;
  1634. unsigned long t_rp_ns;
  1635. unsigned long t_rcd_ns;
  1636. unsigned long t_rrd_ns;
  1637. unsigned long t_ras_ns;
  1638. unsigned long t_rc_ns;
  1639. unsigned long t_rfc_ns;
  1640. unsigned long t_wpc_ns;
  1641. unsigned long t_wtr_ns;
  1642. unsigned long t_rpc_ns;
  1643. unsigned long t_rp_clk;
  1644. unsigned long t_rcd_clk;
  1645. unsigned long t_rrd_clk;
  1646. unsigned long t_ras_clk;
  1647. unsigned long t_rc_clk;
  1648. unsigned long t_rfc_clk;
  1649. unsigned long t_wpc_clk;
  1650. unsigned long t_wtr_clk;
  1651. unsigned long t_rpc_clk;
  1652. unsigned long sdtr1, sdtr2, sdtr3;
  1653. unsigned long ddr_check;
  1654. unsigned long sdram_freq;
  1655. unsigned long sdr_ddrpll;
  1656. PPC4xx_SYS_INFO board_cfg;
  1657. /*------------------------------------------------------------------
  1658. * Get the board configuration info.
  1659. *-----------------------------------------------------------------*/
  1660. get_sys_info(&board_cfg);
  1661. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1662. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1663. /*------------------------------------------------------------------
  1664. * Handle the timing. We need to find the worst case timing of all
  1665. * the dimm modules installed.
  1666. *-----------------------------------------------------------------*/
  1667. t_rp_ns = 0;
  1668. t_rrd_ns = 0;
  1669. t_rcd_ns = 0;
  1670. t_ras_ns = 0;
  1671. t_rc_ns = 0;
  1672. t_rfc_ns = 0;
  1673. t_wpc_ns = 0;
  1674. t_wtr_ns = 0;
  1675. t_rpc_ns = 0;
  1676. sdram_ddr1 = TRUE;
  1677. /* loop through all the DIMM slots on the board */
  1678. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1679. /* If a dimm is installed in a particular slot ... */
  1680. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1681. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1682. sdram_ddr1 = TRUE;
  1683. else
  1684. sdram_ddr1 = FALSE;
  1685. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1686. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1687. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1688. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1689. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1690. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1691. }
  1692. }
  1693. /*------------------------------------------------------------------
  1694. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1695. *-----------------------------------------------------------------*/
  1696. mfsdram(SDRAM_SDTR1, sdtr1);
  1697. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1698. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1699. /* default values */
  1700. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1701. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1702. /* normal operations */
  1703. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1704. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1705. mtsdram(SDRAM_SDTR1, sdtr1);
  1706. /*------------------------------------------------------------------
  1707. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1708. *-----------------------------------------------------------------*/
  1709. mfsdram(SDRAM_SDTR2, sdtr2);
  1710. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1711. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1712. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1713. SDRAM_SDTR2_RRD_MASK);
  1714. /*
  1715. * convert t_rcd from nanoseconds to ddr clocks
  1716. * round up if necessary
  1717. */
  1718. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1719. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1720. if (sdram_freq != ddr_check)
  1721. t_rcd_clk++;
  1722. switch (t_rcd_clk) {
  1723. case 0:
  1724. case 1:
  1725. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1726. break;
  1727. case 2:
  1728. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1729. break;
  1730. case 3:
  1731. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1732. break;
  1733. case 4:
  1734. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1735. break;
  1736. default:
  1737. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1738. break;
  1739. }
  1740. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1741. if (sdram_freq < 200000000) {
  1742. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1743. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1744. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1745. } else {
  1746. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1747. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1748. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1749. }
  1750. } else { /* DDR2 */
  1751. /* loop through all the DIMM slots on the board */
  1752. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1753. /* If a dimm is installed in a particular slot ... */
  1754. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1755. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1756. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1757. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1758. }
  1759. }
  1760. /*
  1761. * convert from nanoseconds to ddr clocks
  1762. * round up if necessary
  1763. */
  1764. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1765. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1766. if (sdram_freq != ddr_check)
  1767. t_wpc_clk++;
  1768. switch (t_wpc_clk) {
  1769. case 0:
  1770. case 1:
  1771. case 2:
  1772. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1773. break;
  1774. case 3:
  1775. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1776. break;
  1777. case 4:
  1778. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1779. break;
  1780. case 5:
  1781. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1782. break;
  1783. default:
  1784. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1785. break;
  1786. }
  1787. /*
  1788. * convert from nanoseconds to ddr clocks
  1789. * round up if necessary
  1790. */
  1791. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1792. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1793. if (sdram_freq != ddr_check)
  1794. t_wtr_clk++;
  1795. switch (t_wtr_clk) {
  1796. case 0:
  1797. case 1:
  1798. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1799. break;
  1800. case 2:
  1801. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1802. break;
  1803. case 3:
  1804. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1805. break;
  1806. default:
  1807. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1808. break;
  1809. }
  1810. /*
  1811. * convert from nanoseconds to ddr clocks
  1812. * round up if necessary
  1813. */
  1814. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1815. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1816. if (sdram_freq != ddr_check)
  1817. t_rpc_clk++;
  1818. switch (t_rpc_clk) {
  1819. case 0:
  1820. case 1:
  1821. case 2:
  1822. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1823. break;
  1824. case 3:
  1825. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1826. break;
  1827. default:
  1828. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1829. break;
  1830. }
  1831. }
  1832. /* default value */
  1833. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1834. /*
  1835. * convert t_rrd from nanoseconds to ddr clocks
  1836. * round up if necessary
  1837. */
  1838. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1839. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1840. if (sdram_freq != ddr_check)
  1841. t_rrd_clk++;
  1842. if (t_rrd_clk == 3)
  1843. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1844. else
  1845. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1846. /*
  1847. * convert t_rp from nanoseconds to ddr clocks
  1848. * round up if necessary
  1849. */
  1850. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1851. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1852. if (sdram_freq != ddr_check)
  1853. t_rp_clk++;
  1854. switch (t_rp_clk) {
  1855. case 0:
  1856. case 1:
  1857. case 2:
  1858. case 3:
  1859. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1860. break;
  1861. case 4:
  1862. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1863. break;
  1864. case 5:
  1865. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1866. break;
  1867. case 6:
  1868. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1869. break;
  1870. default:
  1871. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1872. break;
  1873. }
  1874. mtsdram(SDRAM_SDTR2, sdtr2);
  1875. /*------------------------------------------------------------------
  1876. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1877. *-----------------------------------------------------------------*/
  1878. mfsdram(SDRAM_SDTR3, sdtr3);
  1879. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1880. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1881. /*
  1882. * convert t_ras from nanoseconds to ddr clocks
  1883. * round up if necessary
  1884. */
  1885. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1886. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1887. if (sdram_freq != ddr_check)
  1888. t_ras_clk++;
  1889. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1890. /*
  1891. * convert t_rc from nanoseconds to ddr clocks
  1892. * round up if necessary
  1893. */
  1894. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1895. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1896. if (sdram_freq != ddr_check)
  1897. t_rc_clk++;
  1898. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1899. /* default xcs value */
  1900. sdtr3 |= SDRAM_SDTR3_XCS;
  1901. /*
  1902. * convert t_rfc from nanoseconds to ddr clocks
  1903. * round up if necessary
  1904. */
  1905. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1906. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1907. if (sdram_freq != ddr_check)
  1908. t_rfc_clk++;
  1909. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1910. mtsdram(SDRAM_SDTR3, sdtr3);
  1911. }
  1912. /*-----------------------------------------------------------------------------+
  1913. * program_bxcf.
  1914. *-----------------------------------------------------------------------------*/
  1915. static void program_bxcf(unsigned long *dimm_populated,
  1916. unsigned char *iic0_dimm_addr,
  1917. unsigned long num_dimm_banks)
  1918. {
  1919. unsigned long dimm_num;
  1920. unsigned long num_col_addr;
  1921. unsigned long num_ranks;
  1922. unsigned long num_banks;
  1923. unsigned long mode;
  1924. unsigned long ind_rank;
  1925. unsigned long ind;
  1926. unsigned long ind_bank;
  1927. unsigned long bank_0_populated;
  1928. /*------------------------------------------------------------------
  1929. * Set the BxCF regs. First, wipe out the bank config registers.
  1930. *-----------------------------------------------------------------*/
  1931. mtsdram(SDRAM_MB0CF, 0x00000000);
  1932. mtsdram(SDRAM_MB1CF, 0x00000000);
  1933. mtsdram(SDRAM_MB2CF, 0x00000000);
  1934. mtsdram(SDRAM_MB3CF, 0x00000000);
  1935. mode = SDRAM_BXCF_M_BE_ENABLE;
  1936. bank_0_populated = 0;
  1937. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1938. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1939. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1940. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1941. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1942. num_ranks = (num_ranks & 0x0F) +1;
  1943. else
  1944. num_ranks = num_ranks & 0x0F;
  1945. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1946. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1947. if (num_banks == 4)
  1948. ind = 0;
  1949. else
  1950. ind = 5 << 8;
  1951. switch (num_col_addr) {
  1952. case 0x08:
  1953. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1954. break;
  1955. case 0x09:
  1956. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1957. break;
  1958. case 0x0A:
  1959. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1960. break;
  1961. case 0x0B:
  1962. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1963. break;
  1964. case 0x0C:
  1965. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1966. break;
  1967. default:
  1968. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1969. (unsigned int)dimm_num);
  1970. printf("ERROR: Unsupported value for number of "
  1971. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1972. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1973. spd_ddr_init_hang ();
  1974. }
  1975. }
  1976. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1977. bank_0_populated = 1;
  1978. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1979. mtsdram(SDRAM_MB0CF +
  1980. ((dimm_num + bank_0_populated + ind_rank) << 2),
  1981. mode);
  1982. }
  1983. }
  1984. }
  1985. }
  1986. /*------------------------------------------------------------------
  1987. * program memory queue.
  1988. *-----------------------------------------------------------------*/
  1989. static void program_memory_queue(unsigned long *dimm_populated,
  1990. unsigned char *iic0_dimm_addr,
  1991. unsigned long num_dimm_banks)
  1992. {
  1993. unsigned long dimm_num;
  1994. phys_size_t rank_base_addr;
  1995. unsigned long rank_reg;
  1996. phys_size_t rank_size_bytes;
  1997. unsigned long rank_size_id;
  1998. unsigned long num_ranks;
  1999. unsigned long baseadd_size;
  2000. unsigned long i;
  2001. unsigned long bank_0_populated = 0;
  2002. phys_size_t total_size = 0;
  2003. /*------------------------------------------------------------------
  2004. * Reset the rank_base_address.
  2005. *-----------------------------------------------------------------*/
  2006. rank_reg = SDRAM_R0BAS;
  2007. rank_base_addr = 0x00000000;
  2008. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  2009. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  2010. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  2011. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  2012. num_ranks = (num_ranks & 0x0F) + 1;
  2013. else
  2014. num_ranks = num_ranks & 0x0F;
  2015. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  2016. /*------------------------------------------------------------------
  2017. * Set the sizes
  2018. *-----------------------------------------------------------------*/
  2019. baseadd_size = 0;
  2020. switch (rank_size_id) {
  2021. case 0x01:
  2022. baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
  2023. total_size = 1024;
  2024. break;
  2025. case 0x02:
  2026. baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
  2027. total_size = 2048;
  2028. break;
  2029. case 0x04:
  2030. baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
  2031. total_size = 4096;
  2032. break;
  2033. case 0x08:
  2034. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  2035. total_size = 32;
  2036. break;
  2037. case 0x10:
  2038. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  2039. total_size = 64;
  2040. break;
  2041. case 0x20:
  2042. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  2043. total_size = 128;
  2044. break;
  2045. case 0x40:
  2046. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  2047. total_size = 256;
  2048. break;
  2049. case 0x80:
  2050. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  2051. total_size = 512;
  2052. break;
  2053. default:
  2054. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  2055. (unsigned int)dimm_num);
  2056. printf("ERROR: Unsupported value for the banksize: %d.\n",
  2057. (unsigned int)rank_size_id);
  2058. printf("Replace the DIMM module with a supported DIMM.\n\n");
  2059. spd_ddr_init_hang ();
  2060. }
  2061. rank_size_bytes = total_size << 20;
  2062. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  2063. bank_0_populated = 1;
  2064. for (i = 0; i < num_ranks; i++) {
  2065. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  2066. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  2067. baseadd_size));
  2068. rank_base_addr += rank_size_bytes;
  2069. }
  2070. }
  2071. }
  2072. #if defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  2073. defined(CONFIG_460EX) || defined(CONFIG_460GT) || \
  2074. defined(CONFIG_460SX)
  2075. /*
  2076. * Enable high bandwidth access
  2077. * This is currently not used, but with this setup
  2078. * it is possible to use it later on in e.g. the Linux
  2079. * EMAC driver for performance gain.
  2080. */
  2081. mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
  2082. mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
  2083. /*
  2084. * Set optimal value for Memory Queue HB/LL Configuration registers
  2085. */
  2086. mtdcr(SDRAM_CONF1HB, mfdcr(SDRAM_CONF1HB) | SDRAM_CONF1HB_AAFR |
  2087. SDRAM_CONF1HB_RPEN | SDRAM_CONF1HB_RFTE);
  2088. mtdcr(SDRAM_CONF1LL, mfdcr(SDRAM_CONF1LL) | SDRAM_CONF1LL_AAFR |
  2089. SDRAM_CONF1LL_RPEN | SDRAM_CONF1LL_RFTE);
  2090. mtdcr(SDRAM_CONFPATHB, mfdcr(SDRAM_CONFPATHB) | SDRAM_CONFPATHB_TPEN);
  2091. #endif
  2092. }
  2093. /*-----------------------------------------------------------------------------+
  2094. * is_ecc_enabled.
  2095. *-----------------------------------------------------------------------------*/
  2096. static unsigned long is_ecc_enabled(void)
  2097. {
  2098. unsigned long dimm_num;
  2099. unsigned long ecc;
  2100. unsigned long val;
  2101. ecc = 0;
  2102. /* loop through all the DIMM slots on the board */
  2103. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2104. mfsdram(SDRAM_MCOPT1, val);
  2105. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  2106. }
  2107. return ecc;
  2108. }
  2109. static void blank_string(int size)
  2110. {
  2111. int i;
  2112. for (i=0; i<size; i++)
  2113. putc('\b');
  2114. for (i=0; i<size; i++)
  2115. putc(' ');
  2116. for (i=0; i<size; i++)
  2117. putc('\b');
  2118. }
  2119. #ifdef CONFIG_DDR_ECC
  2120. /*-----------------------------------------------------------------------------+
  2121. * program_ecc.
  2122. *-----------------------------------------------------------------------------*/
  2123. static void program_ecc(unsigned long *dimm_populated,
  2124. unsigned char *iic0_dimm_addr,
  2125. unsigned long num_dimm_banks,
  2126. unsigned long tlb_word2_i_value)
  2127. {
  2128. unsigned long mcopt1;
  2129. unsigned long mcopt2;
  2130. unsigned long mcstat;
  2131. unsigned long dimm_num;
  2132. unsigned long ecc;
  2133. ecc = 0;
  2134. /* loop through all the DIMM slots on the board */
  2135. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2136. /* If a dimm is installed in a particular slot ... */
  2137. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2138. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2139. }
  2140. if (ecc == 0)
  2141. return;
  2142. if (sdram_memsize() > CONFIG_MAX_MEM_MAPPED) {
  2143. printf("\nWarning: Can't enable ECC on systems with more than 2GB of SDRAM!\n");
  2144. return;
  2145. }
  2146. mfsdram(SDRAM_MCOPT1, mcopt1);
  2147. mfsdram(SDRAM_MCOPT2, mcopt2);
  2148. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2149. /* DDR controller must be enabled and not in self-refresh. */
  2150. mfsdram(SDRAM_MCSTAT, mcstat);
  2151. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2152. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2153. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2154. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2155. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2156. }
  2157. }
  2158. return;
  2159. }
  2160. static void wait_ddr_idle(void)
  2161. {
  2162. u32 val;
  2163. do {
  2164. mfsdram(SDRAM_MCSTAT, val);
  2165. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2166. }
  2167. /*-----------------------------------------------------------------------------+
  2168. * program_ecc_addr.
  2169. *-----------------------------------------------------------------------------*/
  2170. static void program_ecc_addr(unsigned long start_address,
  2171. unsigned long num_bytes,
  2172. unsigned long tlb_word2_i_value)
  2173. {
  2174. unsigned long current_address;
  2175. unsigned long end_address;
  2176. unsigned long address_increment;
  2177. unsigned long mcopt1;
  2178. char str[] = "ECC generation -";
  2179. char slash[] = "\\|/-\\|/-";
  2180. int loop = 0;
  2181. int loopi = 0;
  2182. current_address = start_address;
  2183. mfsdram(SDRAM_MCOPT1, mcopt1);
  2184. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2185. mtsdram(SDRAM_MCOPT1,
  2186. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2187. sync();
  2188. eieio();
  2189. wait_ddr_idle();
  2190. puts(str);
  2191. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2192. /* ECC bit set method for non-cached memory */
  2193. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2194. address_increment = 4;
  2195. else
  2196. address_increment = 8;
  2197. end_address = current_address + num_bytes;
  2198. while (current_address < end_address) {
  2199. *((unsigned long *)current_address) = 0x00000000;
  2200. current_address += address_increment;
  2201. if ((loop++ % (2 << 20)) == 0) {
  2202. putc('\b');
  2203. putc(slash[loopi++ % 8]);
  2204. }
  2205. }
  2206. } else {
  2207. /* ECC bit set method for cached memory */
  2208. dcbz_area(start_address, num_bytes);
  2209. /* Write modified dcache lines back to memory */
  2210. clean_dcache_range(start_address, start_address + num_bytes);
  2211. }
  2212. blank_string(strlen(str));
  2213. sync();
  2214. eieio();
  2215. wait_ddr_idle();
  2216. /* clear ECC error repoting registers */
  2217. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2218. mtdcr(0x4c, 0xffffffff);
  2219. mtsdram(SDRAM_MCOPT1,
  2220. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2221. sync();
  2222. eieio();
  2223. wait_ddr_idle();
  2224. }
  2225. }
  2226. #endif
  2227. /*-----------------------------------------------------------------------------+
  2228. * program_DQS_calibration.
  2229. *-----------------------------------------------------------------------------*/
  2230. static void program_DQS_calibration(unsigned long *dimm_populated,
  2231. unsigned char *iic0_dimm_addr,
  2232. unsigned long num_dimm_banks)
  2233. {
  2234. unsigned long val;
  2235. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2236. mtsdram(SDRAM_RQDC, 0x80000037);
  2237. mtsdram(SDRAM_RDCC, 0x40000000);
  2238. mtsdram(SDRAM_RFDC, 0x000001DF);
  2239. test();
  2240. #else
  2241. /*------------------------------------------------------------------
  2242. * Program RDCC register
  2243. * Read sample cycle auto-update enable
  2244. *-----------------------------------------------------------------*/
  2245. mfsdram(SDRAM_RDCC, val);
  2246. mtsdram(SDRAM_RDCC,
  2247. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2248. | SDRAM_RDCC_RSAE_ENABLE);
  2249. /*------------------------------------------------------------------
  2250. * Program RQDC register
  2251. * Internal DQS delay mechanism enable
  2252. *-----------------------------------------------------------------*/
  2253. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2254. /*------------------------------------------------------------------
  2255. * Program RFDC register
  2256. * Set Feedback Fractional Oversample
  2257. * Auto-detect read sample cycle enable
  2258. * Set RFOS to 1/4 of memclk cycle (0x3f)
  2259. *-----------------------------------------------------------------*/
  2260. mfsdram(SDRAM_RFDC, val);
  2261. mtsdram(SDRAM_RFDC,
  2262. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2263. SDRAM_RFDC_RFFD_MASK))
  2264. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0x3f) |
  2265. SDRAM_RFDC_RFFD_ENCODE(0)));
  2266. DQS_calibration_process();
  2267. #endif
  2268. }
  2269. static int short_mem_test(void)
  2270. {
  2271. u32 *membase;
  2272. u32 bxcr_num;
  2273. u32 bxcf;
  2274. int i;
  2275. int j;
  2276. phys_size_t base_addr;
  2277. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2278. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2279. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2280. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2281. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2282. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2283. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2284. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2285. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2286. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2287. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2288. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2289. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2290. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2291. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2292. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2293. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2294. int l;
  2295. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2296. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2297. /* Banks enabled */
  2298. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2299. /* Bank is enabled */
  2300. /*
  2301. * Only run test on accessable memory (below 2GB)
  2302. */
  2303. base_addr = SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num));
  2304. if (base_addr >= CONFIG_MAX_MEM_MAPPED)
  2305. continue;
  2306. /*------------------------------------------------------------------
  2307. * Run the short memory test.
  2308. *-----------------------------------------------------------------*/
  2309. membase = (u32 *)(u32)base_addr;
  2310. for (i = 0; i < NUMMEMTESTS; i++) {
  2311. for (j = 0; j < NUMMEMWORDS; j++) {
  2312. membase[j] = test[i][j];
  2313. ppcDcbf((u32)&(membase[j]));
  2314. }
  2315. sync();
  2316. for (l=0; l<NUMLOOPS; l++) {
  2317. for (j = 0; j < NUMMEMWORDS; j++) {
  2318. if (membase[j] != test[i][j]) {
  2319. ppcDcbf((u32)&(membase[j]));
  2320. return 0;
  2321. }
  2322. ppcDcbf((u32)&(membase[j]));
  2323. }
  2324. sync();
  2325. }
  2326. }
  2327. } /* if bank enabled */
  2328. } /* for bxcf_num */
  2329. return 1;
  2330. }
  2331. #ifndef HARD_CODED_DQS
  2332. /*-----------------------------------------------------------------------------+
  2333. * DQS_calibration_process.
  2334. *-----------------------------------------------------------------------------*/
  2335. static void DQS_calibration_process(void)
  2336. {
  2337. unsigned long rfdc_reg;
  2338. unsigned long rffd;
  2339. unsigned long val;
  2340. long rffd_average;
  2341. long max_start;
  2342. long min_end;
  2343. unsigned long begin_rqfd[MAXRANKS];
  2344. unsigned long begin_rffd[MAXRANKS];
  2345. unsigned long end_rqfd[MAXRANKS];
  2346. unsigned long end_rffd[MAXRANKS];
  2347. char window_found;
  2348. unsigned long dlycal;
  2349. unsigned long dly_val;
  2350. unsigned long max_pass_length;
  2351. unsigned long current_pass_length;
  2352. unsigned long current_fail_length;
  2353. unsigned long current_start;
  2354. long max_end;
  2355. unsigned char fail_found;
  2356. unsigned char pass_found;
  2357. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2358. u32 rqdc_reg;
  2359. u32 rqfd;
  2360. u32 rqfd_start;
  2361. u32 rqfd_average;
  2362. int loopi = 0;
  2363. char str[] = "Auto calibration -";
  2364. char slash[] = "\\|/-\\|/-";
  2365. /*------------------------------------------------------------------
  2366. * Test to determine the best read clock delay tuning bits.
  2367. *
  2368. * Before the DDR controller can be used, the read clock delay needs to be
  2369. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2370. * This value cannot be hardcoded into the program because it changes
  2371. * depending on the board's setup and environment.
  2372. * To do this, all delay values are tested to see if they
  2373. * work or not. By doing this, you get groups of fails with groups of
  2374. * passing values. The idea is to find the start and end of a passing
  2375. * window and take the center of it to use as the read clock delay.
  2376. *
  2377. * A failure has to be seen first so that when we hit a pass, we know
  2378. * that it is truely the start of the window. If we get passing values
  2379. * to start off with, we don't know if we are at the start of the window.
  2380. *
  2381. * The code assumes that a failure will always be found.
  2382. * If a failure is not found, there is no easy way to get the middle
  2383. * of the passing window. I guess we can pretty much pick any value
  2384. * but some values will be better than others. Since the lowest speed
  2385. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2386. * from experimentation it is safe to say you will always have a failure.
  2387. *-----------------------------------------------------------------*/
  2388. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2389. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2390. puts(str);
  2391. calibration_loop:
  2392. mfsdram(SDRAM_RQDC, rqdc_reg);
  2393. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2394. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2395. #else /* CONFIG_DDR_RQDC_FIXED */
  2396. /*
  2397. * On Katmai the complete auto-calibration somehow doesn't seem to
  2398. * produce the best results, meaning optimal values for RQFD/RFFD.
  2399. * This was discovered by GDA using a high bandwidth scope,
  2400. * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
  2401. * so now on Katmai "only" RFFD is auto-calibrated.
  2402. */
  2403. mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
  2404. #endif /* CONFIG_DDR_RQDC_FIXED */
  2405. max_start = 0;
  2406. min_end = 0;
  2407. begin_rqfd[0] = 0;
  2408. begin_rffd[0] = 0;
  2409. begin_rqfd[1] = 0;
  2410. begin_rffd[1] = 0;
  2411. end_rqfd[0] = 0;
  2412. end_rffd[0] = 0;
  2413. end_rqfd[1] = 0;
  2414. end_rffd[1] = 0;
  2415. window_found = FALSE;
  2416. max_pass_length = 0;
  2417. max_start = 0;
  2418. max_end = 0;
  2419. current_pass_length = 0;
  2420. current_fail_length = 0;
  2421. current_start = 0;
  2422. window_found = FALSE;
  2423. fail_found = FALSE;
  2424. pass_found = FALSE;
  2425. /*
  2426. * get the delay line calibration register value
  2427. */
  2428. mfsdram(SDRAM_DLCR, dlycal);
  2429. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2430. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2431. mfsdram(SDRAM_RFDC, rfdc_reg);
  2432. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2433. /*------------------------------------------------------------------
  2434. * Set the timing reg for the test.
  2435. *-----------------------------------------------------------------*/
  2436. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2437. /*------------------------------------------------------------------
  2438. * See if the rffd value passed.
  2439. *-----------------------------------------------------------------*/
  2440. if (short_mem_test()) {
  2441. if (fail_found == TRUE) {
  2442. pass_found = TRUE;
  2443. if (current_pass_length == 0)
  2444. current_start = rffd;
  2445. current_fail_length = 0;
  2446. current_pass_length++;
  2447. if (current_pass_length > max_pass_length) {
  2448. max_pass_length = current_pass_length;
  2449. max_start = current_start;
  2450. max_end = rffd;
  2451. }
  2452. }
  2453. } else {
  2454. current_pass_length = 0;
  2455. current_fail_length++;
  2456. if (current_fail_length >= (dly_val >> 2)) {
  2457. if (fail_found == FALSE) {
  2458. fail_found = TRUE;
  2459. } else if (pass_found == TRUE) {
  2460. window_found = TRUE;
  2461. break;
  2462. }
  2463. }
  2464. }
  2465. } /* for rffd */
  2466. /*------------------------------------------------------------------
  2467. * Set the average RFFD value
  2468. *-----------------------------------------------------------------*/
  2469. rffd_average = ((max_start + max_end) >> 1);
  2470. if (rffd_average < 0)
  2471. rffd_average = 0;
  2472. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2473. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2474. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2475. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2476. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2477. max_pass_length = 0;
  2478. max_start = 0;
  2479. max_end = 0;
  2480. current_pass_length = 0;
  2481. current_fail_length = 0;
  2482. current_start = 0;
  2483. window_found = FALSE;
  2484. fail_found = FALSE;
  2485. pass_found = FALSE;
  2486. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2487. mfsdram(SDRAM_RQDC, rqdc_reg);
  2488. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2489. /*------------------------------------------------------------------
  2490. * Set the timing reg for the test.
  2491. *-----------------------------------------------------------------*/
  2492. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2493. /*------------------------------------------------------------------
  2494. * See if the rffd value passed.
  2495. *-----------------------------------------------------------------*/
  2496. if (short_mem_test()) {
  2497. if (fail_found == TRUE) {
  2498. pass_found = TRUE;
  2499. if (current_pass_length == 0)
  2500. current_start = rqfd;
  2501. current_fail_length = 0;
  2502. current_pass_length++;
  2503. if (current_pass_length > max_pass_length) {
  2504. max_pass_length = current_pass_length;
  2505. max_start = current_start;
  2506. max_end = rqfd;
  2507. }
  2508. }
  2509. } else {
  2510. current_pass_length = 0;
  2511. current_fail_length++;
  2512. if (fail_found == FALSE) {
  2513. fail_found = TRUE;
  2514. } else if (pass_found == TRUE) {
  2515. window_found = TRUE;
  2516. break;
  2517. }
  2518. }
  2519. }
  2520. rqfd_average = ((max_start + max_end) >> 1);
  2521. /*------------------------------------------------------------------
  2522. * Make sure we found the valid read passing window. Halt if not
  2523. *-----------------------------------------------------------------*/
  2524. if (window_found == FALSE) {
  2525. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2526. putc('\b');
  2527. putc(slash[loopi++ % 8]);
  2528. /* try again from with a different RQFD start value */
  2529. rqfd_start++;
  2530. goto calibration_loop;
  2531. }
  2532. printf("\nERROR: Cannot determine a common read delay for the "
  2533. "DIMM(s) installed.\n");
  2534. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2535. ppc4xx_ibm_ddr2_register_dump();
  2536. spd_ddr_init_hang ();
  2537. }
  2538. if (rqfd_average < 0)
  2539. rqfd_average = 0;
  2540. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2541. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2542. mtsdram(SDRAM_RQDC,
  2543. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2544. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2545. blank_string(strlen(str));
  2546. #endif /* CONFIG_DDR_RQDC_FIXED */
  2547. /*
  2548. * Now complete RDSS configuration as mentioned on page 7 of the AMCC
  2549. * PowerPC440SP/SPe DDR2 application note:
  2550. * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
  2551. */
  2552. mfsdram(SDRAM_RTSR, val);
  2553. if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
  2554. mfsdram(SDRAM_RDCC, val);
  2555. if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
  2556. val += 0x40000000;
  2557. mtsdram(SDRAM_RDCC, val);
  2558. }
  2559. }
  2560. mfsdram(SDRAM_DLCR, val);
  2561. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2562. mfsdram(SDRAM_RQDC, val);
  2563. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2564. mfsdram(SDRAM_RFDC, val);
  2565. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2566. mfsdram(SDRAM_RDCC, val);
  2567. debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2568. }
  2569. #else /* calibration test with hardvalues */
  2570. /*-----------------------------------------------------------------------------+
  2571. * DQS_calibration_process.
  2572. *-----------------------------------------------------------------------------*/
  2573. static void test(void)
  2574. {
  2575. unsigned long dimm_num;
  2576. unsigned long ecc_temp;
  2577. unsigned long i, j;
  2578. unsigned long *membase;
  2579. unsigned long bxcf[MAXRANKS];
  2580. unsigned long val;
  2581. char window_found;
  2582. char begin_found[MAXDIMMS];
  2583. char end_found[MAXDIMMS];
  2584. char search_end[MAXDIMMS];
  2585. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2586. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2587. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2588. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2589. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2590. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2591. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2592. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2593. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2594. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2595. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2596. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2597. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2598. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2599. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2600. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2601. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2602. /*------------------------------------------------------------------
  2603. * Test to determine the best read clock delay tuning bits.
  2604. *
  2605. * Before the DDR controller can be used, the read clock delay needs to be
  2606. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2607. * This value cannot be hardcoded into the program because it changes
  2608. * depending on the board's setup and environment.
  2609. * To do this, all delay values are tested to see if they
  2610. * work or not. By doing this, you get groups of fails with groups of
  2611. * passing values. The idea is to find the start and end of a passing
  2612. * window and take the center of it to use as the read clock delay.
  2613. *
  2614. * A failure has to be seen first so that when we hit a pass, we know
  2615. * that it is truely the start of the window. If we get passing values
  2616. * to start off with, we don't know if we are at the start of the window.
  2617. *
  2618. * The code assumes that a failure will always be found.
  2619. * If a failure is not found, there is no easy way to get the middle
  2620. * of the passing window. I guess we can pretty much pick any value
  2621. * but some values will be better than others. Since the lowest speed
  2622. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2623. * from experimentation it is safe to say you will always have a failure.
  2624. *-----------------------------------------------------------------*/
  2625. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2626. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2627. mfsdram(SDRAM_MCOPT1, val);
  2628. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2629. SDRAM_MCOPT1_MCHK_NON);
  2630. window_found = FALSE;
  2631. begin_found[0] = FALSE;
  2632. end_found[0] = FALSE;
  2633. search_end[0] = FALSE;
  2634. begin_found[1] = FALSE;
  2635. end_found[1] = FALSE;
  2636. search_end[1] = FALSE;
  2637. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2638. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2639. /* Banks enabled */
  2640. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2641. /* Bank is enabled */
  2642. membase =
  2643. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2644. /*------------------------------------------------------------------
  2645. * Run the short memory test.
  2646. *-----------------------------------------------------------------*/
  2647. for (i = 0; i < NUMMEMTESTS; i++) {
  2648. for (j = 0; j < NUMMEMWORDS; j++) {
  2649. membase[j] = test[i][j];
  2650. ppcDcbf((u32)&(membase[j]));
  2651. }
  2652. sync();
  2653. for (j = 0; j < NUMMEMWORDS; j++) {
  2654. if (membase[j] != test[i][j]) {
  2655. ppcDcbf((u32)&(membase[j]));
  2656. break;
  2657. }
  2658. ppcDcbf((u32)&(membase[j]));
  2659. }
  2660. sync();
  2661. if (j < NUMMEMWORDS)
  2662. break;
  2663. }
  2664. /*------------------------------------------------------------------
  2665. * See if the rffd value passed.
  2666. *-----------------------------------------------------------------*/
  2667. if (i < NUMMEMTESTS) {
  2668. if ((end_found[dimm_num] == FALSE) &&
  2669. (search_end[dimm_num] == TRUE)) {
  2670. end_found[dimm_num] = TRUE;
  2671. }
  2672. if ((end_found[0] == TRUE) &&
  2673. (end_found[1] == TRUE))
  2674. break;
  2675. } else {
  2676. if (begin_found[dimm_num] == FALSE) {
  2677. begin_found[dimm_num] = TRUE;
  2678. search_end[dimm_num] = TRUE;
  2679. }
  2680. }
  2681. } else {
  2682. begin_found[dimm_num] = TRUE;
  2683. end_found[dimm_num] = TRUE;
  2684. }
  2685. }
  2686. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2687. window_found = TRUE;
  2688. /*------------------------------------------------------------------
  2689. * Make sure we found the valid read passing window. Halt if not
  2690. *-----------------------------------------------------------------*/
  2691. if (window_found == FALSE) {
  2692. printf("ERROR: Cannot determine a common read delay for the "
  2693. "DIMM(s) installed.\n");
  2694. spd_ddr_init_hang ();
  2695. }
  2696. /*------------------------------------------------------------------
  2697. * Restore the ECC variable to what it originally was
  2698. *-----------------------------------------------------------------*/
  2699. mtsdram(SDRAM_MCOPT1,
  2700. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2701. | ecc_temp);
  2702. }
  2703. #endif
  2704. #else /* CONFIG_SPD_EEPROM */
  2705. /*-----------------------------------------------------------------------------
  2706. * Function: initdram
  2707. * Description: Configures the PPC405EX(r) DDR1/DDR2 SDRAM memory
  2708. * banks. The configuration is performed using static, compile-
  2709. * time parameters.
  2710. *---------------------------------------------------------------------------*/
  2711. phys_size_t initdram(int board_type)
  2712. {
  2713. /*
  2714. * Only run this SDRAM init code once. For NAND booting
  2715. * targets like Kilauea, we call initdram() early from the
  2716. * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot().
  2717. * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT)
  2718. * which calls initdram() again. This time the controller
  2719. * mustn't be reconfigured again since we're already running
  2720. * from SDRAM.
  2721. */
  2722. #if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL)
  2723. unsigned long val;
  2724. /* Set Memory Bank Configuration Registers */
  2725. mtsdram(SDRAM_MB0CF, CFG_SDRAM0_MB0CF);
  2726. mtsdram(SDRAM_MB1CF, CFG_SDRAM0_MB1CF);
  2727. mtsdram(SDRAM_MB2CF, CFG_SDRAM0_MB2CF);
  2728. mtsdram(SDRAM_MB3CF, CFG_SDRAM0_MB3CF);
  2729. /* Set Memory Clock Timing Register */
  2730. mtsdram(SDRAM_CLKTR, CFG_SDRAM0_CLKTR);
  2731. /* Set Refresh Time Register */
  2732. mtsdram(SDRAM_RTR, CFG_SDRAM0_RTR);
  2733. /* Set SDRAM Timing Registers */
  2734. mtsdram(SDRAM_SDTR1, CFG_SDRAM0_SDTR1);
  2735. mtsdram(SDRAM_SDTR2, CFG_SDRAM0_SDTR2);
  2736. mtsdram(SDRAM_SDTR3, CFG_SDRAM0_SDTR3);
  2737. /* Set Mode and Extended Mode Registers */
  2738. mtsdram(SDRAM_MMODE, CFG_SDRAM0_MMODE);
  2739. mtsdram(SDRAM_MEMODE, CFG_SDRAM0_MEMODE);
  2740. /* Set Memory Controller Options 1 Register */
  2741. mtsdram(SDRAM_MCOPT1, CFG_SDRAM0_MCOPT1);
  2742. /* Set Manual Initialization Control Registers */
  2743. mtsdram(SDRAM_INITPLR0, CFG_SDRAM0_INITPLR0);
  2744. mtsdram(SDRAM_INITPLR1, CFG_SDRAM0_INITPLR1);
  2745. mtsdram(SDRAM_INITPLR2, CFG_SDRAM0_INITPLR2);
  2746. mtsdram(SDRAM_INITPLR3, CFG_SDRAM0_INITPLR3);
  2747. mtsdram(SDRAM_INITPLR4, CFG_SDRAM0_INITPLR4);
  2748. mtsdram(SDRAM_INITPLR5, CFG_SDRAM0_INITPLR5);
  2749. mtsdram(SDRAM_INITPLR6, CFG_SDRAM0_INITPLR6);
  2750. mtsdram(SDRAM_INITPLR7, CFG_SDRAM0_INITPLR7);
  2751. mtsdram(SDRAM_INITPLR8, CFG_SDRAM0_INITPLR8);
  2752. mtsdram(SDRAM_INITPLR9, CFG_SDRAM0_INITPLR9);
  2753. mtsdram(SDRAM_INITPLR10, CFG_SDRAM0_INITPLR10);
  2754. mtsdram(SDRAM_INITPLR11, CFG_SDRAM0_INITPLR11);
  2755. mtsdram(SDRAM_INITPLR12, CFG_SDRAM0_INITPLR12);
  2756. mtsdram(SDRAM_INITPLR13, CFG_SDRAM0_INITPLR13);
  2757. mtsdram(SDRAM_INITPLR14, CFG_SDRAM0_INITPLR14);
  2758. mtsdram(SDRAM_INITPLR15, CFG_SDRAM0_INITPLR15);
  2759. /* Set On-Die Termination Registers */
  2760. mtsdram(SDRAM_CODT, CFG_SDRAM0_CODT);
  2761. mtsdram(SDRAM_MODT0, CFG_SDRAM0_MODT0);
  2762. mtsdram(SDRAM_MODT1, CFG_SDRAM0_MODT1);
  2763. /* Set Write Timing Register */
  2764. mtsdram(SDRAM_WRDTR, CFG_SDRAM0_WRDTR);
  2765. /*
  2766. * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and
  2767. * SDRAM0_MCOPT2[IPTR] = 1
  2768. */
  2769. mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT |
  2770. SDRAM_MCOPT2_IPTR_EXECUTE));
  2771. /*
  2772. * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the
  2773. * completion of initialization.
  2774. */
  2775. do {
  2776. mfsdram(SDRAM_MCSTAT, val);
  2777. } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP);
  2778. /* Set Delay Control Registers */
  2779. mtsdram(SDRAM_DLCR, CFG_SDRAM0_DLCR);
  2780. mtsdram(SDRAM_RDCC, CFG_SDRAM0_RDCC);
  2781. mtsdram(SDRAM_RQDC, CFG_SDRAM0_RQDC);
  2782. mtsdram(SDRAM_RFDC, CFG_SDRAM0_RFDC);
  2783. /*
  2784. * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1:
  2785. */
  2786. mfsdram(SDRAM_MCOPT2, val);
  2787. mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE);
  2788. #if defined(CONFIG_DDR_ECC)
  2789. ecc_init(CFG_SDRAM_BASE, CFG_MBYTES_SDRAM << 20);
  2790. #endif /* defined(CONFIG_DDR_ECC) */
  2791. ppc4xx_ibm_ddr2_register_dump();
  2792. #endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */
  2793. return (CFG_MBYTES_SDRAM << 20);
  2794. }
  2795. #endif /* CONFIG_SPD_EEPROM */
  2796. static inline void ppc4xx_ibm_ddr2_register_dump(void)
  2797. {
  2798. #if defined(DEBUG)
  2799. printf("\nPPC4xx IBM DDR2 Register Dump:\n");
  2800. #if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  2801. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  2802. PPC4xx_IBM_DDR2_DUMP_REGISTER(R0BAS);
  2803. PPC4xx_IBM_DDR2_DUMP_REGISTER(R1BAS);
  2804. PPC4xx_IBM_DDR2_DUMP_REGISTER(R2BAS);
  2805. PPC4xx_IBM_DDR2_DUMP_REGISTER(R3BAS);
  2806. #endif /* (defined(CONFIG_440SP) || ... */
  2807. #if defined(CONFIG_405EX)
  2808. PPC4xx_IBM_DDR2_DUMP_REGISTER(BESR);
  2809. PPC4xx_IBM_DDR2_DUMP_REGISTER(BEARL);
  2810. PPC4xx_IBM_DDR2_DUMP_REGISTER(BEARH);
  2811. PPC4xx_IBM_DDR2_DUMP_REGISTER(WMIRQ);
  2812. PPC4xx_IBM_DDR2_DUMP_REGISTER(PLBOPT);
  2813. PPC4xx_IBM_DDR2_DUMP_REGISTER(PUABA);
  2814. #endif /* defined(CONFIG_405EX) */
  2815. PPC4xx_IBM_DDR2_DUMP_REGISTER(MB0CF);
  2816. PPC4xx_IBM_DDR2_DUMP_REGISTER(MB1CF);
  2817. PPC4xx_IBM_DDR2_DUMP_REGISTER(MB2CF);
  2818. PPC4xx_IBM_DDR2_DUMP_REGISTER(MB3CF);
  2819. PPC4xx_IBM_DDR2_DUMP_REGISTER(MCSTAT);
  2820. PPC4xx_IBM_DDR2_DUMP_REGISTER(MCOPT1);
  2821. PPC4xx_IBM_DDR2_DUMP_REGISTER(MCOPT2);
  2822. PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT0);
  2823. PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT1);
  2824. PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT2);
  2825. PPC4xx_IBM_DDR2_DUMP_REGISTER(MODT3);
  2826. PPC4xx_IBM_DDR2_DUMP_REGISTER(CODT);
  2827. #if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  2828. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  2829. PPC4xx_IBM_DDR2_DUMP_REGISTER(VVPR);
  2830. PPC4xx_IBM_DDR2_DUMP_REGISTER(OPARS);
  2831. /*
  2832. * OPART is only used as a trigger register.
  2833. *
  2834. * No data is contained in this register, and reading or writing
  2835. * to is can cause bad things to happen (hangs). Just skip it and
  2836. * report "N/A".
  2837. */
  2838. printf("%20s = N/A\n", "SDRAM_OPART");
  2839. #endif /* defined(CONFIG_440SP) || ... */
  2840. PPC4xx_IBM_DDR2_DUMP_REGISTER(RTR);
  2841. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR0);
  2842. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR1);
  2843. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR2);
  2844. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR3);
  2845. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR4);
  2846. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR5);
  2847. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR6);
  2848. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR7);
  2849. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR8);
  2850. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR9);
  2851. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR10);
  2852. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR11);
  2853. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR12);
  2854. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR13);
  2855. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR14);
  2856. PPC4xx_IBM_DDR2_DUMP_REGISTER(INITPLR15);
  2857. PPC4xx_IBM_DDR2_DUMP_REGISTER(RQDC);
  2858. PPC4xx_IBM_DDR2_DUMP_REGISTER(RFDC);
  2859. PPC4xx_IBM_DDR2_DUMP_REGISTER(RDCC);
  2860. PPC4xx_IBM_DDR2_DUMP_REGISTER(DLCR);
  2861. PPC4xx_IBM_DDR2_DUMP_REGISTER(CLKTR);
  2862. PPC4xx_IBM_DDR2_DUMP_REGISTER(WRDTR);
  2863. PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR1);
  2864. PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR2);
  2865. PPC4xx_IBM_DDR2_DUMP_REGISTER(SDTR3);
  2866. PPC4xx_IBM_DDR2_DUMP_REGISTER(MMODE);
  2867. PPC4xx_IBM_DDR2_DUMP_REGISTER(MEMODE);
  2868. PPC4xx_IBM_DDR2_DUMP_REGISTER(ECCCR);
  2869. #if (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  2870. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  2871. PPC4xx_IBM_DDR2_DUMP_REGISTER(CID);
  2872. #endif /* defined(CONFIG_440SP) || ... */
  2873. PPC4xx_IBM_DDR2_DUMP_REGISTER(RID);
  2874. PPC4xx_IBM_DDR2_DUMP_REGISTER(FCSR);
  2875. PPC4xx_IBM_DDR2_DUMP_REGISTER(RTSR);
  2876. #endif /* defined(DEBUG) */
  2877. }
  2878. #endif /* CONFIG_SDRAM_PPC4xx_IBM_DDR2 */